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14 Abstract

15 Exposure to allergenic pollen is a major public health concern, as it is a key trigger for respiratory allergies,
16  including seasonal allergic rhinitis, which affects approximately 20% of the global population. Monitoring
17  airborne pollen is essential for prevention and clinical management, yet traditional identification methods,
18  such as light microscopy, are time-consuming and often limited to genus- or family-level resolution. Here,
19 we present a high-throughput approach combining flow cytometry with machine learning to identify pollen
20  from urban environments. We collected a reference database of pollen from 97 species across 34 genera,
21  representing the dominant allergenic trees and other common airborne taxa in Montreal, Canada. Using flow
22 cytometry, we measured particle size, granularity, and fluorescence intensity across multiple excitation and
23 emission channels, and applied a Random Forest classifier to distinguish pollen taxa. At the species level,
24 the model achieved a mean Fi-score of 0.76, while genus-level classification reached 0.90, with
25  misclassifications largely occurring among closely related species. Granularity and fluorescence parameters
26  from the violet and blue lasers were the most distinctive features. Our results demonstrate that flow
27  cytometry combined with machine learning provides an efficient, scalable alternative to microscopy, with

28  potential for large-scale urban pollen monitoring.
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29 1 Introduction

30  Exposure to allergenic pollen is a major public health concern, as it is a key risk factor for respiratory
31  allergies. Seasonal allergic rhinitis affects approximately 20 % of the global population (Savouré et al.,
32 2022) and is expected to worsen with climate change, which is projected to lengthen pollen seasons
33 (Anderegg et al., 2021; Mousavi et al., 2024; Zhang and Steiner, 2022; Ziska et al., 2019). Rising
34 temperatures and CO: levels stimulate plant growth, increasing pollen levels (Kim et al., 2018; Ladeau and
35  Clark, 2006) and the allergenicity of pollen grains (Ahlholm et al., 1998; Kim et al., 2018). For allergy
36  sufferers and healthcare providers, reliable pollen information, including which plant species and pollen
37  traits contribute to different allergenicity properties, is essential for prevention and effective treatment, but

38  remains scarce (Dunker et al., 2022; Medek et al., 2025; Sousa-Silva et al., 2020).

39  Expanding pollen monitoring networks in urban areas, which host most of the world’s population, is
40  increasingly recognized as essential (Tummon et al., 2024), yet this also requires processing a large number
41  of pollen samples and thus highlights a clear need for efficient and accurate identification methods. Over
42 the past decades, several analytical techniques have been developed for pollen detection and classification,
43 each having advantages and limitations. Light microscopy remains the standard method used worldwide for
44 pollen identification, but it is time-consuming and requires highly trained specialists (Brennan et al., 2019;
45  Dunker et al., 2021, 2022; Gierlicka et al., 2022; de Weger et al., 2013). Although pollen morphology,
46  defined by size, shape, apertures, and texture (Ogden et al., 1974; Smith, 1984), supports taxonomic
47  identification, subtle interspecific differences restrict identification to genus or family level in most cases.
48  Automated slide scanning, sometimes coupled with a machine learning algorithm, has improved efficiency
49  Dbut still faces limitations in distinguishing species from the same genus or family (Dunker et al., 2021; Holt
50  and Bennett, 2014). Advanced imaging techniques, such as scanning electron microscopy (SEM),
51  transmission electron microscopy (TEM), and optical diffraction tomography (ODT), provide much higher
52 resolution for detailed analysis of pollen structures, but are costly or impractical for large-scale monitoring
53 (Gierlickaetal., 2022). Molecular biology techniques, particularly metabarcoding and PCR-based methods,
54  have the potential to enable species-level identification yet face challenges such as high costs, the presence
55  of DNA inhibitors that can limit sensitivity and cause false negative, the limitations of taxonomic resolution,

56  and the inability to quantify pollen abundance (Dunker et al., 2021; Gierlicka et al., 2022).

57  More recently, fluorescence spectroscopy and flow cytometry have emerged as promising approaches
58  (Gierlicka et al., 2022; Sauliené et al., 2019). These methods are based on the size and autofluorescence
59  properties of particles, such as the pollen grains, and when combined with holographic images and machine

60  or deep learning, they can improve classification accuracy and enable automated (Dunker et al., 2022; Erb
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61 et al., 2024; Sikoparija et al., 2024; Swanson et al., 2023) and high-throughput identification (<5000 grains
62  s') (Dunker et al., 2021; Gierlicka et al., 2022). Because each species has a specific fluorescence and

63  granularity signature, it is possible to distinguish even morphologically similar taxa (Dunker et al., 2021).

64  Our study aims to develop a classification model capable of identifying airborne pollen in urban
65  environments. We built a reference collection representing the main tree species found across the city of
66  Montreal, Canada. Unlike previous studies that rely on microscopic or imaging data, our approach relies
67  exclusively on flow cytometry measurements, i.e. fluorescence intensity, particle size, and granularity to
68  characterize pollen. This choice is motivated by the fact that most cytometers routinely used in healthcare
69  and clinical settings are limited to these parameters. Consequently, developing a model based on these
70  features enhances its applicability and ensures compatibility with the most widely implemented cytometry
71  platforms. We then evaluated the performance of the machine-learning classification model trained on these
72 flow cytometry parameters and identified those that contribute most to differentiating pollen species and

73 genera.
74 2 Methodology
75 2.1 Pollen collection

76  Totrain the machine learning classification model, we created a reference database of pollen grains collected
77  directly from plants of known species (mostly trees). The reference collection included pollen from both

78  common urban tree species as well as widely planted hybrid cultivars.

79  Tree species were selected based on three criteria: (1) their relative abundance on the Island of Montreal,
80  ensuring representation of the dominant urban taxa; (2) their anemophilous nature, since wind-pollinated
81  species are typically the most allergenic (D’ Amato et al., 2007; Falagiani, 1989); and (3) the inclusion of
82  multiple species within each genus, to enable species-level discrimination were possible. Other species such
83  as from the Rosaceae family were also included to increase resolution. For each selected species, pollen was
84  collected from three individual trees from the Montreal Botanical Garden (for ease of identification) or
85  among public trees across the city. At flowering time, ten floral units (flowers, catkins or male cones) were
86  collected per tree, sampling different parts of the crown to capture intra-individual variation among pollen
87  grains. We also included pollen from the Poaceae family (grasses) and the genus Ambrosia (ragweed), given
88  their well-known allergenic potential (D’ Amato et al., 2007; Falagiani, 1989). Their inclusion enabled the
89  model to learn to discriminate tree pollen from other common airborne particle types, as real-world
90  environmental samples typically comprise a heterogeneous mix of tree, grass, and weed pollen, along with

91  various non-pollen particulates. In the laboratory, floral units were placed in pre-labelled paper bags with

3
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92 desiccant gel. Pollen was extracted from the floral units using a filtration system that retained only particles
93  between 5 and 100 pm in diameter, and the filtrate was suspended in phosphate-buffered saline (PBS)
94 solution to minimize aggregation (see detailed protocol in the supplementary material). A subsample was
95  examined under a light microscope to confirm the presence of pollen grains. If pollen was present, the
96  sample was retained; if not, sampling was repeated, including filtration, and if necessary, additional flowers

97  were collected.

98
99 2.2 Flow cytometry

100  Each pollen sample was analysed using flow cytometry (Fig. 1). Measurements were performed with a
101  CytoFLEX cytometer (Beckam Coulter, Inc.), equipped with three excitation lasers at wavelengths of 405
102 nm (violet), 488 nm (blue), and 640 nm (red). Due to a hydrodynamic flow stream, each pollen grain passes
103 sequentially through each laser, which excites the fluorescent proteins on the surface of the pollen grain’s
104 outer wall. Depending on their peptide composition, these proteins absorb light at a certain wavelength and
105  emit light radiation at a different wavelength in return producing a characteristic fluorescence signature that
106  varies among species. For each laser, avalanche photodiode (APD) detectors measure the intensity of light
107  emitted at different wavelengths using ten filters: 450/45, 525/40, 610/20 (violet laser), 525/40, 585/42,
108 690/50, 780/60 (blue laser), 660/10, 712/25, 780/60 nm (red laser). In addition to fluorescence, two scatter
109  parameters were recorded to describe particle morphology: grain size and granularity. The forward scatter
110 (FSC) measures light diffracted by the pollen grain at a flat angle, reflecting the approximate diameter of
111 the grain. The sidewards scatter (SSC) measures light diffracted by the pollen grain at a right angle,
112 reflecting its granularity.
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114 Figure 1: Flow cytometry workflow on the CytoFLEX (Beckman Coulter, Inc.). Sample containing pollen
115  enters at the top, and then is excited by three lasers in the blue (A=488nm), red (A=640nm) and violet
116  (A=405nm) wavelengths, 10 dichroic mirrors, bandpass filters and detectors in different wavelength ranges
117 (A=450/45, 525/40, 610/20, 585/42, 525/40, 690/50, 780/60, 660/10, 712/25 and 780/60 nm). There are two
118  additional detectors for size and granularity: Forward scatter (FSC) and side scatter (SSC). Created with
119  BioRender.

120 2.3 Data cleaning

121 Although the samples were filtered to retain only particles within the size range of pollen grains (5-100um),
122 some non-pollen particles, such as dust or plant debris, were still present. To distinguish pollen from debris,
123 we used the recorded size, granularity, and fluorescence parameters for each particle which include one
124 value for size (FSC), one for granularity (SSC), and ten values for fluorescence, each with two components,
125  the maximum peak height and the peak area except size which has also a width component. This resulted in

126  atotal of 25 parameter values per particle.

127  Data cleaning was performed using Cytexpert software version 2.4.28 (Beckman Coulter, Inc.). For each
128  species, pollen grains were manually separated from debris using scatter density plots (size vs. granularity)
129  and histograms of all fluorescence features. This selection relied primarily on the PB450 and Violet610
130 fluorescence histograms, while cross-checking against the other recorded parameters to ensure consistency.

131 Adjustments were made as needed to ensure that only true pollen grains were retained (Fig. Al).
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132 The final training dataset included all cleaned pollen data from each species along with a separate category,
133 “OTHER”, which combined all debris data from the cleaning step and the particles from certain species for
134 which it was impossible to distinguish pollen from debris, such as those in the Thuja genus. The final
135 reference database used to train the model comprised 97 species from 34 different genera. A detailed list of
136 species is presented in Table Al and the complete training datasets are available on Figshare

137  (https://doi.org/10.6084/m9.figshare.30870641).
138 2.4 Machine learning algorithm

139 Four supervised classification algorithms were initially tested: Random Forest, Gradient Boosting, Extreme
140  Gradient Boosting and Neuronal Network. Among these, the Random Forest algorithm showed the best
141  performance and was therefore selected for subsequent analysis. In our training dataset, the number of pollen
142 grains varies across taxa (min=306; max=35307). This caused the model to more frequently predict taxa
143 with more training examples (Chawla, 2010). To address this class imbalance, we used the synthetic
144 minority over-sampling technique (Chawla, 2010), resulting in a balanced dataset with 1,000 pollen grains
145  per species for the species-level classification model and 10,000 pollen grains per genus for the genus-level
146  classification model. Each dataset was randomly split into two subsets: 70% for training and 30% for
147  validation. Models were trained using the train() function from the caret package in R software (version
148  4.4.0), calling the rf() function for the random forest model. Model robustness was assessed using 10-fold
149  cross-validation implemented via the trainControl() function with the “cv’” method (nine repetitions for
150  training and one for validation). We trained the models using the default value of 500 trees. The parameter
151  mtry, representing the number of variables randomly selected at each node split, was set to 5, based on prior
152 testing across values from 1 to 10. We assessed the models’ performance using the Fi-score: F=
153 (2*precision*recall)/(precision+recall). Precision is the proportion of correctly predicted positives out of all
154  predicted positives and recall is the proportion of correctly predicted positives out of all actual positives
155  (Grandini et al., 2020). Variable importance was assessed using the mean decrease in Gini coefficient, which
156  quantifies each variable’s contribution to reducing classification error by decreasing node impurity during

157  tree construction. The trained models are available on Figshare.
158 3 Results
159 3.1 Classification performance

160 At the species level, the model achieved a mean F-score of 0.76 (n=97 species; Fig. 2a). The lowest F-
161  scores were obtained for Quercus rubra (0.44), Salix x pendulina f. tristis. (Salix alba tristis hereafter) (0.43)

162 and Ulmus minor (0.44). Several other species also showed reduced accuracy, with Fj-scores ranging

6
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163 between 0.5 and 0.65. These included Acer x freemanii, Acer ukurunduense, Fagus grandifolia, Fraxinus
164 nigra, Pinus banksiana, and Syringa villosa, as well as several species of the Betulaceae family (Betula
165  papyrifera, Carpinus caroliniana, and Corylus colurna), the Juglandaceae family (Carya ovata, Juglans
166  nigra, and Juglans virginiana), and the Ulmus genus (Ulmus davidiana, Ulmus propinqua, and Ulmus

167  pumila) (Fig. 2a).

168  When trained at the genus level, model performance improved across the 34 genera, reaching a mean F'-
169  score of 0.90 (Fig. 2b). The only notable exception was Juglans, with an Fi-score of 0.73. All other genera
170  achieved F'i-scores close to or above 0.8. Taxa with relatively lower accuracy at the species level, such as
171  those in the genera Betula, Quercus and Ulmus, showed marked improvement at the genus level. Most
172 misclassifications occurred between species within the same genus, as is evident for species from the genus

173 Ulmus (see confusion matrices in Appendix B and in supplement material Table S1 and Table S2).
174 3.2 Variables contribution

175  The ranking of predictors using the Gini index shows that the most important variables for distinguishing
176  pollen grains among taxa were granularity (SSC), two fluorescence variables from the violet laser (PB450
177  and Violet610) and one from the blue laser (FITC). These variables exhibited the highest mean decrease in
178  Gini, indicating a major contribution to the homogeneity of nodes and consequently, to overall classification

179  accuracy in the Random Forest model (Fig. 3).

180  Analysis of the variables contributing most to pollen differentiation revealed that size (FSC) and granularity
181  (SSC) varied more among genera than among species within a given genus, whereas fluorescence
182 parameters primarily accounted for the variation observed among species within genera (Fig.4 and
183  Appendix C). Figure 4 illustrates the distributions for six genera known to be allergenic (see Appendix C
184  for more details). Pollen grains from the Pinus genus were larger than those from other genera and also had
185  a specific granularity pattern. For these two parameters, FSC and SSC, intra-genus variation for all genera
186  was very small or absent. In contrast, fluorescence parameters showed more pronounced differences among
187  species within the same genus. For example, Alnus species presented distinct values across all three
188 fluorescence channels (FITC, Violet610, PB450), while Corylus species differed mainly in the Violet610
189  channel. For other genera, only certain species, such as Betula nigra, Quercus macrocarpa, and Salix spp.,

190  showed distinct fluorescence profiles (Fig. 4).
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192 Figure 2: Performance of the classification models at the species (a) and genus levels (b). For each taxon,
193 purple bars represent correct classifications (accuracy) and pink represents misclassifications (1-accuracy.
194  F-scores are shown as labels to the right of each bar. Mean F,-scores were 0.76 for the species-level model

195  and 0.90 for the genus-level model.
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197  Figure 3: Variable contributions to node and leaf purity in the random forest classification models,
198  measured by mean decrease in Gini index. Higher values indicate greater importance. Results are shown for
199  species-level (a) and genus-level (b) models. Each variable includes two metrics: maximum peak height (H)

200  and peak area (A). Explanation of variable names in Table A2.
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210 4 Discussion

211 Our results demonstrate that flow cytometry combined with machine learning can reliably identify pollen
212 across a wide range of taxa. The models achieved high classification performance (F1-0.76 at the species
213 level and 0.90 at the genus level) highlighting the potential of this approach as a scalable alternative to
214 traditional microscopy for pollen identification. This represents a significant improvement over
215  conventional methods, such as microscopy, which typically only resolve pollen to the genus or family level.
216  The improved performance of the genus-level model over the species-level model most likely reflects
217  biological and structural similarities among species within the same genus. This was particularly evident for
218  species in the Betulaceae family, which are wind-pollinated and considered highly allergenic (D’ Amato et
219  al.,2007; Falagiani, 1989), but also for other genera especially abundant in Montreal, such as Acer, Syringa,
220  and Ulmus.

221 The advantage of flow cytometry coupled with machine learning lies not only in its performance in
222 classifying at the genus or species level, but especially in its ability to enable automated, high-throughput
223 identification (=5000 grains's™') while avoiding the lengthy and costly training required for human
224 specialists. Accurate monitoring is clinically important, as even low pollen concentrations (10—50 grains
225  per cubic meter) can trigger allergic symptoms (Steckling-Muschack et al., 2021). From a public health
226  perspective, the genus-level model is therefore appropriate, as it provides higher accuracy for the taxa most

227  relevant to allergy monitoring.

228  The fluorescence variables that contributed most to pollen classification were associated with blue and violet
229  excitation lasers, with emission detected in the blue (PB450), red-orange (Violet610), and green (FITC)
230  channels. This pattern is consistent with the known autofluorescence properties of sporopollenin, the main
231  biopolymer in the pollen exine, which emits strongly near 475 nm (Pohlker et al., 2013). Additional
232 emissions likely originate from secondary compounds such as flavonoids, carotenoids, and terpenes located
233 in the exine or pollenkitt coating (Donaldson, 2020; Pohlker et al., 2013). The distribution of the most
234  discriminative variables indicates that size and granularity primarily differentiate genera, while blue, red-
235  orange and green fluorescence channels capture species-level differences within genera. This pattern
236  explains the model’s higher accuracy at the genus-level and its partial success in distinguishing closely
237  related species. The misclassifications at species-level likely stem from the high similarity in pollen size
238  and fluorescence spectra among closely related species, which makes them harder to distinguish. In addition,
239  because our classification relied on size and fluorescence alone, without complementary morphological data
240  such as holography images (Erb et al., 2024; Gierlicka et al., 2022; Zhang and Abdulla, 2023), the model’s

241  performance may have been constrained by limited representation of some taxa in the reference dataset.

11
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242 Increasing both the number of pollen grains per species and the diversity of species within each genus would
243 help train more robust models. Future research should prioritize expanding reference datasets, ideally
244  through the creation of a global database of pollen fluorescence signatures, which represent the emission
245  spectrum for given excitation wavelengths. Such a resource, similar to The Global Pollen Project, for
246  microscopic images (Martin and Harvey, 2017), would provide a valuable foundation for machine learning
247  and deep leaning applications in aerobiology, but also ecology, palynology, paleoecology, and other pollen

248 related fields.

249  Another factor that may explain the reduced model accuracy is that some species in our reference collection
250  could not be included in the model’s training dataset due to the impossibility to distinguish pollen from
251  debris during the data cleaning, even though we had visually confirmed the presence of pollen grains in our
252 samples. These data were included in the training dataset under the category “OTHER” rather than assigned
253 to individual taxa. Such was the case for Thuja, a genus abundant in Montreal (Paquette et al., submitted),
254  likely due to the small size of its pollen grains, which can easily mix with debris or because pollen grains
255 included in our dataset may have been limited in quantity or had not fully matured. Indeed, distinguishing
256  male from female Thuja cones and assessing the phenological stage to collect mature pollen is difficult, and
257  the small size of the cones is another challenge for pollen extraction. Improving collection and extraction

258  protocols for this genus could help reduce debris contamination in future sampling.

259 A crucial next step is to adapt these models for use on complex airborne samples collected in urban
260  environments. Such samples often contain large amounts of debris as during atmospheric transport, pollen
261  grains may remain airborne for days or weeks, during which they can fold, crack, or adhere to air pollutants
262  (De Weger et al., 2024). They are also exposed to ultraviolet radiation and humidity fluctuations that can
263 alter fluorescence properties. These factors complicate the discrimination of true pollen grains from other

264  particles and represent a major challenge for operational implementation.

265  Because small pollen grains, folded grains and debris can have overlapping size distributions,
266  misclassification remains a possibility, with pollen occasionally identified as debris, and vice versa. Future
267  research could therefore explore multidimensional hierarchical classification frameworks, especially when
268  complementarity data such as holographic images are available for validation. For example, when
269  classification confidence is high, the model could assign a species-level label, but default to a broader
270  taxonomic category such as genus or family when uncertainty is greater (Hernandez et al., 2014). This
271  flexibility would prevent incorrect fine-level classifications and improve overall reliability under complex

272 environmental conditions.
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273 Another limitation of flow cytometry-based models concerns their device dependency, as fluorescence
274  intensity values are typically linked to the specific cytometer used during model training, which limits model
275  transferability across instruments. Standardization procedures, such as calibrating cytometers using
276  Rainbow beads and Quality Control beads could help ensure consistent signal outputs across different
277  instruments (Solly et al., 2013). The present work was carried out using a conventional cytometer with three
278  lasers and ten filters; using equipment with more lasers and detectors could refine the detection of
279  fluorescent signatures and detect more of them. Spectral cytometry also opens up new possibilities for
280  analyzing fluorescent signatures on a larger scale (Konecny et al., 2024), which could enable even better

281  characterization of pollen based on its fluorescence.

282  The combination of flow cytometry and a Random Forest classification model proves to be a highly
283  promising approach for the identification of airborne pollen in urban environments. By relying exclusively
284  on routinely measured cytometric parameters, rather than images, this method ensures broad applicability
285  and compatibility with standard healthcare and clinical cytometers. Integrating this approach into existing
286  aerobiological monitoring networks could enable near-real-time identification and quantification of
287  allergenic pollen. We also built an extensive reference pollen collection comprising 97 species across 34
288  genera. For each species, we have several floral units (flower, catkins, cones) containing pollen, microscopic
289  slides, and flow cytometry data for all pollen grains. This reference collection could be reused for different

290  purposes such as future model training.
291 5 Conclusion

292 This study demonstrates a significant advancement in pollen identification by combining flow cytometry
293 with a random forest classification model. This approach achieved high accuracy at both the genus (F; =
294 0.90) and species levels (1 =0.76), surpassing several limitations of traditional microscopy. While species-
295  level classification remains challenging for certain taxa, the results highlight the method’s robustness and
296  potential for large-scale implementation. With continued refinement and standardization, this approach
297  could enable near—real-time, cheap, high throughput pollen identification and broaden its applications in
298  aerobiological monitoring, while supporting public health applications and advancing research in pollen

299  ecology worldwide.
300 6 Code availability
301  The code is available on the public Github repository SarahTardif/Pollen-classification-model.

302 7 Data availability
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303  Training datasets and trained models are available on a Figshare repository

304  (https://doi.org/10.6084/m9.figshare.30870641). More data can be provided upon request.
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323

324

Appendix A: Reference pollen collection

Table Al: Species in the reference pollen collection

Family

Genus

Species (scientific name)

Asteraceae

Ambrosia

Ambrosia artemisiifolia

Betulaceae

Alnus

Alnus alnifolia

Alnus glutinosa

Alnus incana

Betula

Betula alleghaniensis

Betula nigra

Betula papyrifera

Betula pendula

Betula populifolia

Carpinus

Carpinus betulus

Carpinus caroliniana

Corylus

Corylus avellana

Corylus colurna

Corylus cornuta

Ostrya

Ostrya virginiana

Cannabacées

Celtis

Celtis occidentalis

Cupressaceae

Juniperus

Juniperus chinensis

Juniperus communis

Elacagnaceae

Elacagnus

Elaeagnus angustifolia

Fabaceae

Gleditsia

Gleditsia triacanthos

Robinia

Robinia pseudoacacia

Fagaceae

Fagus

Fagus grandifolia

Quercus

Quercus alba

Quercus bicolor

Quercus macrocarpa

Quercus palustris

Quercus robur

Quercus rubra

Ginkgoaceae

Ginkgo

Ginkgo biloba

Gramineae

Gramineae spp

Juglandaceae

Carya

Carya cordiformis

Carya glabra

Carya ovata

Juglans

Juglans cinera

Juglans nigra

Juglans spp

Juglans virginiana
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325

Family

Genus

Species (scientific name)

Oleaceae

Fraxinus

Fraxinus americana

Fraxinus nigra

Fraxinus pennsylvannica

Ligustrum

Ligustrum vulgare

Syringa

Syringa reticulata

Syringa villosa

Syringa vulgaris

Syringa x chinensis

Syringa x prestoniae

Pinaceae

Picea

Picea abies

Pinus

Pinus banksiana

Pinus nigra

Pinus parviflora

Pinus ponderosa

Pinus resinosa

Pinus thunbergii

Rosaceae

Amelanchier

Amelanchier canadensis

Amelanchier laevis

Malus

Malus baccata

Malus pumila

Malus spectabilis

Prunus

Prunus padus

Prunus serotina

Prunus serrulata

Prunus virginiana

Pyrus

Pyrus calleryana "chantecler"

Pyrus ussuriensis

Sorbus

Sorbus intermedia

Salicaceae

Populus

Populus spp

Salix

Salix alba tristis

Salix cinerea

Salix gracilistyla

Salix nigra

Salix spp

Salix udensis

326
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Family Genus Species (scientific name)

Acer freemanii

Acer glabra

Acer grandidentatum

Acer negundo

Acer pilosum

Acer Acer platanoides
Sapindaceae Acer saccharinum

Acer saccharum

Acer sieboldianum

Acer tataricum

Acer ukurunduense

Aesculus hippocastanum

Aesculus
Aesculus x hybride

Taxus canadensis
Taxaceae Taxus Taxus cuspidata

Taxus x media

Tilia americana

Tiliaceae Tilia
Tilia cordata

Ulmus americana

Ulmus bergmanianna

Ulmus davidiana
Ulmaceae Ulmus Ulmus glabra

Ulmus minor

Ulmus propinqua
Ulmus pumila

327  Table A2: Explanation of cytometry variable names, showing the respective excitation lasers and emission

328  detectors with their wavelengths and associated colors.

Granularity Size

Detector PB KO Violet APC- APC-
PE FITC PC5,5 PC7 APC
name 450 525 610 A700 A750 3sc FSC

Excitation 405 488

(nm) - -
Emission 450 525} 610 525 780 712 780

(nm) 2 =

329

330
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332 Figure Al: Distinction pollen (orange) versus debris (grey) on CytExpert software: Example of Alnus

333 incana
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334  Appendix B: Confusion matrices

Ulmus_pumila

Ui prapingua
Uimus. minar

Uimus glabra
Ulmus_dvidiana
Ulmus_bergmanianna
Ulimus_americana
Tiia_cardata
Tiia_americana

Taxus_xmedia
Taxus_cuispidata
Taxus_canatan
sy presios
X chinen:

Vring
Syringa reficulata @
Sorbus_intarmedia
Salix_ugensis =2}
Salix_spp m
Sallx figra
Salix_gracilistyla
SaN_cinetea
Salix_alba_risils
Robinia_pseudoasacia

Quércus_palustiis
Querys_masrooama
uercus_bicolar
Quercis_alba
Pyrus_ussurensis
Pyrus_callogne chantoclor
unus_virginiana
Prunus_serrulata

Prunus_ serctina

Populis s =
Pinus, thuntorgl

FiNUS resinosa
Pinus_pondeosa
PinUE. parviflora

5 nigra
Pinus_banksiana
P | Cat
ategol
2 Oslrya_virginiana o gory
2 Maliis_Spectabil -1
£ ME\usEpumHs [17] 1-10
5 Malus_Bcca -
@ Ligustrum_ vulgare M 1o-50
[ Juniperus_cemmunis 75
Juniperus_chinensis W 75-100

Juglans irginiana
JUglans spp
Jugians,_nigra
Jugfans Gnera
Graminoao_g;
Gleditsla_triacahos
Giiikgo_biloba
Fraxinus pennsylvannica
Fraxinus_nigra
Fraxinus americana
Fagus_grandifolia
Elaeagnlis angusifolia
Corylus_carnula
Coryius colurma
lus_avellana
Cellis_occidentalis
arya_ovala
Carya_glabra

Carya_cordiformis
Carpinus_caroliniana
Carpinis_betulus
Befula_papuifolia
BelTa_pendula
Betula_gapyrf
Betula
Betula_alleghaniar
Amélandhier lae
Amelanchier_canadansis
Ambrosia_artemisifolia

Inus._incana
Alnus giinosa
Alnus_alnifola
AgsculUs X hybride
Aesculus_hippocastanum
AceT_ukurunduense
cer_tataricum
Acer_sieboldianum
Acer_saccharum
Ager_Saccharinum
cei_plalanoides
ACer_pilosum
cer hegundo
Acer_grandidentatum
Ager_glabia
Acar_fraomanil

EALE REE BB LR BERAG LD S, & P RL AP PR RPN P D2 PO DO BB B B B S B
a@ : Gl SR G e
g R P N T e 0 o e T AT R e, h e
A TR T ST & £ TN ST 48 e S0 S el TSNS
£ > S SR R R S TR
3 SRR RIS S S G %ga?&ﬁ O
+ & [ S a OF
oF
o
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336 Figure B1: Confusion matrix for the species-level model. The values represent, for each species, the

337  percentage of pollen grains correctly classified (on the diagonal) and misclassified with the actual

338  corresponding species (on the x-axis). Colors correspond to categories (0—1% in gray, 1-10% in blue, 10—
339 50% in red, 50-75% in yellow, and 75-100% in green). Raw data are provided in supplement material
340  Table SI.
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342  Figure B2: Confusion matrix for the genus-level model. The values represent, for each genus, the

343  percentage of pollen grains correctly classified (on the diagonal) and misclassified with the actual

344  corresponding genus (on the x-axis). Colors correspond to categories (0—1% in gray, 1-10% in blue, 10—
345  50% in red, 50-75% in yellow, and 75—-100% in green). Raw data are provided in supplement material

346 Table S2.
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347  Appendix C: Distributions of values for the main discriminant variables.
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350  Figure C1: Distribution of log-transformed values for the variables that contribute the most to distinguish

351 taxa (FITC,FSC,SSC,Violet610, PB450) across all genera.
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352
353  Figure C2: Distribution of log-transformed values for the variables that contribute the most to distinguish
354  taxa (FITC,FSC,SSC,Violet610, PB450) across all species. Colors indicate genus.
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