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Abstract. The African continent has been recognized as a major driver of the recent rise in atmospheric methane, but the 10 

causes are not well understood. Here we use TROPOMI satellite observations of methane to quantify and attribute African 

emission trends over August 2018–December 2024. We do this with monthly analytical inversions, optimizing surface fluxes 

at 50 km resolution on the continental scale and using two alternative bottom-up wetland emission models (WetCHARTs-

CYGNSS and LPJ-EOSIM-MERRA2) as prior estimates. Our best estimate of total surface fluxes from Africa over the 2019–

2024 period is 72 Tg a-1, including 32 Tg a-1 from wetlands and 23 Tg a-1 from livestock. We find that the bottom-up models 15 

greatly underestimate wetland emissions in South Sudan and Lake Chad and greatly overestimate emissions in the Congo 

Basin. Annual methane surface fluxes from Africa increased by 19–21 Tg a-1 over 2019–2024, contributing 27% of the global 

emission increase in 2019–2021 and continuing to increase after 2021 even as global emissions decreased. The 2019–2024 

increase in African emissions included 11 Tg a-1 from livestock, 4.3–5.7 Tg a-1 from wetlands, and 2.5–2.8 Tg a-1 from waste. 

The increase in livestock emissions was steady while wetland emissions surged in 2020 and 2024. Previous studies attributed 20 

uncertainties in bottom-up wetland data to poor information on inundation extent, but we find that the CYGNSS satellite 

inundation data match the spatial, seasonal, and interannual patterns of our optimized wetland emissions.  

1 Introduction 

Rising atmospheric methane concentrations have contributed 30% of observed warming since pre-industrial times (Szopa et 

al., 2021). Isotopic data indicate that the methane rise over the past two decades has been driven by microbial sources in the 25 

tropics that could include wetlands, livestock, and waste (Nisbet et al., 2023; Drinkwater et al., 2023). The rise has accelerated 

over the past decade to a record rate of 15 ppb a-1 in 2020–2022 with a correspondingly large isotopic shift (Michel et al., 

2024) before slowing down to 8 ppb a-1 in 2023–2024. 
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Global satellite observations of total column methane from GOSAT (2009–present) and TROPOMI (2018–present) are a 30 

unique resource for monitoring and attributing methane emissions worldwide (Jacob et al., 2022). Inverse analyses combining 

the satellite data with an atmospheric transport model can provide optimized estimates of emissions and their trends (Jacob et 

al., 2016). Bottom-up estimates derived from activity data and emission factors regularize these inversions and provide a 

transparent link to the underlying processes. Inverse analyses of satellite data have identified Africa as a large and increasing 

source of methane, and the largest driver in the recent acceleration of the methane rise (Feng et al., 2023; He et al., 2025). Air 35 

pollution-modulated changes in hydroxyl radical concentrations also impact the methane growth rate (Laughner et al., 2021; 

Stevenson et al., 2022; Peng et al., 2022; Zhao et al., 2025; Yoon et al., 2025). 

 

The increase in African methane emissions has been attributed to precipitation-driven expansion of wetlands in East Africa 

(Qu et al., 2022; Feng et al., 2022), with evidence from the GRACE-FO satellite instrument of increases in total water storage 40 

(Lunt et al., 2021; Feng et al., 2023; Qu et al., 2024; Lin et al., 2024; Pendergrass et al., 2025). However, there are problems 

with this attribution. The locations of increasing emissions identified by satellite coincide more with livestock than wetlands 

(Pendergrass et al., 2025). Bottom-up wetland models do not show increasing emissions in Africa in recent years (Lin et al., 

2024). Surface inundation data from the CYGNSS satellite constellation also do not show an increase (Xiong et al., 2025), in 

contrast to GRACE-FO observations. GRACE-FO total water storage includes both surface and ground water (Boergens et al., 45 

2024), complicating its interpretation as a wetland inundation metric. Livestock populations in Africa are growing rapidly 

(Zhang et al., 2021; Tang et al., 2025), which could be an alternative explanation for the rise in African methane emissions. 

 

Besides wetlands and livestock, other sectors contributing to methane surface fluxes in Africa include waste, soil uptake, oil 

and gas, termites, fires, and rice (Saunois et al., 2025). Uptake of methane by soil methanotrophs is disperse but significant, 50 

with large uncertainties over tropical forests (Murguia-Flores et al., 2018; Jiang et al., 2025). Oil and gas emissions are 

predominantly from Nigeria, Algeria, and Angola (Scarpelli et al., 2025; Chen et al., 2023; Western et al., 2021; Fiehn et al., 

2025; Naus et al., 2023; Schuit et al., 2023). Rice cultivation has been increasing in Africa (Chen et al., 2024). 

 

Here, we quantify and attribute the rise in African methane emissions from August 2018 to December 2024 by combining 55 

TROPOMI satellite observations with bottom-up surface flux estimates in monthly analytical inversions using detailed prior 

error covariances. We use two different bottom-up wetland models, WetCHARTs-CYGNSS and LPJ-EOSIM-MERRA2, as 

alternative estimates for the wetland portion of our prior. We optimize methane surface fluxes at 50 km and monthly resolution, 

allowing better separation of emissions from different sectors than previous coarser-resolution inversions, and avoiding errors 

from incorrect seasonality in the prior estimates. As we will see, the multi-year TROPOMI record enables us to quantify 60 

African emissions with little dependence on the prior estimates and thus enables us to use the inversion results not only to 

explain emission trends but also to provide guidance for improving wetland models. 
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2 Data and methods 

We use Bayesian optimal estimation to retrieve monthly mean methane surface fluxes (net sum of emission and uptake) at 0.5° 

× 0.625° (≈ 50 × 50 km2) resolution over the African continent (19.375°W–53.125°E, 37.0°S–40.5°N, domain shown in Fig. 65 

1) using TROPOMI methane concentrations and the nested GEOS-Chem atmospheric transport model to relate surface fluxes 

to concentrations. We minimize the Bayesian cost function 

 

𝐽(𝒙) = (𝒙 − 𝒙!)"	𝑺!#$	(𝒙 − 𝒙!) + *𝒚 − 𝐹(𝒙)-
"𝑺%#$*𝒚 − 𝐹(𝒙)- (1) 

 70 

to optimize a state vector 𝒙 of monthly mean surface fluxes (μg m-2 s-1) from 10768 land and offshore grid cells and 6 boundary 

conditions (ppb) in the four cardinal directions with separation at the equator. 𝐽(𝒙) balances deviations of the solution 𝒙 from 

the prior estimate 𝒙! and from TROPOMI observations 𝒚 as simulated by GEOS-Chem (𝐹(𝒙)), with weighting by the prior 

and observing system error covariance matrices 𝑺!  and 𝑺%  and assuming normal error probability density functions. Our 

GEOS-Chem simulation responds linearly to perturbations in 𝒙 and thus can be represented by the Jacobian matrix 𝑲 =75 

	𝜕𝒚/𝜕𝒙. This permits an analytical solution for the optimal estimate 𝒙2 (Rodgers, 2000). 

 

𝒙2 = 𝒙! + (𝑲"𝑺%#$𝑲+ 𝑺!#$)#$𝑲"𝑺%#$*𝒚 − 𝐹(𝒙!)- (2) 

 

We run 77 months of sequential monthly analytical inversions (August 2018–December 2024). The prior estimate for each 80 

month is informed by both the bottom-up surface flux estimates for that month and the optimal surface fluxes from the previous 

month in a framework similar to Varon et al. (2023). 

 

𝒙! = 𝜆*𝒙&,( + 𝒙2(#$∗ - (3) 

 85 

Here, 𝒙! is the prior state estimate for month 𝑡, 𝒙&,( is the bottom-up surface flux estimate for month 𝑡, and 𝒙2(#$∗ is a modified 

form of the optimal state from month 𝑡 − 1 that (1) replaces flux values below -0.025 μg m-2 s-1 with that limit to avoid surface 

flux dipoles symptomatic of overfit, and (2) resets boundary condition corrections to 0 ppb. The factor 𝜆 sets the domain-wide 

flux for 𝒙! to that of 𝒙2(#$, the unmodified optimal state from month 𝑡 − 1. For the first month of August 2018, 𝒙&,( is used for 

𝒙! . We run two independent sets of monthly inversions, varying the bottom-up representation of wetlands, using either 90 

observed inundation (WetCHARTs-CYGNSS) or a reanalysis-informed model (LPJ-EOSIM-MERRA2), described below. 

Though our state vector includes part of the Middle East and southern Europe, we restrict our analysis to Africa. 
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2.1 TROPOMI satellite observations and the GEOS-Chem model 

Our observing system consists of the TROPOMI satellite observations and the GEOS-Chem atmospheric transport model. The 

TROPOMI satellite instrument retrieves column-average dry-air methane mixing ratios (XCH4) at a 5.5 × 7 km2 nadir spatial 95 

resolution (7 × 7 km2 before August 2019) from solar backscatter radiance measurements in the 2.3 μm methane absorption 

band (Hu et al., 2018). These observations cover the globe each day with a 3% global retrieval success rate limited by clouds, 

dark or heterogeneous surfaces, and topography. 

 

We use the blended TROPOMI XCH4 product (Balasus et al., 2023), accessed from https://registry.opendata.aws/blended-100 

tropomi-gosat-methane/ (last access: 22 October 2025). This product starts with the operational TROPOMI product from the 

Space Research Organisation Netherlands (Lorente et al., 2023) and corrects it using machine learning with co-located 

retrievals from GOSAT. The GOSAT observations are less subject to biases than TROPOMI owing to higher spectral 

resolution and use of a CO2 proxy retrieval method (Parker et al., 2020), but they are also much sparser. We use only land 

observations and filter out coastal scenes with poor spectral fits (Balasus et al., 2023). We average together individual 105 

observations taken on the same orbit within the same 0.5° × 0.625° grid cell to make super-observations (Eskes et al., 2003; 

Chen et al., 2023) which populate our observation vector 𝒚. 

 

Figure 1 shows TROPOMI super-observations of XCH4 averaged across August 2018–December 2024, containing 269 million 

individual TROPOMI observations. The north-south XCH4 gradient is driven by the global background. Concentrations are 110 

highest over the Sudd wetlands of South Sudan, the Niger Delta with its combination of wetlands and oil and gas production, 

and an equatorial band though with few observations due to clouds and optically dark tropical forests. 

 

We use version 14.5.0 of the GEOS-Chem chemical transport model (Maasakkers et al., 2019) with the TROPOMI operator 

(Varon et al., 2022) to relate surface fluxes to the TROPOMI observations. The model is driven by assimilated meteorological 115 

data from the MERRA-2 reanalysis and has a spatial resolution of 0.5° × 0.625°, the same as our state vector, with 72 vertical 

layers. The model includes chemical loss of methane using archived oxidant fields (Wecht et al., 2014). We use the nested 

version of GEOS-Chem over Africa with dynamic boundary conditions updated every 3 hours. The boundary conditions are 

imposed by smoothed TROPOMI concentration fields so as to be unbiased relative to the observations (Estrada et al., 2025). 

They are constructed by (1) conducting a global GEOS-Chem simulation at 2.0° × 2.5° resolution using MERRA-2 120 

meteorology, (2) smoothing the 2.0° × 2.5° average daily differences between GEOS-Chem and TROPOMI column 

concentrations spatially within 10° × 12.5° domains and temporally across ±15 days, filling gaps over oceans with latitudinal 

averages, and (3) scaling the original GEOS-Chem vertical profiles to remove the smoothed bias relative to TROPOMI column 

concentrations. The boundary condition elements of our state vector are an additive correction to these boundary conditions. 
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 125 
Figure 1: TROPOMI satellite observations of methane over Africa for August 2018–December 2024. Super-observations are shown, 
defined by averaging together observations taken on the same orbit within the same 0.5° × 0.625° grid cell. The left panel shows the 
mean column-average dry-air methane mixing ratios (XCH4) from the Balasus et al. (2023) blended product. The right panel shows 
the number of super-observations per grid cell on a log scale. Areas in white have no observations. 

 130 

We take the observing system covariance matrix 𝑺% to be diagonal with GEOS-Chem transport error variance and TROPOMI 

super-observation error variance added in quadrature. The transport error standard deviation is taken to be 4 ppb as inferred 

by Hancock et al. (2025) from the residual error method in the asymptote of high observation density (Chen et al., 2023). The 

uncertainties reported in the operational TROPOMI product for individual observations, propagated from noise in the spectral 

measurements, are too low because they do not account for retrieval error (Sicisk-Paré et al., 2025). Following Schneising 135 

(2025), we correct them using ground-based XCH4 observations from TCCON stations worldwide (Wunch et al., 2011). Using 

August 2018–December 2024 TROPOMI XCH4 for 26 GGG2020 TCCON stations (https://tccondata.org, last access: 21 July 

2025) as in Balasus et al. (2023), we derive the TROPOMI precision at each of the 26 TCCON stations and then regress these 

station precisions against the average operationally-reported uncertainty for TROPOMI at each station (slope = 1.8, intercept 

= 8.0 ppb, Pearson’s 𝑟 = 0.7) as shown in Fig. 2. We use this fit to translate from the operationally-reported uncertainty to 140 
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individual observation error standard deviations 𝜎*  for each TROPOMI observation 𝑖 . The error variance for a super-

observation 𝜎+,-./0  is a function of the individual error standard deviations 𝜎* of the 𝑁 observations averaged together to make 

the super-observation and a representative uniform correlation coefficient 𝑐 as in Eq. (4) following Rijsdijk et al. (2025). 

 

𝜎+,-./0 =
1
𝑁0 ?(1 − 𝑐)@𝜎	*0

2

*3$

+ 𝑐 A@𝜎*
2

*3$

B

0

C	 (4) 145 

 

Using data from all TCCON stations, we find that the variance of TROPOMI super-observation residuals (TROPOMI-

TCCON-mean station bias) best fit Eq. (4) using a correlation coefficient 𝑐 = 0.3 (also shown in Fig. 2). 

 

 150 
Figure 2: Determination of TROPOMI super-observation error variances using TCCON ground-based column data. The left panel 
shows a linear regression of the TROPOMI precision (error standard deviation) at 26 TCCON stations against the average 
operationally-reported TROPOMI uncertainty at each of those stations (slope, intercept, and Pearson’s 𝒓 inset). The right panel 
shows the super-observation error variance at TCCON sites versus the number of individual observations contributing to the super-
observation, featuring an asymptote that corresponds to a correlation coefficient of 0.3 in Eq. (4). The analysis uses TROPOMI data 155 
coincident with TCCON data, defined as being within 100 km from the TCCON site (except for 50 km for the Edwards site), no 
more than 250 m in elevation difference, and within 1 hour of the TCCON observation (Balasus et al., 2023). 

2.2 Prior surface flux estimates 

Table 1 lists continental totals for the gridded bottom-up methane surface fluxes used as our prior estimates. These are resolved 

by sector and include both natural (wetlands, soil uptake, termites, fires, geological seeps) and anthropogenic (livestock, waste, 160 

oil, gas, rice, coal) categories. Wetlands and livestock dominate. 
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Table 1: Bottom-up methane surface fluxes from Africa (Tg a-1)a. 

Total 81 (76) 

Wetlands 35 (30) 

Livestock 21 

Soil uptake -8.3 

Waste 11 

Termites 4.7 

Other anthropogenic 4.1 

Fires 4.4 

Oil 4.5 

Gas 2.3 

Rice 2.4 

Coal 0.2 

Geological seeps <0.1 
aContinental 2019–2024 averages for the gridded bottom-up fluxes used as prior estimates in the inversion. Wetlands are from WetCHARTs-

CYGNSS as described in the text (LPJ-EOSIM-MERRA2 in parentheses). Livestock (enteric fermentation and manure management), waste 165 
(landfills and wastewater treatment), and other anthropogenic sources (residential energy, transportation, and industry) are from the 

Emissions Database for Global Atmospheric Research (EDGARv8, Crippa et al., 2024). Soil uptake is from MeMo v1.0 (Murguia-Flores et 

al., 2018). Termite emissions are from Ito (2023). Open fire emissions are from the Global Fire Emissions Database (GFEDv4.1s, van der 

Werf et al., 2017). Oil, gas, and coal emissions are from the Global Fuel Exploitation Inventory (GFEIv3, Scarpelli et al., 2025). Rice 

emissions are from the Global Rice Paddy Inventory (GRPI, Chen et al., 2025). Seep emissions are based on the global annual total of Hmiel 170 
et al. (2020) distributed spatially following Etiope et al. (2019) and are negligible in Africa. 

 

We use two alternative bottom-up wetland representations for the inversion, WetCHARTs-CYGNSS and LPJ-EOSIM-

MERRA2 (Zhang et al., 2023; Colligan et al., 2024; Quinn et al., 2025), to test the sensitivity of inversion results to the 

specification of the prior estimate. We build WetCHARTs-CYGNSS here, following Gerlein-Safdi et al. (2021), Li et al. 175 

(2024), and Xiong et al. (2025). WetCHARTs is an empirical framework for estimating methane emissions based on wetland 

extent, heterotrophic respiration, and temperature (Bloom et al., 2017). Default wetland extent in the WetCHARTs extended 

ensemble is based on static wetland charts scaled monthly based on precipitation. Instead, we use observed inundation from 

CYGNSS, a constellation of satellites that can use GPS signals to map inland water extent. We use the monthly CYGNSS 

Berkeley-RWAWC product (Pu et al., 2024) for inundation at 0.01° × 0.01° resolution. Pairing this with a scale factor setting 180 

global wetland methane emissions to 207.5 Tg in 2019, a 2001–2021 climatology of CARDAMOM respiration, and no 

temperature dependence for the methane/CO2 respiration ratio (WetCHARTs ensemble member 3914 that East et al. (2024) 

identified as best-performing), we produce WetCHARTs-CYGNSS at 0.5° × 0.5° for each month from August 2018 to 

December 2024. All high-performing WetCHARTs ensemble members use CARDAMOM respiration (Ma et al., 2021). LPJ-

EOSIM-MERRA2 is a land surface model that uses reanalysis meteorological data to quantify wetland emissions. We choose 185 
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this model as an alternative to WetCHARTs-CYGNSS in our sensitivity inversion because it provides a good match to the 

observed seasonality in background methane concentrations (East et al., 2024). 

 

Figure 3 shows total bottom-up methane surface fluxes as 2019–2024 averages, differing only in their wetland component. 

Wetlands and livestock are shown individually in Fig. 4. WetCHARTs-CYGNSS has more expansive wetlands with lower 190 

magnitude emissions than LPJ-EOSIM-MERRA2, especially in the Congo Basin. The lower magnitude emissions from the 

Congo Basin in WetCHARTs-CYGNSS, which come about from lower inundation than other inventories (Zhu et al., 2025), 

are supported by GOSAT observations (Lunt et al., 2019; Maasakkers et al., 2019). Livestock emissions are almost entirely 

from enteric fermentation and are concentrated in Ethiopia, Kenya, and the Sahel. Localized livestock emission hotspots in 

Morocco, South Africa, and Somalia stem from an EDGARv8 spatialization method that uses satellite-observed ammonia 195 

hotspots (Crippa et al., 2024). Soil uptake is diffuse throughout the continent except in the central Sahara. Waste emissions are 

in and around urban areas. Oil and gas emissions are mainly from Nigeria, Angola, and Algeria. 

 

We construct the prior error covariance matrix 𝑺! by assuming 50% relative error standard deviations on the flux elements of 

𝒙!. Then, 𝑺! is constructed element-by-element for 𝑗 ∈ {1,2, … ,10768} and 𝑘 ∈ {1,2, … ,10768} as 200 

 

𝑺![𝑗, 𝑘] = exp(−𝑑/𝑙) 	× 	𝑠	 ×	𝜎4 	× 	𝜎5 (5) 

 

where 𝜎4 is the error standard deviation for grid cell 𝑗, 𝑑 is the distance between the grid cells in km, 𝑙 is an error correlation 

length scale of 200 km (Yu et al., 2021), and 𝑠 is the cosine similarity between vectors of the bottom-up sectoral composition 205 

for the grid cells, following on work from Turner et al. (2020). The scheme yields large error correlations between grid cells 

that are physically close and have similar sectoral attributions. Boundary condition corrections are given an error variance of 

100 ppb2 with no error correlations. We construct 𝑺! in this manner for each month based on 𝒙! from Eq. (3). 
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Figure 3: Mean bottom-up methane surface fluxes in 2019–2024 at 0.5° × 0.625° resolution. These fluxes include all sectors in Table 210 
1, differing only in their wetland component, which is either WetCHARTs-CYGNSS (left) or LPJ-EOSIM-MERRA2 (right). Areas 
in grey are not optimized as part of the state vector (oceans) or are excluded from our analysis (Middle East, southern Europe). 
Fluxes can be weakly negative (minimum -0.02 μg m-2 s-1) in remote desert regions due to the soil sink. The colorbar saturates for a 
few high-emitting grid cells, with the highest emission reaching 5.5 μg m-2 s-1 in Lagos due to landfills. 

 215 
Figure 4: Mean 2019–2024 bottom-up methane surface fluxes for wetlands (WetCHARTs-CYGNSS and LPJ-EOSIM-MERRA2) 
and livestock (EDGARv8) at 0.5° × 0.625° resolution. LPJ-EOSIM-MERRA2 wetland emissions reach 2.3 μg m-2 s-1 over the Congo 
Basin. EDGARv8 livestock emissions reach 2.8 μg m-2 s-1 in South Africa. 
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3 African methane surface fluxes 

Our optimized 2019–2024 annual mean methane surface fluxes using either of the wetland bottom-up prior estimates are 220 

shown in Fig. 5, totaling 71–72 Tg a-1. Despite using very different bottom-up wetland representations, the two inversions 

converge to a similar spatial pattern, owing to the ingestion of 6.5 years of TROPOMI observations and our consideration of 

prior error correlations (Eq. (5)) that effectively allow greater departures from the prior estimates in the cost function. The 

spatial pattern of the optimized fluxes features large emissions from South Sudan, around Lake Chad, and throughout eastern 

Africa, missing from the prior estimates but consistent with the spatial patterns derived using GOSAT in Lunt et al. (2019). 225 

The LPJ-EOSIM-MERRA2 wetland methane emission hotspots in the Congo Basin and southeastern Chad shown in Figs. 3 

and 4 vanish in the optimized fluxes. 

 

We validate our results using 10-fold cross-validation as in Turner et al. (2020). Simulated enhancements with our optimized 

state vector (𝑲𝒙2) show improved performance relative to the bottom-up state vector (𝑲𝒙&) when evaluated against TROPOMI-230 

observed enhancements (𝒚 − 𝐹(𝒙 = 0)) withheld from the inversion, achieving higher correlation and lower root-mean-

square-error (optimized: 0.60 Pearson's 𝑟, 8.7 ppb RMSE; bottom-up: 0.49 Pearson's 𝑟, 9.4 ppb RMSE). Observations are only 

withheld from the inversion for the purpose of this cross-validation; all other reported results use all observations. 

 

We disaggregated optimized fluxes to sectors on the basis of relative contributions of individual sectors to the bottom-up 235 

estimates in each grid cell, using WetCHARTs-CYGNSS for both inversions as the better bottom-up representation of 

wetlands. The optimized annual mean surface fluxes of 71–72 Tg a-1 include 28–32 Tg a-1 from wetlands, 23–25 Tg a-1 from 

livestock, 8.4–9.0 Tg a-1 from waste, and 8.2–9.7 Tg a-1 from soil uptake. The optimized emissions (removing soil uptake) 

average 80–81 Tg a-1, consistent with the 79–88 Tg a-1 average for 2010–2016 reported in Lunt et al. (2019) for total continental 

African emissions. As in the bottom-up estimates, wetlands and livestock are the dominant sectors. Optimized oil and gas 240 

emissions are 4.1–4.2 Tg a-1, only 60% of the 6.8 Tg a-1 GFEIv3 estimate, a difference driven by Nigeria and Angola. Recent 

studies by East et al. (2025) for both countries and Fiehn et al. (2025) for Angola also find this overestimate by GFEI. 
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Figure 5: Mean methane surface fluxes in 2019–2024 at 0.5° × 0.625° resolution optimized with TROPOMI observations. The two 245 
inversions use alternative bottom-up representations of wetlands with WetCHARTs-CYGNSS or LPJ-EOSIM-MERRA2. Emissions 
reach 3.9 μg m-2 s-1 in the left panel and 6.5 μg m-2 s-1 in the right panel, both near the border of Sudan and South Sudan. 

4 2019–2024 trends in African methane surface fluxes 

The annual surface flux of methane from Africa in each year from 2019 to 2024 is shown in the top panel of Fig. 6. The 7.9–

8.6 Tg a-1 increase over 2019–2021 represents 27% of the 30 Tg a-1 global rise in methane emissions over the same period as 250 

estimated by He et al. (2025). Although global emissions subsequently decreased back to 2019 levels, the annual African 

surface flux continued to increase, up 34% from 60–62 Tg a-1 in 2019 to 81–82 Tg a-1 in 2024. 
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Figure 6: 2019–2024 trends in total and sectoral annual mean methane surface fluxes from Africa optimized using TROPOMI. 255 
Results are shown for the two inversions using alternative bottom-up representations of wetlands as prior estimates, WetCHARTs-
CYNGSS (solid lines) and LPJ-EOSIM-MERRA2 (dotted lines). The sectoral attribution in the bottom panel uses prior spatial 
information from WetCHARTs-CYGNSS for wetlands. The Livestock category includes enteric fermentation and manure 
management. The Other category includes waste, fossil fuels, rice, geological seeps, fires, termites, soil uptake, and other minor 
anthropogenic sources. 260 

 

The largest increase in the annual African surface flux relative to the previous year was 10 Tg a-1 in 2020. In coarse-resolution 

global studies using GOSAT and optimizing OH, Feng et al. (2023) found a similar 11 Tg a-1 increase in African emissions 

from 2019 to 2020, while Qu et al. (2024) reported a 9 Tg a-1 increase. Using TROPOMI and also optimizing OH, He et al. 

(2025) found an 8 Tg a-1 increase. Consistent with our results, Feng et al. (2023) reported lower emissions in 2021 relative to 265 

2020, though Qu et al. (2024) for 2010–2022 and He et al. (2025) for 2019–2024 report their largest annual African emissions 

in 2021. 
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Both of our inversions show that the increase in African methane from 2019 to 2024 was primarily driven by a steady increase 

in livestock emissions, up 11 Tg a-1 or 60% in 2024 relative to 2019 as shown in the bottom panel of Fig. 6. Waste emissions 270 

increased by 2.5–2.8 Tg a-1 or 37% over the same period and are mainly responsible for the increase in the Other category in 

Fig. 6. Wetland emissions increased by 4.3–5.7 Tg a-1 but feature more interannual variability, surging in 2020 and 2024. 

Previous coarse-resolution inverse studies pointed to the difficulty of separating wetland from livestock emissions in Africa 

(Pendergrass et al., 2025). We have more confidence in our ability to separate these two sectors because of our higher spatial 

resolution and monthly temporal resolution, use of more reliable CYGNSS inundation data, and prior error correlations that 275 

exploit the broader spatial patterns for each sector. 

 

Figure 7 shows the spatial distribution of the methane surface flux trends for 2019–2024 as derived by the Theil-Sen estimator 

applied to 72 months of optimized estimates in each grid cell. Results are shown for total fluxes and for the livestock sector. 

Increasing emissions are mostly in the Sahel, tracking the livestock sector. The hotspot increase in South Sudan is however 280 

largely driven by wetlands (mostly the Sudd, but also the Machar and Lotilla wetlands; Pandey et al. (2021)). Increases in 

southeastern Africa are also mostly from wetlands. Oil and gas emissions increase in Algeria but decrease in coastal Nigeria. 

 

 
Figure 7: 2019–2024 trends in methane surface fluxes from Africa at 0.5° × 0.625° resolution optimized using TROPOMI. Results 285 
are shown for the inversion that uses WetCHARTs-CYGNSS as the wetland prior estimate. Trends are obtained by application of 
the Theil-Sen estimator to the 72 months of surface flux estimates in each grid cell. 
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The Food and Agriculture Organization (FAO) of the United Nations reports increasing ruminant and pseudo-ruminant 

livestock populations in Africa over the 2019–2023 period: +28 million cattle, +2.6 million camels, +39 million goats, and 290 

+26 million sheep (FAO, 2024). Convolved with Tier 1 emission factors from the IPCC (IPCC, 2019), these livestock 

population increases (~10%) correspond to only a 2.4 Tg a-1 increase, well short of the 7.6–8.0 Tg a-1 (40%) increase in 

livestock emissions that we infer for 2019–2023. This discrepancy may reflect inaccurate censuses of livestock populations in 

Africa, which face challenges that include reluctance of farmers to report for taxation or cultural reasons, transhumance, and 

logistics limitations from civil unrest (Mapitse and Letshwenyo, 2011). For example, Abay et al. (2025) found that directly 295 

counted cattle populations were 43% higher than owner-reported data in Ethiopia, which they attribute in part to incentives for 

owners to underreport their herd size to maintain social protection program eligibility. 

 

Wetland emissions in central-eastern Africa, including the Congo Basin, Uganda, Zambia, and Tanzania, are elevated in 2020 

and 2024 as shown in Fig. 8, correlating with the positive phase of the Indian Ocean Dipole that drives rainfall anomalies in 300 

East Africa (Feng et al., 2022; Palmer et al., 2023), and driving the interannual variability of total African emissions (Fig. 6). 

In contrast, the wetlands of South Sudan, which are the single most prominent wetland methane source in Africa as revealed 

by our inversion (Fig. 5), have peak emissions in 2022, in line with increased inundation (Hardy et al., 2023; Dong et al., 2024) 

but out of phase with total African wetland emissions. Rainfall was low in 2022, but the long residence time of water in the 

White Nile system that connects Lake Victoria to the river-fed Sudd wetlands of South Sudan creates a temporal lag between 305 

rainfall and inundation (Mulangwa et al., 2025). Lake Victoria was at its highest level in two decades in 2020 and 2021 because 

of heavy precipitation (Boergens et al., 2024; Dong et al., 2024). 
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Figure 8: Wetland methane emissions optimized by TROPOMI in the inversion using WetCHARTs-CYGNSS as prior estimate. 
Annual totals are shown for the South Sudan region and central-eastern Africa. 310 

5 Implications for bottom-up wetland emission models 

Our TROPOMI inversion results show that the WetCHARTs-CYGNSS bottom-up model, while performing better than LPJ-

EOSIM-MERRA2, still greatly underestimates emissions from South Sudan and Lake Chad and overestimates emissions from 

the Congo Basin. Uncertainty in bottom-up models for tropical wetlands has been generally attributed to poor inundation data 

(Pandey et al., 2021; Dong et al., 2024; Lin et al., 2024). However, we find here that the main source of error is in the wetland 315 

methane emission intensity (emission per unit inundated area). CYGNSS inundation patterns (Fig. 9) match the pattern of our 

optimized emissions, but this is corrupted when applying CARDAMOM heterotrophic respiration rates through WetCHARTs 

to infer the emissions. Fig. 9 compares the emission intensities from CARDAMOM to those inferred from our TROPOMI 

inversion by reference to the CYGNSS inundation data. CARDAMOM broadly tracks photosynthetic uptake, but this appears 

to be inadequate for estimating methane emissions, producing high intensities in the Congo Basin and low intensities in South 320 

Sudan. Also shown in Fig. 9 are methane emission intensities from McNicol et al. (2023), derived from the FLUXNET eddy-

covariance flux tower network (Delwiche et al., 2021) by applying machine learning dependences on environmental variables. 

The strongest dependences in that FLUXNET machine learning product are on temperature. The resulting patterns are opposite 

of CARDAMOM, with low intensities over the Congo Basin, but still differ greatly from our TROPOMI inversion and do not 

capture the high intensities in South Sudan. The FLUXNET product includes only two towers in Africa (both in Botswana 325 
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with data only for 2018, with their site-level intensities ~5× greater than those from our 50 km inversion), so the intensities are 

derived primarily from observations in other continents.  

 

 
Figure 9: Wetland emission drivers in Africa. Values are 2019–2024 means. The left panel shows the inundated fraction from 330 
CYGNSS. The other panels show the methane intensities (emission per unit of inundated area) from CARDAMOM used in 
WetCHARTs-CYGNSS, McNicol et al. (2023) applying machine learning to FLUXNET tower data (Delwiche et al., 2021), and our 
TROPOMI inversion referencing optimized wetland emissions to the CYGNSS inundation data. Intensities are only shown for grid 
cells with average CYGNSS inundation greater than 0.5%. Wetland emission intensities reach 10.6 μg m-2 s-1 in the TROPOMI-
derived intensity map over the wetlands of South Sudan. 335 

 

Inspection of the seasonality of emission in South Sudan gives further insight into the shortcomings of the bottom-up wetland 

emission models. Figure 10 shows monthly optimized wetland emissions for the same South Sudan region as in Fig. 8. 

Emissions peak in October–November during the short rain season, as previously reported (Lunt et al., 2021). WetCHARTs-

CYGNSS has the same seasonality but weaker seasonal amplitude and does not capture the observed interannual variability. 340 

LPJ-EOSIM-MERRA2 has near-zero emission in January–March and its seasonal peak is shifted two months ahead of our 

optimized emissions. Again, CYGNSS inundation alone does much better at reproducing the relative seasonal amplitude and 

interannual variability in our optimized emissions but the seasonality is dampened by CARDAMOM which has opposite phase. 

CYGNSS inundation peaks one month before our optimized emissions, which may be explained by the time lag for 

methanogens to activate (Pandey et al., 2021). 345 

 

https://doi.org/10.5194/egusphere-2025-6251
Preprint. Discussion started: 19 January 2026
c© Author(s) 2026. CC BY 4.0 License.



17 
 

 
Figure 10: Monthly wetland methane for the South Sudan region (5–11°N, 27°–35°E; Fig. 8) over May 2018–December 2024. The 
top panel shows optimized emissions from our TROPOMI inversions compared to two bottom-up wetland models used as prior 
estimates, WetCHARTs-CYGNSS and LPJ-EOSIM-MERRA2. The bottom panel shows CYGNSS inundation and CARDAMOM-350 
dervied emission intensities used in WetCHARTs-CYGNSS. Ticks indicate January 1 each year. 

6 Conclusions 

We used TROPOMI satellite observations of methane in monthly analytical inversions to infer monthly mean methane surface 

fluxes at 50 km resolution over Africa from August 2018 to December 2024. Our goal was to better understand the role of 

Africa as a driver of the recent rise in methane and to connect this rise to the underlying emission processes. 355 
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Our inversion used a continental-scale nested version of the GEOS-Chem model, with smoothed TROPOMI boundary 

conditions further optimized by the inversion, to enable high resolution and isolate the effect of African emissions. We 

constructed bottom-up wetland emissions for use as prior estimates and source attribution with monthly high-resolution 

inundation data from the CYGNSS satellite constellation in combination with the CARDAMOM biogeochemical model from 360 

the WetCHARTs wetland model ensemble (WetCHARTs-CYGNSS). We also used the LPJ-EOSIM-MERRA2 reanalysis-

based wetland model as an alternative prior estimate to evaluate uncertainty in our results. 

 

African emissions are dominated by wetlands and livestock. The optimized surface fluxes from our inversion show large 

changes in spatial distributions relative to the prior estimates, including in particular much higher emissions from the wetlands 365 

of South Sudan and much lower emissions from the Congo Basin wetlands. We find little sensitivity of the optimized surface 

fluxes to the choice of prior estimates, reflecting the large number of observations and our accounting of prior error correlations 

that effectively decreases the weight of the prior estimates in the inversion. 

 

We find that the annual African methane surface fluxes increased steadily over the 2019–2024 period, from 60–62 Tg a-1 in 370 

2019 to 81–82 Tg a-1 in 2024 (34% increase). The 2019–2021 African emissions increase accounts for 27% of the estimated 

global growth in methane emissions over that period. However, methane emissions from Africa continued to increase after 

2021 even as global emissions decreased back to their 2019 levels. We attribute the 2019–2024 increase in African emissions 

primarily to livestock (+11 Tg a-1), wetlands (+4.3–5.7 Tg a-1), and waste (+2.5–2.8 Tg a-1). The livestock emissions grew 

steadily by 60% over the 2019–2024 period while wetland emissions are more irregular, surging in 2020 and 2024, driven by 375 

central-eastern African wetlands. The growth in livestock emissions is mostly in the Sahel. It is much higher than can be 

explained by the ~10% increase in livestock populations over the 2019–2023 period reported by the Food and Agriculture 

Organization (FAO), though the FAO statistics are notoriously uncertain in Africa. 

 

Uncertainty in bottom-up wetland emission estimates has been previously blamed on poor inundation data, but here we find 380 

that the CYGNSS monthly inundation maps match closely the spatial and seasonal wetland emission patterns optimized by 

our inversion. Our results suggest that the main shortcoming in bottom-up wetland emission models is in the estimate of 

methane emission intensity per unit of inundated area. CARDAMOM used by WetCHARTs relates this intensity to 

heterotrophic respiration, but this appears to be incorrect and is responsible for the large overestimate in the Congo Basin. 

McNicol et al. (2023) derive methane intensities from FLUXNET tower data as primarily driven by temperature, which 385 

corrects the Congo Basin but fails to capture the high emissions in South Sudan. More work is needed to estimate methane 

emission intensities in bottom-up wetland emission models, and the intensities derived from our TROPOMI inversion may 

provide guidance for this purpose.  

https://doi.org/10.5194/egusphere-2025-6251
Preprint. Discussion started: 19 January 2026
c© Author(s) 2026. CC BY 4.0 License.



19 
 

Data and code availability 

The blended TROPOMI+GOSAT satellite observations are available at https://registry.opendata.aws/blended-tropomi-gosat-390 

methane/ (last accessed 22 October 2025; Balasus et al., 2023). The CYGNSS inundation data were obtained from 

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L3_UC_BERKELEY_WATERMASK_V3.1 (last accessed 28 April 2025). 

The code used for all portions of this project and the associated data are available at 

https://github.com/nicholasbalasus/africa_methane_inversion and will be archived on Zenodo after review. 
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