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Abstract. The accurate simulation of Earth’s surface is essential for understanding lithospheric and mantle dynamics, espe-

cially in processes such as subduction and surface deformation. Traditional boundary conditions, such as free-slip or no-slip,

do not fully capture the complex interactions occurring at the surface. The commonly used ’Sticky Air’ method, while prac-

tical, suffers from several limitations, including increased computational cost and marker fluctuation issues. In this study,

we propose a novel scheme within the finite element framework that integrates the ’Sticky Air’ concept into an Arbitrary5

Lagrangian-Eulerian (ALE) formulation by employing an internal boundary to simulate a true free surface, referred to as the

ALE-IB. This approach effectively addresses the limitations of existing methods, notably by reducing marker fluctuation is-

sues and enhancing numerical stability. Moreover, it maintains a true surface in the computational domain that can be further

reshaped by surface processes such as erosion and deposition, provides a foundational scheme for further coupling framework

of tectonic modelling and landscape evolution modelling. We detail the theoretical formulation, implementation strategies, and10

validation through a series of numerical experiments. The results demonstrate that our method achieves higher accuracy and

broader applicability compared to conventional techniques. Ultimately, this framework provides a more realistic and robust

tool for geodynamic modelling of the Earth’s free surface.

1 Introduction

The Earth’s surface serves as the interface beneath the atmosphere where normal and shear stresses are negligible. It deforms15

freely in response to a combination of various processes, including surface processes, tectonic activity, mantle convection,

and their interactions (Willett, 1999; Braun, 2010). Historically, most geodynamic simulations, particularly those focusing on

mantle convection, have utilized either free-slip or no-slip boundary conditions at the surface. However, further studies have

highlighted the significance of treating the Earth’s surface as a free surface in the context of lithospheric and mantle dynamics

(Zhong et al., 1996; Kaus et al., 2010). For instance, in the case of free subduction, the free surface plays a crucial role in20

influencing the dynamics, including the morphology and timing of slab descent (Schmeling et al., 2008; Crameri and Tackley,

2016). Currently, there is a growing reliance on numerical models that incorporate a true free surface in related studies (Rose

et al., 2017).

Several approaches have been developed to simulate the free surfaces in geodynamic models:
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(1) True Free Surface via Conforming Mesh Methods: This approach allows the mesh to adapt to the topography, enabling the25

application of a zero normal stress condition at the surface. This configuration can employ either a deforming Lagrangian grid

(Poliakov and Podladchikov, 1992) or an Arbitrary Lagrangian-Eulerian (ALE) framework (Fullsack, 1995; Kaus et al., 2008;

Beaumont et al., 1994; Pysklywec et al., 2000) (Fig. 1a). A notable limitation of Lagrangian algorithms is their requirement for

frequent remeshing to accommodate significant distortions. By integrating Lagrangian and Eulerian methodologies, the ALE

framework can enhance computational efficiency for specific problems (Donea et al., 2004).30

(2) Pseudo-Free Surface via Non-Conforming Methods with Eulerian Mesh: This approach involves discretizing or tracing

the surface independently through various techniques. In Zhong et al. (1996), the surface coordinates are updated as additional

variables based on vertical velocity, subsequently applying the resulting topography as a normal stress boundary condition

σzz =−ρcgh at the top of the Eulerian grid. However, this method is inadequate for scenarios such as folding or subduc-

tion, where vertical deformation is non-uniform and horizontal components are important. Alternative methods, such as the35

Marker-in-Cell method (Harlow et al., 1965) and level-set functions (Braun et al., 2008; Hillebrand et al., 2014), are com-

monly employed. These free-surface tracking methods facilitate the identification of cells within the flow grid that contain the

interface, enabling the direct application of free-surface boundary conditions to these interface cells.

Within the Pseudo-Free Surface framework, a widely-used approach is the "Sticky Air" method (Matsumoto and Tomoda,

1983; Zaleski and Julien, 1992; Gerya and Yuen, 2003; Quinquis et al., 2011; Schmeling et al., 2008; Crameri et al., 2012) (Fig.40

1c), combining the use of Lagrangian advecting points (markers, tracers or particles) with an Eulerian grid, which has gained

popularity in recent studies (Hillebrand et al., 2014; Crameri and Tackley, 2016; Deng et al., 2024). In this approximation,

a low-viscosity, low-density fluid layer (referred to as "air" or "water") is situated above the free surface. Typically, either a

free-slip boundary condition or an open boundary condition is implemented above this fluid layer. Importantly, the "sticky air"

layer is not intended to represent a physical reality; it possesses the same density as air but a viscosity that is on the order45

of 1014 times greater. Instead, it serves as a conceptual construct for free surface simulation within the computational model

(Babel and Vinck, 2022). The evaluation of the "sticky air" technique, along with its applicable conditions and limitations, is

thoroughly discussed in Crameri et al. (2012).

While the Sticky Air method offers simplicity in implementation, it also presents several limitations (Duretz et al., 2016).

Notably, it increases computational costs due to the necessity of extending the model domain to accommodate the low-viscosity50

air layer. The accuracy of the free surface approximation heavily depends on the viscosity and thickness of this layer (Crameri

et al., 2012). When combined with markers, issues such as ’marker fluctuation’ (Fig. 1e) can arise, particularly when extracting

the free surface from regions between air and lithosphere material points. In such cases, air markers may be subducted along

with the lithosphere (Schmeling et al., 2008; Hillebrand et al., 2014). To overcome these limitations, Duretz et al. (2016)

proposed an interface capturing technique; however, this approach was developed within the context of a staggered grid finite55

difference scheme, which limits its direct applicability within finite element frameworks.

We propose a novel scheme for modelling the true free surface within finite element method (FEM), which integrates

the "sticky air" approach into a Arbitrary Lagrangian-Eulerian (ALE) scheme. This method employs an internal boundary to

accurately represent the free surface, referred to as ALE-IB (Fig. 1b). We implement this scheme for free surface simulations in
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the geodynamic codes Underworld 2 (Moresi et al., 2007; Mansour et al., 2020) and Underworld 3 (Moresi et al., 2025a). Our60

approach includes a detailed explanation of the theoretical foundations and implementation steps, showcasing how the ALE-IB

scheme enhances accuracy and stability. We conduct numerical experiments to validate our method, comparing results with

analytical solutions and other free surface modeling techniques. These comparisons highlight the advantages of our scheme in

terms of precision and computational efficiency, making it a valuable tool for complex geodynamic simulations.

2 Method65

2.1 Governing Equations

For the tectonic modelling, we assume that the Earth’s lithosphere and mantle deform like the incompressible viscous fluid on

geological time scales. The behaviour of the fluid follows a set of equations covering momentum, mass (Moresi et al., 2007):

∇ ·σ = f (1a)

70

∇ ·u = 0 (1b)

ρCp(
∂T

∂t
+u · ∇T ) =∇ · (k∇T ) + ρH (1c)

where σ is the stress tensor that is the sum of a deviatoric part τ and the pressure p (σ = τ − pI, where I is the identity

tensor), f = ρg is the force term, ρ is the density and g is the gravity acceleration, u is the velocity, Cp is the heat capacity at75

constant pressure, T is the absolute temperature, k is thermal conductivity, and H is the (radiogenic) heat production per unit

mass.

The following boundary conditions are considered here:

No slip: u = 0 (2)

80

Free slip: u ·n = 0 (3)

Free surface: σ ·n = 0 (4)
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2.2 Numerical Implementation

2.2.1 Underworld 285

These equations (1) are solved numerically by using the particle-in-cell and finite element method (PIC-FEM) code Under-

world 2 (Moresi et al., 2007; Mansour et al., 2020). Underworld 2 (https://github.com/underworldcode/underworld2) is a

Python-friendly version of the Underworld code (Moresi et al., 2002, 2003), offering a programmable and flexible interface

to its comprehensive functionality, designed to run efficiently in a parallel HPC environment. In Underworld 2, the hybrid

particle/mesh algorithms enable the tracking of historical information via Lagrangian integration points, while the structured90

computational mesh provides an efficient solution to the Stokes equation using multigrid.

2.2.2 Underworld 3

Underworld 3 (https://github.com/underworldcode/underworld3) is a geophysical fluid dynamics modelling framework built

on the PIC-FEM methodology (Moresi et al., 2025a). It evolves from earlier versions of Underworld and incorporates several

key design features: (1) a symbolic interface and symbolic forms for constructing finite element representations using SymPy95

(Meurer et al., 2017) and Cython (Behnel et al., 2010), (2) fast, robust, and parallel numerical solvers powered by PETSc

(Balay et al., 2024) and petsc4py (Dalcin et al., 2011), (3) Lagrangian particles for effectively managing transport-dominated

variables, and (4) support for using unstructured and adaptive meshing.

3 Numerical implementation of free surface simulations

3.1 Sticky air method in Eulerian scheme100

Several of our experiments employ an approximation of Earth’s surface using the "sticky air" method in the Eulerian scheme

(Schmeling et al., 2008; Crameri et al., 2012) for comparative analysis. This approach allows the modelling of topographic

variations within a purely Eulerian framework by introducing an upper layer of sticky air. The density of this layer is set to zero,

ensuring it exerts no pressure on the actual free surface (the interface between the air and lithosphere). Crameri et al. (2012)

investigated the influence of the viscosity contrast and the thickness of the sticky air layer and concluded that, for this method105

to produce reliable results, certain conditions must be satisfied. These conditions are summarized below (Crameri et al., 2012):

Cisost =
3

16π3

(
L

hst

)3
ηst

ηch
(5)

where L is the box width, hst and ηst denote the thickness and viscosity of the sticky air layer, respectively, and ηch rep-

resents the characteristic viscosity controlling relaxation, typically approximated by the mantle viscosity. When the isostatic

compensation coefficient Cisost ≪ 1, the error introduced by this method is minimal.110

The upper boundary over the air layer can be modeled as either free-slip or open (zero stress). As discussed in Hillebrand

et al. (2014) and Deng et al. (2024), an open boundary condition can suppress the return flow of sticky air, which is usually
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generated under a free-slip boundary condition, thereby reducing the velocity of the air layer. For an open top boundary, the

thickness of the sticky air layer does not need to be sufficiently large, as indicated by Eq. (5). However, for the purpose of

consistent comparison with previous studies (Kaus et al., 2010; Rose et al., 2017), all our experiments employ a free-slip115

boundary condition at the top of the air layer and utilize a relatively thick air layer.

3.2 True free surface in ALE with the internal boundary scheme

We implement the true free surface simulation in ALE-IB scheme. Generally, the mesh undergoes regridding to align with the

free surface through the following steps (Thieulot, 2011; Rose et al., 2017) (See Fig. 3):

(1) Free Surface Advection120

The mesh nodes along the internal boundary represent the discrete free surface of the domain. Their location coordinates,

denoted as X, is advected forward in time using displacements determined by the forward Euler scheme:

Xn+1 = Xn + ∆tun on Γfs (6)

where Γfs indicates the location of the time-dependent free surface. When coupled with surface processes, X will also be

influenced by these processes.125

(2) Free Surface Resampling

In accordance with the ALE scheme, the x-coordinates Xx in 2D or the x, y-coordinates Xx,y in 3D of the mesh nodes

remain constant. Consequently, we need to resample the vertical coordinates Xz at these specified locations.

(3) Mesh Regridding

To achieve a uniform distribution of displacements Dz in the vertical mesh coordinates, we solve Laplace’s equation:130

∇2Dz = 0 (7)

The boundary conditions applied here are Dirichlet constraints, which define the top and bottom boundaries as zero and the

internal boundary as new displacement (Dz = Xn+1
z −Xn

z on Γfs).

Next, we update the vertical mesh coordinates forward in time using displacements determined by the forward Euler scheme:

135

Xn+1
z = Xn

z + Dz (8)

3.2.1 Stabilisation method

Most approaches to free surface simulations have faced instability, often referred to as "sloshing instability" or the "drunken

sailor effect" (Kaus et al., 2010). This instability arises from the significant density contrast typically encountered at a free sur-

face (e.g., the rock-air interface in the "sticky air" method), which severely restricts the maximum stable timestep for computa-140

tions. In many cases, the maximum stable timestep is considerably smaller than the viscous relaxation time (Andrés-Martínez

et al., 2015), often several orders of magnitude less than that of an equivalent model with free-slip boundary conditions.
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To address this timestep limitation, stabilization methods such as the Free Surface Stabilization Algorithm (FSSA) proposed

by Kaus et al. (2010) are necessary. This approach enhances the standard element stiffness matrix by incorporating a surface

traction term. Andrés-Martínez et al. (2015) introduces a further version of FSSA, which differs from the original by applying145

the stabilization only at the free surface, rather than at every element boundary. Additionally, Kramer et al. (2012) utilizes

implicit time integration to simulate the free surface effectively. The applications of FSSA are tested in the Rayleigh–Taylor

model (Rose et al., 2017) and in ice-sheet models (Löfgren et al., 2022).

An advantage of the ALE-IB scheme is that boundary conditions can be flexibly applied directly to the free surface. In this

study, we employ a simpler method akin to FSSA by incorporating the stable traction term Ffs into the Neumann boundary150

condition at the free surface:

Ffs = θ∆t

∫

Γ

(∆ρg)(u ·n)dΓ (9)

where ∆t is the set time step, ∆ρ is the density contrast across the free surface, and θ is the controlling factor (the optimal

value is 0.5).

4 Numerical experiments155

We consider five numerical experiments to evaluate and compare the accuracy and stability of three free surface simulation

algorithms: (1) the true free surface implemented within an ALE scheme, (2) the sticky air method within an Eulerian scheme,

and (3) the true free surface within an ALE scheme combined with the sticky air method and internal boundary (ALE-IB).

The experiments include (a) viscous relaxation of sinusoidal topography, (b) Rayleigh–Taylor instability, (c) delamination, (d)

rising sphere, and (e) subduction (Fig. 2). In all cases, the surface boundary condition in the ALE scheme is zero normal stress.160

For the ALE-IB and Eulerian schemes, a sticky air layer Ω0 with zero density and low viscosity is placed atop the domain. The

first experiment is conducted in Underworld 2 and Underworld 3, while the other experiments are conducted in Underworld 2.

4.1 Topography relaxation

The loading of the Earth’s surface can be described as the initial periodic surface displacement of an isoviscous fluid within the

infinite half-space (Turcotte and Schubert, 2002). The setup is shown in Fig. 2a. The initial free surface displacement is given165

by:

w(x,0) = w0 cos(kx) (10)

where w0 = 10 km is the initial load amplitude, k = 2π/λ is the wave number, with λ = D (the wavelength). D = 500 km

is the depth of the model domain.

The analytical solution for the decay of topography is characterized by the relaxation time t∗ (Zhong et al., 1996; Kramer170

et al., 2012):
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w(x,t) = w(x,0)e−t/t∗ (11)

with the relaxation time t∗:

t∗ =
Dk + sinh(Dk)cosh(Dk)

sinh2(Dk)
t∗0, t

∗
0 =

2kη

ρg
(12)

where η is the viscosity, ρ is the density. When λ≪D, t∗ ≈ t∗0.175

The computational domain is 500 × 500 km for the ALE scheme, and 500 × 600 km for ALE-IB and Eulerian schemes.

A constant time step of 10−2t∗ here was employed, with Q1dQ0 finite elements and with a mesh of 51×51 nodes (or 51×61

nodes for the larger domain with the air layer). Material properties are: ρ = 3300 kg/m3 and η = 1021 Pa · s for the lithosphere

layer, ρ = 0 kg/m3 and η = 1018 Pa · s for the air layer. Gravitational acceleration is g = 9.81 m/s2. The side boundaries are

free-slip, the bottom is no-slip, and the top boundary is either a free surface or free-slip (over sticky air).180

4.2 Rayleigh–Taylor instability

The Rayleigh–Taylor instability model is adapted from Kaus et al. (2010) and Duretz et al. (2011) (See Fig. 2b). A dense and

more viscous layer (ρ = 3300 kg/m3, η = 1021 Pa · s) is sinking through a less dense fluid (ρ = 3200 kg/m3, η = 1020 Pa · s).

Side boundaries are free slip, the bottom boundary is no-slip and the top boundary is a free surface or free-slip (sticky air). The

domain size is 500 × 500 km for ALE scheme and 500 × 600 km for ALE-IB and Eulerian scheme, with Q1dQ0 elements185

and 51×51 nodes (or 51×65 nodes). The initial perturbation has an amplitude of 5 km. A constant time step of 2500 years was

employed in the simulations.

4.3 Delamination

This experiment builds upon the models developed in Beall et al. (2017) to examine conditions leading to triggered dripping

and lithospheric delamination (See Fig. 2c). The model domain includes a layered crust and mantle with the following param-190

eters: upper crust (20 km thick, ρ = 2800 kg/m3, η = 1023 Pa · s),lower crust (20 km thick, ρ = 3300 kg/m3, η = 1019 Pa · s),

lithosphere (100 km thick, ρ = 3300 kg/m3, η = 1021 Pa · s), and mantle (ρ = 3250 kg/m3, η = 1018 Pa · s). Side boundaries

are free slip, the bottom boundary is no-slip and the top boundary is a free surface or free-slip, depending on the simulation

scheme. For free surface simulations in ALE-IB and Eulerian scheme, there is a sticky air layer with ρm = 0 kg/m3, and vis-

cosity of ηm = 1019 Pa ·s, 150 km thickness, bordered with free-slip top boundary condition. The computational domain is 900195

× 600 km in size for the Eulerian scheme with free-slip top boundary and free surface within ALE scheme, 900 × 750 km in

size for free surface in ALE-IB and Eulerian schemes). The mesh employs Q1dQ0 elements and 193 × 129 nodes (or 193 ×
161 nodes).
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4.4 Rising Sphere

The rising sphere model is adapted from Case 2 in Crameri et al. (2012) for validating the sticky air approach (See Fig. 2d).200

A plume with a radius of rp = 50 km, a density of ρp = 3200 kg/m3, and viscosity of ηp = 1020 Pa · s, is initially located in

the (0 km, -400 km) of the mantle with ρm = 3300 kg/m3, and viscosity of ηm = 1021 Pa · s. The lithosphere, with ρl = 3300

kg/m3 and viscosity of ηl = 1023 Pa · s, has a thickness of 100 km. For simulations in ALE-IB and Eulerian schemes, there is

a sticky air layer with ρm = 0 kg/m3, and viscosity of ηm = 1019 Pa · s, bordered with free-slip top boundary condition. Side

boundaries are free slip, the bottom boundary is no-slip. The model domain is 2800 × 700 km in size for ALE scheme (2800205

× 850 km in size for ALE-IB and Eulerian schemes), discretized with Q1dQ0 elements and 561 × 281 nodes (or 561 × 341

nodes).

4.5 Subduction

Models with a free surface boundary condition produce more realistic slab bending, dip angles, and stress states compared to

free-slip models, as shown in Kaus et al. (2010). The free surface approach more accurately captures topographic features,210

whereas free-slip models tend to exhibit more short- and intermediate-wavelength components in the simulated topography

(Zhong et al., 1996; Quinquis et al., 2011; Crameri et al., 2017).

The subduction model is modified from Crameri et al. (2017) (See Fig. 2e). It is a thermo-mechanical model designed to

simulate the subduction of a visco-plastic slab into the mantle and generate realistic topography signals. The simulation is run

over a short duration to allow for initial stabilization, with side boundaries not subjected to periodic boundary conditions. In215

contrast to Crameri et al. (2017), where the driving force is based on the temperature-dependent Rayleigh number, here the

body force is driven by the same density contrast used in the previous experiments. The materials are assigned a temperature-

dependent density, expressed as:

ρ = ρ0(1−α∆T ) (13)

where α is the thermal expansion coefficient, ∆T = T −T0 with T being the temperature, and ρ0 is the reference density at220

the reference temperature T0 = 300 K.

To simulate the deformation of the subducted lithosphere and surrounding mantle, a visco-plastic rheology is employed. The

model uses the Drucker-Prager yield criterion with a pressure-dependent yield stress based on Byerlee’s law, which approxi-

mates brittle behavior. Frictional-plastic deformation occurs when the stress exceeds the frictional-yield stress σy:

σy = C + Pµ (14)225

where P , C and µ are the pressure, cohesion and friction coefficient respectively.

The effective plastic viscosity is given by:

ηpl
eff =

σy

2ϵ̇
(15)
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Where ϵ̇ is the second invariant of the strain rate tensor defined as ϵ̇ =
√

1
2 ϵ̇ij ϵ̇ij

Nonlinear viscous deformation is modeled with a strain-rate-dependent, thermally activated power-law rheology, expressed230

by the following nonlinear equation:

ηvcreep
eff =

1
2
A

−1
n ϵ̇

(1−n)
n exp

(
E

nRT

)
(16)

where A is the pre-factor set as the effective viscosity giving the reference viscosity at T = 1600 K, ϵ̇ is the square root of the

second invariant of the deviatoric strain rate tensor, E is the activation energy, n is the stress exponent, R is the gas constant

and T is the temperature.235

The effective viscosity combines brittle and ductile rheologies as:

ηeff = min(ηvcreep
eff ,ηpl

eff) (17)

and is limited within nine orders of magnitude by applying upper and lower bounds: ηmax = 105η0 and ηmin = 10−4η0.

where η0 is a reference viscosity.

An initial weak hydrated crustal layer of 7.5 km thickness is included on top of the subducting plate. Additionally, a sticky240

air layer with ρm = 0 kg/m3, and viscosity of ηm = 1019 Pa · s, is implemented, bordered by a free-slip top boundary in the

Eulerian and ALE-IB schemes. The model assumes ongoing subduction, represented by a finite-length initial slab. An initial

divergent plate boundary is specified at the tail of the subducting plate, with the boundary layer thickness WBL increasing away

from this spreading centre toward the subduction zone according to the standard
√

age-law:

WBL(x) = WBL,0(x) ·
√

∆Xsc (18)245

where WBL,0(x) controls the maximum boundary layer thickness, here set as 100 km, x is the horizontal coordinate, and

∆Xsc is the distance from the spreading centre at any given position x. The radial component of the initial temperature is

related to plate thickness as Tz(x) = T0 + (T1−T0)(erf(d/2
√

WBL(x))), where T0 = 300 K is the temperature at the surface

(and the top of the model domain), T1 = 1600 K is the temperature at the model base, d is depth below the surface.

The initial slab is approximately 500 km long, straight from trench to tip, inclined at θ = 30◦ via an abrupt kink, which250

relaxes during the evolution. All materials share the same heat production rate. The top boundary (and the air layer, if present)

is maintained at 300 K, while the bottom boundary is insulated with a zero heat-flux boundary condition. The domain size is

3000 × 800 km for ALE scheme (3000 × 1000 km in size for ALE-IB and Eulerian schemes). It employs Q1dQ0 elements

and 601 × 161 nodes (or 201 nodes). Physical and numerical parameter details are given in Table 1.

5 Results and Discussion255

5.1 Topography relaxation

In Experiment 1, the initial topography relaxes toward equilibrium over approximately 100 ka. Figure 4 compares the topogra-

phy obtained from free-surface simulations across three different numerical schemes with the analytical solution Eq. (11). The
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maximum elevation of the simulated topography deviates from the analytical solution, which is derived after one relaxation

time τ , approximately equal to 24.6 ka.260

Discrepancies among the schemes are illustrated in Fig. 4a, which shows the temporal evolution of the topography. Fig. 4c

presents the topography at Time = 2τ . Both the ALE and ALE-IB schemes demonstrate good agreement with the analytical

solution, whereas the Eulerian scheme exhibits fluctuations that reduce accuracy.

When the free surface is not explicitly tracked using additional tracers, the surface becomes unidentifiable, as shown in

Fig. 1e. In such cases, the surface must be tracked via particles representing the top of the solid or the interface between rock265

and air, or through an averaged interface based on volume ratios (Deng et al., 2024). Using extra particles to trace the surface,

common in this study, often results in a rough interface with undesired spatial fluctuations as discussed in Crameri et al. (2012).

These fluctuations arise because the distance between markers and the interface is finite and irregular, leading to small velocity

variations during advection.

Such fluctuations can be mitigated by employing finer vertical spacing in the computational mesh or by utilizing marker270

chains or level-set methods to more accurately assign viscosity and density to nodal points. The new ALE-IB scheme introduced

here inherently suppresses these fluctuations, achieving accuracy comparable to the ALE scheme while maintaining robust

surface tracking.

Additionally, the convergence of the Stokes solver using the ALE-IB scheme with the FSSA (see Eq. (9)) was tested over

a range of time steps, assessed via the L2-norm of the error. The convergence study involved a sequence of seven time steps:275

[1,1/2,1/4,1/8,1/16,1/32,1/64] τ . Fig. 5 illustrates how the FSSA effectively reduces the errors in topography even at relatively

larger time steps.

5.2 Rayleigh–Taylor instability

Following the methodologies outlined in Kaus et al. (2010) and Duretz et al. (2011), we continuously monitored the evolution of

the lithosphere-asthenosphere interface, defined here as the boundary between denser and less dense materials, and tracked the280

position of the free surface over time. The results (shown in Fig. 6b), demonstrate that all three simulation schemes: ALE, ALE-

IB, and Eulerian are capable of accurately reproducing the results reported in Kaus et al. (2010) when employing sufficiently

small time steps. Notably, the time step used in these simulations is smaller than the Courant criterion, fixed at 2.5 ka, to

prevent numerical instabilities such as the "drunken sailor" oscillations commonly encountered in free surface simulations.

Both the ALE and ALE-IB schemes exhibit excellent agreement in tracking the evolution of the interfaces and the free surface.285

In contrast, the Eulerian scheme displays significant fluctuations in both the free surface and the lithosphere/asthenosphere

interface, along with asymmetric features, especially in the interface’s depth profile (Fig. 6d).

The fluctuations observed in the Eulerian approach are likely attributable to the inherent numerical diffusion and irregularities

associated with fixed-grid advection, which can cause the interface to oscillate and distort over time. Conversely, the ALE and

ALE-IB schemes, with their moving mesh and improved interface tracking strategies, maintain more stable and physically290

consistent interface evolutions, underscoring their robustness for long-term geodynamic simulations.
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5.3 Delamination

For the chosen model configuration, delamination of the denser lithosphere occurs progressively over time. Comparing the

model from Beall et al. (2017) with a free-slip boundary condition at the top, the free-surface simulations within the ALE-IB

and Eulerian schemes exhibit relatively faster delamination (Fig. 7a, c, d). In this context, the free-slip top boundary can be295

interpreted as a very rigid layer over the upper crust, whereas the free surface in the ALE schemes effectively represents a

weak, deformable upper boundary.

However, the ALE scheme shows strong instabilities even when small time steps are used, largely due to the asymmetry

in the model geometry: specifically the presence of a denser lithosphere confined to one half of the domain (see Fig. 7b). In

contrast, the ALE-IB scheme offers advantages over the traditional ALE approach in such scenarios, providing more stable300

simulations of free-surface evolution when dealing with asymmetric geometries. Similar cases are discussed in Gerya (2009),

where slab bending is triggered by asymmetrical lithospheric thicknesses. Additionally, in models requiring an open bottom

boundary, the ALE-IB and Eulerian schemes with a free-slip top boundary condition over the sticky air layer can handle

such situations more effectively, whereas the standard ALE scheme tends to exhibit strong numerical instabilities under these

conditions.305

5.4 Rising Sphere

In the rising sphere model, the plume ascends and approaches the lithosphere over time. Fig. 8 displays the surface topography

at 4 Ma and 8 Ma. The results from the ALE and ALE-IB schemes remain in good agreement with each other, demonstrating

consistent plume evolution and corresponding topographic signals. In contrast, the Eulerian method exhibits strong fluctuations,

with the topography reaching approximately a 7% difference compared to the ALE and ALE-IB results.310

5.5 Subduction

The topography generated by the ALE-IB and ALE schemes is similar, displaying smooth and physically plausible surface

features. In contrast, the Eulerian scheme produces a basin with a sharper angle on the left side of the island arc, resulting in

less realistic surface morphology. Our ALE-IB scheme results are more comparable to the free-surface case in the Eulerian

scheme reported in Crameri et al. (2017), where a shape-function averaging method was employed in their modelling on all315

the uppermost rock tracers and the lowermost air tracers. This approach, combined with their sticky air method, yields more

accurate surface representations.

The new ALE-IB scheme can produce realistic, single-sided subduction features similar to those obtained with the shape-

function averaging method. It also achieves reasonably accurate topography and effectively overcomes mesh distortion issues

common in the standard ALE scheme (see Fig. 9a). This demonstrates that our approach not only maintains topographic320

accuracy but also enhances numerical stability during complex subduction simulations.
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5.6 Model limitations

While the proposed ALE-IB scheme offers significant advancements in simulating true free surface dynamics, several limita-

tions should be acknowledged:

(1) Computational cost: Although the internal boundary approach reduces certain numerical artifacts, it introduces additional325

complexity in mesh management and boundary condition implementation. This can result in increased computational expense,

particularly for large-scale or high-resolution simulations.

(2) Approximate surface conditions: Although the internal boundary method effectively emulates a true free surface, the

boundary conditions employed remain approximations. They may not fully capture the complex interactions between Earth’s

surface and the atmosphere or hydrosphere, necessitating further integration of surface process coupling to improve realism.330

(3) Mesh elements type: In our experiments, all models utilized meshes with Q1dQ0 elements. However, as demonstrated in

Thieulot and Bangerth (2022), Q1dQ0 elements tend to be unstable and inaccurate in practice. Consequently, we believe that

higher-order elements such as Q2Q1 and Q2P−1 offer more robust and reliable options for geodynamic simulations, despite

their increased implementation complexity and higher computational costs associated with solving the resulting linear systems.

The Underworld 3 provides support for the high-order discretization, making it well-suited for the ALE-IB scheme, though335

further testing is needed.

Future research should focus on optimizing mesh management algorithms, incorporating more comprehensive physical

processes, and validating results against observational data. These steps are essential for enhancing the applicability, accuracy,

and overall robustness of the scheme in realistic geodynamic modelling.

6 Conclusions340

We propose a novel scheme called ALE-IB, which enhances the traditional ALE framework by incorporating an internal

boundary to simulate the true free surface in geodynamic models. This approach enables comprehensive domain calculations

and the flexibility to apply additional boundary conditions directly to the free surface as needed. To evaluate its applicability

and benefits, we conducted five numerical experiments comparing the free surface simulations across three different schemes:

(a) ALE, (b) ALE-IB, and (c) Eulerian.345

The results demonstrate that the ALE-IB scheme achieves accuracy comparable to the traditional ALE method and effec-

tively overcomes the marker fluctuation issues associated with the "sticky air" layer in particle-in-cell approaches within the

Eulerian scheme. Unlike the standard ALE, which can suffer from mesh distortion and instability in complex and asymmet-

ric geometries, the ALE-IB consistently maintains stable and realistic surface evolution, even in challenging scenarios such

as large asymmetric deformations. The ALE-IB scheme can accurately capture surface topography, interface evolution, and350

subduction processes.

Overall, our findings highlight that the ALE-IB scheme not only matches the accuracy of existing methods but also offers

significant advantages in stability, robustness, and physical realism. Consequently, it presents a promising alternative to con-

ventional ALE and "sticky air" techniques in the Eulerian scheme, particularly for multi-material near free surface systems and
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surface process modelling, where precise and stable free surface representation is crucial. This framework paves the way for355

more reliable and versatile geodynamic simulations, advancing our understanding of Earth’s lithospheric and mantle dynamics

with a true free surface.

Code and data availability. All software used to generate these results is freely available. Underworld 2 is publicly available on GitHub

at https://github.com/underworldcode/underworld2 and can be found permanently at https://zenodo.org/records/15128361 (Beucher et al.,

2025). Underworld 3 is publicly available on GitHub at https://github.com/underworldcode/underworld3 and can be found permanently at360

https://zenodo.org/records/16838572 (Moresi et al., 2025b). For the input files of all examples presented, see https://zenodo.org/records/17972151

(Lu, 2025).
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Figure 1. Classification of methods used for simulating a free surface (indicated by the red line). Colored points represent markers for

different materials. Methods include: (a) ALE scheme, (b) ALE scheme with the internal boundary (ALE-IB) and the ’sticky air’ method,

and (c) Eulerian scheme with the ’sticky air’ method.
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Figure 2. Model setup for (a) viscous relaxation of sinusoidal topography, (b) Rayleigh–Taylor instability, (c) delamination, (d) rising sphere,

and (e) subduction. Ω indicates different material domains, with Ω0 specifically representing the air domain—used only in Eulerian and ALE-

IB schemes. The dashed line marks the free surface Γfs, and the stars denote tracer locations used in some experiments.
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Figure 3. Flowchart presenting the free surface simulation within the ALE framework with internal boundary.
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Figure 4. (a) Maximum topography of the models in Experiment 1 over time, shown from the analytical solution (black line) and from

free-surface simulations using three different schemes: ALE (red dash-dotted line), ALE-IB (blue dashed line), and Eulerian (green dashed

line). (b) Zoomed-in view of the area in (a). (c) Topography at Time = 2τ , corresponding approximately to 49.21 ka.
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Figure 5. Convergence errors of the free surface simulation in ALE-IB scheme with FSSA over different time steps dt.
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Figure 6. (a) Minimum depth of the surface Γfs in Experiment 2 over time, shown from free-surface simulations using three different

schemes: ALE (red dash-dotted line), ALE-IB (blue dashed line), and Eulerian (green dashed line). (b) The elevation of Γfs over x distance.

(c) Minimum depth of the lithosphere/asthenosphere interface Γdl, (d) The depth of the interface Γdl.
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Figure 7. Experiment 3: (a) free slip in Eulerian scheme, Time = 4 Ma, (b) free surface in ALE scheme, Time = 500 year, (c) free surface in

ALE-IB scheme, Time = 4 Ma, (d) free surface in Eulerian scheme, Time = 4 Ma.
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Figure 8. (a) Topography in Experiment 4, shown from free-surface simulations using three different schemes: ALE (red dash-dotted line),

ALE-IB (blue dashed line), and Eulerian (green dashed line) at Time = 4 Ma. (b) Topography at Time = 8 Ma.
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Figure 9. (a) Topography in Experiment 5 over time, shown from free-surface simulations using three different schemes: ALE (red dash-

dotted line), ALE-IB (blue dashed line), and Eulerian (green dotted line) at Time = 1.6 Ma. (b)(c)(d) Viscosity field in ALE, ALE-IB, and

Eulerian scheme respectively, at Time = 1.6 Ma.
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Table 1. Model parameters applied in subduction experiment

Symbol (unit) Value Definition

g (m.s−1) 9.81 gravity acceleration

ρ0 (kg.m−3) 3300 reference density

k (W.m−1.K−1) 3 heat conductivity

H (W.m−3) 0.9× 10−6 heat production

cp (J.kg.−1.K−1) 1200 heat capacity

α (K−1) 3× 10−5 thermal expansion coefficient

µmantle 0.25 friction coefficient for mantle

µcrust 0.001 friction coefficient for crust

C (MPa) 10 cohesion

σy,const (MPa) 600 max. yield stress

η0 (Pa.s−1) 1× 1023 reference viscosity

A (Pa−n.s−n) 6.85× 10−16 power-law initial constant

n 1 power-law creep exponent

R (J.mol−1.K−1) 8.3144 gas constant

E (J.mol−1) 240× 103 activation energy
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