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Abstract. This study presents a high-resolution framework for assessing climate-related risk at the building scale by
operationalizing the IPCC risk concept, defining risk as a function of vulnerability, exposure and hazard. The framework
focuses on pluvial flood risk related to people’s well-being and mobility. Hazard is driven by a 100-year rainfall event (36
mm h™), modelled with a hydrodynamic flood simulation incorporating topography, drainage capacity, and land use.
Exposure is differentiated by impact type, considering residents on ground floors for well-being and building proximity to
flooded streets for mobility and accessibility. Social vulnerability is quantified using socioeconomic indicators such as age,
income, and education. The framework is demonstrated using empirical data from Hamburg, Germany, identifying risk
hotspots where high social vulnerability coincides with elevated flood exposure. To support practical implementation, we
introduce a Python-based ArcGIS pluvial flood risk toolbox that enables automated, building-level risk mapping. The
transparent and flexible design makes the framework transferable to other cities, supporting climate adaptation planning and

risk-informed decision-making.

Non-Technical Summary

With more than half of the population living currently in urban settings and increased urbanization under changing climate
leads to the need of assessing risk to climate extremes, such as pluvial flooding at local scale. In this study, this is addressed
by following the Intergovernmental Panel on Climate Change (IPCC) risk definition, conceptualizing risk as a function of
hazard, exposure, and vulnerability. The resulting risk is presented as risk to well-being, considering residents living on the
building's ground floor and the risk to mobility and accessibility, taking into account flooded streets in close vicinity to the

building. The results identify buildings in urban areas where residents face higher flood risk due to greater social
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vulnerability, increased exposure, or elevated flood hazard. We present the development and application of a Python-based
ArcGIS toolbox for estimating pluvial flood risk at the building scale. It is designed specifically for application in urban
environments. This allows city planners to target the areas most in need of attention. The approach is transferable to other
cities, offering a practical tool for flood risk management and climate adaptation planning.

1 Introduction

More than half of the world’s population (55%) currently resides in urban areas, a figure projected to increase to 68% by
2050 (United Nations, 2019). Urbanization, coupled with climate change, intensifies the risk of pluvial flooding, especially
in strongly sealed cities where intense rainfall leads to small-scale, rapid flooding events (Arnbjerg-Nielsen et al., 2013;
Fereshtehpour & Najafi, 2025; Scalenghe & Marsan, 2009). Climate change already exacerbates short-duration rainfall
extremes(Lang & Poschlod, 2024), with further intensification expected under warming scenarios (Fowler et al., 2021).
Recent studies emphasize the importance of understanding these extreme events at high temporal and spatial resolutions, as
they significantly influence urban flood risk assessments (Sillmann et al., 2024).

While many modelling approaches for pluvial flood hazard and vulnerability assessment exist, their effectiveness depends
heavily on data availability and local conditions (Bulti & Abebe, 2020; Cea & Costabile, 2022; Nkwunonwo et al., 2020).
High-resolution models are essential for credible risk assessments and effective flood management strategies (Fritsch et al.,
2016; Rehman et al., 2019). In this context, the development of practical, stakeholder-oriented tools that incorporate a
holistic perspective is crucial for urban resilience efforts.

Previous work on high-resolution flood risk management mainly focused on the hazard component, e.g. by integrating high-
resolution flood modelling (Bertsch et al., 2022). However, only a few cases expanded the hazard-focused few by
incorporating additional variables into the risk estimation, such as susceptibility and exposure at the basin scale (Afifi et al.,
2019; Devi et al., 2025) or the building usage to estimate the damage potential (Bhola et al., 2020). Other studies linked
citizen science to flood modelling (Assumpg&o et al., 2018). Notably, certain projects have used physically-based damage
modelling approaches to quantify risk more precisely (e.g. Gentile et al., (2022), providing valuable insights for urban flood
risk management. However, the integration of all three variables, hazard, exposure and (social) vulnerability remains largely
unaddressed on this scale.

The current work builds on these foundations by focusing on user-friendly, stakeholder-oriented tools and goes beyond
existing approaches. The proposed framework implements the Intergovernmental Panel on Climate Change (IPCC) risk
definition, conceptualizing risk as a function of hazard, exposure, and vulnerability (Field et al., 2014). To tailor this
framework for an urban context, we adapt the social vulnerability concept articulated by von Szombathely et al. (2023),
specifically focusing on its application to pluvial flood hazards on a building-resolving scale. This approach emphasizes the
importance of understanding social dynamics in risk assessments, aligning with recent research efforts that aim to integrate
hazard-specific vulnerability profiles within urban settings (Alves et al., 2021; Prall et al., 2024).
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This methodological paper aims to develop and demonstrate a comprehensive risk mapping framework for pluvial flooding.
The framework has already been applied to an analysis of pluvial flood risk in Hamburg, Germany (von Szombathely et al.,
in review). Central to this effort is the creation of a stakeholder-informed Python-based ArcGIS toolbox designed to generate
flood risk maps, supporting urban stakeholders in flood risk management. By exemplifying an approach applicable to other
cities, this framework seeks to promote reproducibility and transferability in urban flood risk assessments, where stakeholder
and flood risk managers can holistically assess flood risk providing information at building-resolving scale. We follow the
FAIR Principles (Findable, Accessible, Interoperable, Reusable), ensuring that both data and methods are transparently
shared and can be used effectively by other cities (Wilkinson et al., 2016). With this approach, we aim to bridge the gap
between technical flood hazard modelling and decision-oriented risk management, enabling more informed, transparent, and

inclusive urban flood risk planning.

2 Data and Software Environment

For this analysis, we use the ArcGIS Pro Software and the Python programming language to ensure both professional
functionality and open-source adaptability. ArcGIS Pro is a license-based software and for this analysis, the advanced license
is used. Since ESRI products are widely used among the involved stakeholders, the primary application presented here is
based on the ArcGIS Pro environment. More specifically, we employ the Model Builder tool, which enables users to
sequence geoprocessing tools and package them into reproducible workflows, also known as toolsets, which are organized
within a toolbox. This approach allows others to easily replicate the analytical steps described in this study.

To ensure transparency and facilitate open-source data replication, all models created using the Model Builder were also

exported as Python scripts, allowing users to run or modify them outside the ArcGIS environment.

2.1 Input data

For the implementation of the toolbox, we create synthetical data derived from publicly available datasets provided by the
City of Hamburg, Germany, as described in von Szombathely et al., (in review). The following Table 1 summarizes the data
used in this analysis. However, even though based on real empirical data from Hamburg, we aim to anonymize building-
level data to prevent identification of individual households and show the applicability to other urban environments on

building-scale. We describe the data preparation in the following. An excerpt of the input data layer is visible in Figure S1.
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Table 1: Input data overview.

Raw variable Derived variables Resolution Ou_tput Source
variables
> Number of children < 10 years old (C) FHH. Behorde
= fir
3 Socio. Elderly singles > 65 years old (ES) Stadtentwicklung
2 . Statistical und Wohnen,
= | economic . . . o . SVpe
S | data People without high school diploma within | unit (2023)
= the last 3 years (EDQ) FHH,
8 Statistikamt
wn
Receivers of social welfare (WR) Nord, (2024)
Residents Residents per building (R) and residents per | Statistical Eva. Ewe gg:i's:tikamt
data ground floor level (RG) unit Nord, (2024)
o Intersected FHH,
2 | Infrastructure | Street outlines m areas with flood | Statistikamt
=4 layer Nord, (2017)
i Landesbetrieb
- - Geoinformation
!3U|Id|ng_ Nr. of floors above ground and building type Building Ema, Ews und Vermessung
information level
(LGV) Hamburg,
(2020)
2 Water level based on pluvial flood scenario
§ Flood data based on a rainfall of 36 mm/h reflectinga | m? Hwma, Hws (FZ%Z)BUKEA’
T 100-year event

95

2.2 Social Vulnerability: Socio-economic data

The underlying demographic and socio-economic data are based on the data provided for the city of Hamburg and available
at the resolution of statistical units, where statistical units are sub-regions reflecting a grouping of neighbouring building
blocks that are assumed to be homogeneous in terms of their building and socio-structural characteristics (Statistisches Amt
100 fur Hamburg und Schleswig-Holstein, 2024). For our analysis numbers of children under 10 years old and singles over 65
years old are required to reflect the sensitivity to flood hazards. To demonstrate coping capacity, data on social welfare
recipients and the number of residents who left school without a high school diploma within the last three years is used
(FHH, Behorde fir Stadtentwicklung und Wohnen, 2023, 2024; Statistisches Amt fir Hamburg und Schleswig-Holstein,

2024). This information is the only available data source providing information on the high school level for the case study

4
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example. As this data is only publicly available aggregated for the whole statistical unit due to data protection, we
disaggregated the data using the toolbox to the building level creating one possible realization guided by expert knowledge,
reproducing the total numbers of the statistical unit. This allows us to show the capabilities of the toolbox at building-
resolving scales. As socio-economic data is often available at aggregated scales, the toolbox also offers the functionality to
disaggregate the data linearly across a statistical unit as shown in von Szombathely et al., (2023). However, for the case
study, a linear disaggregation would result in a completely homogeneous spatial distribution of socio-economic data, which

is not well suited to show the implications of high-resolution risk mapping at the building-resolving scale.

2.3 Exposure: Residents and infrastructure data

Due to data protection regulations, information on the number of residents in each building is not publicly available for
German cities, like Hamburg. Instead, 2023 population data is reported at the statistical unit level (Statistisches Amt fiir
Hamburg und Schleswig-Holstein, 2024). Hence, we distribute the number of residents to the buildings of the case study
guided by the living space of the buildings. For the spatial analysis, we use road data from 2019 and building outlines from
2020, including the number of above-ground floors and their primary function (residential or mixed-use). Both datasets are
sourced from the official land register (ALKIS) provided by the city of Hamburg (FHH, Statistikamt Nord, 2017;
Landesbetrieb Geoinformation und Vermessung (LGV) Hamburg, 2020).

2.4 Hazard: Modelled flood level data

Simulations of pluvial flooding are provided by Hamburg’s water supply and wastewater disposal company HAMBURG
WASSER on behalf of and in cooperation with the Hamburg Ministry for Environment, Climate, Energy and Agriculture
(Behorde fir Umwelt, Klima, Energie und Agrarwirtschaft; BUKEA). Our case study example is based on the pluvial flood
scenario triggered by a design rainfall of 36 mm/h reflecting a 100-year event (FHH, BUKEA, 2024), assuming a uniform
probability of occurrence throughout the urban area with a resolution of 1 m2. In sum, the input data of our case study is
based on empirical data of one statistical unit from Hamburg reproducing the total numbers of the official city statistics,
while the disaggregation to the building level does not reflect real observed conditions. Though, we argue that the resulting
case study data are a plausible realization of socio-economic data, exposure and hazard reflecting the spatial variability
within a city quarter. The input data of the here shown case study are publicly available
(https://doi.org/10.5281/zen0d0.17986182).
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Figure 1: Underlying input data for the risk map framework. The first row (a to d) includes social vulnerability parameters, whereas
135 the bottom row (e to h) shows exposure related variables. Hazard related variables are depicted as flooding depths between 30 and 100 cm.

3. Methodology

The applied input data and overall structure of the here presented methodology is presented in Fig. 2. The figure illustrates

the methodological framework developed to assess pluvial flood risk (PFR) by integrating Social Vulnerability (SV),

Exposure (E), and Hazard (H). Each component is processed separately based on its native data structure and subsequently
140 harmonized to a common spatial resolution (building polygons) before the final risk calculation.
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[ ] | L

Data sets Sensitivity: children < 10 ] N
> ; l Residential Jati Pluvial flood
Sen: elderly singles > 65 ESUC A DORULAION (Simulation of water depth)
CCap: welfare recipients ]
Coping Capcity:
educational qualification
N
[ Native Resolution l [ Statistical area polygon ] [ Statistical area polygon ] [ 1 m?grid ]
L= [ ]
[ Data Preparation ] ( ) GIS calculations & GIS calculations &
( ) disaggregation aggregation
Yy \A.
[ Sen ] [ CCap ] Building polygon ’ Building related Polygon
T
( ) Residents Residents Flooding near | | Flooding
per building per building (-5/-15/-30m) at buildings
groundfloor buildings, (-2m), 30cm
30cm depth to 1m depth
y v ] v v
Results SV index related to PF (SVpg) E index rel. E index H index rel. H index
to mobility & related to to mobility & related to
( ) accessibility well-being accessibility well-being
(Ema) (Ews) (Hwma) (Hwg)
[ Final Resolution J [ J Building polygon Building polygon
[ Risk Calculation ] PFRya = SVpr * Epa * Hya PFRwg = SVpr * Ews * Hws
I ————

Pluvial flood risk index related to Pluvial flood risk index related to

mobility and accessibility (PFRya) well-being (PFRwg)

Figure 2: Overview of the applied methodology for calculating pluvial flood risk at the household level in an exemplary urban
environment. Colours and labels indicate the individual components and processing steps of the risk calculation.

145 The structure of the framework also serves as the structure for this chapter. Section 3.1 describes the conceptual design and

data preparation for each column. Section 3.2 then shows the exact calculation and implementation in the ArcGIS toolbox.

3.1 Underlying concepts and data pre-processing
3.1.1 Social Vulnerability

150 The concept of SV is based on the selection of socio-economic variables that must be related to each other. Each increase of
each variable must increase vulnerability and the assigned variables should be categorized in either Sensitivity or Coping
Capacity for flood events. It is important to ensure that horizontal social distinctions (such as age) contribute to sensitivity,

while vertical distinctions (such as income) (Bourdieu, 1984) influence coping capacity.
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For the calculation of social vulnerability (SV) we followed the procedure presented in von Szombathely et al., (2023),
where SV is calculated considering the coping capacity and sensitivity, both represented with equal importance (0.5, 0.5).
These weights are based on an analytical hierarchy process and local expert opinions. All weights in either the group of
sensitivity or coping capacity have to add up to one. In the case study, sensitivity is defined by assigning a weight of 0.7 to
children under 10 years old (C) and 0.3 to elderly singles over 65 years old (ES). For coping capacity, equal importance (0.5)
are used between the number of residents who left school without a high school diploma within the previous three years
(EDQ) as well as recipients of social welfare (WR).

Since we include several variables that contribute to a combined flood risk index, it is important to consider how these
variables interact to create a comprehensive assessment of flood risk. While the alternatives can be easily ranked based on a
single attribute, combining all attributes into a single index requires special techniques. One method in flood risk analysis is
the Technique for Order Performance by Similarity to an Ideal Solution (TOPSIS) (Hwang & Yoon, 1981) which has been
applied in several flood risk analysis’ (Ekmekcioglu et al., 2021; Nguyen et al., 2020; Pathan et al., 2022; Rafiei-Sardooi et
al., 2021; Yang et al., 2018) and was applied in this work in addition to the methodology presented in von Szombathely et al.
von Szombathely et al., (2023). This technique quantifies for each alternative (Al - A8 in Figure 3) the relative distance to
the positive ideal (A+ in Figure 3) and negative ideal (A- in Figure 3) and ranks them accordingly.

The TOPSIS method can compare attributes with differing units and is able to incorporate specific weights for each attribute.
The values assigned to each alternative can also be interpreted geometrically: for each attribute, the maximum (A~) and
minimum (A") values define two ideal points within a multidimensional space. The dimension is equal to the number of
different attributes. Then each alternative occupies a place in space. Lastly, we can calculate the relative Euclidean distance

to the negative and positive ideal (A-, A+ see Figure 3).

ES

o

Attribute X> (Increasing Vulnerability)

A+

Attribute X, (Increasing Vulnerability)

Figure 3: Conceptual description of social vulnerability (adapted from Dyson et al., (2017). A- and A+ represent negative and
positive ideals of the vector space (dashed lines) spanned by the smallest and largest attributes of the alternatives (Al to A8). The solid
lines depict the distance between two example points (Al and A2) to either ideal point.
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Heterogeneity may be a driving factor in the way attributes contribute to the final risk index. This is not considered in the
TOPSIS approach but can be compensated by applying the Shannon Entropy method (Shannon, 1948). Other studies have
already applied this concept in a flood risk context (Malekinezhad et al., 2021; Yang et al., 2018). In our analysis, both the
TOPSIS and the Shannon Entropy methods are applied to the estimation of Sensitivity, Coping Capacity and the Social
Vulnerability Index (SVI).

The distribution of the Social Vulnerability Index depends heavily on the variability of the initial socio-economic data,
which is in turn dependent on the spatial resolution of the socio-economic data. Since we aim for an application of the IPCC
risk framework to urban pluvial flood risk, it would be ideal to have socio-economic data at the building resolution. The
coarser the resolution of the input variables used to calculate the SVI, the more the SVI follows a normal distribution. Given
that our analysis is applying the risk framework at the household level, the social vulnerability data is skewed. When
multiplying the social vulnerability with the exposure and hazard indices as foreseen by the IPCC risk framework, the
skewed social vulnerability data would affect the final risk index less compared to exposure and hazard. To mitigate this, we
square social vulnerability values to approximate a more normal distribution of SVI values.

In addition, we address the implication of the IPCC risk framework, which defines risk as the product of hazard, exposure,
and social vulnerability, and would therefore assign zero risk to observations with “no” social vulnerability. In the case of
the proposed SVI depending on age, social welfare and the high school diploma, zero values of the SVI are possible on the
building scale. To prevent that this leads to zero risk, a value of a quarter mean of the SV value is added to the SV value.
This is an arbitrary choice and we acknowledge the possible variations of resulting risk. Therefore, we show the effect of

varying transformation thresholds on the overall estimated risk within the sensitivity analysis (Section 4.1).

3.1.2 Exposure

In line with the IPCC framework, we define exposure as the presence of people in areas that may be adversely affected by
pluvial flooding. In this study, exposure is assessed in relation to the residential population and their places of residence.
Since different flood hazards have varying impacts, we differentiate between hazards to mobility restrictions & accessibility
and hazards to well-being, leading to two distinct exposure concepts:
1. Exposure related to mobility & accessibility (Ema): Includes all residents of a given building, as flooding can
affect their ability to enter or exit the premises.
2. Exposure related to well-being (Ews): Considers only individuals residing on the ground floor, as they are directly
affected by water entering the building.
In case of aggregated input data, the toolbox can allocate population data at the building level, assuming a uniform
population distribution within each statistical unit. The total population is then distributed among residential buildings in
proportion to their available living space. In the case of mixed-use buildings, we assume that the first floor is dedicated to
commercial use and does not contribute to the residential living area. This method improves the spatial accuracy of our

exposure assessment by ensuring a more realistic distribution of inhabitants.

9
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3.1.3 Hazard

In this study, we only consider urban pluvial flooding as the hazard. We define water level thresholds based on existing
studies on pluvial flooding (Bhola et al., 2020; Calianno et al., 2013; Lazzarin et al., 2022) and building regulations
(Bignami, 2019). Following the two distinct exposure concepts we define two pluvial flood hazards:
1. Hazard related to well-being (Hws): Water levels from 30 cm to 1 m with 10 cm increments directly adjacent to
buildings, to assess the potential for damage and danger to well-being.
2. Hazard related to mobility and accessibility (Hma): 30 cm as a threshold for flooding near buildings, to evaluate

how flooding impacts movement and access in affected areas.

3.1.4 Risk

Building on the previously established data indices, flood risk at the building level is assessed using the IPCC Risk
Assessment framework (Intergovernmental Panel On Climate Change (Ipcc), 2021), which integrates hazard, exposure, and
vulnerability to quantify risks associated with pluvial flooding. This approach enables a detailed evaluation of flood-related
impacts on mobility & accessibility and well-being in Hamburg. Based on this conceptual decision to define two different
approaches to hazard and exposure, we ultimately calculate two different risk indices:

1. Pluvial flood risk to well-being (PFRws)

2. Pluvial flood risk to mobility and accessibility (PFRwma)

3.2 Toolbox Architecture and Model Development

To adopt the theoretical concepts into reproducible workflows, we made use of the ArcGIS Pro (V.3.2.0) model builder. We
created a Risk Map Toolbox (https://doi.org/10.5281/zenodo.17986182), which contains all calculation steps needed to
represent the here shown results. The tools are stored in three toolsets, following the presented structure of the IPCC
including Vulnerability, Exposure and Hazard (Figure 4). For the final risk calculation, a script-based tool is added, as well

as an optional tool which calculates the boundary classes used for the applied visualization.

10
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[ Risk Map Toolbox ]

l ] Exposure Toolset Hazard Toolsets Risk Calculation Scripts Optional Visualization Tools

Sensitivity tool 1 Residential population Smoothing tool ]
Estimating visualization

tool
classes tool

E index
related to

Coping Capacity tool

Hazard well-being tool ]
Hazard mobility & ‘

Social Vulnerability tool accessibility tool

Transformation tool ’

;

SV index related to PF (SVpr)

H index rela- H index

ted to mobili- J related to
ty & accessi- well-being
bility (Hwa) (Hwe)

E index rela-

PFR index to PFR index to
mobility and well-being
accessibility (PFRwg)
(PFRua)

ted to mobili-
ty & accessi-
bility (Ema)

well-being
(Ews)

Figure 4: Outline of the Risk Map Toolbox. The coloured boxes represent the corresponding risk parameters (Social Vulnerability,
Exposure, Hazard, and Risk Calculation), containing toolsets and scripts for the respective calculation steps. Black boxes represent the
result(s) of each Toolset, necessary for risk calculation (dark purple boxes). For an overview of the appearance in ArcGIS and the actual
user interfaces, please refer to Figure S14.

3.2.1 Social Vulnerability Toolset

The SV toolset calculates Sensitivity, Coping Capacity, and the SV index using TOPSIS, and its transformed version using
the flood sensitivity transformation tool. Each vulnerability tool allows adjustment of the weights for Sensitivity and Coping

Capacity. Within each group, the weights must sum to one and can be modified in the toolbox (Equ. 1 - 3).

SV i = Fropsis(€C,,S;,05,05) ,with 1)
CC; = Fropsis(C, ES;,03,0.7) ,and 2
Si = FTOPSIS(WRi' EDQL" 05'05) (3)

where the TOPSIS procedure is represented as Fropsis for the coping capacity (CC ;), and Sensitivity (S;), for each alternative
(building) i.
In more detail, to apply TOPSIS, all attributes are normalized (Eq. 4), and then multiplied with the specific weight. The

normalization of each alternative can be expressed as:
Xl']'
zZjj = ,
Y iy *ij

jef{1,..,n}i€f1,..,m} 4)

where z;; is the normalized attribute and x;; reflects the unweighted value for the i-th alternative (buildings) and j-th attribute

(relative share of C, ES, WR, EDQ).

The maximum and minimum values for each attribute define two ideal points in a multidimensional space (Eq. 5). We can
calculate the relative Euclidean distance to this negative and positive ideal (A-, A+ see Figure 3). Generally speaking for

alternative A; with n different attributes, let z; be the normalized attribute then:

11
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JEa witminiaip—zp?

()

Fropsis(Zivs ) Ziny Wy, ..., Wy) = . T, >
JZ;:le (mini(zij)—z;) +\/2j=1wj (max;(zij)—zj)

with n attributes, where z;j is the normalized attribute and ji reflects the unweighted attribute for the i alternative.

Additionally, we apply the Shannon Entropy method. The idea of the Shannon Entropy method is to multiply the final risk
index with an entropy-index between 1 and 2, where 1 indicates complete homogeneity and 2 indicates total inhomogeneity
across different attributes. More specifically, for m alternatives with n attributes, where z;; is the normalized attribute and jin

reflects the unweighted attribute for the i, alternative, the entropy Uj is calculated following Eq. 6:

_ 1 yn Zij Zjj ,
Up=2 +ln(n) Fl( 121 ln( ?:lzij)>'l €{L...,m} ©)

The effect of heterogeneity depends on the specific context and its application should be evaluated individually for each

hazard scenario. Hence, our toolbox offers the user to choose if Shannon Entropy shall be applied (please see additional
screenshots of the tool user interfaces provided in the supplementary material Figure S2 a to c.).

Finally, we perform two additional transformations, addressing the specific data distribution of SV (flood sensitivity
transformation, see Fig. 1): (a) To mitigate the skewed social vulnerability data, we square social vulnerability values to
approximate a more normal distribution of SV values; (b) to prevent that zero SV values lead to zero risk, a value of a
quarter mean of the SV value is added to the SV value (see Eq. 7). This threshold must be evaluated individually for
different hazards or cities. Hence, our toolbox offers the user to apply different thresholds if needed (no, half or one mean
value)

SVpr = (U - SV +

Meaniui-sv)) (7)
, with the Entropy U;, and the previously calculated social vulnerability value (SV).
All four tools are coded in Python and were incorporated within the ArcGIS framework. An exemplary outline of the
calculated values is depicted in Figure S3. We show the sensitivity to changes of this threshold within the sensitivity

analysis.

3.2.2 Exposure Toolsets

The calculation of Exposure contains one tool (see Figure 4) including several sub-tools which are linked to one-another.
The full workflow exported from the toolbox can be viewed in the supplementary Figure S4. First, both input data, the
available data based on the statistical unit and the building information are combined (See Figure S5 a to c). Then, the

available living area per building is calculated based on the following equation (Fig. S5 d and e) (Eq. 8).

Ag = (Fl—(B—-1)-4p 8
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Where Ag s the area of each building (in m?), FI being the number of floors of the corresponding building and B the building
type, (B =1 for residential, B = 2 for mixed use, containing no residents on the base floor level but in the upper levels), and
Ap for the area (in m?) of each building.

Following the two previously mentioned exposure concepts of Ewma, including all residents of a given building and Ews,
considering only individuals residing on the ground floor level, the subsequent Eq. 9 and Eq. 10 are used to obtain Emaand

Ews.

AB

(9)

with Ag being the area in m? of each house, A; ¢y the total living area in m2 within the statistical unit and Rg;, the overall

Eys =
MA
ALsu‘Rsu

number of residents living in the corresponding statistical unit (SU).

—(B-2)'E
EWB - (=( Fl) MA (10)

With building type (B = 1 for residential, B = 2 for mixed use) and the number of floors in the corresponding house (FI).
The corresponding tools are shown in Fig. S5 e to i). An excerpt of the resulting attribute table after implementing the

exposure calculation is depicted in Figure S6.

3.2.3 Hazard Toolsets

The calculation of the hazard is two-fold, one toolset is developed for the calculation of the hazard to mobility &
accessibility and one for the hazard to well-being.

The assessment of the hazard to well-being is carried out in two stages (see Fig. S7). The first tool computes the areas of
intersection between all flood-depth layers from 30 cm to 100 cm (with 10 cm increments) and the affected buildings (see
Fig. S7 a and c). To account for potential water intrusion near buildings, we applied a 2-meter buffer around all buildings,
which was determined based on the native 1-meter resolution of the flood simulation, expert knowledge, and stakeholder
workshops in Hamburg, as well as following the approach of von Szombathely et al., (in review).

The second tool (as shown in Fig. S7 b) calculates the hazard to well-being (Hwg) following a cumulative distribution
function (CDF; @) of the log-normal distribution with p= 0 and ¢ = 0.25.

Fy(x) = @ (M) (11)

g

We derive the hazard index with

Hyp = 2i2%[Fx(4 - Azmi)], @ € {30,40,50,60,70,80,90,100} (12)
where A,,, ; as the fraction of the flooded area within a 2 m buffer at the water level i (in centimeter).

The toolset of the well-being hazard considers all potential flood-layers included in the corresponding input folder. In the
sensitivity analysis, we therefore discuss the sensitivity of the applied method using a lower flooding threshold (20 cm). An

example of the resulting output table is shown in Figure S8.
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The assessment of the hazard to mobility and accessibility includes two tools. Using the first tool (see Figure S9 a and c), we
determine the areas of intersection, expressed in square meters (labelled with A) and percentages (labelled with P), between
the flood hazard layer and (a) a 5 m buffer around each building, representing the feasibility of accessing the building, and
(b) 15 m and (c) 15-to-30 m buffers around affected buildings, capturing potential intersections with the road network.

The second tool (Fig. S9 b) includes the calculation of the actual hazard as described in von von Szombathely et al., (in
review), where the hazard index related to mobility and accessibility (Hma) is calculated using the maximum value derived
from the Eq. 13.

Hy, = Max[FX(4' : ASm,30cm)' FX(4' : R15m,30cm): FX(4 : R30m,30c‘m)] (13)

There, As;, 30cm refers to the fraction of area within a 5 m buffer, which is flooded above a 30 cm water level. Ry, 300m and
R30m30cm describe the fraction of road area within a 15 m buffer and 15-t0-30 m buffer, respectively, which are flooded

above a 30 cm water level.

To ensure relevant insights into surrounding road conditions and to exclude greater hazard ratings due to small flooded road
areas, only flooded road areas exceeding 4 m? are included. A schematic drawing (Fig. 5) depicts the applied buffers and

intersections applied. Figure S10 shows an excerpt of the resulting H,,, values.

Building

Building
- Fyo

Figure 5: Schematic of the hazard concept. (a) shows the schematic for the hazard of well-being, including flood levels (F) between 30
cm to 100 cm and a 2 m buffer around a building to assess water at the building as a threat to well-being (b) depicts the framework for the
hazard of mobility and accessibility using a 5 m, 15 m and 15-30 m buffer around a building at a 30 cm flood level, taking into account
high water levels on streets and blocked access to a building. Orange color highlights the flooded buffer around the building and the
flooded road area.

3.2.4 Risk Tool

In a final calculation, the calculated sub-indices for social vulnerability, exposure and hazard are linked to obtain two
specific risks during pluvial flooding events, one related to well-being (PFRwg) and the other one related to mobility and
accessibility (PFRwa).
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The PFRys is calculated as:
PFRwg= (SVpp)* - (EWB)b *(Hyp)* (14)

Where SVpr reflects the social and economic characteristics that influence flood resilience, Ews considers the number of
ground-floor residents, as those are most vulnerable to direct flood impacts, and Hws measures the likelihood and severity of

floodwater intrusion at the ground floor level. Exponents a, b, and c reflects their corresponding (optional) weights.

PFRMA= (SVpr)® * (Ena)® - (Hpa)® (15)
With SVpr reflecting the social and economic characteristics influencing flood resilience, Ews considering the number of
ground-floor residents, as those are most vulnerable to direct flood impacts, and Hws measuring the likelihood and severity
of floodwater intrusion at the ground floor level.

Within the toolbox, we provide further options by selecting the exponent for each sub-index (hazard, exposure and social
vulnerability), which allows for further specific weighting of the sub-indices in the final risk assessment (see Figure S11).
An excerpt of the resulting risk values and related sub-indices is shown in the supplementary Figure S12. Additionally, we
provide a tool to estimate the visualization classes (no risk to very high risk) based on an iterative mean-based filtering
process. In this context, the absolute values themselves are not decisive, rather, the relative gradations between them
determine the risk structure. This approach ensures that the classification of risk classes reflects the data’s internal structure
(see Fig. S13).

4 Results and Discussion

The resulting pluvial flood risk is provided by assessing the risk to well-being (Figure 6) and risk to mobility and
accessibility (Figure 7).

4.1. Risk to well-being

Using this example case study, we first present the pluvial flood risk to well-being as calculated by integrating social
vulnerability, exposure and hazard. The composition of social vulnerability reveals how SV emerges from the interaction
between sensitivity and coping capacity. Social vulnerability becomes high or very high for buildings with elevated
sensitivity, for example due to the presence of young children or elderly residents living alone (indicated by darker red
shades in Fig. 6 a). However, SV can be reduced where coping capacity is comparatively high (Fig. 6 b), resulting in an
overall medium level of social vulnerability to pluvial flooding (Fig. 6 ¢). For the estimation of pluvial flood risk to well-
being, exposure is limited to residents living on the ground floor, such as in mixed-use buildings with offices or stores on the
ground level and apartments above. This highlights a potential limitation of this framework, where based on the building

scale, case specific information is not captured, such as the building’s entry side, the likelihood of water intrusion into the
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basement, or the feasibility of implementing protective measures. However, the presented toolbox allows users to adjust the
weighting of individual parameters, for instance by applying a higher weight to the sub-index to better reflect specific

370 conditions where necessary. Overall, the resulting risk map for well-being captures spatially differentiated patterns and helps
identify areas where targeted adaptation measures may be required.

f - Pluvial flood risk to well being (PFR,,;)

I Flood 100 cm [l Flood 80 cm
I Flood90cm [l Flood 70cm

[ Flood 60cm Flood 40cm
Flood 50cm Flood 30cm
50 Meters 0 25 50 Meters
L ! | Il steets |

Figure 6: Pluvial flood risk to well-being. (a) shows sensitivity based on the presence of young children and elderly singles. (b) depicts
the coping capacity and (c) the combination of both leading to the transformed social vulnerability index. (d) shows the exposure as the

375 number of residents of the ground level per building, (e) depicts the hazard based on the 30 cm - 100 cm flood levels and (f) shows the
final pluvial flood risk to well-being.
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4.2. Risk to mobility and accessibility

Figure 7 presents the risk to mobility & accessibility with a focus on the street network under a flood depth of 30 cm. While
social vulnerability remains identical to the assessment of risk to well-being (Fig. 7 a to c), the exposure is defined
differently and now considers all residents per building (Figure 7 d). The corresponding hazard (Fig. 8 €) considers the
flooded areas in close vicinity to the house (5 m) as well as flooded street segments located within distances of 15 m and 15 -
30 m.

The application of the pluvial flood risk toolbox revealed higher risks for buildings in close vicinity to flooded areas and
streets, especially, where high exposure and high hazard categories coincide. This is exemplified by the building assigned to
the highest risk class (see Building A in Figure 7 f). Notably, buildings with higher exposure, in this example due to larger
building size (leading to possibly larger intersections with flooded areas) are assigned higher risk categories than smaller
buildings with lower exposure, such as the single-family homes along the two streets (Example building B in Figure 7 f).
This is also due to the linear aggregation of exposure data from city sub-level to building scale.

Some buildings (see e.g. Building B in Figure 7 f) were attributed a low risk to mobility and accessibility, even though for
some houses the social vulnerability and hazard category were classified as high.

Besides the impact of the relatively low exposure, this captures a limitation of the framework when applied to a small
example area with a high hazard level. It is related to the calculation of risk-classes, for which a mean-based classification
was applied to capture the distribution in the (example) area. Due to the high level of hazard in the study area, a relatively
high share of houses is assigned with risk to mobility. If considering this framework for a whole city, the risk categories will
be shifted, and the class of the example building B in this case would be assigned a higher risk class (see for example von
Szombathely et al., (in review). On the one hand, the relative risk assessment is a limitation, as the value itself cannot be
interpreted (see also Russo et al. 2019). On the other hand, the relative nature of the framework allows to capture the
heterogeneity of the input data and provides a base for relative prioritization of necessary adaptation measures. Using this
case example, we examine the behavior of the risk calculation on building level for typical urban building types, such as a
city quarter in Hamburg. Semi-detached houses, consisting of two identical units sharing a common wall, show a distinct
response within this framework. Within the toolbox we account for this by excluding the building area from the buffered
area, resulting in a higher risk category to the side facing a flooded street, whereas the opposite side receives a lower or no
risk classification (see building C in Fig. 8 f). Although the calculation follows the risk framework, it reveals methodological
shortcomings arising from the use of building-based data to infer risk for residents. For example, for two semi-detached
houses with the same number of residents and same social vulnerability and hazard, the resulting risk index would increase,
if the semi-detached buildings would be counted as one single building. In such cases, a careful interpretation by

stakeholders and city management on a case-by-case basis is required.
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Figure 7: Pluvial flood risk to mobility & accessibility. (a) shows sensitivity based on the presence of young children and

elderly singles. (b) depicts the coping capacity and (c) the product of both leading to the transformed social vulnerability

index. (d) shows the exposure as the number of residents per building, (e) depicts the hazard based on the 30 cm flood level

and (f) shows the final pluvial flood risk to mobility & accessibility.

Nevertheless, this approach provides a viable framework for calculating high-resolution risk, effectively capturing both risks

to well-being as well as to mobility and accessibility. The automated calculation implemented in the provided toolbox

enables the transfer of this approach to real-world case studies and facilitates its application across different urban settings.
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4.3 Sensitivity Analysis

420 The toolbox provides a framework for calculating explicit flood risk indicators but requires several context-dependent
assumptions regarding parameter values and transformations. These choices can be flexibly adjusted, influencing the
resulting risk indices. As the index classification is meaningful only in a relative sense, we assess its sensitivity by

comparing changes in average relative risk across groups of buildings with similar risk characteristics.

a - PFRyg: Threshold added to SVI d - PFRya: Threshold added to SVI
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Figure 8: Sensitivity analysis of the Pluvial Flood Risk (PFR) results. Panels (a,d) show the effect of adding a threshold to the SVI
results; panels (b,e) show the effect of alternative SVI transformations; and panels (c,f) show the effect of varying the hazard range.
Results are shown for four levels of the outcome variable (very high, high, medium, and low; corresponding to the figures in the results
section). Default parameter settings are indicated on the x-axes.
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5 Limitations

While this study provides a comprehensive framework for the assessment of pluvial flood risk in urban areas at the building

level, several limitations must be accounted for:

The estimation of risk including social vulnerability and exposure requires a high data resolution and current data.
For the applied methodology, socio-economic data at the building resolution are required. Alternatively, data with
coarser resolution can be disaggregated to the building level with the help of the toolsets provided in the pluvial
flood risk toolbox. Disaggregation was applied for the analysis of pluvial flood risks in the city of Hamburg (von
Szombathely et al. (in review).

The disaggregation to building-resolution requires several assumptions and case dependent adaptations which were
highlighted in this study. By designing the toolbox to allow adjustments of hazard thresholds, the weighting of
individual risk parameters, as well as the consideration of Shannon-Entropy, we aim to explicitly highlight those
aspects where context-specific decisions are required.

Pluvial floods may affect socially vulnerable groups disproportionately larger or smaller than indicated by the SVI.
We mitigate this by using an additional transformation, the flood sensitivity transformation. For our case example
based on data from Hamburg, we used the default values which were defined through a co-creation process with
city authorities and informed by expert knowledge. However, we acknowledge that thresholds depend on local
context and on the socio-economic data available and consequently they may have to be adapted to the individual
study area.

The representation of results on building scale may create an impression of false precision, as several important
building-specific details cannot be adequately captured, such as the building’s entry side, the likelihood of water
intrusion into the basement, or the feasibility of implementing protective measures.

The hazard indices do not consider flow velocities. In principle, water level or inundation depth are the main
outputs of urban flood models, and therefore generally available for urban pluvial flood assessments (Guo et al.,
2021). However, flow velocities might be relevant for mobility (Pregnolato et al., 2017) and damage to well-being
(Jonkman & Penning-Rowsell, 2008).

Although our risk implementation follows the IPCC risk framework, the model does not account for temporal
changes or time dependent responses to the risk. The here used modelled hazard includes technical adaptation
measures, such as sewer infrastructure and retention measures. This framework could extend to include further
responses to risk and time domain by integrating agent-based modelling (Peng et al., 2023) or dynamic urban flood
risk assessment (He et al., 2023). Including emergency response measures and long-term adaptation strategies

would strengthen the model’s applicability for decision-makers.
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6 Conclusion and Outlook

We have outlined a possible approach for adapting the IPCC risk framework to urban environments and for estimating
pluvial flood risk at the building scale. Using a small synthetical case study based on empirical data from Hamburg, we
demonstrated that shifting the spatial scale from sub-city units to individual buildings is generally feasible with the available
data. However, working at this finer resolution requires several assumptions outlined in this study, such as differentiating
risks based on exposure type, and applying generalizations where input data are not available at building scale, which is
often the case given current data resolutions. To our knowledge, this represents the first publicly available application of the
IPCC framework at the building level in an urban context and showcases some challenges and opportunities with
implementing this conceptual framework in a local context with empirical data. This finer level of granularity has the
potential to significantly enhance the accuracy of urban risk assessments and support decision-making regarding disaster risk
management and climate adaptation. The framework and toolbox, developed in close collaboration with city stakeholders
through co-creation processes, enables such downscaling and provides a transferable structure that can be applied to other
cities as well. Due to its four-part structure, the toolbox can be adapted to other hazards, such as heat, though several
adjustments of the risk parameters would be required and lies beyond the scope of this analysis.

While we do not claim that this is the optimal implementation, the framework offers a transparent method to quantify risk,
determined by the risk for mobility and accessibility and risk to well-being. Our results underline the need for high-
resolution and openly accessible data to meaningfully integrate hazard and exposure, a combination not extensively
documented in previous work. Given the increasing frequency and intensity of extreme events in the future (Sillmann et al.,
2024) incorporating social vulnerability and hazard-dependent exposure into risk assessments is essential. The framework
presented here offers municipal institutions a basis for identifying adaptation measures that go beyond a sole focus on the

hazard and thus provide valuable guidance for urban flood risk management.
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Supplement link

The link to the supplement will be included by Copernicus, if applicable.

Data availability

The toolbox presented in this outline, including the tools and input data needed to calculate the presented risk maps are
provided in Zenodo under: https://doi.org/10.5281/zenodo.17986182
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