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Abstract  14 

Exposure to allergenic pollen is a major public health concern, as it is a key trigger for respiratory allergies, 15 

including seasonal allergic rhinitis, which affects approximately 20% of the global population. Monitoring 16 

airborne pollen is essential for prevention and clinical management, yet traditional identification methods, 17 

such as light microscopy, are time-consuming and often limited to genus- or family-level resolution. Here, 18 

we present a high-throughput approach combining flow cytometry with machine learning to identify pollen 19 

from urban environments. We collected a reference database of pollen from 97 species across 34 genera, 20 

representing the dominant allergenic trees and other common airborne taxa in Montreal, Canada. Using flow 21 

cytometry, we measured particle size, granularity, and fluorescence intensity across multiple excitation and 22 

emission channels, and applied a Random Forest classifier to distinguish pollen taxa. At the species level, 23 

the model achieved a mean F1-score of 0.76, while genus-level classification reached 0.90, with 24 

misclassifications largely occurring among closely related species. Granularity and fluorescence parameters 25 

from the violet and blue lasers were the most distinctive features. Our results demonstrate that flow 26 

cytometry combined with machine learning provides an efficient, scalable alternative to microscopy, with 27 

potential for large-scale urban pollen monitoring. 28 
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1 Introduction 29 

Exposure to allergenic pollen is a major public health concern, as it is a key risk factor for respiratory 30 

allergies. Seasonal allergic rhinitis affects approximately 20 % of the global population (Savouré et al., 31 

2022) and is expected to worsen with climate change, which is projected to lengthen pollen seasons 32 

(Anderegg et al., 2021; Mousavi et al., 2024; Zhang and Steiner, 2022; Ziska et al., 2019). Rising 33 

temperatures and CO₂ levels stimulate plant growth, increasing pollen levels (Kim et al., 2018; Ladeau and 34 

Clark, 2006) and the allergenicity of pollen grains (Ahlholm et al., 1998; Kim et al., 2018). For allergy 35 

sufferers and healthcare providers, reliable pollen information, including which plant species and pollen 36 

traits contribute to different allergenicity properties, is essential for prevention and effective treatment, but 37 

remains scarce (Dunker et al., 2022; Medek et al., 2025; Sousa-Silva et al., 2020).  38 

Expanding pollen monitoring networks in urban areas, which host most of the world’s population, is 39 

increasingly recognized as essential (Tummon et al., 2024), yet this also requires processing a large number 40 

of pollen samples and thus highlights a clear need for efficient and accurate identification methods. Over 41 

the past decades, several analytical techniques have been developed for pollen detection and classification, 42 

each having advantages and limitations. Light microscopy remains the standard method used worldwide for 43 

pollen identification, but it is time-consuming and requires highly trained specialists (Brennan et al., 2019; 44 

Dunker et al., 2021, 2022; Gierlicka et al., 2022; de Weger et al., 2013). Although pollen morphology, 45 

defined by size, shape, apertures, and texture (Ogden et al., 1974; Smith, 1984), supports taxonomic 46 

identification, subtle interspecific differences restrict identification to genus or family level in most cases. 47 

Automated slide scanning, sometimes coupled with a machine learning algorithm, has improved efficiency 48 

but still faces limitations in distinguishing species from the same genus or family (Dunker et al., 2021; Holt 49 

and Bennett, 2014). Advanced imaging techniques, such as scanning electron microscopy (SEM), 50 

transmission electron microscopy (TEM), and optical diffraction tomography (ODT), provide much higher 51 

resolution for detailed analysis of pollen structures, but are costly or impractical for large-scale monitoring 52 

(Gierlicka et al., 2022).  Molecular biology techniques, particularly metabarcoding and PCR-based methods, 53 

have the potential to enable species-level identification yet face challenges such as high costs, the presence 54 

of DNA inhibitors that can limit sensitivity and cause false negative, the limitations of taxonomic resolution, 55 

and the inability to quantify pollen abundance (Dunker et al., 2021; Gierlicka et al., 2022).  56 

More recently, fluorescence spectroscopy and flow cytometry have emerged as promising approaches 57 

(Gierlicka et al., 2022; Šaulienė et al., 2019). These methods are based on the size and autofluorescence 58 

properties of particles, such as the pollen grains, and when combined with holographic images and machine 59 

or deep learning, they can improve classification accuracy and enable automated (Dunker et al., 2022; Erb 60 
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et al., 2024; Sikoparija et al., 2024; Swanson et al., 2023) and high-throughput identification (≈5000 grains 61 

s⁻¹) (Dunker et al., 2021; Gierlicka et al., 2022). Because each species has a specific fluorescence and 62 

granularity signature, it is possible to distinguish even morphologically similar taxa (Dunker et al., 2021). 63 

 Our study aims to develop a classification model capable of identifying airborne pollen in urban 64 

environments. We built a reference collection representing the main tree species found across the city of 65 

Montreal, Canada. Unlike previous studies that rely on microscopic or imaging data, our approach relies 66 

exclusively on flow cytometry measurements, i.e. fluorescence intensity, particle size, and granularity to 67 

characterize pollen. This choice is motivated by the fact that most cytometers routinely used in healthcare 68 

and clinical settings are limited to these parameters. Consequently, developing a model based on these 69 

features enhances its applicability and ensures compatibility with the most widely implemented cytometry 70 

platforms. We then evaluated the performance of the machine-learning classification model trained on these 71 

flow cytometry parameters and identified those that contribute most to differentiating pollen species and 72 

genera. 73 

2 Methodology 74 

2.1 Pollen collection 75 

To train the machine learning classification model, we created a reference database of pollen grains collected 76 

directly from plants of known species (mostly trees). The reference collection included pollen from both 77 

common urban tree species as well as widely planted hybrid cultivars.  78 

Tree species were selected based on three criteria: (1) their relative abundance on the Island of Montreal, 79 

ensuring representation of the dominant urban taxa; (2) their anemophilous nature, since wind-pollinated 80 

species are typically the most allergenic (D’Amato et al., 2007; Falagiani, 1989); and (3) the inclusion of 81 

multiple species within each genus, to enable species-level discrimination were possible. Other species such 82 

as from the Rosaceae family were also included to increase resolution. For each selected species, pollen was 83 

collected from three individual trees from the Montreal Botanical Garden (for ease of identification) or 84 

among public trees across the city. At flowering time, ten floral units (flowers, catkins or male cones) were 85 

collected per tree, sampling different parts of the crown to capture intra-individual variation among pollen 86 

grains. We also included pollen from the Poaceae family (grasses) and the genus Ambrosia (ragweed), given 87 

their well-known allergenic potential (D’Amato et al., 2007; Falagiani, 1989). Their inclusion enabled the 88 

model to learn to discriminate tree pollen from other common airborne particle types, as real-world 89 

environmental samples typically comprise a heterogeneous mix of tree, grass, and weed pollen, along with 90 

various non-pollen particulates. In the laboratory, floral units were placed in pre-labelled paper bags with 91 
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desiccant gel. Pollen was extracted from the floral units using a filtration system that retained only particles 92 

between 5 and 100 µm in diameter, and the filtrate was suspended in phosphate-buffered saline (PBS) 93 

solution to minimize aggregation (see detailed protocol in the supplementary material). A subsample was 94 

examined under a light microscope to confirm the presence of pollen grains. If pollen was present, the 95 

sample was retained; if not, sampling was repeated, including filtration, and if necessary, additional flowers 96 

were collected. 97 

 98 

2.2 Flow cytometry  99 

Each pollen sample was analysed using flow cytometry (Fig. 1). Measurements were performed with a 100 

CytoFLEX cytometer (Beckam Coulter, Inc.), equipped with three excitation lasers at wavelengths of 405 101 

nm (violet), 488 nm (blue), and 640 nm (red). Due to a hydrodynamic flow stream, each pollen grain passes 102 

sequentially through each laser, which excites the fluorescent proteins on the surface of the pollen grain’s 103 

outer wall. Depending on their peptide composition, these proteins absorb light at a certain wavelength and 104 

emit light radiation at a different wavelength in return producing a characteristic fluorescence signature that 105 

varies among species. For each laser, avalanche photodiode (APD) detectors measure the intensity of light 106 

emitted at different wavelengths using ten filters: 450/45, 525/40, 610/20 (violet laser), 525/40, 585/42, 107 

690/50, 780/60 (blue laser), 660/10, 712/25, 780/60 nm (red laser). In addition to fluorescence, two scatter 108 

parameters were recorded to describe particle morphology: grain size and granularity. The forward scatter 109 

(FSC) measures light diffracted by the pollen grain at a flat angle, reflecting the approximate diameter of 110 

the grain. The sidewards scatter (SSC) measures light diffracted by the pollen grain at a right angle, 111 

reflecting its granularity. 112 
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 113 

Figure 1: Flow cytometry workflow on the CytoFLEX (Beckman Coulter, Inc.). Sample containing pollen 114 

enters at the top, and then is excited by three lasers in the blue (λ=488nm), red (λ=640nm) and violet 115 

(λ=405nm) wavelengths, 10 dichroic mirrors, bandpass filters and detectors in different wavelength ranges 116 

(λ=450/45, 525/40, 610/20, 585/42, 525/40, 690/50, 780/60, 660/10, 712/25 and 780/60 nm). There are two 117 

additional detectors for size and granularity: Forward scatter (FSC) and side scatter (SSC). Created with 118 

BioRender. 119 

2.3 Data cleaning  120 

Although the samples were filtered to retain only particles within the size range of pollen grains (5-100µm), 121 

some non-pollen particles, such as dust or plant debris, were still present. To distinguish pollen from debris, 122 

we used the recorded size, granularity, and fluorescence parameters for each particle which include one 123 

value for size (FSC), one for granularity (SSC), and ten values for fluorescence, each with two components, 124 

the maximum peak height and the peak area except size which has also a width component. This resulted in 125 

a total of 25 parameter values per particle.  126 

Data cleaning was performed using Cytexpert software version 2.4.28 (Beckman Coulter, Inc.). For each 127 

species, pollen grains were manually separated from debris using scatter density plots (size vs. granularity) 128 

and histograms of all fluorescence features. This selection relied primarily on the PB450 and Violet610 129 

fluorescence histograms, while cross-checking against the other recorded parameters to ensure consistency. 130 

Adjustments were made as needed to ensure that only true pollen grains were retained (Fig. A1).  131 
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The final training dataset included all cleaned pollen data from each species along with a separate category, 132 

“OTHER”, which combined all debris data from the cleaning step and the particles from certain species for 133 

which it was impossible to distinguish pollen from debris, such as those in the Thuja genus. The final 134 

reference database used to train the model comprised 97 species from 34 different genera. A detailed list of 135 

species is presented in Table A1 and the complete training datasets are available on Figshare 136 

(https://doi.org/10.6084/m9.figshare.30870641). 137 

2.4 Machine learning algorithm 138 

Four supervised classification algorithms were initially tested: Random Forest, Gradient Boosting, Extreme 139 

Gradient Boosting and Neuronal Network. Among these, the Random Forest algorithm showed the best 140 

performance and was therefore selected for subsequent analysis. In our training dataset, the number of pollen 141 

grains varies across taxa (min=306; max=35307). This caused the model to more frequently predict taxa 142 

with more training examples (Chawla, 2010). To address this class imbalance, we used the synthetic 143 

minority over-sampling technique (Chawla, 2010), resulting in a balanced dataset with 1,000 pollen grains 144 

per species for the species-level classification model and 10,000 pollen grains per genus for the genus-level 145 

classification model. Each dataset was randomly split into two subsets: 70% for training and 30% for 146 

validation.  Models were trained using the train() function from the caret package in R software (version 147 

4.4.0), calling the rf() function for the random forest model. Model robustness was assessed using 10-fold 148 

cross-validation implemented via the trainControl() function with the “cv” method (nine repetitions for 149 

training and one for validation). We trained the models using the default value of 500 trees. The parameter 150 

mtry, representing the number of variables randomly selected at each node split, was set to 5, based on prior 151 

testing across values from 1 to 10. We assessed the models’ performance using the F1-score: F1= 152 

(2*precision*recall)/(precision+recall). Precision is the proportion of correctly predicted positives out of all 153 

predicted positives and recall is the proportion of correctly predicted positives out of all actual positives 154 

(Grandini et al., 2020). Variable importance was assessed using the mean decrease in Gini coefficient, which 155 

quantifies each variable’s contribution to reducing classification error by decreasing node impurity during 156 

tree construction. The trained models are available on Figshare. 157 

3 Results 158 

3.1 Classification performance 159 

At the species level, the model achieved a mean F1-score of 0.76 (n=97 species; Fig. 2a). The lowest F1-160 

scores were obtained for Quercus rubra (0.44), Salix x pendulina f. tristis. (Salix alba tristis hereafter) (0.43) 161 

and Ulmus minor (0.44). Several other species also showed reduced accuracy, with F1-scores ranging 162 
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between 0.5 and 0.65. These included Acer x freemanii, Acer ukurunduense, Fagus grandifolia, Fraxinus 163 

nigra, Pinus banksiana, and Syringa villosa, as well as several species of the Betulaceae family (Betula 164 

papyrifera, Carpinus caroliniana, and Corylus colurna), the Juglandaceae family (Carya ovata, Juglans 165 

nigra, and Juglans virginiana), and the Ulmus genus (Ulmus davidiana, Ulmus propinqua, and Ulmus 166 

pumila) (Fig. 2a).  167 

When trained at the genus level, model performance improved across the 34 genera, reaching a mean F1-168 

score of 0.90 (Fig. 2b). The only notable exception was Juglans, with an F1-score of 0.73. All other genera 169 

achieved F1-scores close to or above 0.8. Taxa with relatively lower accuracy at the species level, such as 170 

those in the genera Betula, Quercus and Ulmus, showed marked improvement at the genus level. Most 171 

misclassifications occurred between species within the same genus, as is evident for species from the genus 172 

Ulmus (see confusion matrices in Appendix B and in supplement material Table S1 and Table S2). 173 

3.2 Variables contribution 174 

The ranking of predictors using the Gini index shows that the most important variables for distinguishing 175 

pollen grains among taxa were granularity (SSC), two fluorescence variables from the violet laser (PB450 176 

and Violet610) and one from the blue laser (FITC). These variables exhibited the highest mean decrease in 177 

Gini, indicating a major contribution to the homogeneity of nodes and consequently, to overall classification 178 

accuracy in the Random Forest model (Fig. 3).  179 

Analysis of the variables contributing most to pollen differentiation revealed that size (FSC) and granularity 180 

(SSC) varied more among genera than among species within a given genus, whereas fluorescence 181 

parameters primarily accounted for the variation observed among species within genera (Fig.4 and 182 

Appendix C). Figure 4 illustrates the distributions for six genera known to be allergenic (see Appendix C 183 

for more details).  Pollen grains from the Pinus genus were larger than those from other genera and also had 184 

a specific granularity pattern. For these two parameters, FSC and SSC, intra-genus variation for all genera 185 

was very small or absent. In contrast, fluorescence parameters showed more pronounced differences among 186 

species within the same genus. For example, Alnus species presented distinct values across all three 187 

fluorescence channels (FITC, Violet610, PB450), while Corylus species differed mainly in the Violet610 188 

channel. For other genera, only certain species, such as Betula nigra, Quercus macrocarpa, and Salix spp., 189 

showed distinct fluorescence profiles (Fig. 4). 190 
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Figure 2: Performance of the classification models at the species (a) and genus levels (b). For each taxon, 192 

purple bars represent correct classifications (accuracy) and pink represents misclassifications (1-accuracy. 193 

F1-scores are shown as labels to the right of each bar. Mean F1-scores were 0.76 for the species-level model 194 

and 0.90 for the genus-level model. 195 

 196 

Figure 3: Variable contributions to node and leaf purity in the random forest classification models, 197 

measured by mean decrease in Gini index. Higher values indicate greater importance. Results are shown for 198 

species-level (a) and genus-level (b) models. Each variable includes two metrics: maximum peak height (H) 199 

and peak area (A). Explanation of variable names in Table A2. 200 

https://doi.org/10.5194/egusphere-2025-6259
Preprint. Discussion started: 19 January 2026
c© Author(s) 2026. CC BY 4.0 License.



10 
 

 201 

 202 

Figure 4:  Distribution of log-transformed values for the five variables that contributed the most to 203 

distinguish taxa. Fluorescence channels: FITC_A (excitation: 488 nm/emission: 525 nm), PB450_A 204 

(excitation: 405 nm/ emission: 450 nm), Violet610_A (excitation: 405 nm/ emission: 610 nm); scatter 205 

parameters: SSC_A (granularity) and FSC_A (size). The suffix _A indicates that we consider the signal’s 206 

peak area. Only species from six known allergenic genera (Alnus, Betula, Corylus, Pinus, Quercus, Salix) 207 

are shown. For more species see Appendix C. Colors indicate genus. 208 

 209 
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4 Discussion 210 

Our results demonstrate that flow cytometry combined with machine learning can reliably identify pollen 211 

across a wide range of taxa. The models achieved high classification performance (F1=0.76 at the species 212 

level and 0.90 at the genus level) highlighting the potential of this approach as a scalable alternative to 213 

traditional microscopy for pollen identification. This represents a significant improvement over 214 

conventional methods, such as microscopy, which typically only resolve pollen to the genus or family level.  215 

The improved performance of the genus-level model over the species-level model most likely reflects 216 

biological and structural similarities among species within the same genus. This was particularly evident for 217 

species in the Betulaceae family, which are wind-pollinated and considered highly allergenic (D’Amato et 218 

al., 2007; Falagiani, 1989), but also for other genera especially abundant in Montreal, such as Acer, Syringa, 219 

and Ulmus. 220 

The advantage of flow cytometry coupled with machine learning lies not only in its performance in 221 

classifying at the genus or species level, but especially in its ability to enable automated, high-throughput 222 

identification (≈5000 grains·s⁻¹) while avoiding the lengthy and costly training required for human 223 

specialists. Accurate monitoring is clinically important, as even low pollen concentrations (10–50 grains 224 

per cubic meter) can trigger allergic symptoms (Steckling-Muschack et al., 2021). From a public health 225 

perspective, the genus-level model is therefore appropriate, as it provides higher accuracy for the taxa most 226 

relevant to allergy monitoring.  227 

The fluorescence variables that contributed most to pollen classification were associated with blue and violet 228 

excitation lasers, with emission detected in the blue (PB450), red-orange (Violet610), and green (FITC) 229 

channels. This pattern is consistent with the known autofluorescence properties of sporopollenin, the main 230 

biopolymer in the pollen exine, which emits strongly near 475 nm (Pöhlker et al., 2013). Additional 231 

emissions likely originate from secondary compounds such as flavonoids, carotenoids, and terpenes located 232 

in the exine or pollenkitt coating (Donaldson, 2020; Pöhlker et al., 2013). The distribution of the most 233 

discriminative variables indicates that size and granularity primarily differentiate genera, while blue, red-234 

orange and green fluorescence channels capture species-level differences within genera. This pattern 235 

explains the model’s higher accuracy at the genus-level and its partial success in distinguishing closely 236 

related species. The misclassifications at species-level likely stem from the high similarity in pollen size 237 

and fluorescence spectra among closely related species, which makes them harder to distinguish. In addition, 238 

because our classification relied on size and fluorescence alone, without complementary morphological data 239 

such as holography images (Erb et al., 2024; Gierlicka et al., 2022; Zhang and Abdulla, 2023), the model’s 240 

performance may have been constrained by limited representation of some taxa in the reference dataset. 241 
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Increasing both the number of pollen grains per species and the diversity of species within each genus would 242 

help train more robust models. Future research should prioritize expanding reference datasets, ideally 243 

through the creation of a global database of pollen fluorescence signatures, which represent the emission 244 

spectrum for given excitation wavelengths. Such a resource, similar to The Global Pollen Project, for 245 

microscopic images (Martin and Harvey, 2017), would provide a valuable foundation for machine learning 246 

and deep leaning applications in aerobiology, but also ecology, palynology, paleoecology, and other pollen 247 

related fields. 248 

Another factor that may explain the reduced model accuracy is that some species in our reference collection 249 

could not be included in the model’s training dataset due to the impossibility to distinguish pollen from 250 

debris during the data cleaning, even though we had visually confirmed the presence of pollen grains in our 251 

samples. These data were included in the training dataset under the category “OTHER” rather than assigned 252 

to individual taxa. Such was the case for Thuja, a genus abundant in Montreal (Paquette et al., submitted), 253 

likely due to the small size of its pollen grains, which can easily mix with debris or because pollen grains 254 

included in our dataset may have been limited in quantity or had not fully matured. Indeed, distinguishing 255 

male from female Thuja cones and assessing the phenological stage to collect mature pollen is difficult, and 256 

the small size of the cones is another challenge for pollen extraction. Improving collection and extraction 257 

protocols for this genus could help reduce debris contamination in future sampling. 258 

A crucial next step is to adapt these models for use on complex airborne samples collected in urban 259 

environments. Such samples often contain large amounts of debris as during atmospheric transport, pollen 260 

grains may remain airborne for days or weeks, during which they can fold, crack, or adhere to air pollutants 261 

(De Weger et al., 2024). They are also exposed to ultraviolet radiation and humidity fluctuations that can 262 

alter fluorescence properties. These factors complicate the discrimination of true pollen grains from other 263 

particles and represent a major challenge for operational implementation. 264 

Because small pollen grains, folded grains and debris can have overlapping size distributions, 265 

misclassification remains a possibility, with pollen occasionally identified as debris, and vice versa. Future 266 

research could therefore explore multidimensional hierarchical classification frameworks, especially when 267 

complementarity data such as holographic images are available for validation. For example, when 268 

classification confidence is high, the model could assign a species-level label, but default to a broader 269 

taxonomic category such as genus or family when uncertainty is greater (Hernández et al., 2014). This 270 

flexibility would prevent incorrect fine-level classifications and improve overall reliability under complex 271 

environmental conditions. 272 
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Another limitation of flow cytometry-based models concerns their device dependency, as fluorescence 273 

intensity values are typically linked to the specific cytometer used during model training, which limits model 274 

transferability across instruments. Standardization procedures, such as calibrating cytometers using 275 

Rainbow beads and Quality Control beads could help ensure consistent signal outputs across different 276 

instruments (Solly et al., 2013). The present work was carried out using a conventional cytometer with three 277 

lasers and ten filters; using equipment with more lasers and detectors could refine the detection of 278 

fluorescent signatures and detect more of them. Spectral cytometry also opens up new possibilities for 279 

analyzing fluorescent signatures on a larger scale (Konecny et al., 2024), which could enable even better 280 

characterization of pollen based on its fluorescence.  281 

The combination of flow cytometry and a Random Forest classification model proves to be a highly 282 

promising approach for the identification of airborne pollen in urban environments. By relying exclusively 283 

on routinely measured cytometric parameters, rather than images, this method ensures broad applicability 284 

and compatibility with standard healthcare and clinical cytometers. Integrating this approach into existing 285 

aerobiological monitoring networks could enable near-real-time identification and quantification of 286 

allergenic pollen. We also built an extensive reference pollen collection comprising 97 species across 34 287 

genera. For each species, we have several floral units (flower, catkins, cones) containing pollen, microscopic 288 

slides, and flow cytometry data for all pollen grains. This reference collection could be reused for different 289 

purposes such as future model training. 290 

5 Conclusion 291 

This study demonstrates a significant advancement in pollen identification by combining flow cytometry 292 

with a random forest classification model. This approach achieved high accuracy at both the genus (F1 = 293 

0.90) and species levels (F1 = 0.76), surpassing several limitations of traditional microscopy. While species-294 

level classification remains challenging for certain taxa, the results highlight the method’s robustness and 295 

potential for large-scale implementation. With continued refinement and standardization, this approach 296 

could enable near–real-time, cheap, high throughput pollen identification and broaden its applications in 297 

aerobiological monitoring, while supporting public health applications and advancing research in pollen 298 

ecology worldwide. 299 

6 Code availability 300 

The code is available on the public Github repository SarahTardif/Pollen-classification-model. 301 

7 Data availability 302 
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Training datasets and trained models are available on a Figshare repository 303 

(https://doi.org/10.6084/m9.figshare.30870641). More data can be provided upon request. 304 
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Appendix A: Reference pollen collection 323 

Table A1: Species in the reference pollen collection 324 

Family Genus Species (scientific name) 

Asteraceae Ambrosia Ambrosia artemisiifolia 

Betulaceae 

Alnus 

Alnus alnifolia 

Alnus glutinosa 

Alnus incana 

Betula 

Betula alleghaniensis 

Betula nigra 

Betula papyrifera 

Betula pendula 

Betula populifolia 

Carpinus 
Carpinus betulus 

Carpinus caroliniana 

Corylus 

Corylus avellana 

Corylus colurna 

Corylus cornuta 

Ostrya Ostrya virginiana 

Cannabacées Celtis Celtis occidentalis 

Cupressaceae Juniperus 
Juniperus chinensis 

Juniperus communis 

Elaeagnaceae Elaeagnus Elaeagnus angustifolia 

Fabaceae 
Gleditsia Gleditsia triacanthos 

Robinia Robinia pseudoacacia 

Fagaceae 

Fagus Fagus grandifolia 

Quercus 

Quercus alba 

Quercus bicolor 

Quercus macrocarpa 

Quercus palustris 

Quercus robur 

Quercus rubra 

Ginkgoaceae Ginkgo Ginkgo biloba 

Gramineae - Gramineae spp 

Juglandaceae 

Carya 

Carya cordiformis 

Carya glabra 

Carya ovata 

Juglans 

Juglans cinera 

Juglans nigra 

Juglans spp 

Juglans virginiana 
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 325 

Family Genus Species (scientific name) 

Oleaceae 

Fraxinus 

Fraxinus americana 

Fraxinus nigra 

Fraxinus pennsylvannica 

Ligustrum Ligustrum vulgare 

Syringa 

Syringa reticulata 

Syringa villosa 

Syringa vulgaris 

Syringa x chinensis 

Syringa x prestoniae 

Pinaceae 

Picea Picea abies 

Pinus 

Pinus banksiana 

Pinus nigra 

Pinus parviflora 

Pinus ponderosa 

Pinus resinosa 

Pinus thunbergii 

Rosaceae 

Amelanchier 
Amelanchier canadensis 

Amelanchier laevis 

Malus 

Malus baccata 

Malus pumila 

Malus spectabilis 

Prunus 

Prunus padus 

Prunus serotina 

Prunus serrulata 

Prunus virginiana 

Pyrus 
Pyrus calleryana "chantecler" 

Pyrus ussuriensis 

Sorbus Sorbus intermedia 

Salicaceae 

Populus Populus spp 

Salix 

Salix alba tristis 

Salix cinerea 

Salix gracilistyla 

Salix nigra 

Salix spp 

Salix udensis 

  326 
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Family Genus Species (scientific name) 

Sapindaceae 

Acer 

Acer freemanii 

Acer glabra 

Acer grandidentatum 

Acer negundo 

Acer pilosum 

Acer platanoides 

Acer saccharinum 

Acer saccharum 

Acer sieboldianum 

Acer tataricum 

Acer ukurunduense 

Aesculus 
Aesculus hippocastanum 

Aesculus x hybride 

Taxaceae Taxus 

Taxus canadensis 

Taxus cuspidata 

Taxus x media 

Tiliaceae Tilia 
Tilia americana 

Tilia cordata 

Ulmaceae Ulmus 

Ulmus americana 

Ulmus bergmanianna 

Ulmus davidiana 

Ulmus glabra 

Ulmus minor 

Ulmus propinqua 

Ulmus pumila 

Table A2: Explanation of cytometry variable names, showing the respective excitation lasers and emission 327 

detectors with their wavelengths and associated colors.  328 

 329 

 330 
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 331 

Figure A1: Distinction pollen (orange) versus debris (grey) on CytExpert software: Example of Alnus 332 

incana    333 
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Appendix B: Confusion matrices   334 

 335 

Figure B1: Confusion matrix for the species-level model. The values represent, for each species, the 336 

percentage of pollen grains correctly classified (on the diagonal) and misclassified with the actual 337 

corresponding species (on the x-axis). Colors correspond to categories (0–1% in gray, 1–10% in blue, 10–338 

50% in red, 50–75% in yellow, and 75–100% in green). Raw data are provided in supplement material 339 

Table S1.   340 
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 341 

Figure B2: Confusion matrix for the genus-level model. The values represent, for each genus, the 342 

percentage of pollen grains correctly classified (on the diagonal) and misclassified with the actual 343 

corresponding genus (on the x-axis). Colors correspond to categories (0–1% in gray, 1–10% in blue, 10–344 

50% in red, 50–75% in yellow, and 75–100% in green). Raw data are provided in supplement material 345 

Table S2.   346 
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Appendix C: Distributions of values for the main discriminant variables. 347 

 348 

 349 

Figure C1: Distribution of log-transformed values for the variables that contribute the most to distinguish 350 

taxa (FITC,FSC,SSC,Violet610, PB450) across all genera.  351 
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 352 

Figure C2: Distribution of log-transformed values for the variables that contribute the most to distinguish 353 

taxa (FITC,FSC,SSC,Violet610, PB450) across all species. Colors indicate genus.  354 
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