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Abstract. Flowing stream networks expand and contract in response to dynamic groundwater levels. Field studies generally 

associate greater flowing network length (L) with higher streamflow (Q), but this neglects potential hysteresis caused by 

nonequilibrium groundwater flow after rain and snowmelt. Using a new version of the Distributed Hydrology Soil 

Vegetation Model (DHSVM), we hypothesize that groundwater hysteresis may decouple L from Q across large (>100%) 

variations in Q. In a 27 km2 snowy volcanic watershed, seasonal anomalies in measured stream ionic concentration indicate 15 

an outsized contribution from longer subsurface flowpaths during recession, supporting our L-Q hysteresis hypothesis and 

refining our model calibration. The model can reproduce observed stream network elasticity (from field surveys), and the 

predicted network length anomaly mirrors seasonal anomalies in measured stream ionic concentration (r = -0.92), suggesting 

that the model can capture the seasonal reconfiguration of groundwater flowpaths. A warmer climate is expected to cause a 

partial transition from snow to rain resulting in flashier streamflow, but our simulations predict that seasonal groundwater 20 

hysteresis would dampen storm-scale stream network elasticity, thereby significantly increasing L-Q hysteresis on daily to 

monthly timescales (p < 0.01). Conceptual models of stream networks should consider the potential effects of groundwater 

hysteresis in headwaters catchments, especially in a changing environment. More broadly, our investigation highlights how 

spatially distributed process-based hydrological modeling can sometimes reveal emergent hydrological behaviors that are not 

apparent from sparse field data. 25 

1 Introduction 

Flowing stream networks interconnect global biogeochemical cycles across all timescales (Aufdenkampe et al. 2011, Castro 

and Thorne 2019, Allan et al. 2021, Liu et al. 2022). Headwater streams (i.e., streams without tributaries) account for the 

majority of network length (Downing et al. 2012) and fulfill a unique environmental role (Clarke et al. 2008, Wondzell 2011, 

Von Schiller et al. 2017) characterized by expansion, contraction, and disconnection in response to patterns of landscape 30 
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wetting and drying (Gregory and Walling 1968, Prancevic et al. 2025). Climate-mediated streamflow regime changes can 

have cascading effects on fluvial systems and stream ecology (Dhungel et al. 2016), including reducing the total extent and 

spatial connectivity of flowing stream networks in ways that are challenging to predict and manage (Jaeger et al. 2014, Ward 

et al. 2020, Botter et al. 2021). Changes to the extent and persistence of flowing stream networks can have large-scale 

consequences for freshwater ecosystems, carbon fluxes, nutrient cycles, and other fluvial processes (Alexander et al. 2007, 35 

Freeman et al. 2007, Meyer et al. 2007, Marx et al. 2017). 

 

Flowing stream networks are coupled to local groundwater (GW) conditions (Freeze and Cherry 1979, Winter et al. 1999). 

Although intense precipitation can cause ephemeral streamflow over dry soil (Kampf et al. 2016), on longer timescales, 

flowing stream network variability is the surface expression of varying GW levels (De Vries 1995). As GW converges from 40 

hillslopes to valley bottoms, streamflow (Q) initiates where the total down-valley flow exceeds the subsurface conveyance 

capacity (Carlston 1963, Hewlett and Hibbert 1967, Godsey and Kirchner 2014, Ward et al. 2018), which is controlled by 

spatial patterns of upslope wetness, down-valley topography (valley bottom width and slope), and hydrogeological properties 

(transmissivity). Numerous studies have mapped flowing stream network variability by visual observation (e.g., Godsey and 

Kirchner 2014, Whiting and Godsey 2016, Jensen et al. 2017, Durighetto et al. 2020, Senatore et al. 2021), distributed 45 

sensors (e.g., Jensen et al. 2019, Zanetti et al. 2022), and remote sensing (e.g., Dugdale et al. 2022, Dralle et al. 2023). 

 

Observational studies suggest a power law scaling relationship between Q and the length of the upstream flowing network 

(L), i.e., L ~ Qβ, with β varying from near zero to greater than 0.5 largely depending on topography (Prancevic and Kirchner 

2019). The β exponent is also referred to as the “elasticity coefficient” since it describes the flowing network elasticity in 50 

response to changing catchment wetness (Prancevic et al. 2025). As GW levels rise, flowing streams also receive additional 

inflow due to changing hydraulic gradients (Zimmer and McGlynn 2017a), and thus Q increases proportionally faster than L 

(β < 1). The power law exponent (β) describes the relative scaling between fractional changes in Q and L under the 

assumption that Q and L are instantaneously coupled. In this study, we challenge the assumption of instantaneous 

hydrological coupling that is implicit in the power law approximation. Although proponents of the L-Q power law 55 

acknowledge that it is an approximation, the suitability of this approximation is based on a handful of labor-intensive stream 

network surveys, which do not constrain the full range of hydrological variability on daily to decadal timescales. For 

example, the hysteresis behavior analyzed in the present study only becomes apparent from many years of daily stream 

network length estimates, which cannot realistically be reproduced by intensive field surveys. From the current sparse field 

observations, it thus remains unclear whether a fixed monotonic L-Q scaling relationship is suitable for analysis in 60 

nonstationary environments. Conversely, process-based hydrological reasoning gives us a reason to doubt that the L-Q 

relationship would be monotonic in nonequilibrium conditions. 
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Groundwater responds to terrestrial water inputs more slowly than streamflow due to threshold-like soil saturation processes 

(Beven 2006, Spence 2010), producing hysteretic relationships (temporally lagged responses) between GW and Q (Gu et al. 65 

2023, Sproles et al. 2015, Andermann et al. 2012). Observations of the water table after rainfall or snowmelt runoff events 

indicate that hillslope GW generally lags Q (McGlynn et al. 2004, Allen et al. 2010, Camporese et al. 2014). This hysteresis 

can also reverse direction in riparian areas with shallow antecedent water tables (Q lags riparian GW) before hillslopes reach 

saturation (Kendall et al. 1999, McGlynn and McDonnell 2003). Antecedent wetness similarly decouples GW flow 

directions from topography (Van Meerveld et al. 2015) and mediates GW-Q hysteresis across runoff events (Detty and 70 

McGuire 2010, Penna et al. 2011). Since GW levels predominantly control L, the GW-Q hysteresis suggests a potential L-Q 

hysteresis grounded in well-established process-based reasoning and GW observations. 

 

The hysteretic relationship between GW and Q is not considered by the power law L-Q scaling approximation, which 

implicitly assumes that all stream channels respond instantly and proportionally to the overall wetness of the entire 75 

watershed (Equation 2 of Prancevic et al. 2019). Prancevic et al. (2025) note this limitation in their extrapolation of the L-Q 

power law to 14,765 watersheds, but they suggest that the decoupling of Q from headwaters wetness is only relevant at 

scales >10,000 km2. To the contrary, observations indicate a hysteretic relationship between L and Q even in small 

watersheds, with a longer network (shallower GW) during recession at catchment scales as small as 3.3 ha (Zimmer and 

McGlynn 2017b) and 2.6 km2 (Zanetti et al. 2022). Moreover, catchment-scale observations at scales of 0.67 km2 (Senatore 80 

et al. 2021) and 1.5 km2 (Shaw 2016) show that Q sometimes varies substantially at constant L. Streamflow travel times can 

even introduce a reverse L-Q hysteresis during storms, with the network expanding rapidly while outlet streamflow increases 

gradually (Roberts and Archibold 1978, Jensen et al. 2019). Hysteresis effects are not necessarily limited to storm-event 

timescales though, as partial decoupling of L and Q is observed even at seasonal timescales (Blyth and Rodda 1973, Jensen 

et al. 2019). For example, the measured value of β nearly doubles (0.287 to 0.502) between winter and summer in a 0.41 km2 85 

catchment (Gregory and Walling 1968, reanalyzed by Godsey and Kirchner 2014). Nonmonotonicity in the L-Q relationship 

is thus apparent across a range of catchment sizes and timescales, in contrast to a bijective (1:1) power law. However, a lack 

of long-term timeseries data describing the L-Q relationship precludes precise estimation of the temporal lag between L and 

Q, and how that lag might vary with different environmental conditions. It remains unclear whether L-Q hysteresis is 

significant on the timescales that matter for fluvial and riparian environmental processes. 90 

 

Although our general understanding of L-Q scaling is the result of empirical curve-fitting to field data, “bottom-up” 

approaches based on our physical hypotheses of how the system works at small scales can also be a useful means to explore 

the implications of our conceptual understanding (Hrachowitz and Clark 2017). Physically based, spatially distributed 

hydrological simulations are useful to investigate potential deviations from the L-Q power law relationship because 95 

mechanistic simulations enable process attribution, emergent spatial reorganization, and perturbation of climate conditions. 

Previous mechanistic approaches to simulating L-Q dynamics have spanned a range of complexity, from “perceptual” 
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models limited to the hyporheic zone (Ward et al. 2018), to semi-distributed models with lumped down-valley flow 

implicitly partitioned between Q and GW (Mahoney et al. 2023), to grid-scale distributed GW-Q models based on linear 

reservoirs (Gao et al. 2021). However, all of these approaches assume static GW pressure gradients based on the surface 100 

topography, in contrast to the time-varying behavior of observed GW levels (Zimmer and McGlynn 2017a , Van Meerveld et 

al. 2015). Fully dynamic GW-Q models that solve the three-dimensional Richards equation can successfully reproduce 

observed GW-Q hysteresis for individual wells (Camporese et al. 2014), but so far this type of model has only been applied 

to investigate the L-Q scaling dynamics of idealized theoretical catchments (Zanetti et al. 2024). Here, we implement a new 

medium-complexity bidirectional surface-groundwater coupling scheme within an existing spatially distributed physically 105 

based hydrology model to predict how GW modulates the effect of short- and long-term climate variability on flowing 

stream networks. We contrast our simulation results with the L-Q power law scaling relationship since it is widely used as 

the basis for empirical conceptualizations. Our simulation platform is based on the Distributed Hydrology Soil Vegetation 

Model (DHSVM, Wigmosta et al. 1994, Wigmosta and Perkins 2001), which is notable for representing mountain forest 

ecohydrological processes with high physical fidelity (Beckers et al. 2009) and is widely applied to examine the climate 110 

sensitivity of mountain streams (Cristea et al. 2014, Lee et al. 2020, Ridgeway and Surfleet 2021, Hasan et al. 2023). 

 

Mountain catchments are expected to undergo extreme changes in places where precipitation shifts substantially from snow 

to rain, altering soil moisture, vegetation phenology, and streamflow timing (Thackeray et al. 2019, Harpold and Molotch 

2015, Klos et al. 2014). The compounding effects of this change on L-Q dynamics remains uncertain, limiting our ability to 115 

predict and manage the future trajectory of fluvial systems. In general, a shift from snow to rain caused by warming is 

expected to increase streamflow “flashiness,” with brief but frequent rainfall-runoff events replacing more gradual seasonal 

snowmelt (Foster et al. 2016, Kampf and Lefsky 2016, Patterson et al. 2022). However, prior L-Q scaling analyses have not 

permitted emergent reorganization of streamflow generation mechanisms and flow routing in nonstationary conditions; 

instead, prior studies assume a fixed hierarchical network activation sequence (Botter et al. 2021) or a fixed power law 120 

relationship between spatially distributed wetness and outlet Q (Ward et al. 2020, Lapides et al. 2021). Thus, the potential for 

climate-mediated disruptions to historical patterns of hydrological connectivity remains unknown. 

 

We test the updated model in the 27 km2 Sagehen Creek Basin (SCB, California, USA). Prior research on SCB reveals an 

extensive GW system that interacts with the underlying volcanic bedrock on multi-decadal timescales (Rademacher et al. 125 

2001, 2005; Blumhagen and Clark 2008; Manning et al. 2012), though streamflow responds rapidly to variations in shallow 

riparian aquifers (Kirchner et al. 2020). SCB has a long legacy of ecohydrological monitoring, including a 16-year record of 

daily specific electrical conductivity (EC) data at the streamflow gauge location. Stream water EC reflects the accumulation 

of dissolved ions from mineral weathering processes along upstream GW flowpaths, which makes EC a useful tracer of 

temporally variable GW contributions from different parts of the landscape (Stieglitz et al. 2003, Brown et al. 2007, Cano-130 
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Paoli et al. 2019, Warix et al. 2023). By synthesizing EC observations and physical modeling, we address the following 

questions: 

 

(1) To what degree might GW hysteresis modulate the relationship between L and Q in a mountain catchment, and over what 

time scales is this hysteresis effect significant? 135 

(2) How could GW mediate the sensitivity of L and Q during a partial snow-rain climate transition, and are simpler 

topographic water routing assumptions valid under changing runoff generation mechanisms? 

2 Materials and Methods 

2.1 Model Development 

We substantially overhaul the water routing algorithms of a well-established hydrological model to enable simulation of the 140 

GW-L-Q interactions considered in this study. The original version of DHSVM (Wigmosta et al. 1994) assumed a 

topographic approximation for subsurface routing following the transmissivity parameterization from Beven (1982), and a 

later update implemented an explicit stream channel routing scheme based on linear storage reservoirs and Manning’s 

equation (Wigmosta and Perkins 2001). Key changes to the present version include (1) recalculating hydraulic gradients (and 

hence GW flow directions) based on the spatially distributed water table at each timestep, (2) permitting lateral subsurface 145 

flow in grid cells containing channels, (3) instantiating a bidirectional surface-groundwater coupling based on the dynamic 

hydraulic gradient between stream water depth and the local water table, (4) recalculating channel hydraulic routing 

parameters at each timestep, and (5) implementing evaporation routines for flowing and dry channels. 

 

The algorithmic implementations of subsurface flow and channel routing remain substantively unchanged, and the relevant 150 

equations are described by Wigmosta et al. (1994) and Wigmosta and Perkins (2001). No additional parameters are required 

by the new version of the model; instead, we simply leverage the existing parameters describing vertical and lateral 

subsurface heterogeneity within and between grid cells. Figure S1 gives an overview of geometrical relationships used to 

define stream and GW connectivity, and Fig. S2 shows how these relationships compare to the original model. 

 155 

2.1.1 Dynamic Flow Directions and Gradients 

The original model assigned flow to one or more of four neighbors (rook case), which has been revised to eight neighbors 

(queen case). The fraction of flow from one grid cell to any of its eight neighbors is proportional to the slope between the 

water table elevation of each pair of cells, defined by subtracting the water table depth from the grid cell elevation. Flow 

directions are recalculated each timestep based on the updated water table map. On a given timestep, a particular cell may 160 
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contribute flow to any number of neighbors between zero and eight depending on which (if any) neighbors have lower water 

tables. 

 

2.1.2 Hyporheic Flow 

The original model assumed that the water table never falls below the bottom of the channel in grid cells intersected by the 165 

channel network, and cell-to-cell (down-valley) subsurface flow was explicitly precluded in cells containing channels. The 

updated version permits down-valley hyporheic flow following the same water table-based subsurface routing scheme 

applied to non-channel grid cells. Unlike dedicated hyporheic models, which explicitly parameterize near-channel subsurface 

parameters that differ from the surrounding subsurface material (Ward et al. 2018), we apply the same grid cell average 

parameters to the hyporheic zone in DHSVM, which improves model parsimony since hyporheic channel fill thickness and 170 

conductivity data are sparsely available. Our approach requires no additional parameters (beyond what was previously 

required to operated DHSVM) and subsumes hyporheic zone heterogeneity within the “effective” parameters of the 

calibrated model, fitting with the approach to other lumped subsurface parameters in typical distributed model calibration 

frameworks. However, this simpler approach may contribute to network length overestimation if the hydraulic conductivity 

of the alluvial channel fill is underestimated. 175 

 

2.1.3 Surface-Groundwater Coupling 

The original model did not permit losing streams, i.e., streamflow could only flow out through the network, and could not 

recharge into GW. This assumption is more appropriate for the humid climate of Vancouver Island, where the DHSVM 

channel routing scheme was developed (Wigmosta and Perkins 2001). In the updated version, channels gain or lose water to 180 

the subsurface depending on whether the water level in the channel (CWL) is above or below the grid cell water table. The 

CWL is calculated each time step based on the storage (related to Q through a linear reservoir equation) and the channel 

segment length, depth, and width (Fig. S1). If the CWL is below the local groundwater level (GWL), the channel gains water 

via lateral inflow from GW, and if the water table is below the CWL but above the channel bottom, the channel loses water 

via lateral outflow to GW. In both cases, the hydraulic gradient is calculated on each timestep based on the channel geometry 185 

and the difference in elevation between the CWL and the GWL. Transmissivity is determined by integrating the depth-

variable conductivity in each grid cell over the vertical distance between the CWL and the GWL. If the water table is below 

the bottom of the geomorphic channel, Q recharges GW through vertical infiltration, determined by the vertical hydraulic 

conductivity and the gradient between the CWL and the GWL. To reduce the dependence of surface-groundwater coupling 

dynamics on the (arbitrary) grid scale resolution, the water table directly below the channel can vary separately from the grid 190 

cell average water table, with lateral conveyance away from the recharge zone calculated using the same approach to lateral 

hydraulic gradients and transmissivity introduced previously. This linkage permits the emergence of GW mounding and 

https://doi.org/10.5194/egusphere-2025-6294
Preprint. Discussion started: 12 January 2026
c© Author(s) 2026. CC BY 4.0 License.



7 

 

hyporheic flow at the sub-grid-cell scale. Moreover, individual stream reaches may alternately gain or lose GW at different 

times, as sub-grid-scale hydraulic gradients are recalculated on each time step in response to the current GWL and CWL. 

The seasonal behavior of lateral inflow, lateral outflow, and vertical recharge from different stream orders is illustrated in 195 

Fig. S10. 

 

2.1.4 Dynamic Stream Routing 

The original model assumed static values for the hydraulic radius and slope required by Manning’s equation, based on an 

arbitrary reference flow and the topographic slope, respectively. In the updated version, the hydraulic radius is recalculated 200 

each timestep based on the channel geometry and dynamic water depth, which accounts for the way that channels become 

relatively more rough as water increasingly interacts with the textured channel bed at low flows. Additionally, the stream 

surface slope, also used in Manning’s equation, is now calculated on each timestep, which permits the model to develop 

transient backwater effects. The water depth at the lower end of each reach is assumed to match the water depth at the top of 

the downstream reach, and the water depth at the top of each reach is calculated from mass conservation assuming a uniform 205 

slope within each reach. The difference in water depth between the top and bottom of each reach thus determines a transient 

gradient that is added to the channel bed (topographic) slope in Manning’s equation. Stream water depths and slopes are 

propagated uphill starting with a uniform depth at the outlet. The updated stream routing scheme enables emergent 

interactions between flow rates and downstream ponding in flatter reaches, which smooths streams over subtle knickpoints 

and permits a more realistic relationship between Q and GW levels throughout the flowing network. 210 

 

2.1.5 Stream Channel Evaporation 

The original model did not parameterize evaporation from stream networks. In the updated version, the existing Penman-

Monteith implementation of potential evapotranspiration (PET) is applied to calculate evaporation from flowing stream 

channels, assuming that open water channel evaporation occurs at the potential rate, with surface area defined by the channel 215 

width and reach length. For channels that are dry, soil evaporation is implemented based on the extant soil desorption 

process in DHSVM. In grid cells with channels, understory fractional coverage is reduced in proportion to the channel 

surface area, but overstory fractional coverage is unchanged since riparian trees may overhang the channel. Although 

evaporation from flowing streams is usually a small fraction of the water balance (e.g., 0.4% of total ET in our SCB 

simulation), we find that it is nevertheless an important process that often determines the persistence or drying of very small 220 

streams (on the order of 0.001-0.1 liter/s). 
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2.1.6 Technical Considerations 

Several nuances of the actual programmatic implementation are relevant for understanding our L-Q coupling simulations. 

DHSVM defines stream networks with reaches of arbitrary length, set at 30 m in this study, though most studies use much 225 

longer reaches defined only by the network topology (i.e., each tributary is a single reach). Importantly, the stream network 

topology is independent of the grid scale resolution (10 m in this study); one reach frequently spans multiple cells, and cells 

at confluences can have two or more reaches. Thus, the many-to-many relationship between streams and cells is nontrivial. 

These relationships are considered carefully in the implementation here, such that (1) water added to a stream from the 

subsurface is only available for recharge or evaporation in cells downhill of where it entered the channel, and (2) all 230 

incoming streamflow in a particular channel segment is fully available for recharge or evaporation in grid cells ordered 

sequentially downstream (i.e., a stream can recharge its entire flow into a single grid cell if that cell has sufficient dry pore 

space). 

 

DHSVM equations are implemented using an “operator splitting” approach (Clark and Kavetski 2010), with all processes 235 

assumed constant over the (arbitrary) discrete time step, but real hydraulic gradients vary continuously through time. The 

updated version of the model only permits GW flow to the extent that would bring water tables into equilibrium within a 

single time step (i.e., water cannot continue flowing from cell A to cell B during a single time step if that would raise the 

water table of cell B above cell A). This reduces unphysical oscillations caused by the reversal of flow directions as minor 

water table variations propagate through low-relief areas. Additionally, for grid cells where the change in water table depth 240 

across a given time step is greater than the elevation separation from its down-gradient neighbors, hydraulic gradients are 

averaged between the current and previous time steps on the basis that the hydraulic gradient changes continuously over 

time, not instantaneously. An analogous approach is applied to the channel water level. This implies that the average flow 

rate within a single time step is equal to a linearized approximation of the continuously time-varying flow rate between the 

beginning and end of the time step. Note that the time-averaging of hydraulic gradients is only applied in areas with very low 245 

gradients at times in which the water table is changing rapidly; under other conditions, the instantaneous water table is 

assumed to be a reasonable approximation over whole time steps. This approach is congruent with a similar strategy applied 

to vertical unsaturated flow in the original version of DHSVM (Equation 42 of Wigmosta et al. 1994). 

 

A video animation of simulated GW flow in SCB (Supplemental Material) shows remarkably complex patterns of GW 250 

activation that intuitively match expectations for the way that water would flow over complex topography. Repeated 

visualization and manual tracking of water through the model helped identify many of the complex nuances addressed 

above. We suggest that animated visualizations are underutilized to help elucidate whether complex models are (or are not) 

matching intuition for the way that water does (or does not) move. Additionally, this visualization provides insight into how 
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antecedent conditions create emergent streamflow generation patterns, but of course we do not expect the animation to match 255 

the actual spatial locations of GW flowpaths due to uncertain subsurface heterogeneity. 

 

2.2 Model Application 

We apply the updated version of DHSVM to simulate L-Q dynamics in SCB. The model is discretized at 10 m horizontal 

resolution, with stream segments of 30 m maximum length, and at a 3-hour time step. Initiation points of the geomorphic 260 

channel network are determined from the National Hydrography Database (NHD, U.S. Geological Survey 2019). Compared 

to the standard DHSVM setup approach, which initiates channels based on a minimum upslope contributing area, the NHD-

based approach better represents the heterogeneity of channel density: for example, the western edge of the basin has a 

denser channel network compared to the northern edge (Fig. S3). Numerous studies indicate that map-based stream 

databases tend to underestimate stream network extent (e.g., Fritz et al. 2013, Lapides et al. 2021). However, in our specific 265 

SCB study watershed, the NHD-based network is much more extensive than the largest observed flowing network (compare 

Fig. 1 of Godsey and Kirchner 2014 with Fig. 1 of this study), though some of the channels and confluence locations are 

imprecise. For the sake of greater generality, we do not manually refine the SCB stream network, preferring instead to test 

the ability of existing datasets (i.e., NHD) to reproduce key aspects of stream network elasticity in DHSVM in order to build 

towards large-domain modeling. Reach-scale transmissivity variations are uncertain regardless, so we prefer to treat the 270 

simulated streams as representative counterparts of the actual network without expecting a 1:1 correspondence between 

individual modeled and measured stream reaches. The watershed modeling domain is extended approximately 2 km below 

the stream gauge (USGS site 10343500) to reduce the effect of unknown boundary conditions on the partitioning of down-

valley flow between Q and GW at the calibration point (Fig. S3). 

 275 

The rectangular geometry of each channel reach (depth and width) is estimated from regional power law regressions related 

to contributing area developed by Bieger et al. (2015). We refine the estimation of channel width by adjusting the parameters 

to more closely match stream widths measured at 17 locations across five representative reaches in Google Earth, which 

span a per-reach mean range of 0.8 to 3.4 m (contributing area 1 to 31 km2). The refined equation relates channel width to 

contributing area with a power law scale of 0.85 and exponent of 0.41, which achieves R2 = 0.98 across the five 280 

representative stream reaches. Channel depths predicted by the Bieger et al. (2015) data generally match with our 

expectations from field experience in SCB, e.g., 0.2-0.5 m bank cut height. We constrain the channel depth and width to 

minimums of 0.1 and 0.25 m, respectively, roughly congruent with field observations. Note that we do not consider small 

soil rills as part of the geomorphic channel network. Channel roughness (Manning’s N coefficient) is estimated from a 

regression equation compiled by Limerinos (1970) and a d84 particle size of 0.25 m, roughly representative of headwaters 285 

mountain streams. Our prior manual sensitivity tests have indicated minimal sensitivity of DHSVM to channel roughness. 

Although the channel geometry is undoubtedly a source of uncertainty in our analysis, we emphasize that the dynamic water 
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table gradients are adaptable to over- or under-estimation of the channel geometrical proportions, since the water table will 

dynamically rise to the level necessary to interact appropriately with the stream, which is constrained by calibration at the 

outlet gauge, network field surveys, and geochemical timeseries. 290 

 

Considerable spatial information (Fig. S3) and other parameters are required to operate DHSVM. Baseline parameters are 

estimated from prior literature reviews, as documented in Boardman et al. (2025). Land surface cover, vegetation type, and 

fractional cover are estimated from NLCD, LANDFIRE, and RCMAP, respectively (Dewitz and U.S. Geological Survey 

2019, LANDFIRE 2022, Rigge et al. 2021). Subsurface heterogeneity is represented by disaggregating regional soil survey 295 

data from SSURGO (Soil Survey Staff 2022) and water retention data (Gupta et al. 2022) based on topographic metrics 

using Random Forest (Breiman et al. 2002). The relative pattern of bedrock depth is estimated by combining disaggregated 

SSURGO data with a curvature-based approach (Patton et al. 2018), and up to 20 m of sediment fill is added in low-gradient 

areas following the approach of Essaid and Hill (2014) in SCB. We emphasize that maps of subsurface properties are not 

expected to match actual spatial heterogeneity, but as in the case of the imperfect channel network, introducing a 300 

representative degree of spatial variability (inferred from regional databases) should help increase the physical realism of our 

simulations even if the spatial patterning is inexact. Daily gridMET meteorological data (Abatzoglou 2013) are 

disaggregated to the 3-hour model timestep using the MetSim preprocessing routine (Bennett et al. 2020). 

 

Key model parameters with high uncertainty are refined via calibration in a multi-objective Bayesian optimization 305 

framework (Jones et al. 1998, Boardman et al. 2025). The calibration period is water years 2015-2024, and the validation 

period is 2001-2014 (overlapping the available EC measurements from 2001-2016). A five-year spin-up period is used to 

control for unknown initial conditions. A total of 14 parameters are calibrated simultaneously, including additive or 

multiplicative adjustment factors applied to bias-correct the gridded temperature and precipitation data, respectively 

(Boardman et al. 2025). The following parameters are determined by spatially variable maps calibrated relative to a mean 310 

value: soil depth, hydraulic conductivity, the exponential decrease in conductivity with depth, porosity, field capacity, 

overstory leaf area index, and overstory fractional cover. The following parameters are calibrated based on look-up tables: 

minimum stomatal resistance (variable across vegetation types, calibrated relative to mean), the maximum air temperature 

for snowfall, the accumulation- and melt-season snow albedo decay rates, and the threshold to increase albedo with new 

snow. Calibration is implemented using six objective functions: daily Nash-Sutcliffe Efficiency (NSE), daily log-scale NSE, 315 

mean absolute yearly percent error, mean absolute percent error between April and July (snowmelt season), root mean 

square error in > 95th-percentile high flows, and mean absolute yearly peak flow percent error. Due to parameter interactions 

that reduce the effective dimensionality of the parameter space and a highly efficient sampling algorithm that rapidly 

improves the Pareto frontier using surrogate model optimization procedures, we can calibrate DHSVM using many fewer 

optimization runs than might be expected given the dimensionality of the search space (cf. correlograms in the Supplement 320 

to Boardman et al. 2025). Additionally, we accelerate the calibration through pre-calibration at coarser resolutions of 30 and 
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90 m (Sun et al. 2020). Among 760 total tested models (360 tested at 10 m resolution), we select 30 calibrated models with 

diverse parameter values that all achieve < 20% mean absolute error for the annual water yield. Although all six objective 

functions are used during calibration, we include several models with sub-optimal streamflow goodness-of-fit in this 30-

member ensemble in order to evaluate the sensitivity of L-Q scaling dynamics to the model parameters (Fig. S5 and Fig. S6). 325 

 

We simulate daily L-Q scaling dynamics for 30 parameter subsets and compare the simulated power law anomaly (LA) with 

measured anomalies in electrical conductivity (ECA). Only a few parameter sets achieve both satisfactory NSE and 

reasonably high seasonal LA-ECA correlation, indicating skill at simulating both surface streamflow variability and GW 

flowpath variability. We select the model with the highest seasonal LA-ECA correlation since the LA anomaly is our primary 330 

focus in this study. The selected parameter set has several other desirable characteristics compared to other tested 

parameters, including reasonably high NSE and log-scale NSE on both calibration and validation periods (calibration: 0.78, 

0.82 log, validation: 0.61, 0.76 log, overall: 0.71, 0.79 log). Additionally, the selected parameter set has a relatively small 

median network size that is closer to field-surveyed L compared to other tested parameter sets (Fig. S6). 

 335 

The relationship between parameter uncertainty and L-Q scaling is illustrated in Figs. S5-S6. In general, higher 

transmissivity is associated with smaller, more dynamic networks. Most of the acceptable parameter sets (total NSE and log 

NSE > 0.7) produce L-Q power law exponents (β) within the range of uncertainty from field surveys (Godsey and Kirchner 

2014). Only three tested parameter sets have acceptable NSE and an LA-ECA correlation stronger than -0.8. Of these, the 

selected parameter set is closest to the field-measured β with the smallest median length (closest to field surveys). Thus, we 340 

use this parameter set for our primary L-Q simulations. 

 

We evaluate L-Q dynamics by saving maps of Q for each of 2,382 unique stream reaches within SCB at noon on every day 

between October 1, 2000, and September 30, 2024 (8,766 days). This results in a total of 2x107 datapoints (number of 

reaches times number of days) describing the spatiotemporal evolution of the flowing stream network. In contrast to the four 345 

datapoints available in the same catchment from field surveys, we hypothesize that the massive scale of data generated by 

process-based models may provide different insights from rare field surveys. 

 

2.3 Statistical Analysis 

All significance values are calculated using the one sample two-sided t-test, or the Pearson’s product-moment correlation 350 

test, implemented in the R statistical programming language. 

 

We define the outlet streamflow, Q, as the daily modeled flow rate in units of specific discharge (area normalized). We 

define the flowing network length, L, as the sum of lengths of all upstream reaches with non-zero simulated outflow. We 
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also test an alternate definition of L using a minimum flow threshold of 0.01 liter/s to define “flowing” reaches. This 355 

alternate definition provides a nearly identical timeseries of L (r = 0.9997). For simplicity, we adopt the simple non-zero 

streamflow definition (arbitrarily low streamflow still counts as “flowing”) for the remainder of this study. 

 

The crux of our study is a comparison between DHSVM-simulated L and a power law function, LP(Q), defined as follows: 

𝐿𝑃 = 𝛼𝑄𝛽 (1) 360 

We estimate α and β through least-squares regression of L and Q in log-log space, where Equation 1 is linear. We only 

consider L-Q pairs with Q < 2 mm/d to control for the asymptotic behavior of L at high Q, as L approaches the maximum 

geomorphic network extent (subsequently illustrated in Fig. 3). In our study, the best-fit values are α = 45.54, β = 0.2705. 

 

The residual between L (simulated by DHSVM) and LP (power law prediction from the same DHSVM-simulated Q) defines 365 

the network anomaly, LA: 

𝐿𝐴 = 𝐿 − 𝐿𝑃 (2) 

We calculate the autocorrelation of L and LP to evaluate the degree of hysteresis that is not explained by a bijective (1:1) 

relationship between L and Q (Fig. S11). The sample autocorrelation RL(k) of the discrete L(t) timeseries at a lag k (in days) 

is estimated as follows (Venables and Ripley 2002), where n is the number of samples in L, σ2 is the sample variance, and µ 370 

is the sample mean: 

𝑅𝐿(𝑘) =
1

(𝑛 − 1)𝜎2
∑ (𝐿(𝑡) − 𝜇)(𝐿(𝑡 + 𝑘) − 𝜇)

𝑛−𝑘

𝑡=1
(3) 

The “hysteresis effect” is defined as the difference in DHSVM-simulated autocorrelation relative to the power law 

autocorrelation (RLP), defined analogously to RL by replacing L(t) with LP(t). The network length hysteresis effect, HEL, is 

thus: 375 

𝐻𝐸𝐿(𝑘) = 𝑅𝐿(𝑘) − 𝑅𝐿𝑃(𝑘) (4) 

Defining the hysteresis effect this way provides a metric with an easily interpretable range of values (same scale as [0,1] 

range of autocorrelation) that can directly quantify hysteresis at various discrete time lags. 

 

We calculate RL, RLP, and HEL at lags of k = 0 to 180 for the entire 24-year timeseries as well as separately within 24 “block 380 

bootstrap” subsets defined by each water year (October 1 through September 30), extended backwards and forwards 90 days 

to reduce the impact of the arbitrary start date for longer values of k. Thus, each of the 24 block bootstrap samples overlap a 

total of 180 days, with the exception of the first and last water years, which only overlap 90 days in one direction. We use 

these 24 estimates of HEL to evaluate the statistical significance of HEL at different lags using a one sample two-sided t-test. 

Analogously to Equations 1-4, we use measured EC data to calculate a best-fit power law (ECP), anomaly (ECA), 385 

autocorrelation (REC), power law autocorrelation (RECP), and hysteresis effect (HEEC). For EC, we only consider block 

bootstrap periods with no more than 25% missing data, which yields 15 usable bootstrap periods. 
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To relate variations in HEL and HEEC to variations in snow and rain partitioning, we aggregate DHSVM-simulated 

watershed-average snowfall and precipitation within each of the same block bootstrap periods. The snow fraction is defined 390 

as the fraction of watershed-average precipitation falling as snow. Finally, we apply the Pearson’s product-moment 

correlation test to estimate the correlation between the snow fraction and either HEL or HEEC at lags of 10, 20, and 30 days. 

 

3 Results 

3.1 Flowing Stream Network Dynamics 395 

Simulated flowing stream networks expand, contract, and disconnect in response to variable wetness in SCB (Fig. 1). The 

model reproduces observed daily, seasonal, and interannual variations in Q across the 24-year simulation period, with a 

Nash-Sutcliffe Efficiency (NSE, equivalent to R2) of 0.79 for log-transformed daily Q. Importantly, the model also 

reproduces the network elasticity observed by field surveys (Godsey and Kirchner 2014), with a model estimate of β = 0.27 

and a field estimate of β = 0.31 ± 0.09. There is considerable uncertainty in field-based validation of the absolute network 400 

length due to model variability in L at constant Q, but the model likely overestimates L due to a combination of network 

digitization artifacts and uncertain transmissivity in the hyporheic zone (i.e., channel fill). To maintain simplicity in our 

definition of a “flowing stream,” we calculate L wherever Q is nonzero (cf. sensitivity test in Section 2.3), which makes L 

sensitive to small Q that might not be detected in the field (Sarah Godsey, personal communication, October 2025). The 

survey dates from Godsey and Kirchner (2014) are only reported to the nearest month, and personal communication with the 405 

first author of that study (Sarah Godsey, December 2024) indicates that the channel network survey data have likely not been 

preserved outside of the figures from that study, rendering an exact comparison impossible. Furthermore, the absolute stream 

network length is ill-defined because stream networks have a fractal dimension greater than one (Mandelbrot 1982, La 

Barbera and Rosso 1989), so network length depends on the resolution of measurement. In our study, the 3 m DHSVM grid 

cells may provide a smaller “measuring stick” than the (unspecified) resolution used to measure channels by Godsey and 410 

Kirchner (2014), perhaps contributing to the discrepancy in absolute channel length. Regardless, for our sensitivity analysis 

of stream network elasticity, the absolute magnitude of L (power law scale) is less important than β (power law exponent), 

which matches field observations. Indeed, Godsey and Kirchner (2014) only report the best-fit power law exponent and do 

not to report the best-fit power law scale, supporting our contention that the power law scale is relatively unimportant for 

overall hydrological understanding. Our model simulations predict frequent stream disconnection, i.e., dry channel gaps that 415 

interrupt the flowing network (Fig. 1), which is also in qualitative agreement with the mapped network behavior (Godsey 

and Kirchner 2014), although exact disconnection locations are imprecise due to uncertain fine-scale heterogeneity. 
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Figure 1. Daily timeseries over the 24-year study period: (A) measured and modeled streamflow, Q, (B) modeled flowing stream 420 
network length, L, and (C) modeled anomaly in L relative to a power law scaling assumption. Example maps of the modeled 

flowing network show the spatial arrangement and variable Q (line width) of flowing stream reaches at 1st, 50th, and 99th-percentile 

flows. Stream reaches that are gaining Q from GW are illustrated in blue, reaches that are recharging Q back to GW (losing) are 

illustrated in red, and reaches with an approximately neutral balance of inflows and outflows are illustrated in black. 
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 425 

In our simulations, higher-order stream reaches (downstream of confluences) are more stable over time, but the relationship 

between topography and L-Q scaling is nuanced. Streamflow persistence, defined as the fraction of time that a given reach is 

flowing, generally increases at larger Strahler order (Strahler 1957), as seen in Fig. S7 and similarly reported by Mahoney et 

al. (2023). Nevertheless, some first-order streams are perennial (persistence = 100%), and some third-order streams have 

persistence as low as 36% (Fig. S7). (In this context, we consider a static Strahler order based on the geomorphic channel 430 

network, not the flowing network.) Further, there is only a loose relationship between simulated stream persistence and the 

topographic wetness index (Fig. S8), challenging prevailing contributing area assumptions (Prancevic et al. 2019, Ward et al. 

2018, Mahoney et al. 2023). In an alternate configuration of DHSVM with static hydraulic gradients defined by the surface 

topography (kinematic assumption as opposed to fully dynamic grid cell water table gradients), streamflow persistence is 

overestimated by a mean of 11% (p < 0.01) and watershed-average warm-season (July-October) evapotranspiration (ET) is 435 

underestimated (p < 0.01) by a mean of 8% overall and up to 25% on some days (Fig. S9). Topography-based routing 

schemes fail to account for the dispersion of GW recharge from streams into adjacent riparian corridors and broad valley 

bottoms, which subsidizes root-zone soil water (Tague and Peng 2013, Graup et al. 2022). Prevailing models used for prior 

L-Q analyses assume static topographic hydraulic gradients and flow directions (Gao et al. 2021, Mahoney et al. 2023), but 

our sensitivity analysis indicates that time-varying gradients and flow directions are more appropriate for L-Q analysis in the 440 

groundwater-driven SCB study watershed. 

 

Lateral redistribution and convergence of GW into higher-order valley bottoms on seasonal timescales partially decouples 

the fractional contribution of different Strahler orders from the magnitude of outlet Q in our simulations (Fig. 2 and Fig. 

S10). Longer subsurface flowpaths in third-order valleys contribute a larger fraction of network-total lateral inflow (24-55%) 445 

in the late recession season (August-September) compared to the April-May snowmelt season (12-37%), when the shorter 

and faster hillslope flowpaths connected to first-order streams are more dominant. In our DHSVM simulations, GW recharge 

rarely exceeds 1% from fourth-order stream reaches (in contrast to smaller tributaries, where recharge is substantial), 

indicating that most higher-order valley bottom segments are consistently gaining water from the riparian aquifer (Fig. 2). 

This model prediction (which was not considered during model selection) is supported by observations of riparian water 450 

table levels from wells in the fourth-order SCB valley bottom (Kirchner et al. 2020), which likewise indicate that two 

particular locations along the fourth-order section of Sagehen Creek are consistently gaining water. In our simulations, most 

GW recharge is concentrated at the second and third Strahler orders of the geomorphic network, and there is only negligible 

recharge from the fourth-order reaches where the Kirchner et al. (2020) wells are located (Figs. 2 and S7). 

 455 
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Figure 2. Seasonal variation in the inflow and groundwater recharge from stream reaches organized according to Strahler order 

(Fig. S7). Each line represents a single water year, and all values are aggregated to the monthly median. Lines are colored 

according to the log-scaled outlet streamflow, and the vertical axes are scaled in proportion to the total network inflow. First-order 

streams contribute relatively more inflow during the snowmelt period, and third-order streams contribute disproportionately in 460 
the late summer. Most recharge from streams to groundwater occurs in second- and third-order streams. Relative seasonal 

network dynamics are partially decoupled from the absolute magnitude of outlet streamflow. 

 

3.2 Flowing Network Length Anomalies 

Simulated L-Q scaling dynamics broadly reproduce the postulated power law relationship, albeit with substantial scatter 465 

(Fig. 3). We determine the best-fit power law function, LP(Q), using only days with simulated Q < 2 mm/d, because the 

notion of “flowing stream network” becomes ambiguous when surface flow exceeds the geomorphic channel network at high 

Q. This approach is consistent with other modeling studies that have used an upper threshold on Q to define the relevant 

power law scaling range for channelized flow (Gao et al. 2021, Mahoney et al. 2023), and field surveys in SCB suggest that 

the power law holds at least as high as 1.76 mm/d (Godsey and Kirchner 2014). The fitted power law has R2 = 0.91 (below 2 470 

mm/d), similar to the range of high R2 values reported in field studies, e.g., 0.82-0.99 (Jensen et al. 2017). Nevertheless, this 
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high R2 hides a systematic structure in the power law residuals, L – LP, hereafter called the “network anomaly” or LA (Fig. 

1C). 

 

 475 

Figure 3. Logarithmically scaled scatterplot between simulated daily streamflow (Q) and flowing stream network length (L). Each 

point represents one day over water years 2001-2024. Red (blue) colors indicate a rising (falling) streamflow trend over the 30 days 

prior to each point. Three field surveys are shown, and a fourth survey falls below the lower vertical axis limit (Q = 0.24 mm/d, L = 

15.4 km), which Godsey and Kirchner (2014) identify as a potential outlier because of practical difficulties in following the entire 

network on the first field survey. 480 

 

Anomalously large stream networks for a given Q (positive LA) are associated with a decreasing antecedent streamflow trend 

(recession period), whereas anomalously small networks for a given Q (negative LA) are associated with an increasing or 

neutral antecedent streamflow trend. To explore this anomaly (on days with Q < 2 mm/d), we consider the sign of the Sen’s 

slope of Q over the prior 30 days (Sen 1968) to determine the antecedent streamflow trend. Days with antecedent streamflow 485 

trends less than 1% per day relative to the current day’s Q are considered neutral. As seen in Fig. 3, days with a rising 

streamflow trend have anomalously small flowing networks (mean LA = -5.8%, p < 0.01), and the opposite is true during a 
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falling streamflow trend (mean LA = +4.6%, p < 0.01). Neutral streamflow trends are associated with anomalously small 

networks (mean LA = -3.5%, p < 0.01) because recession periods are relatively prolonged compared to periods of rising Q, 

which biases the power law to underestimate L during neutral flow periods in the least-squares fit. 490 

 

By comparing the simulated network on specific days, we illustrate how (1) similar networks could produce widely varying 

Q, and (2) different network configurations with variable L could produce similar Q (Fig. 4). In the early recession season 

after seasonal snowmelt (June of 2013 and 2018), the simulated flowing network is anomalously large relative to the power 

law prediction, i.e., LA > 0. In the late recession season (December), when antecedent conditions are relatively dry, rainfall-495 

runoff events can elevate streamflow with only small increases in the flowing network. The 150% increase in Q between 

June 11, 2013, and December 18, 2023, would be associated with a 28% increase in L based on the best-fit L-Q power law, 

but our simulation shows a decrease of 0.4% instead since the two dates have different spatial water table configurations. In 

another example, an extra 10 km (+33%) of streams are flowing on June 12, 2018, compared to December 18, 2023, despite 

near-identical outlet Q on both days. Streamflow originating from high-elevation snowmelt in a relatively small headwaters 500 

reach may propagate down channels that would otherwise be dry, losing Q back to GW over lengths in excess of 0.5 km 

(Fig. 4) before reaching a downstream confluence. Thus, wetting of outlying headwaters reaches can have a disproportionate 

impact on the overall network extent without affecting outlet streamflow. 

 

However, seasonal L-Q scaling anomalies are important for larger streams as well, not just trickling headwaters reaches. 505 

Considering the additional flowing stream reaches on June 12, 2018, that are dry during the storm event on December 18, 

2023, these “extra” streams span a wide range of flow magnitudes, from near zero (< 0.01 liter/s) to as much as 39 liter/s 

(22% of outlet Q on both dates). This large relative contribution from different streams at different times indicates that the 

same downstream Q can derive from substantially different parts of the landscape depending on antecedent wetness and the 

resulting transient spatial GW configuration. In other words, the power law anomaly also manifests in sizable streams, not 510 

just trickling headwaters reaches. 
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Figure 4. Examples of different streamflow magnitudes associated with the same flowing network size (June 2013 – December 

2023) and different network sizes associated with equivalent streamflow (December 2023 – June 2018). Circled regions highlight 515 
parts of the flowing network that are particularly variable across these examples. 

 

 

  

https://doi.org/10.5194/egusphere-2025-6294
Preprint. Discussion started: 12 January 2026
c© Author(s) 2026. CC BY 4.0 License.



20 

 

3.3 Chemical Signature of Groundwater Hysteresis 520 

Measured daily EC at the SCB stream gauge generally correlates inversely with Q (more dilute concentrations of total 

dissolved ions at higher discharge), interpreted as an increased contribution from newer water (shorter subsurface residence 

time) during high flows. A power law fit between measured EC and Q gives a similarly high R2 of 0.94 (Fig. S4), and the 

power law residuals (ECA) exhibit a similar pattern to LA. Days with a rising Q trend have anomalously high EC (mean ECA 

= +1.8%, p < 0.01), and days with a falling Q trend have anomalously low EC (mean ECA = -3.3%, p < 0.01). Anomalously 525 

high EC indicates an outsized contribution from longer subsurface flowpaths (older, more chemically evolved GW) during 

the rising hydrograph limb, consistent with the model prediction of anomalously small L under similar conditions. 

 

Measured EC and simulated GW both show seasonal hysteresis loops with Q, which largely matches the seasonal pattern of 

LA (Fig. 5). The modeled area-average catchment water table depth (WTD) is relatively deep (less GW storage) on the rising 530 

limb of the seasonal hydrograph (increasing Q), and relatively shallow (more GW storage) on the falling limb of the 

hydrograph (decreasing Q). Similar smaller loops are superimposed from individual rainfall or snowmelt runoff events. 

Again, measured EC shows a similar hysteretic relationship with Q, supporting the model results. 
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 535 

Figure 5. Hysteresis relationships in three example years, showing (top panels) simulated water table depth and simulated 

streamflow, (bottom panels) measured stream electrical conductivity, reflecting total dissolved ion content (correlated to 

groundwater age, Rademacher et al. 2001), and measured streamflow. Each line traces a path beginning on October 1st of a given 

water year, and line width is scaled proportionally to the day of year. Color indicates whether the simulated flowing stream 

network is larger (blue) or smaller (red) than predicted by a power law relationship with streamflow on a given day. 540 

 

Measured ECA mirrors simulated LA, especially after aggregating the data over longer time periods to reduce the effect of 

uncertain model forcing and other sources of noise (Fig. 6). Across the 2001-2016 period of continuous EC monitoring, there 

are 4,750 days with available EC data and Q < 2 mm/d. Across this daily dataset, lower measured EC is strongly correlated 

with longer modeled L (r = -0.87, p < 0.01), but this correlation primarily reflects the mutual relationship with Q. After 545 

decorrelating L and EC from Q by subtracting the best-fit power law, ECA and LA are still significantly correlated, albeit 

more weakly (r = -0.38, p < 0.01). On daily timescales, other geochemical processes, random noise, and errors in the 

DHSVM forcing data would be expected to dilute the underlying GW hysteresis effect, potentially explaining this relatively 
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weak daily correlation. Aggregating both ECA and LA to the monthly median using only days with available EC data (176 

months with at least two days of data) produces a stronger correlation of r = -0.47 (p < 0.01). Still, each year may have 550 

unknown and variable meteorological forcing biases that propagate into simulated GW, Q, and L, diluting the EC-L 

correlation. To further control for noise in the EC-L correlation, we also consider the overall seasonality of power law 

scaling anomalies in both EC and L by calculating the median for each month across all available years (Fig. 6). In this case, 

the seasonal pattern of EC closely mirrors L (r = -0.95, p < 0.01) and ECA closely mirrors LA (r = -0.92, p < 0.01). However, 

it is important to note that the monthly median LA-ECA correlation is considered as part of our model selection procedure 555 

(Section 2.2 and Fig. S5), so it is not independent evidence of the model’s predictive skill. Nevertheless, the strong match 

between modeled network dynamics and measured stream chemistry supports our process-based GW hysteresis 

interpretation, and selecting the model that best matches observations (Fig. S5) increases the realism of our analysis. 
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 560 

Figure 6. Comparison of monthly median simulated stream network dynamics with measured stream water electrical conductivity 

(EC), a proxy for total dissolved ion concentrations. Note that the vertical axis is reversed for EC (positive down) to highlight the 

similar shape of the seasonal signals. The seasonality of anomalously large flowing networks matches the seasonality of 

anomalously low EC, indicative of a greater fractional contribution from relatively fast, chemically dilute subsurface flowpaths 

during the snowmelt season. 565 

 

3.4 Sensitivity to Snow-Rain Transition 

In a warming climate, a partial snow-rain transition alters the spatiotemporal organization of liquid water inputs to the 

catchment, and simulating the cascading hydrological effects of this change (without untested assumptions of stationarity) 

requires a spatially distributed physical model such as DHSVM. We compare simulations of flowing stream network 570 

dynamics in the historical climate (Abatzoglou 2013) with a uniform +4 °C warming scenario applied to the same baseline 

climatology (2001-2024) to investigate the potential effects of a partial precipitation phase change. The +4 °C increase is 

https://doi.org/10.5194/egusphere-2025-6294
Preprint. Discussion started: 12 January 2026
c© Author(s) 2026. CC BY 4.0 License.



24 

 

within the plausible range of cold-season anthropogenic warming in the SCB region (Null et al. 2010, Huang et al. 2018, Sun 

et al. 2019), but does not account for potential changes in other aspects of climate (e.g., precipitation timing and magnitude) 

or nuanced spatiotemporal controls on climate trends (Lundquist and Cayan 2007). Thus, the warming scenario implemented 575 

here should not be understood as a prediction of actual future climate sensitivity. Instead, we are concerned with the broad 

sensitivity of L-Q scaling assumptions to a transition from snow to rain, which is sufficiently captured by an easily 

interpretable uniform warming experiment. Over the 2001-2024 simulation period in SCB, a +4 °C warming scenario 

reduces the total fraction of precipitation falling as snow (“snowfall fraction”) from 49% to 26%, i.e., total snowfall is 

reduced by 47% with the same total precipitation. Total streamflow is reduced by 8%, and annual peak flows change by -580 

25% to +116% (median +5%), consistent with general expectations for reduced water yield and increased flood risk as 

mountains transition away from snow dominance (Berghuijs et al. 2014, Huang et al. 2018, Gordon et al. 2022). 

 

Figure 7 illustrates salient characteristics of the snow-rain transition scenario using a single representative water year (2022). 

In this particular year of the +4 °C warming scenario, the predicted annual peak flow is 93 days earlier, 77% higher, and 585 

associated with a discrete storm event in December rather than a gradual snowmelt period in March and April. The annual 

median and minimum flows decrease by 28% and 35%, respectively. Based on the model simulation, the minimum, median, 

and maximum flowing network length each decrease by 13%, 10%, and 2%, respectively (in this example year), comparable 

to the 9%, 9%, and 3% reductions predicted for 1st-percentile, median, and 99th-percentile flowing network lengths across the 

full 24-year period. In contrast to the 2% decrease in maximum L predicted by the warming simulation in this year, the pre-590 

warming L-Q power law predicts a 22% increase in maximum L, synchronous with the higher maximum Q. Naïve 

application of the power law assumption to simulated streamflow timeseries in a warming climate could thus misrepresent 

the directionality of changes in the maximum network extent. Even more dramatically, the power law predicts a maximum L 

during an October storm that is 77% larger than predicted by the simulation model (L = 37 km, LP = 66 km). The power law 

LP still overestimates the DHSVM-simulated maximum L during this late-recession-season storm by 45% in the historical 595 

climate, but the near-complete transition to rain for this storm (2% vs. 35% snow fraction) increases the importance of 

considering the spatial configuration of antecedent GW levels. In the 2022 example year (Fig. 7), and throughout the longer 

simulation period, the power law systematically underestimates DHSVM-simulated L during seasonal recession periods 

(panels B-C). In the warmer climate, the power law underestimates DHSVM-simulated L (p < 0.01) by a median of 7% 

(interquartile range: 5% to 11% underestimation) over the 137-day period from maximum L (January 15) through the end of 600 

May. This underestimation is even more apparent during the snowmelt recession period in the historical climate, when snow 

is more dominant: over the 98-day period from maximum L (April 25) through the end of July, the median underestimation 

relative to DHSVM is 11% (p < 0.01, interquartile range: 9% to 13% underestimation). 
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 605 

Figure 7. Example timeseries for one year of the simulation under historical or +4 °C warmer climate scenarios, showing (A) 

simulated streamflow and (B-C) flowing network length simulated directly or estimated from a power law in the historical (B) or 

warmer (C) scenarios. Maps show the change in streamflow persistence (fraction of flowing days across 24 years) between warmer 

and historical model simulations (left) or inferred from the combination of a power law and static topographic flow routing 

assumptions (right). 610 
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In the warming scenario, flowing streams become overall less persistent, but static topographic assumptions fail to capture 

the magnitude—and sometimes even the direction—of DHSVM-predicted climate change effects. The mean decrease in 

stream persistence (fraction of flowing days) for all stream reaches is 2% (p < 0.01), but the persistence of some reaches 

decreases by as much as 15% or increases by as much as 6% (Fig. 6). We compare these simulation results with a simpler 615 

approach based on the power law and a fixed hierarchical ranking (Botter et al. 2021) that distributes L among stream 

reaches based on the topographic wetness index, analogous to prior L-Q modeling approaches (Beven and Kirkby 1979, 

Mahoney et al. 2023). This simpler approach predicts the same 2% mean decrease in persistence, but all reaches decrease or 

remain unchanged (Fig. 7). Moreover, the fixed hierarchical approach leads to a 40% overestimation of the number of 

reaches with at least a 10% decrease in persistence. A fixed hierarchical approach to streamflow persistence does not account 620 

for the potential spatial variability and nonlinearity in the climate sensitivity of different streams. In SCB, the stream reaches 

with increased persistence in a warmer climate occur at the highest elevations, where earlier snowmelt permits a longer 

runoff season. We expect that the nonuniformity of interactions between climate and flowing stream networks could be even 

more pronounced over climate gradients that extend beyond the 700 m elevation range in SCB. 

 625 

3.5 Relevant Timescales for L-Q Hysteresis 

Quantifying the timescales over which GW decouples L and Q is important for understanding whether these effects are 

relevant for fluvial and riparian processes. The autocorrelation of L at different time lags (in days) provides a metric 

quantifying the temporal stability of flowing stream networks. At progressively longer lags, the autocorrelation of LP 

(estimated by the power law) tends to decrease more rapidly compared to the autocorrelation of L (simulated by DHSVM), 630 

indicating that the power law may overestimate the elasticity of the stream network in some circumstances. We define the 

flowing network “hysteresis effect,” HEL, as the difference in autocorrelation between the timeseries of L simulated by the 

distributed model or estimated by the power law. Positive HEL indicates a stronger autocorrelation in L than would be 

expected from temporal persistence in Q alone, i.e., damped elasticity of L relative to Q. Based on the autocorrelation within 

24 yearly bootstrap samples over the historical simulation period (Fig. S12), we find that HEL is significantly greater than 635 

zero at lags of 1-95 days (p < 0.01). Across the full 24-year period, the hysteresis effect is largest at a lag of 47 days, at 

which point the simulation predicts an autocorrelation of 0.60 and the power law predicts an autocorrelation of 0.51 (HEL = 

0.09). An analogous hysteresis effect, HEEC, is detectable in the EC timeseries. An EC-Q power law similarly underestimates 

the measured EC autocorrelation, but HEEC is only statistically significant at shorter lags of 1-5 days (p < 0.01) and 6-7 days 

(p < 0.05), potentially due to measurement noise or confounding sources of EC variability. 640 

 

Greater rain dominance causes a flashier hydrograph, but DHSVM predicts that GW hysteresis would buffer changes in L 

(Fig. 7), so the power law approximation increasingly overestimates the sensitivity of the flowing network in the warmer 

climate relative to DHSVM simulations (Fig. S12). The increase in HEL between historical and +4 °C simulations is 
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significant at time lags of 1-36 days (p < 0.01). Across the full 23-year period, the change in HEL is largest at a lag of 9 days, 645 

at which point the power law autocorrelation decreases from 0.92 to 0.89 in the warmer climate, while the simulation 

autocorrelation remains nearly unchanged at 0.96. Although HEL overall peaks at 47 days, and remains significant beyond 

three months, the mediating role of hysteresis on a snow-rain transition is most pronounced at much shorter lags, which 

intuitively matches the shorter hydrological response time after individual storms compared to the longer snowmelt period. 

The power law matches the DHSVM prediction of reduced below-median network lengths but does not account for an 650 

increase in upper-quartile lengths associated with hysteresis after rain (Fig. S13). 

 

The flowing network hysteresis effect (HEL) is larger in years with reduced snow dominance (Fig. 8). Considering HEL 

calculated for 24 bootstrap annual periods in each of the historical and warmer climates, a smaller simulated annual snowfall 

fraction correlates with a larger hysteresis effect at lags of 10, 20, and 30 days (r = -0.69, -0.65, -0.52; p < 0.01). Considering 655 

just the historical years, the correlation between HEL and the annual snowfall fraction remain significant at 10, 20, and 30 

day lags (p < 0.01). Analogously for measured EC data across 15 bootstrap periods, a larger hysteresis effect (HEEC) 

significantly correlates with a smaller snowfall fraction at lags of 10, 20, and 30 days (r = -0.61, -0.58, -0.58; p < 0.05). 

Excluding the two years with negative HEEC, the measured correlation at a 10-day lag rises to r = -0.65 (p < 0.05). Although 

the mean value of HEEC itself is not significantly different from zero at lags beyond 7 days, the correlation of HEEC with the 660 

snow fraction is significant even at a 30-day lag. This suggests that noise in the EC signal may obscure longer-term 

hysteresis within individual years, but the month-scale hysteresis effect becomes apparent when comparing across 14 years 

with different degrees of snow or rain dominance. 
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 665 

Figure 8. A stronger flowing network hysteresis effect (difference in simulated autocorrelation relative to a power law assumption) 

is associated with a smaller fraction of precipitation falling as snow. A similar relationship is detected in timeseries of measured 

stream electrical conductivity, which is related to groundwater age. Shaded gray regions show the 95% confidence range for the 

best-fit linear trendline. 

 670 

https://doi.org/10.5194/egusphere-2025-6294
Preprint. Discussion started: 12 January 2026
c© Author(s) 2026. CC BY 4.0 License.



29 

 

 

4 Discussion 

Our simulations and water chemistry data support the hypothesis that groundwater (GW) hysteresis partially decouples the 

flowing stream network length (L) from streamflow (Q) in a headwaters catchment on daily to seasonal timescales, and this 

decoupling becomes more pronounced in years with relatively less snow and more rain. Model simulations predict that the 675 

degree of the hypothesized L-Q decoupling may be surprisingly large: simulated Q can vary by more than 100% at a 

constant network length, and networks varying by 33% or more can produce the same Q (Fig. 4). Moreover, the 

hypothesized effect manifests in streams ranging from small trickles to as much as 22% of total streamflow, indicating a 

substantial reorganization of spatial streamflow generation patterns. A power law approximation, in which L is perfectly 

coupled to Q, would underestimate the autocorrelation of simulated L variability on daily to >2 month timescales. Put 680 

simply, Q is not necessarily a good proxy for L in certain circumstances. Similar power law deviations are detected in 

observational records from the same watershed. Using measured electrical conductivity as a proxy for solute-rich streamflow 

derived from slower groundwater flowpaths, the seasonal hysteresis effect diagnosed here provides a physical explanation 

for why stream chemistry differs between the rising and falling hydrograph limbs at the same streamflow level (Fig. 5). 

Importantly, our results suggest that nonmonotonicity in the L-Q scaling relationship is likely to be significant over the 685 

spatiotemporal timescales that matter for fluvial and riparian biogeochemical processes (Alexander et al. 2007, Meyer et al. 

2007, Aufdenkampe et al. 2011, Marx et al. 2017, Liu et al. 2022). 

 

We expect that groundwater hysteresis causes anomalously small flowing networks during autumn and early winter rainfall-

runoff events and anomalously large flowing networks during spring and summer snowmelt recession, summarized in Fig. 9. 690 

These GW-L-Q hysteresis relationships (Fig. 5) result from the extensively documented spatiotemporal variability of 

hydraulic gradients and flow directions in response to antecedent conditions (e.g., McGlynn et al. 2004, Detty and McGuire 

2010, Rodhe and Seibert 2011, von Freyberg et al. 2014). As the catchment “wets up” after the growing season, streamflow 

rises rapidly due to decreased riparian evapotranspiration and steepening hydraulic gradients during early winter storms. 

However, raising the catchment-average GW level (which controls stream network expansion) requires a substantial increase 695 

in the spatially distributed dynamic water storage, which is accumulated over time. Conversely, as GW declines during 

recession, valley-bottom hydraulic gradients become increasingly parallel to streams, reducing channel inflow (Rodhe and 

Seibert 2011, van Meerveld et al. 2015). Flowing streams can persist “on top” of the receding water table even if inflow from 

GW to Q is minimal. Hence, catchment-average GW and L both lag Q (Fig. 5). 

 700 
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Figure 9. Revised conceptual model of stream-groundwater interactions in a mountain catchment, illustrating the emergence of 

stream network hysteresis caused by transient groundwater flow between hillslopes and riparian zones. Contrast with conceptual 

model illustrated in Fig. 7 of Godsey and Kirchner (2014), which assumes equilibrium groundwater flow. Channel cross-sections 705 
show how this conceptual model is simulated at the grid scale (cf. schematic in Fig. S1). Antecedent groundwater priming from 

snowmelt and rain activates a relatively large flowing stream network during the seasonal recession period, but rainfall during 

periods with a low antecedent water table can cause a rapid increase in streamflow even though the flowing network remains 

small. In a warmer climate, winter rainfall becomes more dominant than spring snowmelt, altering the spatial configuration of 

streamflow generation and flowing network connectivity. 710 

 

Measured hysteresis in the stream EC-Q relationship supports our interpretation of GW-L-Q hysteresis on daily to seasonal 

timescales (Figs. 5-6). Chemical weathering of the underlying volcanic bedrock in SCB creates a positive correlation 

between EC and GW residence time, as measured by multiple geochemical tracers across springs of varying age 

(Rademacher et al. 2001). Additional observations across other Sierra Nevada catchments of varying lithology show that 715 

longer flowpaths and older GW sources similarly tend to have higher EC (Holloway and Dahlgren 2001, Ahearn et al. 2004, 

Meyers et al. 2022). The daily EC measurements in SCB reveal that stream EC remains elevated as Q begins to rise, 

interpreted as an outsized contribution from riparian aquifers connected to relatively long valley-bottom GW flowpaths with 
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longer residence times. Conversely, stream EC remains suppressed during the falling hydrograph limb as Q decreases, 

consistent with the transient activation of relatively fast, shallow, chemically depleted GW flowpaths in hillslope and 720 

headwater regions. Notably, the hysteresis effect in EC (HEEC) is significantly positive at short time lags of 1-7 days and its 

inverse correlation with the annual snowfall fraction remains significant even at time lags of 30 days (Fig. 7). This behavior 

suggests that EC may record not only event-scale runoff dynamics, but also broader seasonal GW memory effects. In more 

rain-dominated years, stream EC is relatively stable compared to a power law relationship with streamflow, possibly 

reflecting inputs from older, slowly responding GW sources after each rainfall-runoff event. Together, these findings suggest 725 

that EC, and by extension other geochemical tracers of GW residence times (Marcais et al. 2018, Druhan and Benettin 

2023), could be useful complementary proxies for detecting shifts in GW ages under changing climate conditions. Moreover, 

these observations further support our model-based hypothesis that GW hysteresis will become more important for 

mediating the flowing stream network as rain replaces snow, even on monthly timescales. The volcanic lithology of our SCB 

study area is particularly notable for the importance of old GW (e.g., Rademacher et al. 2005), and catchments with different 730 

subsurface characteristics may have weaker or stronger L-Q hysteresis, which might be detectable though analysis of EC-Q 

relationships. 

 

Our simulations predict that a partial shift from snowmelt-driven to rainfall-driven runoff generation would heighten the 

importance of GW hysteresis as a mediator of flowing network length (Fig. 9). Compared to the distributed simulation 735 

model, a power law approximation overestimates L during storm runoff events when the watershed is dry and GW is 

concentrated in higher-order convergence zones (Figs. 2-3). Conversely, the power law approximation consistently 

underestimates simulated L during seasonal recession when GW is distributed more evenly throughout the catchment (Figs. 

2-3). Although both types of biases are present in both simulated climate scenarios (Fig. 7), the recession underestimation 

becomes relatively less important with a declining snowmelt season, and the storm peak overestimation becomes relatively 740 

more important with increasing cold-season rainfall-runoff events. 

 

Flowing stream network studies may need to account for the pervasive hysteretic character of hydrological storage and 

runoff generation processes to avoid systematically biased predictions of change. Hysteresis is an emergent property of 

threshold-like behavior in hydrological systems, and this recognition heralds a “paradigm shift” in conceptual models of 745 

streamflow generation (Spence 2010). Still, hysteresis is missing from the widely accepted conceptual model of flowing 

stream network dynamics (Godsey and Kirchner 2014, Prancevic et al. 2025) and likewise ignored by most prior mechanistic 

simulations (Ward et al. 2018, Gao et al. 2021, Mahoney et al. 2023). Although our fully dynamic simulations are limited to 

one watershed, our conceptual model (Fig. 9) is generalizable to other mountain headwaters catchments where GW mediates 

streamflow generation. Anecdotally, we observe similar seasonal EC hysteresis signals in other watersheds, especially in 750 

groundwater-dominated basins with volcanic lithologies such as the Madison River in Yellowstone National Park, 

Wyoming, USA (Gardner et al. 2010, McCleskey et al. 2012), though a comprehensive multi-basin investigation is beyond 
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the scope of the current study. Future research could investigate the variability of EC as a proxy for L-Q hysteresis across 

multiple catchments to constrain the role of topography, lithology, land surface cover, and climate. Our model results 

indicate that L-Q hysteresis may be nonnegligible at scales ranging from first-order headwaters stream reaches up to the 27 755 

km2 SCB catchment, and future simulations could quantify this effect at even larger watershed scales. Finally, long-term 

spatially explicit monitoring of stream networks could validate or refine our understanding of the relevant time lags and 

predicted changes in L-Q hysteresis, though such monitoring may be unrealistic given the many-year timescales and daily 

sampling frequencies required to quantify the hysteresis effect (HEL) defined here. 

5 Conclusions 760 

Our model simulations suggest a new process-based hypothesis (non-equilibrium groundwater flow) to explain observed 

seasonal hysteresis in both stream chemistry and flowing network length. Process-based hydrological models have been 

criticized as overparameterized and merely representing what we already know about hydrology, and Kirchner (2006) claims 

that “all hydrological knowledge ultimately comes from observations, experiments, and measurements.” The present study 

seems to offer a counterexample, wherein a “bottom-up” approach based on microscale physics yields a novel hypothesis 765 

about catchment-scale hydrological behavior. While field surveys provide valuable insight into the first-order behavior of 

dynamic stream networks, the second-order hysteresis effect diagnosed here only becomes quantifiable from thousands of 

simulated daily stream network maps, a dataset that would require a monumental effort to collect in the field. A related 

groundwater hysteresis signal in measured stream geochemical timeseries supports our findings, but the connection to 

channel dynamics is not quantifiable from existing measurements alone. At the outset of this study, we merely sought to 770 

reproduce known stream network dynamics (i.e., expansion/contraction/disconnection) using simple physically based rules 

(Fig. S1), but the presence of substantial scatter in the simulated scaling relationship (Fig. 3) prompted us to investigate 

power law anomalies for both stream chemistry and network length, ultimately leading to our hypothesis of a groundwater 

hysteresis effect (Fig. 5). The emergence of complexity from the repeated application of simple rules is perhaps one of the 

most surprising results of computational science (Conway and Gardner 1970, Wolfram 1984, Cook 2004), especially when 775 

those rules are grounded in physical constraints like the dynamic groundwater flow directions in this study (Fig. S1). 

 

A physically based, spatially distributed surface-groundwater interaction scheme enables investigation of potential climate 

change effects and other disturbances. Approaches based purely on past observations (such as the L-Q power law and typical 

machine learning methods) are untested in out-of-sample conditions by definition, so these purely empirical approaches are 780 

problematic for investigations of nonstationarity (e.g., climate change and land surface disturbance). Compared to the power 

law approximation, a distributed simulation yields different predictions of the magnitude, and even the directionality, of 

climate-induced stream network changes (Fig. 7). While incorporating missing processes into models is obviously 

worthwhile in its own right, model experiments with sufficient space for emergent complexity may also suggest revised 
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conceptual models (Fig. 9) that motivate new data collection or novel interpretations of existing field data. Additional 785 

iterative model and field investigations are needed to further test and refine our understanding of stream network dynamics 

in nonstationary environments. 
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