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Abstract. In this study we examine how a deep-learning based forecast of local, ground-based geomagnetic field variations

trained on solar wind parameters available in real time might be improved by including information contained in an accurate

forecast of solar wind conditions. This is accomplished using a long short-term memory (LSTM) model together with magnetic

field measurements made at the Rørvik magnetometer station in Mid-Norway. We use Advanced Composition Explorer (ACE)

satellite measurements of solar wind and interplanetary magnetic field (IMF) conditions at the first Sun-Earth Lagrange point,5

and historical lists of coronal mass ejection (CME) impacts at Earth to train and validate the LSTM model. We find that

accurate information about the IMF Bz component and solar wind speed are important for obtaining a reasonably accurate

(r2 ≥ 0.5) forecast of local geomagnetic activity over forecasting horizons beyond ∼3 h. Information about CME arrival time

is only important when simultaneously accompanied by accurate, relatively high-resolution information about IMF Bz . In the

absence of the latter, CME arrival time information does not contribute to model performance. This empirical result amounts10

to a quantitative demonstration of the widely recognized impact of IMF orientation on CME geoeffectiveness. This result also

highlights that new innovations, probably in the form of new prediction capabilities of conditions in interplanetary space, will

be required to produce accurate forecasts of local geomagnetic disturbances beyond a forecast horizon of 1 h.

1 Introduction

Geomagnetic field disturbances at Earth’s surface are driven by interactions between the solar wind and Earth’s coupled15

magnetosphere-ionosphere system. The intensity of these disturbances is strongly tied to variations in the solar wind speed

and the interplanetary magnetic field (IMF) that is borne by the solar wind. The most intense disturbances are associated with

transient solar phenomena such as coronal mass ejections (CMEs), with the degree of influence that a particular CME has on

space weather conditions in near-Earth geospace—its so-called "geoeffectiveness"—critically dependent on IMF orientation

upon arrival at Earth. Periods of strongly negative (southward) IMF Bz are invariably connected with the most intense dis-20
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turbances geomagnetic storm activity (e.g., Gonzalez et al., 2011; Lakhina and Tsurutani, 2016; Sierra-Porta et al., 2024, and

references therein).

At the surface of Earth and in its interior, geomagnetic disturbances give rise to geomagnetically induced electric fields

(GEFs) that themselves give rise to geomagnetically induced currents (GICs). GICs can have deleterious effects on critical

ground infrastructure including power grids, gas pipelines, and some navigation and communication systems (Ngwira and25

Pulkkinen, 2019; Press, 2021; CIGRE, 2019; EPRI, 2020; Patterson et al., 2023). Operational forecasts of geomagnetic distur-

bances, GEFs, and GICs are therefore naturally a central objective in space weather research (see Hapgood, 2011; Fry, 2012;

Pulkkinen et al., 2017; Abda et al., 2020; Press, 2021, and references therein).

Forecasting of GEFs and GICs, as well as proxies for them, has seen an explosion of interest during the past decade or so

(Hapgood, 2011; Tóth et al., 2014; Pulkkinen, 2015; Keesee et al., 2020; Siddique and Mahmud, 2022; Conde et al., 2023;30

Wang et al., 2025), likely as a result of increasing awareness of the threat posed by GICs and space weather generally (Fry,

2012; Gannon et al., 2019; Abda et al., 2020) as well as increasing awareness and acceptance of machine learning-based

solutions (Camporeale et al., 2018; Camporeale, 2019).

With few exceptions, forecasting methods rely on measurements of solar wind speed and density as well as the strength

and orientation of the IMF made by solar wind monitors such as the Advanced Composition Explorer (ACE) and Deep Space35

Climate Observatory (DSCOVR) satellites located at L1, the first Sun-Earth Lagrange point. As L1 is ∼1.5×106 km from

Earth, such measurements provide lead times of ∼15–60 min depending on solar wind speed. The accuracy of forecasts that

rely on measurements at L1 therefore degrades rapidly with increasing forecasting horizon beyond 1 h.

One source of information that, at present, is little used in quantitative geomagnetic forecasting models described in the

literature are outputs from solar wind models such as the Wang-Sheeley-Arge (WSA)-Enlil model (Arge and Pizzo, 2000; Arge40

et al., 2004; Odstrcil et al., 2004) and the heliospheric upwind extrapolation with time-dependence (HUXt) model (Barnard

and Owens, 2022). The former provides a forecast of solar wind density and radial velocity. The latter produces a probabilistic

forecast of solar wind speed, and a probability distribution of the time of coronal mass ejection (CME) impact at Earth for any

currently active CMEs.

In this study we seek to answer the following question: How accurately could one predict local geomagnetic activity if45

high-quality forecasts of solar wind properties such as speed, density, and IMF strength and orientation, as well as precise

information about CME arrival time, were available 24 h in advance?

We answer this question via a deep learning-based forecasting model of the spectral power of dH/dt (the time rate of change

of horizontal magnetic field disturbances, a well known proxy for ground induced currents) that is provided with four main

sources of data: (a) ambient parameters such as time of day and the tilt of Earth’s magnetic dipole; (b) real-time measurements50

of local magnetic disturbances measured by a ground-based magnetometer station in Rørvik, Norway; (c) real-time solar wind

and interplanetary magnetic field properties measured by the ACE satellite at L1; (d) "perfect" forecasts of solar wind and IMF

properties as well as CME arrival times. The latter are "perfect" in the sense that they are based on actual solar wind and IMF

observations and CME arrival times at Earth.
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This paper is organized as follows: In Section 2 we present the datasets used to train the model as well as the methodologies55

used for producing a training dataset. In Section 3 we present the model architecture. In Section 4 we present a comparison of

model predictions with observations for three storms in 2021, 2023, and 2024. In Section 5 we discuss our results and present

an evaluation of the model performance against simpler statistical models. In Section 6 we conclude our study.

2 Data

There are three primary sets of measurements used in this study: magnetometer measurements made at the Rørvik magnetome-60

ter station (64.95◦ N, 10.99◦ E geographic; 62.46◦, 91.21◦ geomagnetic) maintained by the Tromsø Geophysical Observatory

(Johnsen, 2025); solar wind and IMF measurements made by the ACE satellite (Advanced Composition Explorer (ACE),

2025); and the Richardson and Cane (2024) CME list, which is extended from the original work of Cane and Richardson

(2003). All of these datasets extend over the 15-year time period (2010–2024) that is considered in this study.

Our choice to focus on Rørvik magnetometer measurements is based on information that ground-based conducting infras-65

tructure close to the area was responsive to elevated levels of geomagnetic activity in 2021 (Statnett, private communication,

2025). We therefore specifically examine dH/dt, the time rate of change of the horizontal magnetic field and a commonly used

proxy for GICs Viljanen et al. (2001), as estimated from Rørvik magnetometer measurements.

2.1 GIC proxy from Rørvik magnetometer data

The starting point for producing model training data is the set of Rørvik magnetometer measurements with a temporal resolution70

of 10 s. An example time series of the horizontal component H and the time rate of change dH/dt estimated using first-order

backward differencing during 3–4 November, 2021, are shown in Figures 1a and 1b, respectively. An interplanetary CME

impacted Earth at 19:42 UT on 3 November, 2021, as indicated by the red dash-dotted vertical line in all panels.

Figure 1c shows the power spectral density of dH/dt up to the Nyquist frequency 0.05 Hz calculated using a Python

implementation (Prieto, 2022) of the multitaper technique (Thomson, 1982; Hatch and LaBelle, 2018). We use the multitaper75

technique because it yields a less biased estimate of the power spectral density than is obtained, for example, via Fourier

transformation of the underlying time series. From Figure 1c it is clear that the power is concentrated at the lowest frequencies

both before and after CME impact.

Figure 1d shows the integrated power spectral density, or spectral power, in various frequency bands. The majority of the

power is generally concentrated at the lowest frequencies (here represented by 0–0.01 Hz, the green solid line), denoted by80

P0 in Table 1, although during periods of intense geomagnetic activity the power in other in contributions from the other

frequency bands can reach or exceed the spectral power in the lowest frequency band. This occurs, for example, near 09:00 UT

on 4 November, 2021.

In this study we choose to focus on the spectral power contained in the lowest frequency band based on the findings of

Oyedokun et al. (2020) that the most dominant frequencies in actual GIC measurements tend to be below 50 mHz.85
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Figure 1. Illustration of procedure for preprocessing Rørvik magnetometer data for measurements made on 3–4 November, 2021. (a) Hor-

izontal magnetic field component H . (b) Time rate of change of H (dH/dt) estimated using backward differencing. (c) Spectrogram of

logarithmic dH/dt power spectral density. (d) Square root of integrated dH/dt power spectral density over different frequency bands. The

focus of this study is the power in the lowest frequency band (0–0.01 Hz, green solid line). The red dash-dotted vertical line at 19:42 UT on

November 3, 2021 indicates the time of impact of an interplanetary CME as given in the Richardson and Cane (2024) CME list.
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We view the spectral power of dH/dt as a natural choice for modeling power dissipation due to GICs in power lines and

transformer windings, since the spectral power of dH/dt as a function of frequency f , |dH/dt(f)|2 is proportional to the

spectral power of the GIC current |I(f)|2 through a transformer, which is in turn directly proportional to the power dissipation

P = I2R. Here R represents the winding resistance of copper windings in a transformer. (The other form of impedance in a

transformer, steel core resistance, is the main heat source. It unfortunately cannot be approximated via P = I2R as it is highly90

frequency dependent.)

2.2 Exogenous data inputs

Table 1 lists all inputs used for training the deep learning models we present in the next section. A selection of these inputs are

shown in Figure 2 for a four-day period during November 2–5, 2021. These are, in display order from top to bottom, dipole

tilt ψ, IMF By and Bz , solar wind density n, solar wind speed v, and the “predicted” CME arrival time distribution. Quantities95

in panels b–e are generated from ACE measurements, while the arrival time distribution in panel f is produced by generating a

Gaussian distribution with a standard deviation of ∼5–6 h around the time of CME impact as recorded in the Richardson and

Cane (2024) CME list. The total area under the curve is 1, and the arrival time distribution is shifted 24 h backward in time so

that the model has information about incoming CMEs 24 h ahead of time.

In addition to observed solar wind and IMF properties, panels b–e of Figure 2 also show two sets of artificially generated100

space weather forecast quantities labeled as “Set A” and “Set B”, respectively denoted by blue lines and orange lines. Both “Set

A” and “Set B” quantities consist of ACE measurements shifted 24 h backwards in time, but “Set B” quantities are additionally

smoothed using a second-order Savitzky-Golay filter with a 36-h window. Each set of artificial space weather forecast products

is used to train a separate model, as described in Section 3. Quantities in panels d–f are among the outputs of the WSA-Enlil and

HUXt space weather models. (Note that although the heliospheric magnetic field polarity is routinely forecasted, no currently105

existing space weather forecasting model is capable of predicting IMF By and Bz .)

3 Modeling

In this section we briefly describe the design of the long short-term memory (LSTM) networks we employ, deep learning, and

a persistence-based benchmark model for evaluating the performance of the LSTM networks. A summary of the four models

used in this study are shown in Table 2.110

3.1 Long Short Term Memory

LSTM networks are a variant of recurrent neural networks that handles short-term memory problems by introducing a cell state

(Hochreiter, 1997). The cell state keeps past information for a long time, solving the vanishing gradient problem and allowing

the network to “remember” past information in the sequence (Wei et al., 2018).

As illustrated in Figure 3a, the recurrent structure of the LSTM unit is made up of three gates: forget, input, and output115

(Siciliano et al., 2021). The forget gate keeps the relevant information in the network by filtering both the current and past
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Figure 2. Illustration of exogenous model inputs during November 2–5, 2021. The quantities labeled “Set A” and “Set B” in panels b–e

(indicated by blue solid lines and orange dash-dotted lines, respectively) are the artificial solar wind forecasts generated as described in

Section 2.2. Both“Set A” and “Set B” are ACE measurements at L1 shifted 24 h backwards in time, but “Set B” is additionally smoothed

using a second-order Savitzky-Golay filter with a 36-h window. The red dash-dotted vertical line at 19:42 UT on November 3, 2021 indicates

the time of impact of an interplanetary CME according to the Richardson and Cane (2024) CME list. (a) Dipole tilt angle Ψ. (b) Observed

and forecasted IMFBy . (c) Observed and forecasted IMFBz . (d) Observed and forecasted solar wind density n. (e) Observed and forecasted

solar wind speed v. (f) CME arrival time distribution “forecasted” 24 h in advance. Note that the peak of the CME arrival time distribution is

deliberately shifted 24 h prior to the actual arrival of the CME indicated by the red dash-dotted line.
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Table 1. List of input variables used in training of deep learning models

Variable Symbol

Log dH/dt spectral power over 0–0.01 Hz log10(P0)

Cosine UT cos(UT)

Sine UT sin(UT)

Dipole tilt angle ψ

IMF By By

IMF Bz Bz

Solar wind density n

Solar wind velocity v

CME arrival time distribution pred_t

Predicted IMF By* BP
y

Predicted IMF Bz* BP
z

Predicted solar wind density* nP

Predicted solar wind velocity* vP

Standard normal random number N (0,1)

*For Model A, predicted quantities are generated by shifting the original time series

24 h backward. For Model B, predicted quantities are first smoothed using a second-order

Savitzky-Golay filter with a 36-h window and then shifted 24 h backward.

Table 2. Summary of models used in this study.

Model Description Section

A Based on conditions at L1 up to 24 h in advance 3.2

B Based on smoothed conditions at L1 up to 24 h in advance 3.2

C Same as Model A but without CME arrival time information 3.2

Benchmark Weighted combination of persistence and climatology models 3.3

values in the sequence. The input gate enables the network to determine which information to retain from the current values of

the sequence. Thus, the input gate is where the current information is added to the network’s long-term memory. The previous

cell state, Ck−1, is then updated to the final cell state, Ck, which is finally uploaded to the output gate. The output gate is the

final destination of the information after transitioning from the forget and input gates. The output gate then determines what120

information is allowed to the next element. In each LSTM unit, there is an element of a sequence being processed, Xk, and

the hidden states are also calculated as hk. In this case, both the hidden state hk and the cell state Ck are passed on to the

preceding element of the sequence, to ensure the past information is used as input in the subsequent element in the sequence

being processed. This unique architecture makes the LSTM models better at handling time series problems. In a skillful model,

several LSTM cell units per layer are looped together, forming a block of layers such as the one illustrated in Figure 3b.125
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Figure 3. Simplified schematic of an LSTM network at two levels of detail: (a) An LSTM cell; (b) block stacking of LSTM cell units. The

symbols Xt, ht, and Ct are respectively input sequence data, the hidden state, and the cell state at time t.

3.2 Deep Learning

In big data analytics, deep learning models attempt to learn a functional consistency between input features and future values

of the label feature y (In this study y = log10(P0)). The resulting model provides forecasts for the target feature at future time

steps. Given a time series vector x(t) of length n (corresponding to n input features) measured at time t, developing a model to

forecast a target variable y(t+h) at a future time t+h requires historical data x(t− 1) at time t− 1. The model thus requires130
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uniform input sequences of a fixed length using a sliding lookback window ∆tb =Nb∆t, where Nb is the number of past

samples that comprise a sequence and ∆t is the cadence at which input features are measured or sampled. In our study these

are ∆t= 10 min and Nb = 204 so that ∆tb = 34 h.

Mathematically, we may express the functional relationship between the input features and the target feature that the model

has learned as135

ŷh
t = gh(xt−∆tb

, . . . , xt−∆t, yt−∆tb
, . . . , yt−∆t), (1)

where ŷh
t is the expected forecast for the time t and h indicates the forecast horizon, while yt−∆tb

and xt−∆tb
are the input

target and covariate input variables observed from the time t−∆tb to t−∆t. The forecast horizon h is the length of time to

be forecasted into the future. For the models we present in the following section, the forecast horizon h takes on the values

10 min, 1 h, 3 h, 6 h, and 12 h.140

The deep learning model we use consists of an input layer, LSTM units in the hidden layers, and a fully connected or

dense layer in the output layer. The hidden layers comprised three layers, each with sequential LSTM units of 327, 56, and

249, and a tanh activation function. The model was optimised using the Optuna framework to obtain the best-performing

model hyperparameters Akiba et al. (2019). The tuned parameters had a batch size of 70, a look-back window ∆tb = 34 h (or

Nb = 204 as previously mentioned), an optimizer with a learning rate of 5.4e-05, and early stopping at a patience value of 8.145

This multivariate modeling framework, with a single output for each of the five forecast horizons, results in five distinct

models. The choice of this architecture over the multivariate input multi-output allows for the significant contribution of every

input variable to the model output in each forecast horizon.

Two LSTM networks were trained with the 14 input variables listed in Table 1 together with a gradient descent approach

with the ADAM optimizer Kingma (2014). The first network, hereafter “Model A”, was trained using “Set A” quantities (see150

Table 1) and thus effectively had access to a perfect forecast of solar wind conditions at L1, as measured by ACE, up to 24 h

in advance. The second network, “Model B”, was trained using lower-resolution “Set B” quantities. We therefore expected the

performance of Model A to be relatively much higher than that of Model B. Last, to quantify the value of CME arrival time

information, we trained a third neural network (“Model C”) using all Set A quantities except for the predicted arrival time

“pred_t”. We hypothesized that Model A would perform better than Model C.155

Each network was trained using an early stopping mechanism and a maximum of 100 epochs.

We used the Mean Squared Error

MSE =
1
m

∑

t

(yt− ŷh
t )2 (2)

as the loss function in training each LSTM network, where y and ŷh are as defined in Equation 1 and m is the total number of

observations in validation data set (20%, as we describe below). This loss term is used because it increases the sensitivity of160

the resulting model to outliers relative to the root mean square error (RMSE) Girosi et al. (1995)—or in the case of this study,

to the relatively infrequent but extreme values of P0 that occur during periods of elevated geomagnetic activity. The model that

generates the minimum MSE on the validation set is saved, and its performance is evaluated using a test data set with the root
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mean square error (the square root of Equation 2). We address the possibility of overfitting using the dropout method. This

method consists of ignoring randomly selected neurons and their connections during training.165

To calculate the prediction accuracy with the LSTM for forecasting the power of the rate of change of magnetic field, we

used the coefficient of determination

R2 = 1−
∑

t(yt− ŷh
t )2∑

t(yt− ȳ)2
, (3)

where ȳ is the mean of the observed values. This metric indicates how much of the variance of the actual measurement is

explained by the model (e.g., Liemohn et al., 2018).170

Regarding the choice to train the models using the logarithm of the spectral power with an MSE loss function, we also

trained sets of models directly using the spectral power (not the logarithm) as well as the RMSE. We found that the specific

combination of the logarithm of the spectral power and an MSE loss function yielded the most predictive power. Chu et al.

(2025) also found that training using the logarithm of their heavily tailed training data set yielded the most predictive power.

3.3 Benchmark model175

We use a simple combination of a persistence model and a climatology model as a performance benchmark for the deep

learning model.

A persistence model is defined as a model that renders a naive forecast of a given time series problem (Bailey et al., 2022).

The basis of persistence modeling is to use the zero-rule algorithm to predict the future measurement. The zero-rule algorithm

is built on the principle that the future forecast value is a continuation of the past measurement as described by Equation180

f(t) = f(t− 1) (Hu et al., 2024). For a regression problem, the mean of the real values is preferred to render a good forecast.

Persistence models work well in near-term forecasting and degrade as the forecast horizon increases.

To make a meaningful forecast with a longer forecast horizon, we begin with the simple persistence model:

f(t) =
∑

(
f(t−h−n)

w
), (4)

where f(t) is the forecast value and f(t−h) is the previous value. Given that h= w & n= 0,1,2, ...,w and h is the forecast185

horizon, Equation 4 represents a rolling mean.

The climatology model is obtained by first grouping the entire∼15-year time series of dH/dt spectral power over 0–0.01 Hz

(denoted by P0) by month, and then for each month subgroup calculating the average value of P0 within a one-hour window for

each hour in UT. This procedure yields, for example, the average P0 during 00–01 UT for the month of June. With 12 months

per year and 24 h per day, we end up with 288 average values of P0. To obtain a climatology model prediction for a specific190

date, we use the month of the date to first select a group of 24 coefficients, and then convert the timestamp of the observation

to fractional hours and perform a linear interpolation between the two nearest hourly averages.

Finally, we weight the persistence and climatology model outputs equally:

P hybrid
0 =

1
2
P clim

0 +
1
2
P pers

0 . (5)
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As we show in the following sections, the resulting benchmark model (i.e., combined persistence and climatology model)195

performs well for near-term forecasting horizons and degrades with increasing forecast horizon.

3.4 Data Preprocessing

We normalized the data using robust scaling and windowing techniques to create suitable sequences for time series forecasting.

First, we scaled the target P0 by calculating the logarithm of the square root of P0. The logarithm reduces data skewness and

effectively leads to faster convergence and more predictive power for events of interest in space weather forecasting, such as200

CMEs, which occur sporadically but are generally accompanied by extreme target values (see, e.g., Chu et al., 2025). Secondly,

all input and output data were scaled using the robust scaler method. This method scales data by subtracting the median from

each point and scaling it according to the quantile range. Data scaled in this way are robust to outliers (Pedregosa et al., 2011).

Conventionally, the data is split into training, validation, and testing sets for time series forecasting, based on statistical ratios;

for example 70:20:10, respectively. This is desirable for static learning. Here we are however interested in dynamic learning,205

whereby only the best-performing data in the entire training dataset are used to train the model. In specific, we employ the

time series cross-validation method using the TimeSeriesSplit software module (Pedregosa et al., 2011). In this scenario, the

training data extends from January 2010 up to and including September 2021, and the test set extends from October 2021 up

to and including September 2024. The training set was subjected to time series cross-validation, which splits the training set

further into 80:20 proportions per fold number for training and validation sets, respectively. In this work, we optimized fold210

number with Optuna, and out of 4 (0, 1, 2, 3), the optimal fold number used for training was 2. The training and validation sets

are used to train and find the best model. Eventually, the test set evaluates the model’s performance. Finally, all the transformed

data were sequenced using the sliding window method (Figure 4). The sliding window was created by taking a time series data

sample windowed with a fixed value and rolling it over to the next value per forecast steps. Illustration, taking a subsample of

length n, the forecasted length m, and the rolling window n−m, to create different sequences fixed rolling window length is215

fixed and shifted to the next value as the forecast step m shifts to the next value per sequence. This procedure is summarized

in Figure 4.

3.5 Model Hyperparameter Tuning

In deep learning problems, hyperparameter search is a prerequisite step for successful optimal modeling. The growing popular-

ity of deep learning and its complexity require an efficient automatic hyperparameter tuning method. There are well-developed220

hyperparameter optimization software packages such as Spearmint (Snoek et al., 2012), SMAC (Hutter et al., 2011), Hyper-

opt(Bergstra et al., 2015), Google Vizier (Golovin et al., 2017), and Autotune (Koch et al., 2018) to address this need. To

accelerate the optimization process, distributed computing is required to enable parallel processing of multiple trials. However,

the need for a next-generation optimization framework that can dynamically construct the search space, is easy to set up, and

provide efficient sampling and pruning algorithms, Optuna is recommended. Optuna is the next-generation open-source opti-225

mization framework that addresses those desired needs (Akiba et al., 2019). The Optuna framework was applied to search for

ideal hyperparameters for the LSTM model. Recently, this tuning strategy has been reported to be robust in optimizing model
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Subsample

n

m

1 2 3 4 5 6 7 8

Sample

1 ... T2 ... T3 ... T4 ... T5 ... T6 ... T7 ... T8 ... T9 ... T10 ... T11 ... T12 ... T

Rolling window 11 2 3 4 5 6 7 8

Rolling window 22 3 4 5 6 7 8 9

Rolling window 33 4 5 6 7 8 9 10

Rolling window T − n− 2 8 T − 2 T − 19 T − 2 T − 110 T − 2 T − 111 T − 2 T − 112 T − 2 T − 113 T − 2 T − 1

Rolling window T − n− 1 9 T − 1 T10 T − 1 T11 T − 1 T12 T − 1 T13 T − 1 T14 T − 1 T

Figure 4. Data windowing using rolling strategies

hyperparameters (Conde et al., 2023). In the present work, we examined sequence window size, number of layers, LSTM

hidden units, batch size, patience, learning rate, and fold number. The ADAM optimizer used in the model was preselected

based on its successful performance in other modeling works (Kingma, 2014). To achieve the best optimizations with Optuna,230

various approaches are employed for each tuning. Traditional grid and random-search strategies have proven to be inefficient

when the hyperparameter search space is large. The Hyperband approach, which is a bandit-based algorithm (Li et al., 2018),

combined with the tree-structured Parzen estimator (TPE) Sampler, is used to approximate the objective function (Bergstra

et al., 2011). Given n trials in the optimizations using the Optuna tuner, many training cases may yield the worst outcome,

which eventually will be ignored in selecting the optimal model. To save on computational cost, we pruned the training cases235

that would not yield good models using TFpruningCallback and HyperbandPruner with the minimum resource of three epochs

and reduction factor of 3 to the maximum resource of a fixed training epoch number. The final useful trained models listed are

again stored and ranked to produce the best optimal model using their loss ranking basis.
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3.6 Feature importance

Neural networks are often regarded as black-box algorithms, though some useful external inference methods are used to240

explain deep learning models. Computing the feature importance of deep learning models, such as LSTM, provides a vital

aspect of model understanding and interpretation. The degree of feature or input variable contribution to the output of a model

is measured by feature importance. Feature importance is thus calculated based on Gini importance, such that more important

features have higher values and less important features have lower values. Understanding the feature importance of a model

can help improve model performance by training the model with the most relevant features. It also provides useful insights into245

the underlying dynamics, relationships, and patterns available in the examined time-series data.

In this study, we calculate the feature importance via the gradient tape technique as implemented in TensorFlow (Abadi

et al., 2015). Gradient tape is a gradient-based, post-hoc method that works on an already trained model, and that keeps

track of automatic differentiation operations of tensor variables. This watching capability makes it a useful technical tool in

evaluating the contributions of trainable input variables in a model. We use the gradient tape technique instead of other widely250

used feature importance techniques, such as Shapley Additive exPlanations (Lundberg and Lee, 2017; Iong et al., 2022) and

input permutation (Breiman, 2001; Fisher et al., 2019), that are not necessarily optimized for evaluating deep learning-based

models. We present feature importance analysis of Models A–C in section 5.

4 Results

In this section, we present case study results for three space weather events. The first occurred at 19:42 UT on November255

3, 2021, and involved a CME impact at Earth. The second involved consecutive CME impacts at 17:05 UT on May 10 and

09:17 UT on May 12 in 2024. We also present results from a high-speed stream/stream interaction region (HSS/SIR) storm

that occurred during May 5–7, 2023.

Figure 5 shows the minor geomagnetic storm of November 3–4. It includes measured values of P0 at Rørvik (gray line) as

well as the forecasted power at forecasting horizons of 10 min, 1 h, 3 h, 6 h, and 12 h (panels a–e, respectively). Results from260

Models A–C (blue, orange, and green lines, respectively) and the benchmark model (dashed black line) for each forecasting

horizon are also shown. In 10-minute and 1-hour forecasts, Models A–C and the benchmark model yielded similar forecast

output as demonstrated in Figures 5a–b.

For Models A–C, the trend in the forecasted time series is mostly consistent for forecasting horizons extending from

h= 10 min up to h= 3 h. The forecast output amplitudes decrease with increasing forecast horizon. The deep learning265

models perform better than the benchmark model, which exhibits worsening performance with increasing forecast horizon.

In panels d and e, 6 h and 12 h forecast, the model demonstrated very low forecast power, yielding output with diminished

amplitudes. During this period the solar wind speed reached a maximum value of 850 km/s, and IMF Bz reached a minimum

value of −20 nT, as shown in Figure 2.

Figure 6 illustrates the forecast output of the May 9–12, 2024 geomagnetic storm. Models A–C yielded a generally good270

correlation with observed P0 values (thick gray line) up to 1 hour in advance, as shown in panels a–b. However, the enhanced
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P0 values that accompanied the last phase of this storm were only captured by the 10-minute forecast of each model, while the

enhancements associated with the last storm phase are mostly absent in the models with a 1-h or greater forecasting horizon.

We return to this point in the discussion.

Panels c–d show results for forecasting horizons of 3–6 h; the storm initial and main phases were well captured in the275

forecast, while the last phase was completely missed. The model forecast results for h= 12 h, shown in panel e, shows some

resemblance to the observed time series, but does not evince any of the rapid, larger amplitude variations that appear in the

observed time series. In particular the forecasted values of P0 are everywhere less than 30 nT/s for all models, whereas the

observed time series frequently exceeds 60 nT/s.

Figure 7 illustrates observations and model results for an HSS/SIR-driven storm that occurred during May 5–7, 2023. During280

this period the maximum solar wind speed was 580 km/s, and IMF Bz reached a minimum value of −18 nT (not shown). For

forecasting horizons beyond 10 min, none of the deep learning models manage to predict the enhanced levels of P0 that were

observed at Rørvik.

Figure 8 summarizes performance metrics of each model for each of the five forecasting horizons. Results for Models A and

B are respectively indicated by solid blue and orange dash-dotted lines, while metrics for the benchmark model are indicated285

by black dotted lines. (Results for Model C are essentially identical to those of Model A and are omitted.) The coefficients of

determination R2 for Models A and B decrease uniformly from 88% for forecast horizon h= 10 min to ∼50% for h= 3 h.

The performance of Model A recorded performance metrics with a slight increasing trend over h= 3–12 h with values of

50%, 52%, and 56%. On the other hand, Model B for h= 3–12 h continues to decrease gradually with values 52%, 42%, and

42% respectively. The R2 value for the benchmark model monotonically decreases with increasing forecast horizon h and is290

everywhere lower than R2 values for Models A and B.

Examining the RMSE of every forecast horizon, there are similar trends as a function of forecasting horizon h for all models,

as shown in Figure 8b. Models A and B had the same in lower forecast horizons up to 3 hours in advance, with RMSE values

of 1.4–2 nT/s, respectively. For longer forecasting horizons (h= 3–12 h), for Model A there is a slight decrease from 2.06

to 1.97 nT/s, while for Model B, RMSE increases from 2.0 to 2.2 nT/s. The RMSE values are calculated from the target and295

forecast variables y(= log10P0) and ŷ, and are then quoted here after raising them to the power of 10.

In the benchmark model, there is a steady decrease in model performance with increasing forecast horizon h, with h= 12 h

showing the worst RMSE value of 2.75 nT/s, and h= 10 min slightly higher than those of intelligent models, with a value of

1.56 nT/s.

In the current study, feature importance was calculated using the gradient-based method described in Section 3.6. Figure 9300

shows contributions of every input feature to the model output for all forecast horizons, demonstrated in panels a–e. For

h= 10 min (Figure 9a) the input feature P0 contributes the most, with a gradient slightly higher than 0.005. The other signif-

icant input features (gradients above 0.005) are IMF Bz , v, sin(UT), and cos(UT). All other features have little influence on

the performance of the models, as indicated by their having gradients similar to that of the normally distributed random input

denoted by N (0,1) in Table 1.305
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For h= 1 h (Figure 9b) the importance of IMF Bz is greatest, followed by P0 and v with gradient values above 0.0015.

Forecast input features, such as predicted IMF Bz and v, also make a non-negligible contribution to the 1 h forecast.

For h= 3 h (Figure 9c) Models A and B respond differently to the various input features. The importance of IMF Bz ,

v, sinUT, and pred_arrival time dominate for Model A. (Predicted arrival time information is not provided to Model C and

therefore has zero importance.) On the other hand, predicted arrival time and predicted IMF Bz are the two most important310

features for Model B, with multiple other features making lesser but nevertheless non-negligible contributions.

For h= 6 h (Figure 9d), P0 has little to no importance. Predicted IMF Bz and solar wind speed v are important for all three

models, and predicted arrival time is also relatively important for Models A and B.

The trends for h= 12 h (Figure 9e) are generally the same as those for h= 6 h. The most important features for all models

are externally driven, with the gradients having higher values for Models A and C than those for Model B.315

In addition to the foregoing case study and feature importance results, we have also carried out a binary classification analysis

of events using the class-wise performance measures

Sensitivity =
TP

TP +FN
(6)

and

MCC =
TP ×TN −FP ×FN√

(TP +FP )(TP +FN)(TN +FP )(TN +FN)
. (7)320

In these expressions “true positives” (TP) are those for which the predicted values ŷt+h of the target variable y = log10P0 for

forecast horizon h both reach or exceed an arbitrarily selected percentile threshold of 0.985 in their respective data sets. “True

negatives” (TN) are those for which both forecasted and observed values are less than the threshold. For wrongly forecasted

false negatives (FN) the forecasted value does not reach the threshold percentile while the observed value exceeds it, and vice

versa for false positives (FP) (Welling et al., 2018).325

We also use True Skill Statistics

TSS = Sensitivity + Specificity− 1, (8)

where

Specificity =
TN

TN +FP
, (9)

and the Matthew Correlation Coefficient (MCC) as measures of model performance, accuracy, and unbiased balance between330

predicted classes. The hit rate (elsewhere known as the “probability of detection” or POD) was calculated using sensitivity,

and the false alarm rate (elsewhere the “probability of false detection” or POFD) by specificity. The metrics represented by

Equations 6–9 are used in a number of previous investigations of space weather forecasting ?e.g.,>[]Hu2024,Baily2021SW.

Regarding our choice of 0.985 as a percentile threshold for calculating the confusion matrix, this threshold corresponds to

∼10 nT/s in the target variable P0, which serves as a practical threshold for assessing the potential impact of geomagnetic335

activity on nearby deployed infrastructure. We also found that a threshold of 0.985 gives the best comparison with Table 3 in
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Hu et al. (2024) for a 1-h forecasting horizon. We also tested increasing the percentile threshold to 0.998 (corresponding to

P0 ≈20 nT/s) and found that this only slightly decreased the TSS and MCC. We therefore deem the results with a threshold of

0.985 to be representative.

Forecast Horizons

Metrics Model 10 min 1 h 3 h 6 h 12 h

TP Model A* 1612 867 329 524 753

Model B 1594 854 457 340 295

Benchmark 602 266 136 106 64

TN Model A 150951 150739 151229 150809 150574

Model B 150979 150749 151090 151285 151375

Benchmark 151757 151663 151672 151690 1512733

FP Model A 629 841 351 771 1006

Model B 601 831 490 295 205

Benchmark 27 121 112 94 51

FN Model A 800 1545 2083 1888 1659

Model B 818 1558 1955 2072 2117

Benchmark 1811 2147 2277 2308 2349

MCC Model A 0.69 0.42 0.25 0.29 0.36

Model B 0.69 0.42 0.30 0.27 0.26

Benchmark 0.49 0.27 0.17 0.15 0.12

TSS Model A 0.66 0.35 0.13 0.21 0.31

Model B 0.66 0.35 0.19 0.14 0.12

Benchmark 0.25 0.11 0.06 0.04 0.03

*Model C values are very similar to those for Model A and are therefore not shown.
Table 3. Comparison of MCC and TSS score between LSTM and benchmark models with forecast horizons between 10 min and 12 h.

Table 3 presents the confusion matrix and several other statistical classification metrics of model performance for Models A340

and B as well as the benchmark model. (Metrics for Model C are almost identical to those of Model A and are not shown.) All

of the models perform well for h= 10 min, with Models A–C having the highest values of TP, MCC, and TSS.

Compared with Table 3 in Hu et al. (2024), only TSS for both models in a 10-min forecasting horizon matches the value

TSS=0.66 that they obtained, while for a forecasting horizon h= 1 h we find our models have slightly higher TSS values.

Here it is important to observe that their study examined the geoelectric field at mid-latitudes, whereas this study is focused on345

a GIC proxy at high latitudes, so this indirect comparison is only suggestive.

We also examined the performance of a simple recurrence model (not shown) in which the current value was predicted to be

the same as the value 24 h earlier; this model performed exceptionally poorly, with a coefficient of determination R2 = -0.44.
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5 Discussion

Results presented in the previous section illustrate that the deep learning models we employ exhibit modest learning levels and350

predictive power. The forecasting power of the three deep learning models initially decreases for forecasting horizons up to

about 3 h, and then show a trend in Figure 8 toward constant or slightly increasing forecasting power for horizons above 3 h,

with a similar degree of performance (R2 = 50%). A similar finding was reported in the study of Zewdie et al. (2021).

Despite the rather modest levels of predictive power exhibited by the deep learning models, they all outperform the bench-

mark model for all horizons. Previous studies have shown that deep learning models generally perform better than conventional355

machine learning models (e.g., neural networks and nonlinear models), which are only capable of predicting one step at a time

(Keesee et al., 2020; Zewdie et al., 2021; Iong et al., 2022; Hu et al., 2023).

The feature importance shown in Figure 9 was calculated for each model and h value to explain the deep learning model.

This was done using the post hoc gradient based method, which we find to be most appropriate for evaluation of deep learning

models of the sort we have presented in this study. Results in Figure 9 shows that the importance of the various input features360

varies significantly with forecasting horizon h. For instance, for h= 10 min and h= 1 h, only IMF Bz and solar wind velocity

v significantly contribute beyond that of the target variable P0 itself. We also see that as forecasting horizon h increases, the

models rely increasingly on accurate information about predicted IMF Bz , and predicted solar wind speed v.

Figure 9 indicates that CME arrival time is an important input feature, but Figure 8 clearly demonstrates that Model C

performs just as well as Model A without CME arrival time information. We therefore conclude that high-resolution solar wind365

and IMF forecasts are necessary to achieve the model performances we have reported, whereas CME arrival time information

is unimportant when high-resolution solar wind and IMF forecasts are available.

In contrast, it is somewhat unclear what role CME arrival time information plays when only low-resolution (but nevertheless

accurate) solar wind and IMF forecasts are provided to the model: According to Figures 9c–e, CME arrival time is the single

most important piece of information for Model B’s predictions. To test this we trained another version of Model B (low-370

resolution space weather forecast inputs) in which information about IMF Bz and IMF By was excluded but CME arrival time

was included. In this model (not shown), CME arrival time had no importance for any of the five forecast horizons; this model

also performed generally much worse than Model B for forecasting horizons h= 6 h and h= 12 h. We therefore conclude that

when only low-resolution solar wind and IMF forecasts are available, CME arrival time could contribute to model performance.

This conclusion incidentally highlights that a study of model performance as a function of temporal resolution and accuracy of375

solar wind forecast parameters would likely provide clarity around this point.

One unresolved aspect of the model performance is that the model inputs do not always seem to provide the information

necessary for the model to predict enhanced geomagnetic activity. This is illustrated in Figure 7, where we observe that the

deep learning models performed poorly in longer forecast horizons beyond 1 h. It is interesting to note that this particular event

is associated with HSS/SIR. By contrast, the event in Figure 5 is a purely CME-driven storm. This leads us to speculate that380

perhaps the nature of the solar wind and IMF signatures of some types of disturbances, such as HSS/SIR events, are not clearly

identifiable from the inputs provided to the model for longer forecasting horizons. This same seeming insensitivity to elevated
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solar and IMF conditions is apparent in model outputs for the latter half of the time window shown in Figure 6 for the May

2024 storm: a large enhancement in geomagnetic activity was observed at Rørvik, several hours before the arrival of a second

CME which was not geoeffective at 09:17 UT on May 12, 2024. The second enhancement was not forecasted by the models385

for forecasting horizons beyond 1 h. We reserve determining whether model predictive power in fact varies based on the type

of disturbance carried by the solar wind as the topic of a potential future study.

Our finding about the limited utility of existing space weather forecast products likely applies to other domains concerned

with space weather, such as predictions of total electron content (TEC), GPS scintillation, and satellite drag. A possible coun-

terexample to this suggestion is the work of Adolfs et al. (2024), who find that the performance of their TEC forecasting model390

did not improve significantly with the addition of external inputs.

The findings on the class-wise classification of the models’ outputs showed MCC and TSS metrics were consistent with

previous studies, for instance the work of Hu et al. (2024). The MCC and TSS summarize the significance of TP, TN, FP, and

FN classes in model performance. Thus, the models’ imperfection in space weather forecasting for longer forecast horizons

was still reliable in forecasting events. In addition to RMSE and R2, we observe a similar trend in model performance with the395

MCC and TSS metrics, indicating reliable intelligence in the model benchmark by the persistence model.

6 Conclusions

A central goal of this study was to determine whether we could produce an accurate forecast of local geomagnetic activity at

the Rørvik magnetometer station up to 12 h in advance using artificial forecasts of space weather conditions and information

about CME arrival. We find that high-resolution (time resolution of 10 min) space weather forecasts of IMF Bz and solar400

wind speed v 24 h in advance would enable a reasonably accurate (R2 = 55%) forecast of local geomagnetic activity 12 h

in advance. In this case the inclusion of CME arrival time provides no useful information to the model. When only low-

resolution (time resolution of 10-min but smoothed with a 36-h window) space weather forecasts are available, CME arrival

time information may improve model performance. In the absence of any information about IMF Bz , CME arrival time is

apparently unimportant.405

Increasing the predictive power of forecasts with horizons beyond 1 h therefore seems to require either heliosphere / solar

wind models that are able to accurately predict the IMF — a capability that does not exist at present — or in situ solar wind

monitors that, for example, have a different viewing angle, such as the European Space Agency’s upcoming Vigil mission

which will be located at L5.

This study is, to our knowledge, the first to demonstrate via artificial intelligence-based models what is otherwise well410

established in the space weather community: That information about the IMF Bz component is crucial to predicting the geoef-

fectiveness of an inbound CME. This study therefore suggests how one might incorporate other potentially relevant measures

of space weather, such as solar energetic proton intensity or X-ray flux. We speculate that these quantities might allow a deep

learning-based model to further modulate the intensity of predicted local geomagnetic activity.
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Figure 5. Comparison of observed and forecasted values of the GIC proxy P0 (measured dH/dt power over 0–0.01 Hz) derived from Rørvik

magnetometer measurements during November 3–5, 2021. Forecasts with time horizons of 10 min, 1 h, 3 h, 6 h, and 12 h are shown in

panels a–e as indicated in the panel caption. Forecast outputs from Model A ("high-resolution" artificial space weather forecast inputs),

Model B (low-resolution inputs), and Model C (high-resolution inputs except for predicted arrival time) are respectively indicated by solid

blue lines, orange dash-dotted lines, and green dashed lines. In each panel The observed P0 time series and the benchmark model predictions

are respectively indicated by a thick, gray line and a black dotted line. CME arrival at 19:42 UT on November 3, 2021, is indicated by the

vertical dash-dotted red line.
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Figure 6. Measured dH/dt power over 0–0.01 Hz measured at Rørvik (thick, gray line) as well as model forecast and benchmark model

forecast for May 10–12, 2024, in the same format as Figure 5. CME arrivals at 17:05 UT on May 10 and 09:17 UT on May 12 are indicated

by vertical dash-dotted red lines.
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Figure 7. Measured dH/dt power over 0–0.01 Hz measured at Rørvik (thick, gray line) as well as model forecast and benchmark model

forecast for May 5–7, 2023, in the same format as Figure 5.
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Figure 8. Statistical evaluation of model performance for each forecasting horizon h. (a) Coefficient of determinationR2. (b) RMSE metrics

for each model. Results for Model C are indistinguishable from those of Model A and are therefore omitted.
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Figure 9. Feature importance for each model forecasting horizon defined using the gradient tape method described in Section 3.6. The y axis

indicates the relative importance of each feature.
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