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Abstract. Particle bulk optical property parameters play an essential role in evaluating air quality, however, both parameters
can be substantially enhanced under humid atmospheric conditions via hygroscopic growth. Here we use 532-nm
polarization lidar observations and ERAS humidity data during 2010-2024 to retrieve vertical profiles of ambient and dry
aerosol backscatter and extinction coefficients of anthropogenic pollution over central China. Particle hygroscopic growth
led to enhanced particle backscatter coefficient by 11-46% below 2 km on an annual basis for the considered time frame.
Anthropogenic Aerosol Optical Depth (AOD) was 30.7% higher under ambient atmospheric conditions. We found values of
AOD,pp, = 0.404 and AODg.y = 0.309 . During China’s rapid air-cleaning period of 2010-2017, AOD,y,, declined
significantly by -0.068 yr''; in contrast, the rate of decrease of AODg,y was -0.049 yr'' which is 28% slower, but the decrease
of the dry aerosols more accurately captures aerosol emission reductions. Hygroscopic-growth-induced net AOD (AAODgy)
dropped sharply in 2011-2014, most likely as a result of emission mitigation and drier atmospheric conditions, then
rebounded in 2014-2019 as rising humidity conditions and the presence of hydrophilic aerosols. Since 2020, AAODgy has
remained high attributing to rising humidity conditions but weakening hygroscopicity. While AOD,,,;, suggests peak
pollution in summer, AODy,y identifies winter as the true air-pollution maximum. These results highlight the significant
impact of aerosol water uptake on its optical properties; therefore, it must be accounted for to ensure accurate air quality

assessments.
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1 Introduction

Over the past few decades, rapid industrialization and urbanization in China have led to a significant increase in the
emission of anthropogenic aerosols, resulting in a major environmental challenge, i.e., atmospheric/air pollution (Che et al.,
2007; Wang et al., 2009; Zhang et al., 2012). Episodes of haze events have become more frequent and intense post-2011,
posing a serious risk to human health (Li et al., 2023). One of the most widespread, prolonged, and severe haze events
occurred in January 2013, affecting vast regions across North, East, Central, and South China with satellite-observed aerosol
optical depth (AOD) exceeding 2.0 (Tao et al., 2014; Wang et al., 2014; Zhang et al., 2021). Since then, the issue of
atmospheric pollution has received widespread attention.

In response, the Chinese government has implemented a series of air quality control policies since 2013 (The State
Council of the People's Republic of China, 2013, 2018, 2023). As a result, significant improvements in air quality have been
observed over the past 15 years, as evidenced by large reductions in surface PM2.5 concentrations and AOD, and increased
visibility (Zheng et al., 2018; Ding et al., 2019; Zhang et al., 2019; de Leeuw et al., 2022). From 2013 to 2017, surface
PM2.5 concentrations rapidly declined by 33% (Zhang et al., 2019); however, the improvement in the frequency of low
visibility scenarios has not been as rapid as expected, given the significant reduction in aerosol mass concentration (Liu et al.,
2020; Xu et al., 2020). From 2018 onwards, the improvement of air quality has notably slowed down or even stagnated
(Geng et al., 2024; Jing et al., 2025a). This slowdown can be attributed to changes in aecrosol composition (Yao et al., 2021),
an increased fraction of fine-mode particle (Joo et al., 2025), unfavorable meteorological conditions (Wang et al., 2018),
climate change (An et al., 2019), and so on. These factors can even be coupled together, resulting in a complicated issue.
One of the most vital inductive factors is the change of aerosol chemistry composition, with an increase in the proportion of
nitrate and a decrease in sulfate (An et al., 2019; Liu et al., 2020; Yao et al., 2021). The higher nitrate content enhances the
water-uptake capability of aerosols, which increases their extinction efficiency in a humid (ambient) atmosphere, and is
denoted as ‘hygroscopic growth’. In recent years, the ongoing warming climate may increase the carrying capacity of
moisture in the atmosphere (Stoy et al., 2022), which increases aerosol extinction as a result of particle hygroscopic growth
(Chen et al., 2019).

In China, meteorological conditions and changes of atmospheric chemistry together contribute to the limited air quality
improvement (i.e., the observation that aerosol extinction does not drop as much as one would expect, and vice versa the
lower-than-expected increase of atmospheric visibility, atmospheric transmission, and consequently the decrease of aerosol
mass concentration) via aerosol hygroscopic growth. For these reasons, it is necessary to quantify the contribution of aerosol
hygroscopic growth to air quality (Kallihosur et al., 2024). Furthermore, aerosols emitted near the surface can be lifted into
upper layers of the atmosphere from where they can be transported in the free troposphere by various mechanisms, and
where humidity conditions can significantly differ from the conditions in the planetary boundary layer.

Therefore, it is crucial to include height-resolved aerosol extinction measurements in observations of the ambient

atmosphere, which allows for an improved understanding of the contribution of aerosol hygroscopicity from the different
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parts of the atmospheric column (Veselovskii et al., 2009; Perez-Ramirez et al., 2021). Lidar measurements provide height-
resolved aerosol optical properties such as extinction and backscatter coefficients, and therefore are particularly useful when
combined with relative humidity profiles from radiosonde measurements or reanalysis data to evaluate the impact of acrosol
hygroscopicity on the atmospheric environment (Granados-Mufioz et al., 2015; Sicard et al., 2022). In addition, aerosol
extinction can be used to retrieve visibility (Wu et al., 2016) and aerosol mass concentration (Ganguly et al., 2009; Mamouri
and Ansmann, 2016; Shin et al., 2025); these parameters are widely applied in air quality assessment. In this context,
correcting the hygroscopic-growth-induced amplification of aerosol extinction in advance is essential to realize valid spatio-
temporal comparisons or evaluations of air quality regionally and globally (Toth et al., 2016).

Zhang et al. (2019) observed significant reductions in PM2.5 concentrations across China from 2013 to 2017, with the
highest levels of PM2.5 concentrations in northern and central China. However, central China has received relatively less
attention compared to other key regions such as the Beijing-Tianjin-Hebei region (BTH), the Yangtze River Delta region
(YRD), and the Pearl River Delta region (PRD) (He et al., 2020). Central China hosts massive local industries that contribute
to numerous types of anthropogenic aerosol emissions (Zhang et al., 2015; Liao et al., 2020). In particular, central China is
located in a subtropical monsoon region that is strongly impacted by abundant water vapor as a result of evaporation of water
from numerous regional lakes and rivers, as well as from long-range transport of water vapor from the oceans surrounding
China. With respect to the conditions over central China, Xiao et al. (2025) reported the largest water vapor flux of 353.9 kg
m-1 s-1 in summer, resulting from the transport of water vapor from the Indian Ocean by the Asian summer monsoon system,
and the lowest value of around 100 kg m-1 s-1 in winter, transported from the Arabian Peninsula and its surrounding seas via
the southern branch of the westerlies along the southern side of the Tibetan Plateau. This moisture provides favorable
conditions for aerosol hygroscopic growth, which contributes to the formation of low-visibility haze events (Ma et al., 2019).

Consequently and to better understand the aforementioned observations, we have been conducting continuous ground-
based polarization lidar observations in the megacity of Wuhan in central China since 2010. To the best of our knowledge,
our research work uses the longest lidar dataset for central China. We began monitoring the height-resolved local
tropospheric aerosols in 2010, which is four years earlier than the start of China’s official comprehensive surface pollution
measurements in 2014(Yin et al., 2021; Jing et al., 2025a). These observations are used to derive aerosol backscatter and
extinction profiles in the lower and middle troposphere, as well as AOD. In this study, we applied a height-resolved
hygroscopic-growth modification aerosol model to eliminate the impact of ambient humidity, which allows us to assess the
long-term variation of ‘dry’ aerosol extinction and AOD. Our analysis realizes a more accurate examination of the
effectiveness of China’s air quality control policies in the past 15 years. This article is organized as follows. In Section 2, we
provide a brief description of the instruments and data processing methods. Section 3 presents the variations of optical
parameters of anthropogenic aerosols with and without hygroscopic-growth enhancement over Wuhan. Section 4 provides a

summary and conclusions.
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2 Data and Methods
2.1 Polarization Lidar and Data Processing

Our lidar site is located on the campus of Wuhan University (30.5° N, 114.4° E) in Wuhan, China. A 532-nm ground-
based polarization lidar has been used for continuously observing tropospheric aerosols since October 2010 (Kong and Yi,
2015; He et al., 2021; Yi et al., 2021a, 2021b; Jing et al., 2024, 2025a, 2025b). The raw data are stored with a time resolution
of 1 min and a vertical resolution of 30 m. A total of 24910 cloud-free profiles with signal accumulation times of 30-80
minutes were obtained from 2139 days between October 2010 and September 2024 by a cloud screening algorithm (Yin et
al., 2021). For each profile, the particle backscatter (or extinction) coefficient B, (@) is retrieved using the Fernald method
(Fernald, 1984), assuming a fixed lidar ratio of 50 sr. In addition, the lidar provides the linear volume (aerosol + molecule)
and linear particle (only aerosol) depolarization ratios, i.e., 8, and ;. These two parameters indicate the degree of the non-
sphericity of the scattering objects (Freudenthaler et al., 2009). Based on 8, and §,,, we can derive the dust and non-dust
component of the particle backscatter (extinction) coefficient S4 and f,q (aq and a,q) using the polarization-lidar
photometer networking (POLIPHON) method (Tesche et al., 2009; Mamouri and Ansmann, 2014). In Wuhan, the non-dust

component is primarily associated with anthropogenic aerosols.

2.2 Radiosonde and ERAS Reanalysis Data

Two radiosondes are launched daily around 0800 and 2000 local time (LT) at 30.6° N, 114.1° E, approximately 24 km
away from our lidar site. The radiosondes provide us with vertical profiles of temperature, pressure, relative humidity (RH),
water vapor mixing ratio (WVMR), wind speed (WS), and wind direction (WD) from the surface up to ~30 km altitude.
Potential temperature @ is calculated from these meteorological parameters with the method by Bolton (1980). To match the
altitude bins of lidar profiles, radiosonde data with variable vertical resolution are interpolated using a cubic spline
interpolation method. The matched radiosonde and lidar profiles are then used to identify aerosol hygroscopic growth cases
and estimate the associated hygroscopic growth parameter y.

The European Center for Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis (ERAS) provides
global hourly atmospheric data from January 1940 onward (Copernicus Climate Change Service, Climate Data Store, 2025).
ERAS RH profiles (Hersbach et al., 2023a) are interpolated to match the altitude bins of lidar profiles and used to assess the
influence of hygroscopic growth on the particle backscatter coefficient. Figure 1 shows the differences in RH data obtained
from radiosonde measurements and ERAS data over Wuhan. The comparably small mean difference of -0.63% suggests that
it is reasonable to use ERAS5 RH data for the long-term study. ERAS boundary layer height (BLH) data are also applied to
distinguish hygroscopic growth effects within the boundary layer (BL) and free troposphere (FT) (Hersbach et al., 2023b).
The diurnal maximum BLH is adopted as the boundary between the BL and FT.
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Figure 1. The differences in RH over Wuhan between 2010 and 2024 obtained from simultaneous radiosonde measurements and

ERAS data. p is the mean value and ¢ is the standard deviation.

2.3 Dry Aerosol Optical Depth Estimation

The capability of lidar to measure aerosol hygroscopicity was first demonstrated by Ferrare et al. (1998). Subsequently, a
thorough method of quantitatively estimating the aerosol hygroscopic properties based on lidar observations was established
by Veselovskii et al. (2009). In this study, the variation of the lidar-derived anthropogenic particle backscatter coefficient
Bna With RH is considered under the assumption of an external mixture between dust and non-dust (anthropogenic) aerosols
(Jing et al., 2025b). The particle backscatter coefficient enhancement factor, fg (RH), is defined as the ratio of 4 at a given
RH to that for dry conditions (Hénel, 1976):

Bna(RH)
Bna(RHary)

Lidar-derived cloud-free profiles within 2 hours before or after radiosonde launches (around 0800 or 2000 LT) are

fe(RH) = €y

selected. An aerosol layer is identified, when S, 4 increases monotonically and simultaneously with radiosonde-measured RH.
Within such aerosol layers, variations of key radiosonde meteorological parameters are constrained as follows: (1) AWVMR
<2 gkgl; 2) A <2 K; 3) AWS <2 m'sl; (4) AWD <15° (Sicard et al., 2022). These criteria indicate well-mixed
atmospheric conditions and ensure that the observed increase in f,4 is driven solely by water uptake rather than additional
aerosol emissions or compositional changes (Granados-Muiloz et al., 2015). Since the RH range varies among different cases,
a common reference RH,¢ is required for comparability. Accordingly, the widely used Hénel parameterization is applied to

obtain the reference backscatter enhancement factor, frer—nanel (RH) (Veselovskii et al., 2009; Perez-Ramirez et al., 2021):
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RH \7Y
1 — 100
fref-nznel(RH) = T RH,g (2)
100

where y is the hygroscopic growth parameter, with small values representing weakly hygroscopic particles (e.g., dust) and

large values representing highly hygroscopic particles (e.g., sea salt) (Titos et al., 2016). In this study, we adopt RH s =
40%, a threshold commonly used to define the upper limit of the initial dry conditions (Granados-Muiioz et al., 2015;
Navas-Guzman et al., 2019; Sicard et al., 2022). Combining Equations (1) and (2), the dry backscatter coefficient of

anthropogenic aerosols can be expressed as:

RH \7Y
1100
8 __ BaaRH) | Ba(RH)/ —RH. RH > 40% 3)
nddry fref—Hénel(RH) 1- 1()18
Bua(RH) RH < 40%

Due to the lack of a Raman channel in our lidar system, the hygroscopic effect on lidar ratio is not considered in this study

(Zhao et al., 2017). The dry particle extinction coefficient a4 4ry can be obtained by multiplying B,q,4ry With a fixed lidar
ratio of 50 sr. Thus, the ambient aerosol optical depth (AOD, ) and dry aerosol optical depth (AODg,,) for anthropogenic

aerosols can be given by:

Zt
AODy = [ ) @)
Zp
Zt
AODdry = f and,dry(z)dz (5)
Zp

where Z,=0 km and Z,=7 km are the lower and upper integration limits, respectively. The effect of hygroscopic growth on
AOD is then defined as (Kallihosur et al., 2024):

AAODgry = AODymp — AODgry (6)
Furthermore, AAODgy can be divided into contributions from the BL and FT, denoted as AAODgy g1, and AAODgy pr,

respectively. Figure 2 provides the flowchart of the data processing procedure used in this study.
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Figure 2. Flowchart of lidar data processing, hygroscopic growth case identification, and the scheme of estimating

AODg,y from lidar-derived AOD ;.

3 Results
3.1 Hygroscopic-Growth-Enhanced Optical Parameters of Anthropogenic Aerosols

We examined all the observational data collected with a 532-nm polarization lidar from October 2010 to September 2024.
We identified 24910 cloud-free profiles for further analysis. For each cloud-free profile, the particle backscatter coefficient
(Bp) profile was derived with an automatic algorithm originally developed by Yin et al. (2021) and later extended by He et al.
(2024) and Jing et al. (2025a). Together with particle depolarization ratio (&), the 8, profiles can be divided into dust (84)
and non-dust (f,4q) backscatter coefficient profiles (Mamouri and Ansmann, 2014). The hygroscopic growth of mineral dust
was neglected due to its hydrophobic nature. The influence of sea salt was negligible since Wuhan is an inland city (He et al.,
2025). All the non-dust components were considered anthropogenic acrosols. We identified 192 cases (cloud-free aerosol
profiles) with specific features regarding anthropogenic aerosol hygroscopic growth (see method section for details). The
particle backscatter coefficient-related enhancement factor, fg(RH), is shown by the blue curve in Figure 3a. Using the
Hinel parameterization (Hénel, 1976), we derived a corresponding hygroscopic growth parameter y = 0.62 + 0.24. For

urban pollutions, y values typically situate between 0.4 and 0.6, depending on the proportions of inorganic salt components,
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such as sulfate and nitrate, which are generally considered more hydrophilic (Bedoya-Velasquez et al., 2018; Sicard et al.,
2022; Miri et al., 2024).

Figure 3b shows a representative example on 12 September 2021, along with the relative humidity (RH) profile from
EARS reanalysis data. The criteria for identifying such an aerosol hygroscopic growth case are introduced in detail in the
method section hereafter. Concurrent observations of the volume (particle + molecule) depolarization ratio also indicate the
anthropogenic (non-dust) aerosols during the period (not shown here). During 0520-0639 LT (Local Time), the lidar-derived
particle backscatter coefficient in the ambient atmosphere was clearly enhanced by aerosol hygroscopic growth at altitudes
of 1-2 km, where RH exceeded 40% (Sicard et al., 2022). By integrating the particle backscatter coefficient from surface to
7-km altitude and assuming a fixed lidar ratio of 50 sr (Fernald, 1984), the 532-nm AOD changed from 0.173 (AOD,,p) to
0.159+0.005 (AODq,y), indicating an AOD increase of approximately 9% due to hygroscopic growth. In addition, Jing et al.
(2025b) observed a year-by-year variation of y values over Wuhan. These variations were caused by changes of the chemical
compositions of anthropogenic aerosols. In our study, we used the annual mean of y for each year (Jing et al., 2025b),

respectively, for calculating the lidar-derived particle backscatter coefficient under dry and humid ambient atmospheric

conditions.
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Figure 3. (a) Probability density distribution of particle backscatter coefficient enhancement factors (RH,.s = 40%)
from 192 identified anthropogenic aerosol hygroscopic growth cases in the lower and middle troposphere (0-7 km); (b)
Example of modifying a lidar-derived ambient particle backscatter coefficient profile (blue curve) to a dry profile
(red curve) by removing the hygroscopic growth contribution on 12 September 2021. The red shaded area represents
the uncertainty based on the standard deviation of y (0.24). The RH profile (black curve) is provided by ERAS

reanalysis data.
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Figure 4. Annual mean profiles of lidar-derived 532-nm anthropogenic aerosol backscatter coefficient under ambient

and dry conditions over Wuhan, i.e., B,qamp and Bpgary- ‘N’ denotes the number of profiles used for calculating the

200 average profile for each year.

Figure 4 presents the annual mean profiles of the anthropogenic aerosol backscatter coefficient derived under ambient and
dry atmospheric conditions, i.€., Bngamb and Bngary- It can be seen that acrosol hygroscopic growth mainly takes place in the
lower troposphere (from the surface to ~3km). In particular, below 2 km, the particle backscatter coefficient is enhanced by
11-46 % due to hygroscopic growth. With the substantial improvement of air quality in China, S,q amp values within the

205 lower troposphere have generally decreased.

All the lidar-derived particle backscatter coefficient profiles were modified from ambient to dry atmospheric conditions by
the use of the pre-derived annual mean hygroscopic growth parameter. On the basis of this information, we obtained
AOD,pmp, and AODg,y for the anthropogenic aerosols (see method section for details). Figure 5 presents the frequency
distribution of AOD 4,1, and AODyg,y in Wuhan. The mean values of AODg,y, and AOD, ), were 0.309 and 0.404, respectively,

210 across the period considered in our study. These values suggest that hygroscopic growth on average increased AOD by 30.7%
under humid atmospheric conditions. This change of AOD corresponds to an extinction enhancement factor (AOD,p,/
AODy;y) of 1.31, which is much lower than the value of approximately 1.8 reported for India (Nair et al., 2020; Kallihosur et
al., 2024). Notably, the frequency distribution patterns of AODg,, and AOD,py, are rather different. AOD,p,y, shows a slightly
skewed, relatively broad Gamma distribution with a peak around 0.30-0.50, whereas AODg,y exhibits a much narrower

215 Gaussian distribution with a sharp maximum at 0.30-0.35. After accounting for hygroscopic growth, most AOD values
exceeding 0.70 disappear, suggesting that hygroscopic growth largely increased the occurrence of severe air pollution events
in Wuhan (Zhang et al., 2021). A similar changing pattern was reported by Kallihosur et al. (2024) for the hygroscopic
modification of AOD over the eastern Indo-Gangetic Plain using satellite observations. The only major difference is that
AOD,p in India exhibited a much higher peak close to 0.5 of the frequency distribution. This result points to a higher

220 content of water vapor in the atmosphere, which thereby leads to stronger particle hygroscopic growth.
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Figure 5. Frequency probability of the lidar-derived 532-nm anthropogenic (non-dust) AOD,,, and AODg,, in

Wuhan during 2010-2024.

3.2 Long-Term Variation of Anthropogenic AOD in the Ambient and Dry Atmosphere

Figure 6a illustrates the evolution of lidar-derived anthropogenic AOD,pp, and AODg,y, in Wuhan from 2011 to 2024. For
representativeness, we removed the value of 2010 from our analysis since the routine observations started only from October
of that year. Hygroscopic growth corrections were applied to all cloud-free lidar profiles with the use of EARS RH profiles.
Jing et al. (2025a) previously reported that the 532-nm AOD,,;, in Wuhan decreased rapidly with a rate of -0.068 yr!' during
2010-2017 (defined as ‘stage I’), followed by a fluctuating period from 2018 to 2024 (defined as ‘stage II’). When
accounting for hygroscopic growth in ‘stage I’, the rate of decline of AODg,, was -0.049 yr'l, i.e., approximately 28% lower
than the rate of decline of AOD,,,. This result indicates that the actual reduction in aerosol emissions was slower than that
suggested by the direct lidar measurements in the ambient atmosphere. In contrast, in ‘stage II’, both AOD g, and AOD,pp,
ceased to decline and instead exhibited slight fluctuations; such a fluctuation pattern of AOD variation after 2017 onwards
was also confirmed by MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) data across China (de
Leeuw et al., 2022). One explanation may be the imbalance in NO, and SO, emissions, which increases the ability of aerosol
water uptake, i.e., aerosol hygroscopicity. This effect is likely to be the reason for offsetting the partial benefits of air
pollution mitigation actions (Liu et al., 2018; Geng et al., 2024; Jing et al., 2025a). A marked decrease in both AOD,,,;, and
AODg,y occurred in 2020, corresponding to the COVID-19 lockdown (Yao et al., 2021). The subsequent gradual increase

reflects the resumption of labor and production processes. Overall, AODyg,, provides a more accurate representation of actual

aerosol emissions than AOD, -

10
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deviation in y. Linear regressions for 2010-2017 are shown as solid lines. The vertical dashed line divides the data

245 record into stage 1 (2010-2017) and stage I1 (2018-2024), as discussed by Jing et al. (2025a). (b) Evolution of enhanced
AOD due to hygroscopic growth in the boundary layer and free troposphere, denoted as AAODgy g; and AAODgy g,

over the same period.

Lidar provides height-resolved measurements of particle extinction, which allows for further analysis of the contributions

of hygroscopic growth to AOD in the boundary layer (BL) and free troposphere (FT), denoted as AAODgy 1, and AAODgy pr,

250 respectively, with their temporal evolutions shown in Figure 6b. On an annual basis, AAODgy gy, is generally 2-5 times larger
than the corresponding AAODgy pr, indicating a much stronger contribution of aerosol hygroscopic growth within the BL,
where most water vapor resides. Both AAODgy g, and AAODgy pr exhibit an evident drop between 2011 and 2013, which

likely shows the effect of the reduced rate of decline of AOD during ‘stage I’ (from -0.068 yr! for AOD,p, to -0.049 yr'! for
AODygyy ). During the winter seasons of 2011-2013, comparably high monthly-mean AOD,p;, values were observed,

255 corresponding to the most severe wintertime haze events recorded in Wuhan (Zhang et al., 2021). These events typically
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occurred under conditions of intense aerosol emissions combined with a stagnant and highly humid atmosphere. Such rather
severe air pollution episodes were effectively mitigated within the first two years after data collection had begun (2011 and
2012), probably because of the implementation of measures outlined in the ‘Technical guidelines for air pollution control
projects’ by the Chinese government (Ministry of Ecology and Environment of the People's Republic of China, 2010). From
260 2014 to 2024, AAODgy g1, is generally stable and only slightly fluctuates between 0.04 and 0.07 with a variation rate lower
than 0.002 yr'. In contrast, AAODgy gt has a comparably lower rate of variation between 0 and 0.02 in 2014-2018, after
which the variation rate increases to 0.02-0.04 in 2019-2024. This result suggests a more pronounced impact of hygroscopic

growth on AOD,,,1, in the FT in recent years.
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265 Figure 7. (a) Variation of the fractions of enhanced 532-nm anthropogenic AOD due to hygroscopic growth in the BL
and FT, i.e.,, AAODgy g1, /AOD,,, and AAODgy pr/AOD,yy,p, from 2011 to 2024. (b) Evolution of the ERAS RH in the
BL and FT over the same period.
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To assess the relative contributions of hygroscopic growth in the BL and FT, Figure 7a presents the annual mean fractions,
i.e., AAODgy g1./AOD,p,, and AAODgy pr/AOD,y,p, respectively. Figure 7b provides the corresponding RH values in the BL
and FT, revealing that the BL (55.8+£11.1%) is substantially more humid than the FT (32.7£11.2%). In general, the relative
contribution of hygroscopic growth does not vary linearly or monotonously with RH, as it is jointly controlled by aerosol
hygroscopicity capability (depends on chemical composition) and ambient moisture conditions. During the initial four-year
period (2011-2014), both AAODgy 1.,/AOD,mp and AAODgy pr/AOD,mp show a marked decline, which was driven primarily
by effective mitigation of severe air pollution episodes (Jing et al., 2025a) and a concurrent shift toward a drier atmosphere.

In general, the atmosphere has become more humid post-2014, with a rate of increase of around 1.3% yr!, which likely is
linked to frequent El Nifio events over the past decade, i.e., 2015/16, 2018/19, and 2023/24 (Zhai et al., 2016; Guan et al.,
2023; Li et al., 2023). Zhong et al. (2023) reported that El Nifio-induced North Pacific anticyclones tend to transport warmer
and wetter air to southern China, resulting in increased rainfall and water vapor content. Note that the only exception to the
humidifying trend is the dip in RH observed in 2018, which is attributed to the anomalous severe drought that occurred over
central China from mid-summer through late autumn, during which year-on-year precipitation declined by 20-50%. However,
variations in the fractional contribution of hygroscopic growth can be divided into two periods with distinct patterns. From
2014 to 2019, both AAODgy g,/AOD,mp and AAODRry pr/AOD,my, exhibit a gradual increase, rising from 8% to 16% and
from 1% to 9%, respectively. This increase is jointly driven by rising RH and a growing proportion of more hydrophilic
nitrate aerosols (Jing et al., 2025b). This consistent increasing trend also suggests that aerosol sources and/or compositions in
the BL and FT were similar. From 2020 onwards, AAODgy g1.,/AOD,m, and AAODgy pr/AOD,p,;, fluctuate at relatively high
levels of 15-19% and 7-10%, respectively. Although RH continues to increase, the upward trend in the hygroscopic growth
contribution is partially offset by a slight decline of the hygroscopic growth parameter y since 2020 (Jing et al., 2025b).

3.3 Seasonal Patterns of Hygroscopic-Growth Contributions to Anthropogenic AOD

Figure 8 shows the seasonal variations of AOD,mp, AODgry, AAODgy g1, and AAODgy pr. Based on AOD,p,p,, summer
(0.427) appears to be the most polluted season over central China, followed by autumn (0.421) and winter (0.417). However,
when examining AODy,y, a different seasonal pattern emerges once hygroscopic growth is considered. The most severe air
pollution prevails in winter. We find a maximum value of 0.354 for AODy,y, followed by autumn (0.330) and summer
(0.295). This variation of AOD during the seasons reflects a more realistic depiction of air quality over central China,
because winter not only holds the highest aerosol emissions (Zhang et al., 2015), but also features stagnant meteorological
conditions that hinder the removal of accumulated aerosols from the atmospheric column (Ma et al., 2019; Zhang et al.,
2021).

Wuhan is subject to the monsoon climate. The Asian summer monsoon plays an essential role in transporting water vapor
from the Indian Ocean and Western Pacific and has a dominant impact on summer precipitation southeast of the Hu

Huanyong Line, a line directly connects Heihe in Southwestern China and Tengchong in Northeastern China and generally
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overlap with the 400-mm isohyet (Zheng et al., 2022). Water vapor over the Yangtze River Valley primarily originates from
the Indian Ocean. This water vapor is carried by advection transport associated with the Indian summer monsoon and the
West Pacific Subtropical High (Chu et al., 2021). In contrast, the Asian winter monsoon, which is driven by the Arctic
Oscillation and Siberian High, advects cold, dry air from Siberia (Wu and Wang, 2002). This movement of air suppresses
precipitation in the mid-latitudes of East Asia and therefore results in a relatively cold and dry atmosphere (Wang et al.,
2014). These seasonal climatic characteristics lead to much higher atmospheric moisture in summer compared with winter,
causing hygroscopic growth to contribute much more to the observed ambient AOD during summer. Additionally, the
seasonal patterns of the hygroscopic growth contribution to AOD are consistent across altitudes, with the highest values
occurring in winter (0.82 in the BL, and 0.88 in the FT) and the lowest values in summer (0.66 in the BL, and 0.72 in the FT).
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Figure 8. Seasonal variations of 532-nm anthropogenic AOD,p,},, AODg.y, AAODgy g, and AAODgypr in Wuhan
during 2010-2024.

4 Summary and Conclusions

In summary, we derive backscatter coefficient profiles of anthropogenic aerosols in the ambient atmosphere using ground-
based polarization lidar observations over central China from 2010 to 2024. By combining these lidar-derived backscatter
profiles with EARS5 RH profiles, we further calculate the corresponding dry backscatter (and subsequently dry extinction)
coefficient profiles by removing the contributions associated with hygroscopic growth. Our results reveal that hygroscopic
growth of anthropogenic aerosols occurs primarily below 2 km. We find year-to-year particle backscatter enhancements
ranging from 11% to 46%. The anthropogenic AOD in the ambient atmosphere (AOD,,, = 0.404) amplifies the dry
anthropogenic AOD (AODg,y = 0.309) by 30.7% via hygroscopic particle growth.

During China’s rapid air-cleaning period of 2010-2017, anthropogenic aerosol emissions over central China decreased

substantially, with AOD,;, exhibiting a rate of decline of -0.068 yr'!. However, this rate does not accurately reflect the
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actual improvement of atmospheric pollution, i.e., a rate of decline of -0.049 yr'' which we derived from AODg,y. The AOD

contributed by hygroscopic growth, i.e., AAODgy, decreases rapidly from 2011 to 2013 and remains at a relatively low level
thereafter. In addition, AAODgy gy, is generally 2-5 times larger than the corresponding AAODgy pr, which indicated a much
stronger contribution from aerosol hygroscopic growth within the BL, where most water vapor resides. Regarding the
relative contributions of hygroscopic growth, both AAODgry g1,/AOD,m, and AAODgy pr/AOD 4 exhibit the following
features: (1) a marked decline during 2011-2014, due to effective mitigation of severe air pollution episodes and a concurrent
shift toward a drier atmosphere as the result of changes of meteorological conditions over China; (2) a gradual increase
during 2014-2019 (rising from 8% to 16% in the BL, and from 1% to 9% in the FT), influenced jointly by rising RH and a
growing proportion of more hydrophilic nitrate aerosols; (3) fluctuations at relatively high levels from 2020 onward (15-19%
in the BL and 7-10% in the FT), as the upward trend associated with increasing RH is partially offset by a slight decline in
the hygroscopic growth parameter y since 2022. Furthermore, the seasonal variation of AOD,,;, suggests that summer is the
most polluted season, followed by autumn and winter. However, when removing hygroscopic growth effects, AODgyy
identifies that winter is in fact the peak pollution period over central China.

This study demonstrates that long-term ground-based observations combined with reanalysis meteorological data can
capture the accurate variations in the atmospheric environment (air quality) through the derived dry AODs. This approach
can also be extended from a single lidar site to regional, national, and even continental scales through established ground-
based lidar networks, such as well-developed EARLINET in Europe (Pappalardo et al., 2014), MPLNET in the United States
(Welton et al., 2001), and the recently developed CARLNET in China (Shao et al., 2025). In addition, AOD is a widely used
optical parameter in atmospheric science and can be further applied to derive key environmental metrics such as aerosol
mass concentration (Shin et al., 2025). Achieving this will require reliable extinction-to-volume conversion factors, along
with representative aerosol size distributions and densities (Mamouri and Ansmann, 2016; He et al., 2025). Such regional-
specific pre-set aerosol information can be obtained from independent measurements, including sun photometers and optical
particle counters. With these comprehensive observations and data processing methods, lidar observation holds strong
potential for monitoring three-dimensional variations of tropospheric pollution and improving aerosol reanalysis products as

input constraints.

Data availability

ERAS reanalysis data can be obtained from https://cds.climate.copernicus.eu/datasets (Copernicus Climate Change Service,
Climate Data Store, 2025). The radiosonde data can be obtained from https://weather.uwyo.edu/upperair/sounding.shtml
(University of Wyoming Atmospheric Science Radiosonde Archive, 2025). Lidar data are available on reasonable request

from the corresponding author (heyun@whu.edu.cn).
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