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Abstract. This study presents a high-resolution framework for assessing climate-related risk at the building scale by 

operationalizing the IPCC risk concept, defining risk as a function of vulnerability, exposure and hazard. The framework 

focuses on pluvial flood risk related to people’s well-being and mobility. Hazard is driven by a 100-year rainfall event (36 

mm h⁻¹), modelled with a hydrodynamic flood simulation incorporating topography, drainage capacity, and land use. 

Exposure is differentiated by impact type, considering residents on ground floors for well-being and building proximity to 20 

flooded streets for mobility and accessibility. Social vulnerability is quantified using socioeconomic indicators such as age, 

income, and education. The framework is demonstrated using empirical data from Hamburg, Germany, identifying risk 

hotspots where high social vulnerability coincides with elevated flood exposure. To support practical implementation, we 

introduce a Python-based ArcGIS pluvial flood risk toolbox that enables automated, building-level risk mapping. The 

transparent and flexible design makes the framework transferable to other cities, supporting climate adaptation planning and 25 

risk-informed decision-making. 

Non-Technical Summary 

With more than half of the population living currently in urban settings and increased urbanization under changing climate 

leads to the need of assessing risk to climate extremes, such as pluvial flooding at local scale. In this study, this is addressed 

by following the Intergovernmental Panel on Climate Change (IPCC) risk definition, conceptualizing risk as a function of 30 

hazard, exposure, and vulnerability. The resulting risk is presented as risk to well-being, considering residents living on the 

building's ground floor and the risk to mobility and accessibility, taking into account flooded streets in close vicinity to the 

building. The results identify buildings in urban areas where residents face higher flood risk due to greater social 
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vulnerability, increased exposure, or elevated flood hazard. We present the development and application of a Python-based 

ArcGIS toolbox for estimating pluvial flood risk at the building scale. It is designed specifically for application in urban 35 

environments. This allows city planners to target the areas most in need of attention. The approach is transferable to other 

cities, offering a practical tool for flood risk management and climate adaptation planning. 

1 Introduction 

More than half of the world’s population (55%) currently resides in urban areas, a figure projected to increase to 68% by 

2050 (United Nations, 2019). Urbanization, coupled with climate change, intensifies the risk of pluvial flooding, especially 40 

in strongly sealed cities where intense rainfall leads to small-scale, rapid flooding events (Arnbjerg-Nielsen et al., 2013; 

Fereshtehpour & Najafi, 2025; Scalenghe & Marsan, 2009). Climate change already exacerbates short-duration rainfall 

extremes(Lang & Poschlod, 2024), with further intensification expected under warming scenarios (Fowler et al., 2021). 

Recent studies emphasize the importance of understanding these extreme events at high temporal and spatial resolutions, as 

they significantly influence urban flood risk assessments (Sillmann et al., 2024). 45 

While many modelling approaches for pluvial flood hazard and vulnerability assessment exist, their effectiveness depends 

heavily on data availability and local conditions (Bulti & Abebe, 2020; Cea & Costabile, 2022; Nkwunonwo et al., 2020).  

High-resolution models are essential for credible risk assessments and effective flood management strategies (Fritsch et al., 

2016; Rehman et al., 2019). In this context, the development of practical, stakeholder-oriented tools that incorporate a 

holistic perspective is crucial for urban resilience efforts.  50 

Previous work on high-resolution flood risk management mainly focused on the hazard component, e.g. by integrating high-

resolution flood modelling (Bertsch et al., 2022). However, only a few cases expanded the hazard-focused few by 

incorporating additional variables into the risk estimation, such as susceptibility and exposure at the basin scale (Afifi et al., 

2019; Devi et al., 2025) or the building usage to estimate the damage potential (Bhola et al., 2020). Other studies linked 

citizen science to flood modelling (Assumpção et al., 2018). Notably, certain projects have used physically-based damage 55 

modelling approaches to quantify risk more precisely (e.g. Gentile et al., (2022), providing valuable insights for urban flood 

risk management. However, the integration of all three variables, hazard, exposure and (social) vulnerability remains largely 

unaddressed on this scale.  

The current work builds on these foundations by focusing on user-friendly, stakeholder-oriented tools and goes beyond 

existing approaches. The proposed framework implements the Intergovernmental Panel on Climate Change (IPCC) risk 60 

definition, conceptualizing risk as a function of hazard, exposure, and vulnerability (Field et al., 2014). To tailor this 

framework for an urban context, we adapt the social vulnerability concept articulated by von Szombathely et al. (2023), 

specifically focusing on its application to pluvial flood hazards on a building-resolving scale. This approach emphasizes the 

importance of understanding social dynamics in risk assessments, aligning with recent research efforts that aim to integrate 

hazard-specific vulnerability profiles within urban settings (Alves et al., 2021; Prall et al., 2024).  65 
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This methodological paper aims to develop and demonstrate a comprehensive risk mapping framework for pluvial flooding. 

The framework has already been applied to an analysis of pluvial flood risk in Hamburg, Germany (von Szombathely et al., 

in review). Central to this effort is the creation of a stakeholder-informed Python-based ArcGIS toolbox designed to generate 

flood risk maps, supporting urban stakeholders in flood risk management. By exemplifying an approach applicable to other 

cities, this framework seeks to promote reproducibility and transferability in urban flood risk assessments, where stakeholder 70 

and flood risk managers can holistically assess flood risk providing information at building-resolving scale. We follow the 

FAIR Principles (Findable, Accessible, Interoperable, Reusable), ensuring that both data and methods are transparently 

shared and can be used effectively by other cities (Wilkinson et al., 2016). With this approach, we aim to bridge the gap 

between technical flood hazard modelling and decision-oriented risk management, enabling more informed, transparent, and 

inclusive urban flood risk planning. 75 

2 Data and Software Environment 

For this analysis, we use the ArcGIS Pro Software and the Python programming language to ensure both professional 

functionality and open-source adaptability. ArcGIS Pro is a license-based software and for this analysis, the advanced license 

is used. Since ESRI products are widely used among the involved stakeholders, the primary application presented here is 

based on the ArcGIS Pro environment. More specifically, we employ the Model Builder tool, which enables users to 80 

sequence geoprocessing tools and package them into reproducible workflows, also known as toolsets, which are organized 

within a toolbox. This approach allows others to easily replicate the analytical steps described in this study. 

To ensure transparency and facilitate open-source data replication, all models created using the Model Builder were also 

exported as Python scripts, allowing users to run or modify them outside the ArcGIS environment. 

2.1 Input data 85 

For the implementation of the toolbox, we create synthetical data derived from publicly available datasets provided by the 

City of Hamburg, Germany, as described in von Szombathely et al., (in review). The following Table 1 summarizes the data 

used in this analysis. However, even though based on real empirical data from Hamburg, we aim to anonymize building-

level data to prevent identification of individual households and show the applicability to other urban environments on 

building-scale. We describe the data preparation in the following. An excerpt of the input data layer is visible in Figure S1. 90 
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Table 1: Input data overview. 

Raw variable Derived variables Resolution 
Output 

variables 
Source 

S
o

ci
a

l 
V

u
ln

er
a

b
il

it
y

 

Socio-

economic  

data 

Number of children < 10 years old (C) 

Statistical 

unit 
SVPF 

FHH, Behörde 

für 

Stadtentwicklung 

und Wohnen, 

(2023) 

FHH, 

Statistikamt 

Nord, (2024) 

Elderly singles > 65 years old (ES) 

People without high school diploma within 

the last 3 years (EDQ) 

Receivers of social welfare (WR) 

E
x

p
o

su
re

 

Residents 

data 

Residents per building (R) and residents per 

ground floor level (RG) 

Statistical 

unit 
EMA, EWB 

FHH, 

Statistikamt 

Nord, (2024) 

Infrastructure Street outlines m  

Intersected 

areas with flood 

layer 

FHH, 

Statistikamt 

Nord, (2017) 

Building 

information 
Nr. of floors above ground and building type  

Building 

level 
EMA, EWB 

Landesbetrieb 

Geoinformation 

und Vermessung 

(LGV) Hamburg, 

(2020) 

H
a

za
rd

 

Flood data 

Water level based on pluvial flood scenario 

based on a rainfall of 36 mm/h reflecting a 

100-year event  

m2 HMA, HWB 
FHH, BUKEA, 

(2024) 

 95 

2.2 Social Vulnerability: Socio-economic data 

The underlying demographic and socio-economic data are based on the data provided for the city of Hamburg and available 

at the resolution of statistical units, where statistical units are sub-regions reflecting a grouping of neighbouring building 

blocks that are assumed to be homogeneous in terms of their building and socio-structural characteristics (Statistisches Amt 

für Hamburg und Schleswig-Holstein, 2024). For our analysis numbers of children under 10 years old and singles over 65 100 

years old are required to reflect the sensitivity to flood hazards. To demonstrate coping capacity, data on social welfare 

recipients and the number of residents who left school without a high school diploma within the last three years is used 

(FHH, Behörde für Stadtentwicklung und Wohnen, 2023, 2024; Statistisches Amt für Hamburg und Schleswig-Holstein, 

2024). This information is the only available data source providing information on the high school level for the case study 
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example. As this data is only publicly available aggregated for the whole statistical unit due to data protection, we 105 

disaggregated the data using the toolbox to the building level creating one possible realization guided by expert knowledge, 

reproducing the total numbers of the statistical unit. This allows us to show the capabilities of the toolbox at building-

resolving scales. As socio-economic data is often available at aggregated scales, the toolbox also offers the functionality to 

disaggregate the data linearly across a statistical unit as shown in von Szombathely et al., (2023). However, for the case 

study, a linear disaggregation would result in a completely homogeneous spatial distribution of socio-economic data, which 110 

is not well suited to show the implications of high-resolution risk mapping at the building-resolving scale. 

2.3 Exposure: Residents and infrastructure data 

Due to data protection regulations, information on the number of residents in each building is not publicly available for 

German cities, like Hamburg. Instead, 2023 population data is reported at the statistical unit level (Statistisches Amt für 

Hamburg und Schleswig-Holstein, 2024). Hence, we distribute the number of residents to the buildings of the case study 115 

guided by the living space of the buildings. For the spatial analysis, we use road data from 2019 and building outlines from 

2020, including the number of above-ground floors and their primary function (residential or mixed-use). Both datasets are 

sourced from the official land register (ALKIS) provided by the city of Hamburg (FHH, Statistikamt Nord, 2017; 

Landesbetrieb Geoinformation und Vermessung (LGV) Hamburg, 2020).  

2.4 Hazard: Modelled flood level data 120 

Simulations of pluvial flooding are provided by Hamburg’s water supply and wastewater disposal company HAMBURG 

WASSER on behalf of and in cooperation with the Hamburg Ministry for Environment, Climate, Energy and Agriculture 

(Behörde für Umwelt, Klima, Energie und Agrarwirtschaft; BUKEA). Our case study example is based on the pluvial flood 

scenario triggered by a design rainfall of 36 mm/h reflecting a 100-year event (FHH, BUKEA, 2024), assuming a uniform 

probability of occurrence throughout the urban area with a resolution of 1 m2. In sum, the input data of our case study is 125 

based on empirical data of one statistical unit from Hamburg reproducing the total numbers of the official city statistics, 

while the disaggregation to the building level does not reflect real observed conditions. Though, we argue that the resulting 

case study data are a plausible realization of socio-economic data, exposure and hazard reflecting the spatial variability 

within a city quarter. The input data of the here shown case study are publicly available 

(https://doi.org/10.5281/zenodo.17986182).  130 
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Figure 1: Underlying input data for the risk map framework. The first row (a to d) includes social vulnerability parameters, whereas 

the bottom row (e to h) shows exposure related variables. Hazard related variables are depicted as flooding depths between 30 and 100 cm. 135 

3. Methodology 

The applied input data and overall structure of the here presented methodology is presented in Fig. 2. The figure illustrates 

the methodological framework developed to assess pluvial flood risk (PFR) by integrating Social Vulnerability (SV), 

Exposure (E), and Hazard (H). Each component is processed separately based on its native data structure and subsequently 

harmonized to a common spatial resolution (building polygons) before the final risk calculation. 140 
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Figure 2: Overview of the applied methodology for calculating pluvial flood risk at the household level in an exemplary urban 

environment. Colours and labels indicate the individual components and processing steps of the risk calculation. 

The structure of the framework also serves as the structure for this chapter. Section 3.1 describes the conceptual design and 145 

data preparation for each column. Section 3.2 then shows the exact calculation and implementation in the ArcGIS toolbox. 

 

3.1 Underlying concepts and data pre-processing  

3.1.1 Social Vulnerability  

The concept of SV is based on the selection of socio-economic variables that must be related to each other. Each increase of 150 

each variable must increase vulnerability and the assigned variables should be categorized in either Sensitivity or Coping 

Capacity for flood events. It is important to ensure that horizontal social distinctions (such as age) contribute to sensitivity, 

while vertical distinctions (such as income) (Bourdieu, 1984) influence coping capacity.  
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For the calculation of social vulnerability (SV) we followed the procedure presented in von Szombathely et al., (2023), 

where SV is calculated considering the coping capacity and sensitivity, both represented with equal importance (0.5, 0.5). 155 

These weights are based on an analytical hierarchy process and local expert opinions. All weights in either the group of 

sensitivity or coping capacity have to add up to one. In the case study, sensitivity is defined by assigning a weight of 0.7 to 

children under 10 years old (C) and 0.3 to elderly singles over 65 years old (ES). For coping capacity, equal importance (0.5) 

are used between the number of residents who left school without a high school diploma within the previous three years 

(EDQ) as well as recipients of social welfare (WR).  160 

Since we include several variables that contribute to a combined flood risk index, it is important to consider how these 

variables interact to create a comprehensive assessment of flood risk. While the alternatives can be easily ranked based on a 

single attribute, combining all attributes into a single index requires special techniques. One method in flood risk analysis is 

the Technique for Order Performance by Similarity to an Ideal Solution (TOPSIS) (Hwang & Yoon, 1981) which has been 

applied in several flood risk analysis’ (Ekmekcioğlu et al., 2021; Nguyen et al., 2020; Pathan et al., 2022; Rafiei-Sardooi et 165 

al., 2021; Yang et al., 2018) and was applied in this work in addition to the methodology presented in von Szombathely et al. 

von Szombathely et al., (2023). This technique quantifies for each alternative (A1 - A8 in Figure 3) the relative distance to 

the positive ideal (A+ in Figure 3) and negative ideal (A- in Figure 3) and ranks them accordingly.  

The TOPSIS method can compare attributes with differing units and is able to incorporate specific weights for each attribute. 

The values assigned to each alternative can also be interpreted geometrically: for each attribute, the maximum (A⁻) and 170 

minimum (A⁺) values define two ideal points within a multidimensional space. The dimension is equal to the number of 

different attributes. Then each alternative occupies a place in space. Lastly, we can calculate the relative Euclidean distance 

to the negative and positive ideal (A-, A+ see Figure 3). 

  

Figure 3: Conceptual description of social vulnerability (adapted from Dyson et al., (2017). A- and A+ represent negative and 175 
positive ideals of the vector space (dashed lines) spanned by the smallest and largest attributes of the alternatives (A1 to A8). The solid 

lines depict the distance between two example points (A1 and A2) to either ideal point.  
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Heterogeneity may be a driving factor in the way attributes contribute to the final risk index. This is not considered in the 

TOPSIS approach but can be compensated by applying the Shannon Entropy method (Shannon, 1948). Other studies have 

already applied this concept in a flood risk context (Malekinezhad et al., 2021; Yang et al., 2018). In our analysis, both the 180 

TOPSIS and the Shannon Entropy methods are applied to the estimation of Sensitivity, Coping Capacity and the Social 

Vulnerability Index (SVI).  

The distribution of the Social Vulnerability Index depends heavily on the variability of the initial socio-economic data, 

which is in turn dependent on the spatial resolution of the socio-economic data. Since we aim for an application of the IPCC 

risk framework to urban pluvial flood risk, it would be ideal to have socio-economic data at the building resolution. The 185 

coarser the resolution of the input variables used to calculate the SVI, the more the SVI follows a normal distribution. Given 

that our analysis is applying the risk framework at the household level, the social vulnerability data is skewed. When 

multiplying the social vulnerability with the exposure and hazard indices as foreseen by the IPCC risk framework, the 

skewed social vulnerability data would affect the final risk index less compared to exposure and hazard. To mitigate this, we 

square social vulnerability values to approximate a more normal distribution of SVI values. 190 

In addition, we address the implication of the IPCC risk framework, which defines risk as the product of hazard, exposure, 

and social vulnerability, and would therefore assign zero risk to observations with “no” social vulnerability. In the case of 

the proposed SVI depending on age, social welfare and the high school diploma, zero values of the SVI are possible on the 

building scale. To prevent that this leads to zero risk, a value of a quarter mean of the SV value is added to the SV value. 

This is an arbitrary choice and we acknowledge the possible variations of resulting risk. Therefore, we show the effect of 195 

varying transformation thresholds on the overall estimated risk within the sensitivity analysis (Section 4.1).   

3.1.2 Exposure  

In line with the IPCC framework, we define exposure as the presence of people in areas that may be adversely affected by 

pluvial flooding. In this study, exposure is assessed in relation to the residential population and their places of residence. 

Since different flood hazards have varying impacts, we differentiate between hazards to mobility restrictions & accessibility 200 

and hazards to well-being, leading to two distinct exposure concepts:  

1. Exposure related to mobility & accessibility (EMA): Includes all residents of a given building, as flooding can 

affect their ability to enter or exit the premises. 

2. Exposure related to well-being (EWB): Considers only individuals residing on the ground floor, as they are directly 

affected by water entering the building.  205 

In case of aggregated input data, the toolbox can allocate population data at the building level, assuming a uniform 

population distribution within each statistical unit. The total population is then distributed among residential buildings in 

proportion to their available living space. In the case of mixed-use buildings, we assume that the first floor is dedicated to 

commercial use and does not contribute to the residential living area. This method improves the spatial accuracy of our 

exposure assessment by ensuring a more realistic distribution of inhabitants.  210 
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3.1.3 Hazard 

In this study, we only consider urban pluvial flooding as the hazard. We define water level thresholds based on existing 

studies on pluvial flooding (Bhola et al., 2020; Calianno et al., 2013; Lazzarin et al., 2022) and building regulations 

(Bignami, 2019). Following the two distinct exposure concepts we define two pluvial flood hazards:  

1. Hazard related to well-being (HWB): Water levels from 30 cm to 1 m with 10 cm increments directly adjacent to 215 

buildings, to assess the potential for damage and danger to well-being. 

2. Hazard related to mobility and accessibility (HMA): 30 cm as a threshold for flooding near buildings, to evaluate 

how flooding impacts movement and access in affected areas. 

3.1.4 Risk 

Building on the previously established data indices, flood risk at the building level is assessed using the IPCC Risk 220 

Assessment framework (Intergovernmental Panel On Climate Change (Ipcc), 2021), which integrates hazard, exposure, and 

vulnerability to quantify risks associated with pluvial flooding. This approach enables a detailed evaluation of flood-related 

impacts on mobility & accessibility and well-being in Hamburg. Based on this conceptual decision to define two different 

approaches to hazard and exposure, we ultimately calculate two different risk indices: 

1. Pluvial flood risk to well-being (PFRWB) 225 

2. Pluvial flood risk to mobility and accessibility (PFRMA) 

3.2 Toolbox Architecture and Model Development 

To adopt the theoretical concepts into reproducible workflows, we made use of the ArcGIS Pro (V.3.2.0) model builder. We 

created a Risk Map Toolbox (https://doi.org/10.5281/zenodo.17986182), which contains all calculation steps needed to 

represent the here shown results. The tools are stored in three toolsets, following the presented structure of the IPCC 230 

including Vulnerability, Exposure and Hazard (Figure 4). For the final risk calculation, a script-based tool is added, as well 

as an optional tool which calculates the boundary classes used for the applied visualization. 
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Figure 4: Outline of the Risk Map Toolbox. The coloured boxes represent the corresponding risk parameters (Social Vulnerability, 

Exposure, Hazard, and Risk Calculation), containing toolsets and scripts for the respective calculation steps. Black boxes represent the 235 
result(s) of each Toolset, necessary for risk calculation (dark purple boxes). For an overview of the appearance in ArcGIS and the actual 

user interfaces, please refer to Figure S14.   

3.2.1 Social Vulnerability Toolset 

The SV toolset calculates Sensitivity, Coping Capacity, and the SV index using TOPSIS, and its transformed version using 

the flood sensitivity transformation tool. Each vulnerability tool allows adjustment of the weights for Sensitivity and Coping 240 

Capacity. Within each group, the weights must sum to one and can be modified in the toolbox (Equ. 1 - 3). 

𝑆𝑉 𝑖 =  𝐹𝑇𝑂𝑃𝑆𝐼𝑆(𝐶𝐶𝑖 , 𝑆𝑖 , 0.5,0.5)  , with              (1) 

𝐶𝐶 𝑖 =  𝐹𝑇𝑂𝑃𝑆𝐼𝑆(𝐶𝑖, 𝐸𝑆𝑖 , 0.3,0.7) , and          (2) 

𝑆𝑖     =  𝐹𝑇𝑂𝑃𝑆𝐼𝑆(𝑊𝑅𝑖 , 𝐸𝐷𝑄𝑖 , 0.5,0.5)         (3) 

 245 

where the TOPSIS procedure is represented as FTOPSIS for the coping capacity (𝐶𝐶 𝑖), and Sensitivity (𝑆𝑖), for each alternative 

(building) i.   

In more detail, to apply TOPSIS, all attributes are normalized (Eq. 4), and then multiplied with the specific weight. The 

normalization of each alternative can be expressed as:  

𝑧𝑖𝑗  =  
x𝑖𝑗

∑ 𝑥𝑚
𝑖=1 𝑖𝑗

, j ∈ {1, … , n}, i ∈ {1, … , m}           (4) 250 

where 𝑧𝑖𝑗  is the normalized attribute and x𝑖𝑗  reflects the unweighted value for the i-th alternative (buildings) and j-th attribute 

(relative share of C, ES, WR, EDQ). 

 

The maximum and minimum values for each attribute define two ideal points in a multidimensional space (Eq. 5). We can 

calculate the relative Euclidean distance to this negative and positive ideal (A-, A+ see Figure 3). Generally speaking for 255 

alternative Ai with n different attributes, let zij be the normalized attribute then: 
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𝐹𝑇𝑂𝑃𝑆𝐼𝑆(𝑧𝑖1, . . . , 𝑧𝑖𝑛 , 𝑤1, . . . , 𝑤𝑛)  =  
√∑ 𝑤𝑗

2𝑛
𝑗=1 (𝑚𝑖𝑛𝑖(𝑧𝑖𝑗)−𝑧𝑗)2

√∑ 𝑤𝑗
2𝑛

𝑗=1 (𝑚𝑖𝑛𝑖(𝑧𝑖𝑗)−𝑧𝑗)2+√∑ 𝑤𝑗
2𝑛

𝑗=1 (𝑚𝑎𝑥𝑖(𝑧𝑖𝑗)−𝑧𝑗)2
    (5) 

with n attributes, where zij is the normalized attribute and jth reflects the unweighted attribute for the ith alternative. 

Additionally, we apply the Shannon Entropy method. The idea of the Shannon Entropy method is to multiply the final risk 

index with an entropy-index between 1 and 2, where 1 indicates complete homogeneity and 2 indicates total inhomogeneity 260 

across different attributes. More specifically, for m alternatives with n attributes, where zij is the normalized attribute and jth 

reflects the unweighted attribute for the ith alternative, the entropy Ui is calculated following Eq. 6: 

𝑈𝑖 =  2 +
1

𝑙𝑛(𝑛)
∑ (

𝑧𝑖𝑗

∑ 𝑧𝑖𝑗
𝑛
𝑗=1

𝑙𝑛 (
𝑧𝑖𝑗

∑ 𝑧𝑖𝑗
𝑛
𝑗=1

)) , 𝑖 ∈ {1, . . . , 𝑚}𝑛
𝑗=1        (6) 

The effect of heterogeneity depends on the specific context and its application should be evaluated individually for each 

hazard scenario. Hence, our toolbox offers the user to choose if Shannon Entropy shall be applied (please see additional 265 

screenshots of the tool user interfaces provided in the supplementary material Figure S2 a to c.). 

Finally, we perform two additional transformations, addressing the specific data distribution of SV (flood sensitivity 

transformation, see Fig. 1): (a) To mitigate the skewed social vulnerability data, we square social vulnerability values to 

approximate a more normal distribution of SV values; (b) to prevent that zero SV values lead to zero risk, a value of a 

quarter mean of the SV value is added to the SV value (see Eq. 7). This threshold must be evaluated individually for 270 

different hazards or cities. Hence, our toolbox offers the user to apply different thresholds if needed (no, half or one mean 

value) 

𝑆𝑉𝑃𝐹  =  (𝑈𝑖 ∙  𝑆𝑉 +
𝑀𝑒𝑎𝑛(𝑈𝑖∙𝑆𝑉)

4
)           (7) 

, with the Entropy 𝑈𝑖, and the previously calculated social vulnerability value (𝑆𝑉). 

All four tools are coded in Python and were incorporated within the ArcGIS framework. An exemplary outline of the 275 

calculated values is depicted in Figure S3. We show the sensitivity to changes of this threshold within the sensitivity 

analysis. 

3.2.2 Exposure Toolsets 

The calculation of Exposure contains one tool (see Figure 4) including several sub-tools which are linked to one-another. 

The full workflow exported from the toolbox can be viewed in the supplementary Figure S4. First, both input data, the 280 

available data based on the statistical unit and the building information are combined (See Figure S5 a to c). Then, the 

available living area per building is calculated based on the following equation (Fig. S5 d and e) (Eq. 8). 

 

𝐴𝐵 = (𝐹𝑙 − (𝐵 − 1)) ∙ 𝐴𝑃           (8) 
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Where AB is the area of each building (in m²), Fl being the number of floors of the corresponding building and B the building 285 

type, (B = 1 for residential, B = 2 for mixed use, containing no residents on the base floor level but in the upper levels), and 

AP for the area (in m²) of each building.  

Following the two previously mentioned exposure concepts of EMA, including all residents of a given building and EWB, 

considering only individuals residing on the ground floor level, the subsequent Eq. 9 and Eq. 10 are used to obtain EMA and 

EWB. 290 

𝐸𝑀𝐴 =  
𝐴𝐵

𝐴𝐿𝑆𝑈 ∙𝑅𝑆𝑈
            (9) 

with 𝐴𝐵 being the area in m² of each house, 𝐴𝐿𝑆𝑈 the total living area in m² within the statistical unit and 𝑅𝑆𝑈, the overall 

number of residents living in the corresponding statistical unit (SU).  

𝐸𝑊𝐵 =  
(−(𝐵−2)∙𝐸𝑀𝐴

𝐹𝑙
           (10) 

With building type (B = 1 for residential, B = 2 for mixed use) and the number of floors in the corresponding house (Fl).  295 

The corresponding tools are shown in Fig. S5 e to i). An excerpt of the resulting attribute table after implementing the 

exposure calculation is depicted in Figure S6. 

3.2.3 Hazard Toolsets 

The calculation of the hazard is two-fold, one toolset is developed for the calculation of the hazard to mobility & 

accessibility and one for the hazard to well-being.  300 

The assessment of the hazard to well-being is carried out in two stages (see Fig. S7). The first tool computes the areas of 

intersection between all flood-depth layers from 30 cm to 100 cm (with 10 cm increments) and the affected buildings (see 

Fig. S7 a and c). To account for potential water intrusion near buildings, we applied a 2-meter buffer around all buildings, 

which was determined based on the native 1-meter resolution of the flood simulation, expert knowledge, and stakeholder 

workshops in Hamburg, as well as following the approach of von Szombathely et al., (in review). 305 

The second tool (as shown in Fig. S7 b) calculates the hazard to well-being (HWB) following a cumulative distribution 

function (CDF; Φ) of the log-normal distribution with μ= 0 and σ = 0.25. 

𝐹𝑋(𝑥) =  𝛷 (
𝑙𝑛𝑙𝑛 (𝑥) − 𝜇

𝜎
)           (11) 

We derive the hazard index with 

𝐻𝑊𝐵  = ∑ [𝐹𝑋(4 ⋅ 𝐴2𝑚,𝑖)]100
𝑖=30 ,     𝑖 ∈ {30, 40, 50, 60, 70, 80, 90, 100}      (12) 310 

where 𝐴2𝑚,𝑖 as the fraction of the flooded area within a 2 m buffer at the water level i (in centimeter).  

The toolset of the well-being hazard considers all potential flood-layers included in the corresponding input folder. In the 

sensitivity analysis, we therefore discuss the sensitivity of the applied method using a lower flooding threshold (20 cm). An 

example of the resulting output table is shown in Figure S8.  
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The assessment of the hazard to mobility and accessibility includes two tools. Using the first tool (see Figure S9 a and c), we 315 

determine the areas of intersection, expressed in square meters (labelled with A) and percentages (labelled with P), between 

the flood hazard layer and (a) a 5 m buffer around each building, representing the feasibility of accessing the building, and 

(b) 15 m and (c) 15-to-30 m buffers around affected buildings, capturing potential intersections with the road network. 

The second tool (Fig. S9 b) includes the calculation of the actual hazard as described in von von Szombathely et al., (in 

review), where the hazard index related to mobility and accessibility (HMA) is calculated using the maximum value derived 320 

from the Eq. 13. 

𝐻𝑀𝐴 = 𝑀𝑎𝑥[𝐹𝑋(4 ⋅ 𝐴5𝑚,30𝑐𝑚), 𝐹𝑋(4 ⋅ 𝑅15𝑚,30𝑐𝑚), 𝐹𝑋(4 ⋅ 𝑅30𝑚,30𝑐𝑚)]        (13) 

There, 𝐴5𝑚,30𝑐𝑚 refers to the fraction of area within a 5 m buffer, which is flooded above a 30 cm water level. 𝑅15𝑚,30𝑐𝑚 and 

𝑅30𝑚,30𝑐𝑚 describe the fraction of road area within a 15 m buffer and 15-to-30 m buffer, respectively, which are flooded 

above a 30 cm water level.  325 

To ensure relevant insights into surrounding road conditions and to exclude greater hazard ratings due to small flooded road 

areas, only flooded road areas exceeding 4 m² are included. A schematic drawing (Fig. 5) depicts the applied buffers and 

intersections applied. Figure S10 shows an excerpt of the resulting 𝐻𝑀𝐴 values.  

 

Figure 5: Schematic of the hazard concept. (a) shows the schematic for the hazard of well-being, including flood levels (F) between 30 330 
cm to 100 cm and a 2 m buffer around a building to assess water at the building as a threat to well-being (b)  depicts the framework for the 

hazard of mobility and accessibility using a 5 m, 15 m and 15-30 m buffer around a building at a 30 cm flood level, taking into account 

high water levels on streets and blocked access to a building. Orange color highlights the flooded buffer around the building and the 

flooded road area.   

3.2.4 Risk Tool 335 

In a final calculation, the calculated sub-indices for social vulnerability, exposure and hazard are linked to obtain two 

specific risks during pluvial flooding events, one related to well-being (PFRWB) and the other one related to mobility and 

accessibility (PFRMA).  
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The PFRWB is calculated as: 

PFRWB = (𝑆𝑉𝑃𝐹)𝑎 ∙ (𝐸𝑊𝐵)𝑏 ∙ (𝐻𝑊𝐵)𝑐               (14) 340 

Where SVPF reflects the social and economic characteristics that influence flood resilience, EWB considers the number of 

ground-floor residents, as those are most vulnerable to direct flood impacts, and HWB measures the likelihood and severity of 

floodwater intrusion at the ground floor level. Exponents a, b, and c reflects their corresponding (optional) weights.   

PFRMA = (𝑆𝑉𝑃𝐹)𝑎 ∙ (𝐸𝑀𝐴)𝑏 ∙ (𝐻𝑀𝐴)𝑐               (15) 

With SVPF reflecting the social and economic characteristics influencing flood resilience, EWB considering the number of 345 

ground-floor residents, as those are most vulnerable to direct flood impacts, and HWB measuring the likelihood and severity 

of floodwater intrusion at the ground floor level. 

Within the toolbox, we provide further options by selecting the exponent for each sub-index (hazard, exposure and social 

vulnerability), which allows for further specific weighting of the sub-indices in the final risk assessment (see Figure S11). 

An excerpt of the resulting risk values and related sub-indices is shown in the supplementary Figure S12. Additionally, we 350 

provide a tool to estimate the visualization classes (no risk to very high risk) based on an iterative mean-based filtering 

process. In this context, the absolute values themselves are not decisive, rather, the relative gradations between them 

determine the risk structure. This approach ensures that the classification of risk classes reflects the data’s internal structure 

(see Fig. S13). 

4 Results and Discussion 355 

The resulting pluvial flood risk is provided by assessing the risk to well-being (Figure 6) and risk to mobility and 

accessibility (Figure 7). 

4.1. Risk to well-being 

Using this example case study, we first present the pluvial flood risk to well-being as calculated by integrating social 

vulnerability, exposure and hazard. The composition of social vulnerability reveals how SV emerges from the interaction 360 

between sensitivity and coping capacity. Social vulnerability becomes high or very high for buildings with elevated 

sensitivity, for example due to the presence of young children or elderly residents living alone (indicated by darker red 

shades in Fig. 6 a). However, SV can be reduced where coping capacity is comparatively high (Fig. 6 b), resulting in an 

overall medium level of social vulnerability to pluvial flooding (Fig. 6 c). For the estimation of pluvial flood risk to well-

being, exposure is limited to residents living on the ground floor, such as in mixed-use buildings with offices or stores on the 365 

ground level and apartments above. This highlights a potential limitation of this framework, where based on the building 

scale, case specific information is not captured, such as the building’s entry side, the likelihood of water intrusion into the 
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basement, or the feasibility of implementing protective measures. However, the presented toolbox allows users to adjust the 

weighting of individual parameters, for instance by applying a higher weight to the sub-index to better reflect specific 

conditions where necessary. Overall, the resulting risk map for well-being captures spatially differentiated patterns and helps 370 

identify areas where targeted adaptation measures may be required. 

 

Figure 6: Pluvial flood risk to well-being. (a) shows sensitivity based on the presence of young children and elderly singles. (b) depicts 

the coping capacity and (c) the combination of both leading to the transformed social vulnerability index. (d) shows the exposure as the 

number of residents of the ground level per building, (e) depicts the hazard based on the 30 cm - 100 cm flood levels and (f) shows the 375 
final pluvial flood risk to well-being. 
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4.2. Risk to mobility and accessibility 

Figure 7 presents the risk to mobility & accessibility with a focus on the street network under a flood depth of 30 cm. While 380 

social vulnerability remains identical to the assessment of risk to well-being (Fig. 7 a to c), the exposure is defined 

differently and now considers all residents per building (Figure 7 d). The corresponding hazard (Fig. 8 e) considers the 

flooded areas in close vicinity to the house (5 m) as well as flooded street segments located within distances of 15 m and 15 - 

30 m.  

The application of the pluvial flood risk toolbox revealed higher risks for buildings in close vicinity to flooded areas and 385 

streets, especially, where high exposure and high hazard categories coincide. This is exemplified by the building assigned to 

the highest risk class (see Building A in Figure 7 f). Notably, buildings with higher exposure, in this example due to larger 

building size (leading to possibly larger intersections with flooded areas) are assigned higher risk categories than smaller 

buildings with lower exposure, such as the single-family homes along the two streets (Example building B in Figure 7 f). 

This is also due to the linear aggregation of exposure data from city sub-level to building scale.  390 

Some buildings (see e.g. Building B in Figure 7 f) were attributed a low risk to mobility and accessibility, even though for 

some houses the social vulnerability and hazard category were classified as high.  

Besides the impact of the relatively low exposure, this captures a limitation of the framework when applied to a small 

example area with a high hazard level. It is related to the calculation of risk-classes, for which a mean-based classification 

was applied to capture the distribution in the (example) area. Due to the high level of hazard in the study area, a relatively 395 

high share of houses is assigned with risk to mobility. If considering this framework for a whole city, the risk categories will 

be shifted, and the class of the example building B in this case would be assigned a higher risk class (see for example von 

Szombathely et al., (in review). On the one hand, the relative risk assessment is a limitation, as the value itself cannot be 

interpreted (see also Russo et al. 2019). On the other hand, the relative nature of the framework allows to capture the 

heterogeneity of the input data and provides a base for relative prioritization of necessary adaptation measures. Using this 400 

case example, we examine the behavior of the risk calculation on building level for typical urban building types, such as a 

city quarter in Hamburg. Semi-detached houses, consisting of two identical units sharing a common wall, show a distinct 

response within this framework. Within the toolbox we account for this by excluding the building area from the buffered 

area, resulting in a higher risk category to the side facing a flooded street, whereas the opposite side receives a lower or no 

risk classification (see building C in Fig. 8 f). Although the calculation follows the risk framework, it reveals methodological 405 

shortcomings arising from the use of building-based data to infer risk for residents. For example, for two semi-detached 

houses with the same number of residents and same social vulnerability and hazard, the resulting risk index would increase, 

if the semi-detached buildings would be counted as one single building. In such cases, a careful interpretation by 

stakeholders and city management on a case-by-case basis is required. 
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 410 

Figure 7: Pluvial flood risk to mobility & accessibility. (a) shows sensitivity based on the presence of young children and 

elderly singles. (b) depicts the coping capacity and (c) the product of both leading to the transformed social vulnerability 

index. (d) shows the exposure as the number of residents per building, (e) depicts the hazard based on the 30 cm flood level 

and (f) shows the final pluvial flood risk to mobility & accessibility. 

 415 

Nevertheless, this approach provides a viable framework for calculating high-resolution risk, effectively capturing both risks 

to well-being as well as to mobility and accessibility. The automated calculation implemented in the provided toolbox 

enables the transfer of this approach to real-world case studies and facilitates its application across different urban settings.  
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4.3 Sensitivity Analysis 

The toolbox provides a framework for calculating explicit flood risk indicators but requires several context-dependent 420 

assumptions regarding parameter values and transformations. These choices can be flexibly adjusted, influencing the 

resulting risk indices. As the index classification is meaningful only in a relative sense, we assess its sensitivity by 

comparing changes in average relative risk across groups of buildings with similar risk characteristics. 

 

 425 

Figure 8:  Sensitivity analysis of the Pluvial Flood Risk (PFR) results. Panels (a,d) show the effect of adding a threshold to the SVI 

results; panels (b,e) show the effect of alternative SVI transformations; and panels (c,f) show the effect of varying the hazard range. 

Results are shown for four levels of the outcome variable (very high, high, medium, and low; corresponding to the figures in the results 

section). Default parameter settings are indicated on the x-axes. 
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5 Limitations 430 

While this study provides a comprehensive framework for the assessment of pluvial flood risk in urban areas at the building 

level, several limitations must be accounted for: 

• The estimation of risk including social vulnerability and exposure requires a high data resolution and current data. 

For the applied methodology, socio-economic data at the building resolution are required. Alternatively, data with 

coarser resolution can be disaggregated to the building level with the help of the toolsets provided in the pluvial 435 

flood risk toolbox. Disaggregation was applied for the analysis of pluvial flood risks in the city of Hamburg (von 

Szombathely et al. (in review). 

• The disaggregation to building-resolution requires several assumptions and case dependent adaptations which were 

highlighted in this study. By designing the toolbox to allow adjustments of hazard thresholds, the weighting of 

individual risk parameters, as well as the consideration of Shannon-Entropy, we aim to explicitly highlight those 440 

aspects where context-specific decisions are required. 

• Pluvial floods may affect socially vulnerable groups disproportionately larger or smaller than indicated by the SVI. 

We mitigate this by using an additional transformation, the flood sensitivity transformation. For our case example 

based on data from Hamburg, we used the default values which were defined through a co-creation process with 

city authorities and informed by expert knowledge. However, we acknowledge that thresholds depend on local 445 

context and on the socio-economic data available and consequently they may have to be adapted to the individual 

study area.  

• The representation of results on building scale may create an impression of false precision, as several important 

building-specific details cannot be adequately captured, such as the building’s entry side, the likelihood of water 

intrusion into the basement, or the feasibility of implementing protective measures. 450 

• The hazard indices do not consider flow velocities. In principle, water level or inundation depth are the main 

outputs of urban flood models, and therefore generally available for urban pluvial flood assessments (Guo et al., 

2021). However, flow velocities might be relevant for mobility (Pregnolato et al., 2017)  and damage to well-being 

(Jonkman & Penning‐Rowsell, 2008). 

• Although our risk implementation follows the IPCC risk framework, the model does not account for temporal 455 

changes or time dependent responses to the risk. The here used modelled hazard includes technical adaptation 

measures, such as sewer infrastructure and retention measures. This framework could extend to include further 

responses to risk and time domain by integrating agent-based modelling (Peng et al., 2023) or dynamic urban flood 

risk assessment (He et al., 2023). Including emergency response measures and long-term adaptation strategies 

would strengthen the model’s applicability for decision-makers. 460 
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6 Conclusion and Outlook 

We have outlined a possible approach for adapting the IPCC risk framework to urban environments and for estimating 

pluvial flood risk at the building scale. Using a small synthetical case study based on empirical data from Hamburg, we 465 

demonstrated that shifting the spatial scale from sub-city units to individual buildings is generally feasible with the available 

data.  However, working at this finer resolution requires several assumptions outlined in this study, such as differentiating 

risks based on exposure type, and applying generalizations where input data are not available at building scale, which is 

often the case given current data resolutions. To our knowledge, this represents the first publicly available application of the 

IPCC framework at the building level in an urban context and showcases some challenges and opportunities with 470 

implementing this conceptual framework in a local context with empirical data. This finer level of granularity has the 

potential to significantly enhance the accuracy of urban risk assessments and support decision-making regarding disaster risk 

management and climate adaptation. The framework and toolbox, developed in close collaboration with city stakeholders 

through co-creation processes, enables such downscaling and provides a transferable structure that can be applied to other 

cities as well. Due to its four-part structure, the toolbox can be adapted to other hazards, such as heat, though several 475 

adjustments of the risk parameters would be required and lies beyond the scope of this analysis.  

While we do not claim that this is the optimal implementation, the framework offers a transparent method to quantify risk, 

determined by the risk for mobility and accessibility and risk to well-being. Our results underline the need for high-

resolution and openly accessible data to meaningfully integrate hazard and exposure, a combination not extensively 

documented in previous work. Given the increasing frequency and intensity of extreme events in the future (Sillmann et al., 480 

2024) incorporating social vulnerability and hazard-dependent exposure into risk assessments is essential. The framework 

presented here offers municipal institutions a basis for identifying adaptation measures that go beyond a sole focus on the 

hazard and thus provide valuable guidance for urban flood risk management. 

 

  485 
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