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Text S1 Positive Matrix Factorization (PMF) source apportionment 42 

PMF, as a receptor model, decomposes the sample matrix into two matrices (factor 43 

contributions and factor profiles), and has been widely used in source apportionment of 44 

atmospheric pollutants (Wu et al., 2024; Li et al., 2023). Details regarding the PMF 45 

model are available on the EPA website (https://www.epa.gov/air-research/epa-46 

positive-matrix-factorization-50-fundamentals-and-user-guide, last access: 16 May 47 

2025). Herein, the EPA PMF 5.0 was employed to conduct source apportionment of 48 

organic matter (OM), with input parameters including the mass concentrations of major 49 

species (OM, EC, WSOC, NO3
-, NH4

+, Mg2+, Ca2+, WSOC, NACs), and organic 50 

markers (benzo(b)fluoranthene (BbF), benzo(e)pyrene (BeP),indeno(1,2,3-c,d)pyene 51 

(IP), levoglucosan). The samples from all the sampling sites were added together as one 52 

data matrix, and the model was run numerous times with 3–7 factors to obtain the 53 

optimal solution. Base on the Q value (Q true:14982 and Q robust:14478) and 54 

interpretability, three factors were obtained as the optimal solution, which are indicative 55 

of a strong correlation between input species and simulated ones (R2>0.83).  56 

 57 

Text S2 Estimation of secondary WSON  58 

To quantify the relative contributions of the primary emission and secondary formation 59 

to the particulate WSON, a tracer method analogous to the EC-based approach 60 

commonly used for secondary organic carbon was employed here. The equation is as 61 

follow: 62 

 WSONsec=WSON- [
WSON

EC
]

pri

×EC S1 

Here, WSON, WSONsec and EC denote the mass concentrations of the particle-63 

phase WSON, secondary WSON and EC, respectively. Herein, EC serves as the tracer 64 

https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide
https://www.epa.gov/air-research/epa-positive-matrix-factorization-50-fundamentals-and-user-guide
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of the combustion source. [
WSON

EC
]
pri

 is estimated by fitting the lowest 15% of [
WSON

EC
] 65 

data points. Above method was further extended to estimate the secondary NACs in the 66 

present study.  67 

 68 

Text S3 Theoretical estimation of chemical forms of SNA 69 

To reveal the major SNA forms during the sampling period, the theoretical ammonium 70 

concentration was calculated according to thermodynamic equilibrium with the 71 

atmospheric sulfate and nitrate levels. The theoretical ammonium levels were 72 

calculated as follows: 73 

 
NH4

+
calculate

=(
[SO

4

2-
]

48
+

[NO
3

-
]

62
)×18 S2 
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where [SO4
2-] and [NO3

-] refer to atmospheric concentrations measured in μg/m3. 74 

The NH4
+

calculate is achievable through Equation (5) if (NH4)2SO4 and NH4NO3 serve as 75 

the dominant species. Conversely, equation (6) demonstrates that NH4HSO4 and 76 

NH4NO3 are abundantly present in the analyzed aerosols. 77 

 78 

Text S4 Aerosol liquid water content (ALWC), in-situ pH and gas-to-particle-79 

phase partitioning coefficient of ammonia 80 

A robust thermodynamic model (ISORROPIA-II) was employed to theoretically 81 

estimate the aerosol liquid water content (ALWC) and in-situ pH in PM2.5, which has 82 

been widely used in previous studies (Song et al., 2018; Pye et al., 2020). By combining 83 

the actual temperature (T) and relative humidity (RH) in the atmosphere and the water-84 

soluble ions composition, the ALWC and H+ loads can be simulated by running the 85 

model under the metastable mode. And the in-situ pH can be calculated by Eq. S2. 86 

 
pH=

[H+]×1000

ALWC
 

S4 

Where the units for H+ and ALWC are the μg m-3. Gaseous ammonia was not detected 87 

in this study, thus, which may lead to overestimation of aerosol acidity. Furthermore, 88 
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the gas-to-particle-phase partitioning coefficient of ammonia (εNH4+) was theoretically 89 

calculated following the method reported by Nah et al. (2018) and Guo et al. (2017): 90 

 

ε(NH4
+)≅

γ
H+10

-pH

γ
NH4

+
HNH3

* ALWC×R×T×0.987×10
-14

1+
γ

H+10
-pH

γ
NH4

+
HNH3

* ALWC×R×T×0.987×10
-14

 
S5 

 ln(HNH3

* )=25.393-10373.6 (
1

Tr

-
1

T
) +4.131(

Tr

T
- (1+ ln (

Tr

T
)) ) S6 

Here, γ
H+ and γ

NH4
+ are the activity coefficients of H+ and NH4

+, respectively; and 91 

both were assumed to be 1 in this study. HNH3

* is equilibrium constant calculated by Eq 92 

S4; R is the gas constant. For the the εNH4+ calculation, the pH value was adjusted 93 

slightly, while parameters adopted the average values obtained during the campaign.  94 

 95 
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Table S1 Information of nitroaromatic compounds detected in this study. 123 

 124 

Compounds Molecular Formula CAS number Abbreviation 

4-Nitrophenol  139.11 C6H5NO3 100-02-7 4NP 

3-Methoxy-4-nitrophenol  153.14 C7H7NO3 2581-34-2 3M4NP 

2, 4-Dinitrophenol 184.11 C6H4N2O5 51-28-5 2,4DNP 

4-Nitroguaiacol 169.14 C7H7NO4 3251-56-7 4NGA 

5-Nitroguaiacol 169.14 C7H7NO4 636-93-1 5NGA 

4-Nitrocatechol 155.11 C6H5NO4 59030-13-6 4NC 

4-Methyl-5-nitrocatechol  169.13 C7H7NO4 68906-21-8 4M5NC 

3-Nitrosalicylic acid  183.12 C7H5NO5 85038-1 3NSA 

5-Nitrosalicylic acid  183.12 C7H5NO5 96-97-9 5NSA 

 125 

 126 

 127 

 128 

Table S2 Statistical metrics for evaluation of RF model performance  129 

Statistical metrics  

R2 0.94 

MSE 0.024 

RMSE 0.16 

MAE 0.1 

Note: MSE: mean square error; RMSE: root-mean-square error; MAE: mean absolute error. 130 

 131 

 132 

 133 

Table S3 The abs365 and MAE365 of water-soluble BrC in PM2.5 among different cities 134 

in the world. 135 

 136 

Location Year abs365 (Mm–1) MAE (m2 g–1) Reference 

Beijing 

2011 10.2±6.9 1.22±0.11 Cheng et al. (2016) 

2013 14±5.2 1.54±0.16 Yan et al. (2015) 

2018 12.5 1.2 Li et al. (2020b) 

2021 3.5±3.4 1.1±0.4 You et al. (2024) 

2023 2.3±1.9 0.7±0.5 This study 

Tianjin 

2018 7.9±5 1.04±0.3 
Chen et al. (2024) 

2020 7.5±5 1.27±0.3 

2023 5.7±3.8 1.12±0.05 This study 

Handan 

2018 16.8±2.7 1.22±0.3 
Chen et al. (2024) 

2020 11.1±2.3 1.1±0.27 

2023 8.2±5.0 1.05±0.02 This study 
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Jinnan 

2014 10.3±6.5 0.88±0.4 Shi et al. (2023) 

2018 5.42 0.65 Zhang et al. (2022) 

2023 6.9±3 1.4±0.02 This study 

Nanjing 

2018 9.47±5.83 1.27±0.34 Bao et al. (2022) 

2020 3.12±2.41 0.58±0.26 Feng et al. (2023) 

2021 4.73±1.97 1.23±0.26 Cui et al. (2025) 

2023 3.73±2.46 0.62±0.18 Zhou et al. (2025) 

Xi’an 

2012 22.6±12.3 1.31±0.4 Lei et al. (2023) 

2016 28±16 1.2±0.06 Wu et al. (2020) 

2018 17.8±9.6 2.0±0.6 Li et al. (2020a) 

2021 6.7±1.4 0.83±0.22 Wang et al. (2025) 

Guangzhou 

2012 3.57±1.34 0.81±0.16 Liu et al. (2018) 

2016 5.8 0.98 He et al. (2023) 

2018 2.5±2 1±0.21 Zou et al. (2023) 

2019 4.3 0.34 Wang et al. (2022) 

Seoul, Korea 2012 7.31 1.02 Kim et al. (2016) 

Leipzig, Germany 2014 3.91±2.5  Teich et al. (2017) 

Milan, Italy 2016 3.0±1.3  Gilardoni et al. (2020) 

Pasadena, USA* 2010 0.88±0.71 0.77 
Zhang et al. (2011) 

Atlanta, USA* 2010 0.61±0.38 1.15 

Southeastern US* 2013 0.42±0.43 0.84±0.37 Xie et al. (2019) 

Note: * indicates the samples collected in summer 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 
Figure S1 Topographic distribution the sampling sites in the NCP. (The maps are the 145 

reproductions from ©Baidu (https://image.baidu.com/, last access: 16 July 2025)) 146 
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 147 

 148 

Figure S2 Temporal variations of meteorological factors, PM2.5 and O3 at five sampling 149 

sites. (The shade indicates the humid haze event.) 150 

 151 

 152 
Figure S3 The source of the abundant chloride across the NCP and its effect on sulfate 153 

formation. (a) Molar ratio of Cl– and SO4
2–; Linear fit regression for Cl– with BbF+ 154 

levoglucosan (b) and SOR (c). 155 

 156 
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 157 

Figure S4 Source apportionment for OM at five sampling sites during the campaign.  158 

 159 

 160 

 161 

 162 

Figure S5 BeP/(Bep+Bap) and (IP+BghiP)/PAHs ratios at all the sampling sites (a); 163 

Dependence of MAE365 on BeP/(Bep+Bap) across the NCP (b).  164 

 165 
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 166 

Figure S6 Comparison of the percentage of WSONsec in the total under different 167 

PM2.5 loads.  168 

 169 

 170 

 171 

Figure S7 Comparison of the calculated and observed NH4
+concentrations across the 172 

NCP (a); The ALWC/(ALWC+PM2.5) ratio at different periods (b). 173 

 174 
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 175 

Figure S8 Scattering plot of Ims-related fragments versus levoglucosan+BkF 176 

 177 
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