

1 Brief communication: Three dimensional modelling of surface
2 waves generated by shallow submarine volcanic eruptions

3 Manish Kanojia*¹

4 ¹Institute of Coastal Systems-Analysis and Modeling, Helmholtz-Zentrum Hereon,
5 21502 Geesthacht , Germany

6 **Abstract**

7 This study investigates the generation of surface waves during shallow submarine volcanic
8 eruptions by incorporating a Gaussian heat flux at the seabed to simulate eruption dynamics.
9 Using the three-dimensional ocean flow model PSOM, we analyzed wave generation mechanisms
10 under varying heat flux levels (10,000 W/m² and 20,000 W/m²) and volcanic depths. Results
11 demonstrate that higher heat flux values and shallower eruption depths produce larger surface
12 waves, corroborating findings from prior research. By modeling the heat flux-driven convection
13 flows, including plume generation and water entrainment, the study highlights the critical role of
14 thermal effects in tsunami formation. The proposed methodology enhances traditional tsunami
15 models by accounting for heat flux impacts on vertical velocity and surface displacement. These
16 findings provide new insights into the hazards posed by shallow submarine eruptions, improving
17 risk assessments for coastal regions.

18 **1 Introduction**

19 Substantial submarine volcanic eruptions occurring within the top 500 meters from the water's surface
20 are likely to produce waves on the surface [Kanojia et al., 2023, Paris et al., 2014]. Traditional tsunami
21 generation models employ a displacement potential function to account for the initial displacement
22 caused by seismic or non-seismic events at the sea surface. This approach incorporates the addition of
23 mass flux or seabed displacement due to various factors such as landslides or other geological activities.
24 However, submarine volcanic eruptions not only introduce mass to the system but also generate a
25 significant heat flux which is the focus of this paper. The heat flux causes convection flows driven by
26 buoyant forces acting on the high-temperature, less dense water near the volcano. Consequently, this
27 results in the upward movement of water. In a shallow environment with substantial heat flux, this
28 vertical flow can penetrate the free surface and generate surface waves. Incorporating the heat flux
29 introduces high temperatures near the volcano and includes the phenomenon of plume generation and
30 the entrainment of water into the plume. This affects the vertical velocity, consequently impacting the
31 generation of the surface waves.

32 The tsunami generation process is complex but can be summarized as follows: As the volcano
33 erupts, it forces an initial upward movement of the water column directly above the site of the eruption.
34 This sudden displacement creates a dome-shaped structure on the ocean's surface, a visible bulge
35 formed by the rapid rise of water. Following the initial uplift, the water that was forced upward begins
36 to collapse back. This collapse results in the formation of a trough directly above the volcanic site. The
37 water rushes back down, creating a localized depression in the ocean surface. From this trough, waves
38 start to propagate outward in all directions. The energy from the eruption causes these waves to travel
39 rapidly across the ocean surface. As they move away from the trough, the waves grow in height and
40 spread out [Le Méhauté and Wang, 1996, Torsvik et al., 2010, Paris, 2015, Paris and Ulvrova, 2019,
41 Kedrinskii, 2005, Morrissey et al., 2010, Nakano et al., 1954, Moore et al., 1966, Muraviev et al., 1998,
42 Nishimura et al., 2005]. Some of the recent studies [Liu and Fritz, 2023, Schindelé et al., 2024] also
43 discuss the same mechanism for surface wave generation due to submarine volcanic eruptions.

*Email: kanojiam@tcd.ie

44 We will utilize the three-dimensional ocean flow model PSOM [Mahadevan et al., 1996b, Mahadevan et al., 1996a]
 45 to examine the surface waves generated by the introduction of a high heat flux at the seabed in a shal-
 46 low environment. A Gaussian heat flux profile will be applied at the seabed with significant heat
 47 flux values. We will investigate two different heat flux levels (10000, 20000 watts/m²) at the seabed
 48 and compare the resulting surface waves. Additionally, we will analyze the surface elevation for the
 49 cases with different depth of volcano from free surface. This analysis aims to identify the best-case
 50 scenario for shallow volcanoes near the coast, which could potentially cause damage to infrastructure
 51 and coastal communities.

52 2 Model parameters and initial conditions

53 The domain's dimensions are 30 kilometers in both the x and y directions. Mean salinity $S_0 = 35.70$
 54 ppt, mean temperature $T_0 = 15^\circ\text{C}$ and mean density $\rho_0 = 1027 \text{ kg/m}^3$. The value of earth's angular
 55 velocity is $7.272 \times 10^{-5} \text{ rad/sec}$, the magnitude of Coriolis parameter is 10^{-4} rad/sec , the acceleration
 56 due to gravity on the surface of the earth at sea level is 9.81 m/s^2 , value of Earth's radius is 6371
 57 km. The grid dimensions are as follows $NI = 128$, $NJ = 128$, and $NK = 36$ in x , y and z dimensions
 58 respectively. The diffusion and viscosity in both the horizontal x and y directions is $2 \text{ m}^2/\text{s}$ and
 59 vertical diffusion is $10^{-5} \text{ m}^2/\text{s}$. Damping has been implemented at the boundaries to prevent reflections
 60 generated when the flow reaches the perimeter.

61 The flux at two lateral boundaries is considered to be zero.

62 Due to heat flux at the bottom boundary we introduce the boundary condition at seabed as

$$\kappa \frac{\partial T}{\partial z} = \frac{Q}{\rho C_p}, \quad (1)$$

63 where Q is specified heat flux at the bottom boundary, C_p is the specific heat capacity.

64 At the time $t = 0$, the velocities u , v , and w are all initialized to zero, meaning the water is initially
 65 motionless.

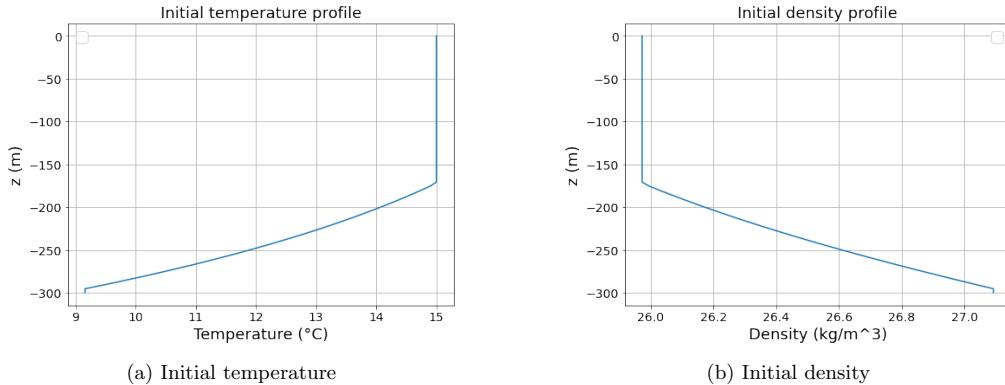


Figure 1: Plots for initial temperature and density profile.

66 3 Results

67 3.1 Case 1: Heat flux 20,000 watts/m²

68 A Gaussian heat flux profile was applied to the seabed, with the peak heat flux reaching 20,000 watts
 69 per square meter at the coordinates $(x, y) = (0, 0)$ and gradually decreasing to zero in both directions.

70 Figure 2 (a) illustrates that one minute after the eruption begins, a dome-shaped structure forms on
 71 the free surface. Following this, the vertical dome undergoes a gravity collapse, creating a trough from
 72 which waves propagate outward on both sides (see Figure. 2 (b)-(d)), as discussed in [Liu and Fritz, 2023,
 73 Schindelé et al., 2024]. Figure 2 (b)-(d) demonstrate that with the continuous addition of heat flux at

74 the seabed, the surface elevation increases, reaching approximately 1 meter at $t = 11$ minutes and 2
75 meters at $t = 13$ minutes. Additionally, these figures show that as the heat flux continues to be added
76 and the wave elevation rises, the domain of influence of the waves on the surface expands. Specifically,
77 in Figure 2 (b), at $t = 6$ minutes, the waves dissipate within a range of 5000 meters on both sides,
78 with the elevation reaching zero at this distance. However, Figure. 2 (c) and (d) indicate that there is
79 a positive elevation at 5000 meters from the source, with the elevation decreasing to zero around 6000
80 meters from the source in both directions.

81 **3.2 Case 2: Heat flux 10,000 watts/m²**

82 In this case, a Gaussian heat flux, peaking at 10000 watts/m² at the coordinates $(x, y) = (0, 0)$, was
83 applied to the bottom boundary.

84 In case 2, the initial upward displacement of the surface is observed six minutes after the eruption.
85 As more heat flux is added, the initial dome-like structure collapses due to gravity, forming a trough.
86 Subsequently, waves begin to propagate outwards from both sides of the trough (see Figure 3 (a)-(d)).
87 Even after 13 minutes post-eruption, the surface elevation remains minimal, with a maximum of 0.02
88 meters. However, with continuous heat flux input (eruption) for over 20 minutes, the surface elevation
89 increases significantly, reaching approximately 1.5 meters at 24 minutes after the initial eruption. At
90 this point, the influence of the surface waves extends up to a range of 5000 meters (see Figure 3 (d)).

91 **3.3 Comparison of case 1 and 2**

92 It should be noted that in case 1, a heat flux of 20,000 watts/m² was introduced at the seabed. Due
93 to the large energy input, the simulations were executed for 15 minutes to ensure numerical stability.

94 In both cases, the phenomenon of surface wave generation is consistent with the findings discussed
95 in [Liu and Fritz, 2023, Schindelé et al., 2024]. However, higher elevations were observed in a shorter
96 time span in case 1, where a larger heat flux was introduced at the seabed. This is because a larger
97 heat flux rapidly heats the water around the volcano, increasing the temperature more significantly
98 compared to case 2, for example after 6 minutes from the eruption the temperature near the volcano
99 in case 1 was 600°C whereas in case 2 it was around 110°C (see Figure 4). Consequently, the water
100 becomes less dense, resulting in a larger buoyant force. This causes the water to be convected upward
101 more quickly, reaching the surface sooner and with higher impact velocity creating larger waves. It
102 can further be noted from Figure 2 (d) and 3 (b) that at 13 minutes after the eruption the highest
103 wave elevation in case 1 was 2 meters where as in case 2 it was around 0.03 meters.

104 The extent of the wave impact on the free surface varies between the two cases, despite observing
105 nearly the same wave elevation. In the first case, when a two-meter wave was observed, the domain of
106 influence extended approximately 6000 meters in both directions (see Figure 2 (d)). However, in the
107 second case, with a nearly two-meter wave, the domain of influence was limited to within 5000 meters
108 in both directions from the source (see Figure 3 (d)).

109 **3.4 Comparison of the surface elevation with different depth values and 110 fixed heat flux**

111 For a fixed heat flux of 10,000 watts/m², the total depth of the system was reduced to 200 meters
112 with heat flux at the seabed. This scenario corresponds to the crater of the volcano being closer to
113 the free surface compared to case 2. In both cases, a constant heat flux was applied continuously for
114 24 minutes.

115 As depicted in Figure 6 (a) and 3 (a), six minutes after the eruption, an initial uplift with very
116 small elevation was observed when the volcano was 300 meters from the free surface. In contrast,
117 when the volcano was located 200 meters from the free surface, a trough and waves were observed six
118 minutes after the eruption. Figure 5 (b) illustrates that 24 minutes after the eruption, a higher wave
119 elevation was observed when the volcano was closer to the free surface. Specifically, a wave elevation
120 of approximately 5 meters was recorded when the volcano was 200 meters from the free surface. In
121 comparison, a wave elevation of approximately 1.7 meters was observed when the volcano was situated
122 300 meters from the free surface. These observations of increased wave elevation when the volcano is
123 closer to the free surface have been corroborated in other studies [Lipiejkó et al., 2021].

124 4 Remarks

125 In this paper, a Gaussian heat flux was applied to the seabed to simulate the surface waves generated
 126 by submarine volcanic eruptions. The study explored the mechanism behind surface wave generation
 127 during major shallow submarine volcanic eruptions by applying heat flux to the seabed and found a
 128 strong correlation with previous research [Liu and Fritz, 2023, Schindelé et al., 2024]. It was observed
 129 that larger waves resulted from higher heat flux values and when the heat source was closer to the wa-
 130 ter surface. These findings are consistent with earlier studies and observations, such as those reported
 131 in [Lipiejko et al., 2021]. This study proposes an alternative methodology for modeling tsunamis gen-
 132 erated by submarine volcanic eruptions. By incorporating heat flux at the bottom boundary, the
 133 tsunami generation process accounts for the complex phenomena of vertical tephra transport (plume
 134 generation) and the entrainment of ambient seawater into the vertical plume, which impacts vertical
 135 velocity, as discussed in previous studies [Rossby, 1965, Rossby, 1998].

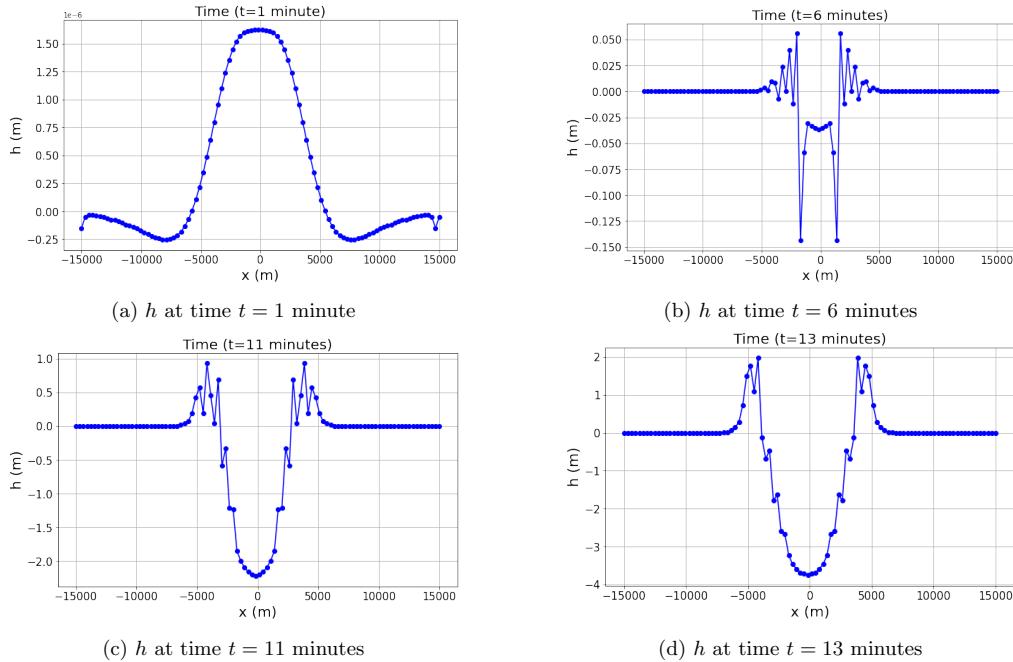


Figure 2: Plots of h for case 1 at different times from the eruption.

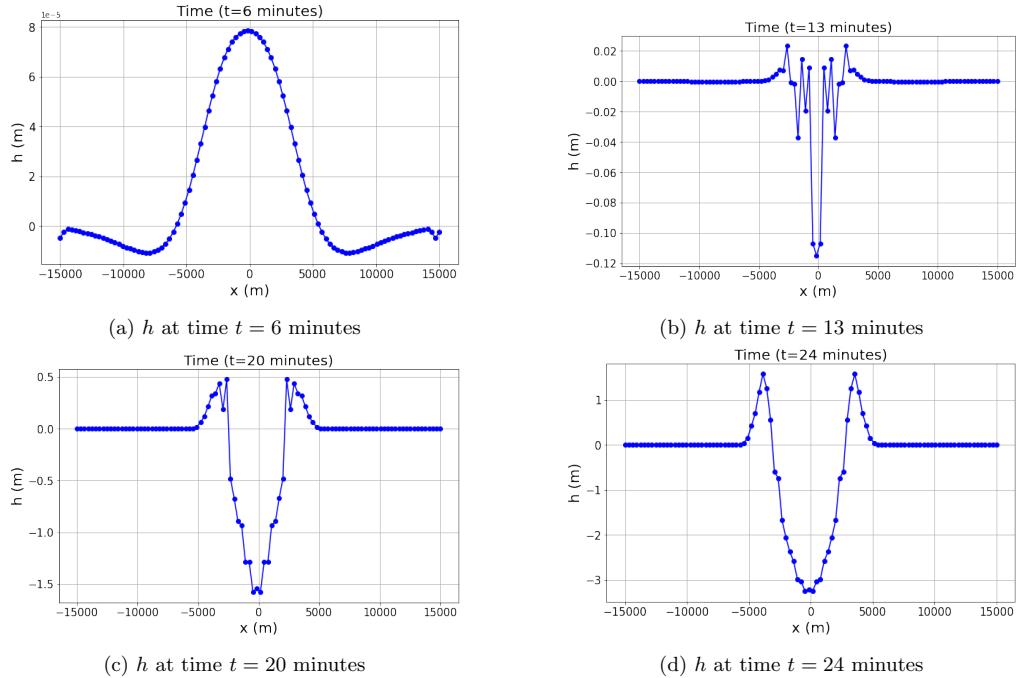


Figure 3: Plots of h for case 2 at different times from the eruption.

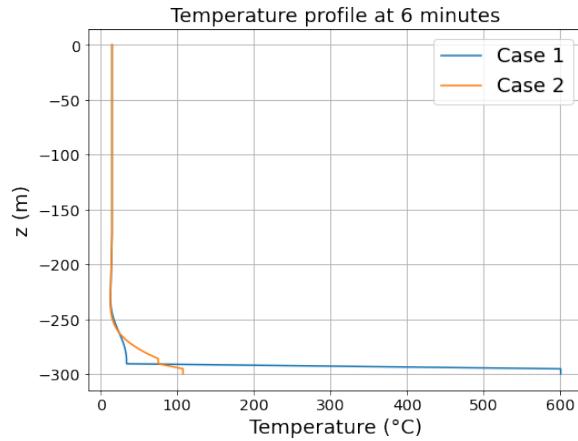


Figure 4: Temperature profile above the volcano for case 1 and 2 at 6 minutes.

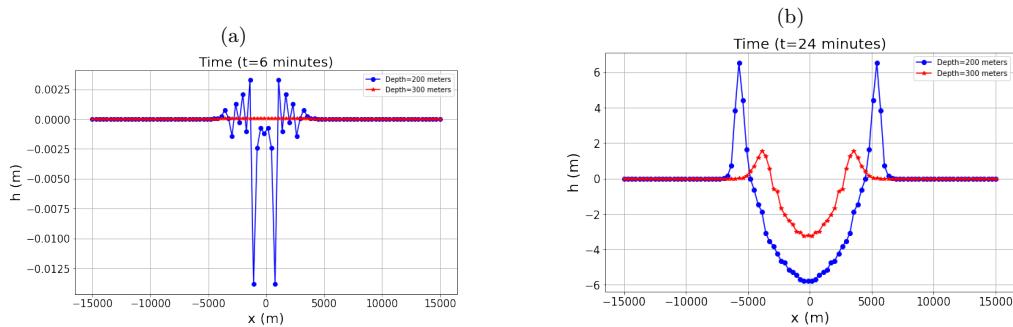


Figure 5: Surface wave elevation for the cases with variable depth and fixed heat flux.

136 References

[Kanojia et al., 2023] Kanojia, M., Gurusamy, S., and Basu, B. (2023). Modeling of tsunami generated
138 in stratified oceans by sub-aquatic volcanic eruptions. *Physics of Fluids*, 35(5).

[Kedrinskii, 2005] Kedrinskii, V. (2005). *Hydrodynamics of Explosion: experiments and models*.
140 Springer Science & Business Media.

[Le Méhauté and Wang, 1996] Le Méhauté, B. and Wang, S. (1996). *Water waves generated by under-
142 water explosion*, volume 10. World Scientific.

[Lipiejkko et al., 2021] Lipiejkko, N., Whittaker, C. N., Lane, E., White, J., and Power, W. (2021).
143 Tsunami generation by underwater volcanic explosions: Application to the 1952 explosions of My-
144 ojinsho Volcano. *Pure and Applied Geophysics*, 178:4743–4761.

[Liu and Fritz, 2023] Liu, Y. and Fritz, H. (2023). Physical modeling of spikes during the volcanic
146 tsunami generation. *Physics of Fluids*, 35(6).

[Mahadevan et al., 1996a] Mahadevan, A., Oliker, J., and Street, R. (1996a). A nonhydrostatic
148 mesoscale ocean model. part i: Well-posedness and scaling. *Journal of Physical Oceanography*,
149 26(9):1868–1880.

[Mahadevan et al., 1996b] Mahadevan, A., Oliker, J., and Street, R. (1996b). A nonhydrostatic
151 mesoscale ocean model. part ii: Numerical implementation. *Journal of Physical Oceanography*,
152 26(9):1881–1900.

[Moore et al., 1966] Moore, J., Nakamura, K., and Alcaraz, A. (1966). The september 28–30, 1965
154 eruption of Taal Volcano, Philippines. *Bulletin Volcanologique*, 29:75–76.

[Morrissey et al., 2010] Morrissey, M., Gisler, G., Weaver, R., and Gittings, M. (2010). Numerical
156 model of crater lake eruptions. *Bulletin of Volcanology*, 72:1169–1178.

[Muraviev et al., 1998] Muraviev, Y., Fedotov, S., Budnikov, V., Ozerov, A., Maguskin, M., Dvigalo,
158 V., Andreev, V., Ivanov, V., Kartashova, L., and Markov, I. (1998). Volcanic activity in the Karymsky
159 center in 1996: Summit eruption at Karymsky and phreatomagmatic eruption in the Akademii
160 Nauk Caldera. *Journal of volcanology and Seismology*, 19:567–604.

[Nakano et al., 1954] Nakano, M., Unoki, S., Hanzawa, M., Marumo, R., and Fukuoka, J. (1954).
162 Oceanographic features of a submarine eruption that destroyed the kaiyo-maru no. 5. *Journal of
163 Marine Research*, 13:48–66.

[Nishimura et al., 2005] Nishimura, Y., Nakagawa, M., Kuduon, J., and Wukawa, J. (2005). Timing
165 and scale of tsunamis caused by the 1994 Rabaul eruption, East New Britain, Papua New Guinea.
166 In *Tsunamis*, pages 43–56. Springer.

[167]

168 [Paris, 2015] Paris, R. (2015). Source mechanisms of volcanic tsunamis. *Philosophical Transactions of*
169 *the Royal Society A: Mathematical, Physical and Engineering Sciences*, 373.

170 [Paris et al., 2014] Paris, R., Switzer, A., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P.,
171 and Ulvrova, M. (2014). Volcanic tsunami: a review of source mechanisms, past events and hazards
172 in southeast asia (indonesia, philippines, papua new guinea). *Natural Hazards*, 70:447–470.

173 [Paris and Ulvrova, 2019] Paris, R. and Ulvrova, M. (2019). Tsunamis generated by subaqueous vol-
174 canic explosions in Taal Caldera lake, philippines. *Bulletin of Volcanology*, 81:1–14.

175 [Rossby, 1965] Rossby, H. (1965). On thermal convection driven by non-uniform heating from below:
176 an experimental study. In *Deep Sea Research and Oceanographic Abstracts*, volume 12, pages 9–16.
177 Elsevier.

178 [Rossby, 1998] Rossby, T. (1998). Numerical experiments with a fluid heated non-uniformly from
179 below. *Tellus A: Dynamic Meteorology and Oceanography*, 50(2):242–257.

180 [Schindelé et al., 2024] Schindelé, F., Kong, L., Lane, E., Paris, R., Ripepe, M., Titov, V., and Bai-
181 ley, R. (2024). A review of tsunamis generated by volcanoes (tgv) source mechanism, modelling,
182 monitoring and warning systems. *Pure and Applied Geophysics*, pages 1–48.

183 [Torsvik et al., 2010] Torsvik, T., Paris, R., Didenkulova, I., Pelinovsky, E., Belousov, A., and Be-
184 lousova, M. (2010). Numerical simulation of a tsunami event during the 1996 volcanic eruption in
185 Karymskoye lake, Kamchatka, Russia. *Natural Hazards and Earth System Sciences*, 10:2359–2369.