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1 Abstract:

The Warwan sub-basin in Jammu and Kashmir is a remote glaciated region containing several
glacial lakes and has recently experienced population growth and infrastructure development.
Due to inaccessibility and geomorphic masking, multiple mass movement events including
avalanches and Glacial Lake Outburst Floods (GLOFs) have remained largely unreported. This
study analyzes three major avalanche events from the past two decades. The September 2005
and September 2020 avalanches originated from glaciers GL-B and GL-A within the same
glacier complex, while the March 2020 rock—ice avalanche initiated from the headwall of

glacier GL-F in an adjacent valley and terminated before reaching its ablation zone. Runout
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mapping shows that the September 2020 avalanche descended from the headwall of GL-A and
11 impacted its proglacial lake, triggering a GLOF. In contrast, the September 2005 event
12 terminated before reaching the glacial lake that began forming in 1999 at the terminus of GL-
13 B. Geomorphic analysis indicates persistent sediment influx from meltwater streams of GL-D
14 and GL-E into the lake associated with GL-A, progressively infilling the basin. Continued
15  glacier retreat caused meltwater to accumulate behind the sediment infill, dividing the basin
16  into two disconnected lakes. Impact from the September 2020 avalanche led to complete
17  drainage of stored water and sediment, generating a downstream debris flow. Pre- and post-
18  GLOF imagery reveals breaching and widening of the outflow channel and deposition of a
19  debris fan downstream. The repeated history of mass movements and continued growth of
20  glacial lakes raise serious hazard concerns in the Warwan sub-basin. GLOF modeling identifies
21 Lake-B as potentially hazardous lake at the present condition posing significant downstream
22 risk. Settlements such as Youdu and Qaderna, along with bridges, roads, and residential
23  structures, lie within potential GLOF inundation zones. High sediment availability from past
24 mobilization and deposition along the valley increases the potential of debris flow cascades,
25  posing elevated risks to downstream infrastructure and hydropower, underscoring the need for
26  preparedness and mitigation planning. GLOF modeling suggest that early warning system
27  closer to the source will be able to provide a good lead time in case of potential GLOFs in the

28  valley.
29  Keywords: Glacial Lake; Avalanche; GLOF Cascade; Unreported GLOFs, Glacier retreat.
30

31
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1 1. Introduction:
2 Since 2000, accelerated glacier ice loss driven by rising temperatures (Azam et al., 2018;
3 Bhattacharya et al., 2021; Bolch et al., 2012; King et al., 2019; Maurer et al., 2019) has been
4 observed, with lake-terminating glaciers showing substantially greater mass loss compared to
5 land-terminating glaciers (King et al., 2018; Pronk et al., 2021; Sato et al., 2022). This climate
6  change-induced retreat has transformed deglaciated regions into debris- and bedrock-
7  dominated landscapes, fostering glacial lake formation and expansion due to enhanced calving
8 and warm water-ice interactions (Carrivick and Tweed, 2013; Furian et al., 2022; King et al.,
9 2019; Nie et al., 2018; Rai et al., 2024; Sakai et al., 2000; Sattar et al., 2019; Watson et al.,
10  2020). Together, these complex and diverse glacier responses challenge accurate assessments
11 of future glacier dynamics and associated cascading hazards (Kargel et al., 2011; Pritchard,
12 2019; Wiltshire, 2014). Glacial lakes have notably increased in number (~53%), area (~51%),
13  and volume (~48%) globally in the last three decades (Shugar et al., 2020). With rapidly
14  increasing downstream population, agricultural activity, infrastructure, and hydroelectric
15  development, these expanding lakes pose increasing threats to communities and infrastructure
16 (Haeberli et al., 2017; Sattar et al., 2025a; Schwanghart et al., 2016).

17  The Hindukush Karakoram Himalaya (HKH) region experienced an increase in the number of
18  glacial lakes between 2500 and 5500 m elevation, with the most prominent rise observed
19  between 4000 and 4500 m (Ashraf et al., 2017). Specifically, lake numbers increased by ~24%
20 above 4000 m and ~32% below this elevation. However, not all glacial lakes can cause Glacial
21 Lake Outburst Floods (GLOFs), as their hazard potential depends on lake and moraine dam
22 characteristics and multiple triggering factors such as slope instabilities, possible permafrost
23  existence and degradation and extreme precipitation events, among others (Taylor et al., 2023;

24 Vehetal., 2025).

25 A GLOF event can release millions of cubic metres of water (Sattar et al., 2025a) and threatens
26  downstream infrastructure, settlements, and agricultural land, often resulting in significant loss
27  oflife and livestock (Sattar et al., 2025b; J.-Y. Zhang et al., 2025; T. Zhang et al., 2023; Zheng
28 etal., 2021b). For instance, the October 2023 South Lhonak GLOF in Sikkim, India, resulted
29 in a severe disaster, claiming over 100 lives, inundating or damaging approximately 5,900
30  buildings and 31 major bridges, and affecting approximately 270 km? of agricultural land, and
31 completely destroyed the Teesta III hydropower dam located ~68 km downstream (Sattar et
32 al, 2025a; T. Zhang et al., 2025). This event also demonstrated the enormous sediment
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mobilization typical of GLOFs, capable of altering landscapes far downstream. Interestingly,
there were recent GLOF events in the Himalaya that originated from small lakes but had
amplified impacts due to erosion dynamics. For instance, the 2016 Gongbatongsha GLOF
event in the Poiqu Basin of China (Sattar et al., 2022), which was amplified by the huge debris
eroded along the channel where the 2015 Gorkha earthquake deposited the majority of the
debris. The 2025 Limi Valley GLOF originated from the subglacial drainage of two small lakes
in the Nepal Himalaya (Sattar et al., 2025b). The village of Til was impacted, which shows
signs of bank erosion and collapse. The GLOF that occurred in the Mount Everest region in

August 2024 (Sherpa et al., 2025) impacted the Thame village, carrying suspended debris and
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depositing it in the valley. Another disastrous event was the Kedarnath cascade, where rainfall,
11 GLOF, and debris flow cascaded and destroyed the Kedarnath settlement at Uttarakhand in
12 June 2013 (Allen et al., 2016).

13 All these events highlight the dominant role of debris transport, which depends on flow
14  dynamics, channel morphology, erosion, and the availability of loose sediment for
15  transportation. Water released during a GLOF event can efficiently erode and mobilize debris,
16  transforming floods into debris flows or hyperconcentrated flows (Sattar et al., 2025a). The
17  Himalaya recently experienced another devastating event that destroyed the Dharali settlement
18  in Uttarakhand (Kumar et al., 2025), where a multi-episodic debris flow descended through the

19  valley, depositing massive volumes of debris at the Bhagirathi River confluence.

20  Eventhough numerous GLOFs and mass movement have been reported globally and regionally
21 (Nie et al., 2018; Shrestha et al., 2023), many remain unreported due to remote locations, lack
22  of downstream community impact, and limited high-frequency satellite observations (Zheng et
23  al, 2021b). Veh et al. (2019) identified 22 previously unreported GLOFs that occurred after
24 the 1980s using Landsat imagery, while Zheng et al. (2021) found 176 new unreported GLOF
25  sources in the High Mountain Asia (HMA), ~95% moraine-dammed glacial lakes, of which
26  ~57% located in the Himalaya (Veh et al., 2019; Zheng et al., 2021a). Such unreported events
27  create significant gaps in regional GLOF inventories, leading to underestimated frequency-
28  magnitude relationships (Veh et al., 2022). Identifying these unreported past events is therefore
29  crucial for reconstructing geomorphic process regimes and understanding the hazard frequency
30  in mountain catchments (Carrivick and Tweed, 2013; Richardson and Reynolds, 2000; Veh et

31 al, 2025). These undocumented events offer critical insights into GLOF process chains,
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1 sediment dynamics, and landscape evolution (Cook et al., 2018; Sattar et al., 2025a), enabling

2 improved hazard modeling and risk mitigation.

In the Union Territories of Jammu and Kashmir (J&K) and Ladakh, only a limited number of
destructive GLOFs have been documented (Ahmed et al., 2022; Majeed et al., 2021; Schmidt
etal., 2020). Mal et al. (2021) identified 4,418 glacial lakes and 636 transboundary lakes in the
Indian Himalayan region (IHR) and reported that J&K and Ladakh have the highest cumulative
degree of GLOF hazards (Mal et al., 2021). Additionally, Dubey and Goyal (2020) reported
J&K and Ladakh having the maximum number of glacial lakes that can potentially impact

downstream infrastructure (Dubey and Goyal, 2020). Historical examples include a 1971
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GLOF 18 km upstream of Nymmo village that killed 16 people (Ikeda et al., 2016a), and a

-
N

2003 GLOF affecting Domkhar village, which destroyed bridges, water mills, and agricultural
land (Ikeda et al., 2016b). More recently, the 2014 Gya Glacier GLOF damaged agricultural
land and other infrastructures in Gya village (Majeed et al., 2021; Schmidt et al., 2020).

-
w N

14 While most Himalayan GLOF research focuses on predictive modeling, reconstruction studies
15  remain scarce, despite their importance for understanding multi-step process chains capable of
16  triggering GLOFs. Reconstructing GLOF cascades also improves parametrization for
17  hydrodynamic models. For instance, the reconstruction of the South Lhonak GLOF has
18  highlighted how unstable lateral moraines can initiate a sequence of moraine failure,
19  displacement waves generation, overtopping, moraine erosion, and downstream flooding

20  (Sattar et al., 2025a).

21  This study is motivated by the limited research on unreported GLOFs, avalanches, and other
22  mass movements in the Himalayan region. Here, we report and reconstruct past avalanches and
23  GLOF and evaluate future GLOF hazard in a peri-glacial complex. Changes in glacier and lake
24 morphology are evaluated using multi-sensor data to understand the chain of events that act as
25  conditioning and triggering factors for GLOF hazard. Here, we analyze lake evolution,
26  expansion, sediment infilling, permafrost distribution, and avalanche-GLOF mechanisms in a
27  glacier-lake complex in the Western Himalaya. The specific objectives of the study include
28 modeling past mass movements and also quantifying future downstream GLOF exposure in
29  the Warwan sub-basin of J&K. Our findings provide a foundation for future GLOF research
30  and offer critical information for downstream infrastructure and land-use planning towards

31  building hazard-resilient mountain communities.
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1 2. Study area and importance of the region:
2  The study area is situated in the Fariabad watershed within the Warwan sub-basin of the
3 Chenab River, located in the Kishtwar Himalaya of J&K, India (Fig. 1). The watershed
4 catchment covers an area of 1,403.8 km?, with an average elevation of 4,308 m above sea level.
5 It contains 272 glaciers with a glaciated area of 314.61 km? (Pfeffer et al., 2014). This study
6  focuses on a glacier complex comprising 5 glaciers (GL-A to GL-E) (Fig. 1a) and an adjacent
7  glacier (GL-F) located opposite the glacier complex (Fig. 1c). The individual glacier area for
8  GL-A to GL-F are 2.2+0.014 km?, 4.23 +0.022 km?, 3.49 +0.02 km?, 3.47+0.025 km?, 2.16
9  £0.016 km?, 20.5+1.22 km?, respectively (Pfeffer et al., 2014). In the glacier complex, GL-A
10  and GL-B are associated with proglacial lakes (named as Lake-A and Lake-B respectively) and
11 have experienced mass movement events in September 2020 and 2005, respectively. The
12 meltwater stream originating from this glacier complex forms the Fariabad Nalla, which
13 merges into the Marusudar River near Yordu village. Further, Marusudar flows southwards,
14 meeting the Chenab River near Bandarkoot. In the Fariabad watershed, the number of glacial
15  lakes has increased to twelve, rising from seven lakes in 1990 (G. Zhang et al., 2023). Most of
16 the glacial lakes in the watershed are isolated and not connected to any glacier. According to
17  Shean et al. (2020), the average elevation change (2000-2018) across all glaciers in the
18  catchment was -0.33 + 0.28 m a”!, with a mean mass balance of -0.28 + 0.24 m we a”! (Shean
19 etal., 2020)
20  The nearby settlements (viz Qaderna, Yurod, Anyar, Rinaie, and Metwan) are located ~50-55
21 km downstream from the glacier complex, while major infrastructure such as the Bursar (800
22 MW) and Pakal Dul (1000 MW) hydropower sites are situated ~90 km downstream.
23  Additionally, several new settlements and agricultural activities have emerged along the
24 riverbank over the past two decades, as identified through high-resolution imagery from
25  Google Earth. Geologically, the region is seismically active with many past earthquakes,
26  clustered in the vicinity of the Kishtwar Window (Pandey et al., 2017).
27
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3 Fig. 1. (A) The Warwan sub-basin, in the Chenab Basin of Jammu and Kashmir, showing the
4  distribution of the glaciers, glacial lakes, major settlements, previous avalanche source,
5 modeled GLOF path (also see Figure 10), and individual buildings; (B) glacier complex (GL-
6 A to GL-E) showing the locations of the 2020 avalanche-triggered GLOF and the 2005
7  avalanche; (C) glacier showing the 2020 avalanche from the headwall of the glacier.
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1 3. Data and methods:

2 3.1 Mapping glaciers, glacial lakes, and related processes
3 The evolution of glaciers and associated glacial lakes was investigated using cloud- and snow-
4  free Landsat 7 and 8 imageries from 1999 to 2015 and PlanetScope imagery from 2016 to 2024
5 (Table S1). These images, captured predominantly during post-monsoon and peak ablation
6  periods, facilitated the delineation of glacier and glacial lake boundaries, as well as the mapping
7  of various geomorphic features and previous mass movement events including past avalanches
8 and GLOFs. Normalized Differential Water Index (NDWI) and standard FCC were used to
9  map the glacial lakes and glacier boundaries respectively (Rai et al., 2024). Glacier boundaries
10  were further refined through cross-validation with high-resolution imageries from Google
11 Earth and the Randolph Glacier Inventory (RGI) Version 6.0 (Pfeffer et al., 2014). PlanetScope
12 imagery was specifically used to detect past GLOFs, crevasses, ice calving, avalanche release
13  areas, and avalanche runouts. Associated geomorphic changes from these events were
14 documented using post-event PlanetScope imagery. Mapping uncertainty was calculated using
15 a half-pixel buffer, while lake area uncertainty was estimated using a full-pixel buffer
16  (Granshaw and Fountain, 2006; Racoviteanu et al., 2015).
17

18  3.2. Avalanche reconstruction

19  To reconstruct past avalanche events, we used the Rapid Mass Movement Simulation
20 (RAMMS) model, a well-established numerical tool designed for mass movement hazard
21 simulation. RAMMS operates based on the Voellmy-Salm rheological model, a finite volume
22  method that solves two-dimensional depth-averaged mass flow equations for avalanche-like
23  phenomena (Christen et al., 2010). This model accounts for complex interactions between the
24  avalanche material and terrain, making it highly suitable for alpine and glaciated environments
25  (Abhinav and Sattar, 2025; Sattar et al., 2022, 2021). The dynamics of avalanche flow within
26 RAMMS are governed by several key input parameters: the release area, release depth, material
27  density, friction parameters, and the terrain over which it flows. The release areas were
28 identified by detecting changes from pre- and post-event PlanetScope imagery. ALOS
29 PALSAR DEM (resampled to 12.5 m spatial resolution) was used to represent terrain for the

30 reconstruction.
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To accurately represent avalanche initiation, we conducted simulations with variable release
depths/volumes, adjusting these iteratively until modeled runouts matched observed avalanche
runouts. Scenario-based modeling initiated with a smaller release volume (R1) and
progressively increased volumes (R2-R4) to evaluate the influence of flow magnitude on
runout behavior. The material density (p) was assumed to be 1000 kg m3, reflecting a mixed
composition of snow, debris, and meltwater, consistent with previous avalanche modeling
studies (Sattar et al., 2021). The rheological behavior of the avalanche material in RAMMS is
controlled by two friction parameters: Coulomb-type basal friction (u), representing basal

sliding resistance, and Turbulent friction (¢), representing velocity-dependent resistance due to
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internal turbulence. We set 1 = 0.12 and £ = 1000 m s2, values widely adopted in high-
11 mountain avalanche and debri-flow simulations (Frey et al., 2018; Sattar et al., 2022; Schneider
12 etal, 2014; Somos-Valenzuela et al., 2016). The RAMMS outputs provide spatially distributed

13  information on avalanche runout distances, flow depth, and flow velocity (Fig. 2).

14
15 3.3 GLOF process-chain modeling

16 To estimate the future volume, we first mapped its potential maximum extent by reconstructing
17 the glacier bed using a spatially distributed glacier ice thickness product combined with a DEM
18  (see results Fig. 8a). In the absence of direct ice thickness measurements and subglacial
19  topography data, we utilized ensemble ice thickness data (Farinotti et al., 2019). Raster-based
20  calculations were performed to derive a spatially distributed glacier-bed surface. We followed
21 contour-based bathymetry generation approaches used previously in western Himalayan lake-
22 bathymetry reconstructions (Sattar et al., 2023, 2021). Lake and basin volumes were further
23  compared with volume-area scaling relationships (Cook and Quincey, 2015; Emmer and
24 Vilimek, 2014; Evans, 1986; Fujita et al., 2013; Huggel et al., 2002; Kapitsa et al., 2017;
25  Loriaux and Casassa, 2013; Muioz et al., 2020; Wang et al., 2012).

26 To assess potential GLOF impact from Lake-B, we employed a combination of r.avaflow and
27  HEC-RAS hydrodynamic models (v5.0.7) (D. D. More et al., 2024; Mergili et al., 2017). Both
28 r.avaflow and HEC-RAS have demonstrated effectiveness in modeling outburst floods in steep
29  Himalayan terrains (Anacona et al., 2015; D. D. More et al., 2024; Klimes et al., 2014; Sattar
30 etal, 2019; Wang et al., 2018). ALOS PALSAR DEM was also used as the terrain for the
31 GLOF simulations.
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7  We defined three scenarios for potential GLOF process chain modeling. Each scenario includes
8 (1) avalanche triggering and propagation, (2) avalanche impact on glacial lake and impact wave
9  generation, (3) lake overtopping, (4) moraine erosion, and (5) downstream flood propagation
10  (Fig. 2). The density of the modeled avalanche was assumed to be 2300 kg m™ assuming it to

11 be potential rock-ice avalanches. The simulations for processes from 1 to 4 were performed

9
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using r.avaflow, and HEC-RAS was employed to model process 5 (Fig. 2). In scenario 1 (SC-
1), a rock-ice avalanche of 25 x 10° m? (high magnitude), similar to the Chamoli event, was
simulated from the headwall toward the lake (Shugar et al., 2021). Similarly, in scenarios 2 and
3 (SC-2 and SC-3, respectively), simulated avalanches of 12.5 x 10° m® (moderate magnitude)
and 6.25 x 10° m® (low magnitude) respectively. GLOF outflow hydrographs were extracted
immediately downstream of the lake (Section 1; fig. 10) for all GLOF modeled process-chain
scenarios. To represent a conservative approach to map downstream GLOF inundation and
flow hydraulics, we consider the high-magnitude (SC-1) as a worst case among all three

scenarios considered in the study. The GLOF-process outflow hydrograph of the high-

O © 00 N O O b~ W N

magnitude scenario (SC-1) was used as the upstream boundary condition for downstream
11 GLOF routing. We have considered only water routing downstream of section 1 because
12 modeling the deposition and erosion due to debris flow is complex and can hinder model
13  stability. The same approach was followed by Sattar et al. (2025) for reconstructing the South
14 Lhonak GLOF event in Sikkim Himalaya (Sattar et al., 2025a). A model domain extending ~85
15  km downstream from the lake outlet was delineated using a 1 km buffer on either side of the
16  stream. A computational mesh of 12.5 m was generated. Due to a lack of vegetation along the
17  flow channel, a Manning roughness coefficient of 0.04 was used, consistent with previous
18  Himalayan GLOF studies (Rinzin et al., 2025). Following Rinzin et al. (2025), all other
19  hydraulic and computational parameters followed default HEC-RAS settings (Rinzin et al.,
20  2025).

21 3.4 Mapping GLOF-exposed infrastructures

22  The hydraulic behavior of the GLOF wave in the worst-case scenario (SC-1) was analyzed at
23  different sites (section 1, section 2, and section 3) along the flow channel using modeled output
24 of flood discharge, flow depth, velocity and inundation extent. Section 2 is located 49 km
25  downstream of the lake, and section 3 is located immediately upstream of Qaderna village, ~65
26 km downstream of the lake. Further, the modeled GLOF outputs were overlaid onto high-
27  resolution Maxar imagery (Google Earth) to manually map exposed downstream

28  infrastructures, including bridges, buildings, road segments, and other critical assets.
29
30

31

10
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1 4 Results

N

4.1 Contrasting evolution of glacial lakes Lake-A and Lake-B

Analysis of multi-temporal satellite imagery indicates a clear trend of glacier retreat within the
glacier complex, leading to the formation and progressive expansion of glacial lakes (Fig. 3 &
5). In 1999, both glaciers, GL-A and GL-B, exhibited proglacial lakes, while meltwater from
GL-D and GL-E contributed to GL-A's lake system. For GL-B, differential retreat was
observed along its margins, with pronounced retreat along the left margin compared to the right
(Fig. 5a). This asymmetrical retreat appears to be driven by enhanced water-ice interactions

and shifts in the thermal regime, as meltwater inputs from GL-C and GL-A’s lake converged
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into GL-B’s lake from the left margin (Fig. 5).

11 Over the last two decades (1999-2024), the lake associated with GL-B (Lake-B) has expanded
12 by ~308 %, from 0.075 + 0.057 km? in 1999 to 0.306 + 0.008 km? in 2024 (Fig. 5). While Lake
13 A, associated with GL-A, has expanded only by ~25.61% (from 0.051 <+ 0.03 km?in 1999 to
14 0.064 £ 0.004 km? in 2020) before the 2020 GLOF event (Fig. 3 & S1). The smaller area
15  expansion of Lake-A is also due to the partial sediment influx from glacier-fed streams entering
16 the lake on the northern bank. The sediment influx from the meltwater streams of GL-D and
17  GL-E resulted in the formation of an alluvial fan within the Lake-A basin (Figs. 3 & 4).
18  Temporal analysis of the alluvial fan area revealed a progressive and significant expansion over
19  the study period (1999-2020) (Fig. 4). In 1999, the alluvial fan covered an area of 0.0173 +
20  0.008 km?, which increased steadily to 0.0602 + 0.004 km? by 2020 (expansion of ~248%).
21 The most substantial relative expansion occurred between 1999-2004, with an increase of
22 ~71% (reaching 0.03 £+ 0.012 km? in 2004), likely driven by enhanced sediment supply from
23  GL-D meltwater streams and active sedimentation processes (Fig. 4). Another notable
24  expansion phase occurred between 20042008, indicating a ~36% increase (0.04 + 0.013 km?
25 in 2008), attributed to the continued glacier retreat and resulting sediment mobilisation.
26 Between 2008 and 2012, the alluvial fan expansion rate reduced to ~10% (0.45 + 0.014 km? in
27  2012), indicating either decreased sediment influx or increasing stabilisation of the depositional
28  environment. Minor yet consistent expansions were observed during 2012-2016 (~17%) and

29  2016-2020 (~15%).
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Fig. 3. Evolution of the proglacial lake and surrounding periglacial environment at GL-A from
1999 to 2024. Continuous sediment infill since 1999 led to bifurcation of the lake by 2008,
with a connecting channel visible in 2009; the main glacier shows consistent retreat throughout
the period; the 2020 imagery captures the avalanche event and the fully drained lake following
the GLOF. (Background images: Landsat for 1999 to 2015 and ©PlanetScope from 2016 -24)
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9  This gradually growing alluvial fan split Lake-A into two sub-basins: the fore-basin, located
10  between the moraine dam and the alluvial fan (glacier-detached since 2005), and the main
11 basin, located between alluvial fan and GL-A glacier (still proglacial in 2024). While the fore-

12 basin is visible in satellite images as early as 1999, the main basin started to evolve from small

12
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1 supraglacial ponds in 2005-2006 (Fig. 3). The fore-basin experienced a gradual decrease in
area between 2013 and 2019, driven largely by sediment influx from GL-D and GL-E streams
draining a catchment of ~8.0 km?, most of which remains glacierized. After the 2020 avalanche
and partial breach of the dam, the fore-basin has remained water-free. In contrast, the proglacial
main basin experienced continued areal expansion driven by glacier retreat both before (2006-

2020) and after (2020-2024) the avalanche event. Notably, post-avalanche imagery reveals the

N OO g b~ W N

main basin was completely filled with ice (or floating ice) shortly after the event.

8  Assuming no sediment infill, the area of the Lake-A basin can be calculated as a sum of the

9  areas of the main basin, the fore-basin and the alluvial fan, giving a total area of ~155,000 m>.
10  This basin area can be converted into basin using empirical equations (Section 3.3), yielding a
11 mean basin depth of 10.7 m to 17.4 m and a total volume of 1,658,500 m? and 2,697,000 m®.
12 The estimated volume of only the main basin is between 571,200 and 850,000 m®. These values
13 suggest that the total volume of sediment infill in Lake-A between 1999-2024 is between
14 808,500 m’ and 2,125,800 m’>. Considering that sediment accumulated over 25 years, the mean
15  annual sediment flux is in the order of 0.32-0.85 x 10> m® yr'! (or 0.04-0.11 x 10° m® yr! km"
16 2). If such sediment fluxes continued into the present-sized main basin, the basin may be fully
17  infilled within the next few years to decades. This highlights the short geomorphic lifespan of
18  glacier-detached high-mountain lakes in actively evolving periglacial environments (Carrivick

19  and Heckmann, 2017; Emmer, 2024).
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(2012)
Deposits (2016)
Deposits (2020)
1 " :
2 Fig. 4. Sedimentation in the Lake A basin; spatial extents of sediment deposits from 1999,
3 2004,2008,2012,2016, and 2020 are overlaid onto 2020 PlanetScope imagery (background
4  image: ©OPlanetScope, 01.09.2020); meltwater streams from GL-D transported sediment into
5  the lake, which initially existed as a single unit until 2008 (Fig.3), later sediment deposition
6  divided the basin into the fore-basin and main-basin;
7
8
9 4.2 Past avalanches in the region
10
11 4.2.1 Observations
12 The September 2020 avalanche, observed in PlanetScope imagery dated 08.09.2020, triggered
13 a GLOF that led to the complete drainage of Lake-A. The rock-ice avalanche initiated from the
14 accumulation zone of GL-A at an altitude of ~4890 m asl. This ice avalanche had a total runout
15  distance 0f 2,355 m, with a mapped inundation area of ~0.78 km? (Figs. 3 & S1). The avalanche
16  impact completely displaced the lake water and infill sediment, generating a downstream
17  GLOF (Fig. S1). Following the event, satellite imagery revealed breaching of the Lake-A
18  moraine, extensive GLOF outwash, and subsequent deposition in the downstream channel. In
19  the months after the GLOF, melting of the ice and debris deposited within the drained basin

14
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1 resulted in the reformation of a small proglacial lake in direct contact with the glacier terminus

2 of GL-A (Fig. 3 & S1).

Again, in September 2005, satellite imagery captured an avalanche originating at an altitude of
~5150 m, from the headwall of GL-B, extending ~2,620 m (inundation area of ~0.81 km?) into
its ablation zone (Fig. 5). However, the runout terminated before impacting the proglacial lake
(Fig. 5). During this period, the lake remained relatively small (~0.084 + 0.057 km? in 2005)
but showed gradual lateral expansion due to frontal calving of GL-B. Concurrent with these
changes, one tributary of GL-B began detaching from the main trunk. Between 2013 and 2015,

imagery revealed water seepage emerging from the right margin of GL-B’s terminus, likely

O © 00 N O O > W

driven by basal melting processes (Fig. 5, in 2014-15). This seepage contributed to the
11 development of extensive crevassing across the glacier terminus, culminating in a significant
12 calving event in 2016. The following year, crevasse propagation intensified, leading to another
13 major calving episode in 2017 (Fig. 5, in 2016-17), which further contributed to lake expansion.
14 The floating ice debris observed in the lake in subsequent imagery confirms these calving
15  events. However, Lake-B has expanded ~3.6 times (from 0.09 + 0.057 km? in 2005 to 0.306 +
16 0.008 km? in 2024) after the September 2005 avalanche event. Owing to this, growth in lake
17  size the hazard potential of the lake needs to be assessed for its present condition (see section
18  4.3).Itis also noted that another avalanche occurred in March 2020 on GL-F (see Fig.7) which
19  experienced a rock-ice avalanche event, initiated from the headwall at ~5340 m and travelled
20  arunout distance of ~2470 m, affecting an area of ~1.24 km? along its path in the upper ablation
21 zome of the glacier. Although this avalanche did not reach a proglacial lake, its scale and
22  geomorphic impacts highlight the ongoing slope-instability processes active across the wider

23 glacier complex.

24
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1 4.2.2 Avalanche reconstruction
2  The September 2020 avalanche reconstruction (that occurred on GL-A) based on various
3 release depths led to distinct variations in modeled runout behavior (Fig. 6). In scenario R1,
4 with a release volume of 8.53 x 10° m?, the modeled avalanche aligned well with the mapped
5  runout. Similarly, in scenario R2, using a slightly higher release volume of 1.13 x 10®m>, the
6  simulated runout also demonstrated a good match with the observed extent. However, as the
7  assumed release volumes were increased by ~50 % (R3) and ~75% (R4), the modeled runouts
8 exceeded the mapped deposition limits, producing unrealistic flow overshoot and indicating
9  that these larger volumes are inconsistent with actual avalanche runouts.
10  For the March 2020 avalanche that occurred on GL-F, reconstruction using varying release
11 depths similarly produced differing runout patterns (Fig. 7). In scenario R1, with a release
12 volume of 8.69 x 10°m?, the simulated runout did not adequately match the observed avalanche
13 extent. Likewise, scenario R2, with a release volume of 1.3 x 10°m’, also failed to reproduce
14 the mapped runout. However, when the release volumes were increased to 1.74 x 10°m?® (R3)
15  and 2.17 x 10° m? (R4), the R4 scenario provided the best overall fit to the mapped avalanche
16 extent (Fig.7), suggesting that a larger initial failure volume is required to reproduce the
17  observed deposition pattern for this event.
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3 Fig. 6. Pre-GLOF PlanetScope imagery showing (a) the source zone of the 2020 avalanche
4  from GL-A that triggered the GLOF event; (b) the mapped 2020 avalanche inundation; (c-f)
5  reconstructed avalanche runouts (R1-R4) for different release volumes. Scenarios R1 and R2
6  exhibit the best fit with the actual mapped avalanche inundation; (all background image:
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1 4.3 Future avalanche-induced GLOF process chains from Lake-B and downstream
exposure

N

Mapping of Lake-B showed exponential growth (~308%) between 1999-2024 (see section 4.1,
Fig. 5). Also, GL-B which is associated with this lake witnessed an avalanche in 2005 (Fig. 5).
To address the future GLOF hazard of the lake, the maximum possible future lake extent is
considered for GLOF modeling in this study. For this, the modeling of frontal overdeepening
of GL-B (Fig. 8a) and frontal overdeepening of Lake-B between 2000 and 2022 shows a
maximum depth of ~60 m, with a mean depth of 28.5 m, where a deep glacier depression is

observed (Fig. 8b) (section 3.3). Based on this, the maximum lake volume was calculated as

o © 0 N O g >~ W

7.7 x 10° m3. The lake volume estimated using V-A scaling approaches was ~7.4 x 10° m?, and
11 comparison between the modeled volume and the ensemble mean of scaling results showed a
12 difference of ~4%. However, for GLOF modeling, we adopted the ice-thickness-based volume
13 estimate from Farinotti et al. (2019), as it provides robust and widely validated values and has
14 been used in recent Himalayan lake studies (e.g., (Sattar et al., 2023)). Fig. 8(c) also reveals
15  that the frontal zone of Lake-B is relatively shallow (~13 m depth), whereas the central part
16 reaches depths of ~60 m. The depth variability reflects the gently dipping lake-bed toward the
17  frontal portion. Such glacial-lake beds are typical in nature as also seen in bathymetric surveys
18  of glacial lakes in the Himalaya where the lakes are deeper near the glacier terminus and gets
19  shallower towards the front (Das and Ramsankaran, 2025; Haritashya et al., 2018; Watson et
20  al, 2020).
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4 depth of the frontal overdeepening of lake GL-B; (c) Depth profile of the overdeepening (AA”)
5 along the central line of the lake GL-B and extrapolated bed profile based on the bed slope
6  extending till the frontal moraine of the lake (BB’).
7
8  In the worst-case (large-magnitude) GLOF process chain triggered by a 25 x 10°m® rock—ice
9  avalanche (SC-1) entering Lake-B, peak discharges of 2,214 m’s™' (liquid phase: lake water)
10 and 1,316 m’s’ (solid phase: avalanche debris) were generated at section-1, located
11 immediately downstream of the lake (Section 3.3; Fig. 10a). 97.5% of the water present in the
12 lake is potentially drained out of the Lake-B. In the moderate-magnitude GLOF process chain
13 (SC-2), initiated by a 12.5 x 10° m? avalanche, the peak discharge at Section-1 was 1,644
14 (water) m’s’!, representing an 25% reduction and draining 91% of the lake volume. For the
15  low-magnitude scenario (SC-3), the peak discharge was 1,260 m’s™!, a 43% reduction relative
16 to SC-1, draining 85.71% of the lake water. The avalanche volume deposited in the lake was 5
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1 x 10°m? for SC-1, 3.1 x 10°m?® for SC-2, and 1.7 x 10m? for SC-3 (Table 1). For all three
2 modeled scenarios, the avalanche mass flow continued beyond the lake and was subsequently
3 deposited downstream. 18.4 x 10®m? was deposited downstream of the lake in SC-1, 8.7 x 10°
4  m?in SC-2, and 4.2 x 10®m? for SC-3 (Fig. 9; Table 1).

GLOF routing in SC-1 showed floodwater propagating downstream and reaching Section-2
after ~5 hours and Section-3 after ~6 hours after the initiation of the GLOF event. The modeled
maximum flow depths were 2.8 m and 2 m at Section-2 and Section-3 respectively. The peak
discharge attenuated substantially along the flow path due to channel resistance, reducing to
621 m’s™! at Section-2 and further to 535 m3s! at Section-3 (Fig. 10b). By the time the flood
reaches Section-3 near the populated settlements, the peak discharge is significantly reduced
11 by 73% compared to Section-1. This emphasizes the critical role of flow attenuation over
12 distance and the influence of valley morphology, channel storage, and flow resistance along

13 the GLOF pathway.

14  The modeled worst-case GLOF scenario (SC-1) indicates that a substantial number of
15  infrastructures are at exposed, particularly those situated along the banks of the MaruSudar
16 River near Youdu and Qaderna villages. The analysis reveals that 9 bridges, 40 buildings, and
17  multiple road networks are exposed to GLOF-associated flooding (Fig. 10). GLOF flow depth
18  depths and flow velocity are reaching up to 2-4 m and 4-6 ms™' at places where infrastructure

19  is located.
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1
SC-1 SC-2 SC-3
Water released ~98% ~91% ~86%
from the lake (%)
Avalanche volume 5.0 x 10°m? 3.1 x 10°m? 1.7 x 10°m?
deposited in the
lake
Avalanche volume 20 x 10%m? 9.4x 10°m? 4.5% 10m?
overflowing lake
Magnitude High Moderate Low
2 Table 1. Percentage of water released and the total deposition volume of avalanche in the lake
3 for scenarios SC-1, SC-2, and SC-3.
4
5
6

7 = ! BistancefromilakelB g3 7km,

8  Fig. 9. Spatial distribution of avalanche deposition downstream of the Lake-B in scenarios (a)
9 SC-1, (b) SC-2, and (c) SC-3; avalanche deposition volumes are shown in bar charts and are
10  given in Mm? (x 10°m?).
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8 overlaid on the flood inundation (SC-1) to identify the exposed infrastructure; subsets B1 and
9 B2 show flow depth and flow velocity overlaid on high-resolution imagery. (Background
10  images in the subsets are © Maxar Technologies from Google Earth)
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1 5 Discussion

2 5.1 Unreported GLOFs in remote high mountains

The HKH is experiencing warming nearly twice the global average, providing favourable
conditions for the formation and rapid expansion of glacial lakes (Wang et al., 2015) . With
rising temperatures, receding glaciers, expanding glacial lakes, and degrading permafrost,
GLOFs have become an increasingly frequent phenomenon across the HKH. The frequency of
GLOFs is expected to rise further as a lagged response to the rapid expansion of glacial lakes,
drawing parallels to the lagged response to post-Little Ice Age warming during the 1930s
(Harrison et al., 2018). Zheng et al. (2021) reported that at least 21 GLOF events occurred per
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year in the region from 1900 to 2016, with the majority being unreported (Zheng et al., 2021a).
11 A regional inventory of unreported GLOF revealed that 57% (101 events) occurred in the
12 Himalaya, highlighting the region as a global hotspot for unreported GLOFs (Zheng et al.,
13 2021a).

14 In the remote Himalayan region, GLOFs and mass movement events often remain unreported
15  (Veh et al.,, 2022, 2019), due to their limited downstream impact and subtle geomorphic
16  signatures. In the case of Lake-A, the unreported 2020 outburst can be attributed to multiple
17  interlinked factors. First, the outburst released a low water volume, as sediment infilling and
18  reduced meltwater inputs had substantially decreased the lake’s storage capacity prior to failure
19  (Emmer, 2024). Consequently, the resulting flood lacked the hydraulic force necessary to
20  induce significant geomorphic disturbances such as extensive channel erosion, debris fans, or
21  bank destabilization that typically serve as visible evidence of past GLOFs (Liitzow et al.,
22 2023). Second, the absence of any notable damage to downstream infrastructure or settlements
23  contributed to its invisibility in hazard records and local knowledge systems (Emmer et al.,
24 2020; Emmer and Cochachin, 2013; Zheng et al., 2021a). Emmer and Vilimek (2014) also
25  highlighted that small-volume outburst floods are often unreported, especially in sparsely
26  populated regions with minimal monitoring networks (Emmer and Vilimek, 2014).
27  Additionally, if the outburst flow is rapidly attenuated within short downstream distances due
28  to channel storage, infiltration, or debris-dominated flow regimes, its cascading impacts may
29  be negligible and undetectable through satellite-based geomorphic change analysis (Allen et
30 al., 2022; Dubey et al., 2024).
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The September 2020 GLOF from GL-A, initiated by an ice avalanche originating from its
headwall, exemplifies the complex interplay between cryospheric processes and cascading
hazards in high mountain regions (Sattar et al., 2022). Although this event breached a small
proglacial lake (Lake-A) (Fig. 11), its downstream impact remained negligible. This reduced
storage capacity resulted from significant sediment infilling and meltwater contributions from
surrounding glaciers, which progressively lowered the effective reservoir volume prior to the
outburst. Similar sediment infilling dynamics have been reported by Emmer (2024), who
suggested that such processes can rapidly diminish lake storage capacity and, in some cases,
lead to the disappearance of glacial lakes, thereby reducing their hazard potential (Emmer,
2024).
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Fig. 11. Schematic showing (A) the glacier valley and the glacier complex (GL-A, GL-B, GL-
C, GL-D, and GL-E) and the glacier where the 2005 and 2020 avalanche-triggered GLOF
occurred; (B-C) process showing the evolution of GL-A glacial lake before the 2020 avalanche
impact; (D) the 2020 avalanche filling up the lake basin completely, draining the lake, and
causing a GLOF event.
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However, the reformation of the lake in the same basin post-2020 (Fig. 3 & S1), coupled with
ongoing sediment influx from adjacent glacier meltwater streams such as GL-E (Fig. 12),
presents a renewed risk for future outbursts (Sattar et al., 2025a). While sedimentation may
temporarily reduce hazard potential by lowering lake volume (Emmer and Cochachin, 2013;
Worni et al., 2013), it can also create a false sense of stability if dynamic geomorphic and
cryospheric processes are not regularly monitored (Emmer et al., 2025; Sattar et al., 2025a). Of
particular concern is permafrost degradation, known to destabilize headwalls and slopes,
facilitating rock and ice avalanches that can trigger lake breaches (Gruber, 2012; Haeberli et

al., 2007; Hjort et al., 2022; Huggel et al., 2008).

© 00 N O a »~ w0 N

27



https://doi.org/10.5194/egusphere-2025-6281
Preprint. Discussion started: 4 January 2026
(© Author(s) 2026. CC BY 4.0 License.

Meltwater streams
from GL-D causing
. sedimentation in lake

Sediment deposits

(01.09.2020; Pre GLOF)

Sediment deposits

"X

\

\
Disconnected lake

EGUsphere®

Pre event (01.09.2020)

Streams from GL-C and
lake of GL-A directly
\ contributing to lake GL-B
|

Pre GLOF channel condition
Lake outlet

Lake associated
with GL-B

due to sedimentation

New formed due to infill

sediment

Meltwater streams
from GL-D causing
pre-GLOF sedimentation in lake

breaching LM
of GL-A

Post GLOF
condition of the lake,
fully drained

O bh WN-

Streams from GL-C and Post GLOF channel condition

lake of GL-A,directly

\ contributing to lake GL-B  Lake outlet

No sign of overflow

Lake associated
with GL-B
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GLOF scenario where the lake is visible with sediment deposits dividing it into two, and (b)
post-GLOF scenario where avalanche deposits are visible and the lake is completely drained
with no water present. Erosion immediately downstream of the lake and deposition of debris
is also visible (Background images are © PlanetScope)
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1 The proximity of Lake-A to Lake-B, only a few hundred meters downstream (Fig. 11-13),
2 further elevates the potential of cascading hazard. Unlike Lake-A, Lake-B shows no visible
3 sediment infill (Fig. 12) and has expanded significantly (~ 308 %) over 25 years, retaining a
4  substantial water volume. This adjacency raises concern for cascading hazards: a slope failure
5 or avalanche into Lake-A could produce sufficient flood momentum to impact Lake-B,
6  potentially triggering sequential outburst. Westoby et al. (2014) highlighted that ice-calving
7  and avalanche-induced displacement waves are known triggers of outburst floods (Westoby et
8 al., 2014). Worni et al. (2013) similarly emphasized that lakes with minimal sediment infill
9  remain at higher hazard potential due to larger water storage (Worni et al., 2013).
10  Observations confirm that the GLOF and debris flow from Lake-A in 2020 did not affect Lake-
11 B’s geomorphology, as no evidence of flooding or erosion were detected downstream of Lake-
12 B (Figs. 12 and 13). Nevertheless, the compounded-risk scenario remains significant where a
13 single mass movement could (i) trigger a GLOF from Lake-A, (ii) transport substantial debris
14 loads that enhance downstream flood intensity, and (iii) destabilize the moraine dam of Lake-
15 B through either hydraulic or mechanical erosion. Such multi-lake cascading hazards can
16 produce impacts far beyond those of single-lake outbursts (Harrison et al., 2018). Lake-B did
17  experience a rock/ice avalanche in 2005; however, the lake was smaller at that time, and the
18 avalanche stopped in the ablation zone before reaching the lake (Fig. 5). In contrast, by 2024,
19  Lake-B has attained its full extent, and if an avalanche of similar magnitude to that of 2005
20  were to occur under current conditions, it would directly impact the lake, potentially triggering
21 ahazard cascade downstream (Fig. 13).

22  Time series analyses show that Lake-B receives significant meltwater from GL-C and GL-A
23  (Fig. 12), and PlanetScope imagery indicates large transverse crevasses and floating ice chunks
24 within the lake, signifying active calving (Fig. 5). A large calving event with higher magnitude
25  tothosein 2016 and 2017 (Fig. 5) could rapidly displace water, generating displacement waves
26  capable of overtopping the moraine dam and triggering an outburst (Westoby et al., 2014).

27

28
29
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1
2 Fig. 13. Schematic showing (A) the glacier valley and the glacier complex (GL-A, GL-B, GL-
3 C, GL-D, and GL-E) and the glacier where the 2005 and 2020 avalanche-triggered GLOF
4 occurred; (B) process showing the evolution of GL-B glacial lake before the 2005 avalanche;
5  (C) the 2005 avalanche terminated before lake impact on GL-B; (D) the GL-B lake grew to its
6  full extent.
7
8
9  The Lake-B present a potential GLOF risk to downstream villages such as Metwan, Quadarna,
10  Anyar, and Yordu, located approximately 50-55 km downstream of the lake. Two major
11 hydropower project sites (Bursar; 800 MW and Pakal Dul; 1000 MW) are around 90 km away
12  from the lake. Though potential GLOF flow would reach a steady flow at these locations,
13 transported debris and water volume can adversely impact these sites. High-resolution imagery
14 shows that several settlements have emerged near the river in the past two decades (Fig. 10).
15  Additionally, new hydropower projects can lead to further population growth in this valley to
16 meet the region's energy demand, potentially exposing them to considerable GLOF risks in the
17  future. This spatial pattern of exposure underscores the urgent need for community-level early
18  warning systems, strategic GLOF mitigation for highly exposed settlements, and resilient
19 infrastructure design to mitigate the potentially devastating impacts of future GLOF events in
20  the region.
21
22
23
24
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5.2 Permafrost degradation and avalanche formation in the Warwan sub-basin

The progressive increase in regional temperature directly influences permafrost stability in
high-altitude glacierized catchments (Gruber et al., 2017), including the glacier complex
studied here. This warming leads to the progressive degradation and thawing of ice-rich
permafrost interface along steep headwalls and valley flanks(Gruber and Haeberli, 2007;
Nicolsky and Romanovsky, 2018). Gruber and Haeberli (2007) emphasized that thawing
permafrost results in a loss of cohesive strength within rock-ice mixtures, enhancing slope

instability, exacerbating surface deformation, and promoting rockfall and rock-ice avalanches

O © 0 N O g H» WN -

(Gruber and Haeberli, 2007). The avalanche events reported in this study might also be linked
11 to the ongoing permafrost degradation. Fig. S2 shows permafrost probability and active layer
12 temperatures (Ran et al., 2022) in the catchment, both of which indicate increasingly unstable
13 ground conditions. This information is particularly relevant for the September 2005 and
14 September 2020 events, which occurred on GL-B and GL-A, respectively. Both glaciers are
15  fed by the steep headwalls underlain by permafrost, where warming-induced reduction in
16  intergranular ice cohesion could have triggered detachment of ice masses and rock blocks

17  (Fischer et al., 2012; Haeberli et al., 2010).

19  Recent observations show avalanches originating from the headwall region of both GL-A and
20  GL-B. These events strongly suggest that permafrost degradation might have played a critical
21 role in destabilising frozen rock masses, ultimately leading to failure initiation (Fig. S2) (Stoffel
22 et al., 2024). Such permafrost-related slope failures can further modify glacier dynamics by
23 depositing debris onto glacier surfaces, increasing surface loading, and modifying ice flow
24 patterns, as observed during the Blatten rock-ice avalanche in the Swiss Alps in 2025 (Islam et

25 al, 2025; D. Yang et al., 2025).

27  We reconstructed two recent avalanche events in the Warwan sub-basin, estimating release
28  volumes of 1.13 x 10°m? (September 2020) and 2.17 x 10°m* (March 2020). These magnitudes
29  are comparable to GLOF-triggering avalanches in other mountain ranges such as Cordillera
30 Blanca (0.2-0.4 x 10°m®) (Worni et al., 2014) and the Tibetan plateau (3.8 x 10°m?) (L. Yang
31 etal, 2025). In IHR, studies indicate that avalanches with release volumes exceeding 0.5 x 10°
32  m?are typically required to trigger a GLOF (Abhinav and Sattar, 2025; Rounce et al., 2017).
33 In this study, avalanche reconstruction relied primarily on mapped spatial extents, due to the

34  absence of field-measured snow/ice thickness, deposit depth, or density data. As a result, the
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RN

reconstructed release depths and velocities carry uncertainty, and matching modeled versus
observed deposit characteristics remains a challenge. Future studies integrating drone surveys,
LiDAR, or field-based measurements of avalanche debris depth and flow indicators would

greatly improve parameter estimation (Abhinav and Sattar, 2025).

Permafrost degradation is expected to continue under current warming trends, further
weakening slope stability and increasing the likelihood of repeated avalanche activity in the
catchment. The combination of repeated ice avalanches (volumes > 0.5 x 10° m%), steep

permafrost-degrading headwalls, and expanding glacial lakes in the sub-basin pose a serious

o © 00 N OO0 b~ W N

and evolving GLOF hazard. As Lake-A has re-formed following the 2020 event, the renewed
11 presence of a lake increases the likelihood of future avalanche-triggered GLOFs, raising

12 concern over potential cascading hazards in the region.

14 5.3. Potential for future debris flow in the valley

16 The catchment shows clear geomorphic evidence of past mass-wasting processes, including
17  debris flows and rock slides, particularly along the river course, which originates from the
18  proglacial lake (Fig. 14) (Rai et al., 2025). Historical slope failures, including large rock slides
19  (Fig. 14 d, g, h), appear to have disrupted river flow periodically, suggesting a long history of
20 landscape instability. More recent debris flows, likely triggered by intense monsoonal
21 precipitation (Fig. 14 j-n), further demonstrate the catchment’s sensitivity to
22  hydrometeorological forcing. These processes have contributed to a significant accumulation
23  of unconsolidated sediments along the valley, increasing the potential for future sediment
24 remobilization. In this context, a future GLOF could act as a high-magnitude trigger (multi-
25  fold hazard cascade), mobilizing existing debris and initiating extensive downstream debris
26  flows (Emmer et al., 2025; Sattar et al., 2023; Yanites et al., 2025). The combination of steep
27  topography, readily available loose material, and hydrological triggers indicates that the
28  catchment is already predisposed to cascading hazards. Modeled GLOF from Lake-B shows
29  that flow would encounter alternate steep and gentle slopes (Fig. 14a). The major portion of
30 the valley along the GLOF flow path is steep which will allow high energy flows and thus more
31  erosion. Thus, any future GLOF event in the valley is unlikely to occur in isolation; instead, it
32  may initiate a sequence of hazards, including debris flows, temporary channel blockages, and
33  subsequent downstream flooding. However, in the current study, we have modeled only the

34  downstream water routing, as modeling the complex interplay between sediment erosion and
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1 deposition in the case of a debris flow from the lake is challenging and requires further
2 investigations. This underscores the importance of assessing compound and cascading hazard
3  interactions rather than focusing solely on isolated processes when evaluating risk in
4 glacierized catchments.
5
6
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8 Fig 14. The elevation profile of the GLOF flow channel and the modeled average GLOF
9  velocities and depth at 5 km intervals; potential zones of erosion (E) and deposition (D) are
10  marked based on GLOF hydraulics and the slope of the valley; (b-0) high-resolution imageries
11 showing previous mass movement events and their deposits at various locations along the
12 potential GLOF path from Lake-B. (Background images in b-o are © Maxar
13 Technologies/CNES/Airbus)
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5.4 Socio-Economic factors of GLOF exposure and vulnerability:
The GLOF inundation map (Fig. 10), prepared based on a potential worst-case GLOF scenario,

demonstrates that most infrastructures located along the flow channels of the Fariabad Nallah
and MaruSudar River fall within the GLOF inundation zone. Notably, road networks and
residential buildings near the riverbanks of Fariabad Nallah, at Anyar and Rinaie villages, fall
within these GLOF zones due to their immediate proximity to the river course.

The exposure and vulnerability of communities to GLOFs are deeply rooted in the socio-
economic characteristics of affected regions. Numerous studies (Carrivick and Tweed, 2016;
Khanal et al., 2015) highlight that settlements in high mountain environments are inherently
exposed due to their proximity to glacial lakes and dependence on valley-bottom resources.
The concentration of infrastructure, such as hydropower facilities, bridges, and road networks,
along river corridors significantly amplifies economic exposure, as seen in previous GLOF
disasters in Bhutan (Komori et al., 2012), Nepal (Cook et al., 2018; Sattar et al., 2025b), and
more recently in Uttarakhand (Shugar et al., 2021) and Sikkim (Sattar et al., 2025a).

Vulnerability, however, is shaped not only by physical exposure but also by socio-economic
capacities such as income level, education, access to resources, social networks, and
institutional preparedness (Huggel et al., 2015). Marginalised and economically weaker
communities are disproportionately vulnerable, as their limited adaptive capacity restricts
proactive risk reduction measures (Carey et al., 2012). For example, dependence of the local
economy on agriculture along floodplains and limited access to early warning systems increase
both direct and indirect risks (Shrestha et al., 2010). In this region, increasing agricultural
expansion and newly built infrastructure along the floodplain exacerbate exposure, placing

more households and assets directly in harm’s way.

For hazard mapping at villages such as Qaderna, Yurod, Anyar, and Rinaie, which are located
along the shoreline of the flow channel, the baseflow contribution was assumed negligible
relative to the hydraulic force generated by the outburst flood. However, it is important to
acknowledge that in a high-magnitude scenario, the addition of baseflow to the GLOF peak
discharge would cumulatively increase the total flow volume, potentially resulting in elevated
water levels and enhanced flood stage (Carrivick and Tweed, 2016; Veh et al., 2020). This
could marginally expand the inundation extent, particularly in confined channel reaches or low-
lying areas adjacent to the river, thereby intensifying the hazard levels faced by these

settlements and increasing the vulnerability of infrastructure situated close to the riverbanks.
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GLOF modeling of Lake-B shows the arrival time at Anyar and Qaderna is 5 hours and 6 hours
respectively in SC-1. We understand that the GLOF hydraulics and arrival times are sensitive
to the process chains and the modeling approaches. Thus, leaving the possibility of lower
warning times in case of different GLOF processes of Lake-B. However, an early warning
system closer to the source (Lake-B) will be able to provide a good lead time in case of potential
GLOF warnings. Also, for a conservative approach effective adaptation requires integrated
approaches that combine glacial lake hazard assessments with community-based vulnerability
evaluations and social protection policies. Such approaches can reduce exposure while
enhancing resilience in vulnerable high-mountain communities. All of the downstream
infrastructure, including settlements, roads, bridges, and hydropower projects, is located along
the potential GLOF path from Lake-B. Therefore, actively monitoring the evolution of this
glacier-lake complex and conducting GLOF hazard assessment is crucial, given the number of

downstream settlements and potential exposure of critical infrastructure.

6. Conclusion

This study provides a comprehensive understanding of the evolving cryospheric and
geomorphic processes in the Warwan sub-basin over the past two and a half decades. Multi-
temporal satellite analyses revealed significant glacier retreat, particularly for GL-A and GL-
B, contributing to the expansion of associated proglacial lakes. Lake-B exhibited a remarkable
growth of ~308% between 1999 and 2024, primarily due to glacier retreat, meltwater inflow,
and successive calving events. In contrast, Lake-A showed a modest expansion (~26%) until it
was completely drained in the 2020 GLOF event, triggered by an ice avalanche entering the
lake. Permafrost distribution in the region suggests that permafrost warming can play a
significant role in triggering mass-wasting processes and promoting the destabilization and
degradation of steep slopes. Future GLOF modeling suggests Lake-B poses a substantial
downstream GLOF risk in the valley. Despite attenuation along the flow path, vulnerable
downstream settlements, including Youdu and Qaderna, face significant flood exposure. GLOF
exposure assessment reveals that numerous bridges, residential structures, and road segments
lie within modeled inundation zones. The possibility of GLOF to debris flow cascades is very
high in the valley owing to the available sediment for remobilization, which in turn can pose

higher risk to downstream infrastructure and hydropower.

The findings emphasize the dynamic interplay between glacier retreat, sedimentation, lake

expansion, and avalanche activity in shaping GLOF hazards in the Warwan sub-basin. The
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results underscore the critical need for integrated monitoring of cryospheric processes,
improved early warning systems, community-based preparedness, and robust mitigation

strategies to safeguard life, livelihoods, and infrastructure in the region.
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