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Abstract. Building on Bayesian calibration techniques and leveraging high-resolution climate simulations, we test the cur-

rent capabilities of calibrating a surface energy balance model for unmonitored glaciers using only globally available satellite

observations at Hintereisferner. We developed a multi-objective Bayesian framework for the Coupled Snowpack and Ice sur-

face energy and mass balance model in Python (COSIPY), calibrated with satellite-derived geodetic mass balance, transient

snowline altitudes, and mean glacier albedo. The framework is evaluated with in-situ observations and weather station mea-5

surements. A Latin Hypercube Sampling ensemble was used to investigate the model’s parameter behaviour, establish priors

and enable a Markov Chain Monte Carlo calibration helped by a novel and computationally efficient COSIPY emulator. The

multi-objective calibration successfully constrains parameter distributions, addressing the equifinality between accumulation

and albedo parameters. However, tighter parameter constraints, combined with imperfect climate simulations as forcing, create

a model solution that requires a compromise between the three observational targets. Model evaluation shows that the calibrated10

ensemble reproduces glacier-mean albedos and inter-annual mass-balance variability well, but exhibits a negative bias in mean

annual mass balance and a delayed snowline rise. This apparent contradiction arises from both forcing and model limitations.

Incoming longwave radiation is overestimated throughout the year, while a warm and humid bias in the meteorological input

during the later melt season enhances the positive turbulent fluxes. Early season melt is delayed by underestimated incoming

shortwave radiation, and by an overly slow albedo decay caused by too high albedo aging and firn albedo parameters. Such15

biases in the meteorological forcing data remain a major obstacle to applying surface energy balance models to unmonitored

glaciers. The calibration framework presented in this study provides diagnostic tools that help identify shortcomings and com-

pensation effects within the modelling chain, paving the way for correcting forcing biases within a Bayesian framework as

more observations become available. The open-source tools developed here have the potential to lower the barrier to studying

the atmospheric drivers of glacier change at unmonitored sites with explicit treatment of uncertainty.20
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1 Introduction

Glaciers react to ambient atmospheric conditions via surface energy and mass exchanges at the glacier-atmosphere interface

and are thus pivotal indicators of ongoing and past climatic changes (Oerlemans, 2001; Haeberli et al., 2007; Roe et al., 2017).

Between 2000 and 2023, global glacier mass loss totalled 273±16 gigatonnes per year, with the loss accelerating over time25

(Hugonnet et al., 2021; The GlaMBIE Team et al., 2025). This mass loss invokes cascading consequences that can affect global

sea level rise (e.g., Zemp et al., 2019; Frederikse et al., 2020), regional freshwater availability (Ultee et al., 2022; Aguayo et al.,

2024), hydro-political conflicts, diminishing eco-system services (e.g., Cook et al., 2021; Nie et al., 2021) and local hazards

(e.g., GAPHAZ, 2017; Shugar et al., 2021; Furian et al., 2022). Given the societal and environmental impacts, the ability to

accurately project future glacier evolution is crucial.30

To address this need, researchers have developed a suite of numerical glacier models, coordinating their efforts at regional

to global scales through three iterations of the Glacier Model Intercomparison Project (Glacier-MIP; e.g., Hock et al., 2019).

These models mostly rely on the temperature-index (TI) method (Hock, 2003), which requires minimal data inputs and can

adequately simulate glacier snow and ice melt when air temperature is well correlated to the melt energy or its driver (Ohmura,

2001; Sicart et al., 2008). However, the performance of TI models can be questioned under climatic conditions where this core35

assumption is violated and melt becomes highly non-linear (Marzeion et al., 2012; Litt et al., 2019). Most importantly, the TI

method suffers from stationarity, as the degree-day factor is expected to change and cannot be constrained under a changing

climate (Hock, 2003; Ismail et al., 2023; Silwal et al., 2023).

In contrast, surface energy (SEB) and mass balance (MB) models (e.g., Hock and Holmgren, 2005) do not inherently suffer

from the stationarity assumption due to their physical basis (MacDougall et al., 2011). However, this assumption is violated, as40

the parameterisations used within these models often introduce a stationary parameter choice that is subject to the calibration

data and period (Prinz et al., 2016; Galos et al., 2017; Zolles et al., 2019) and may change under a future climate as the glacier’s

environment changes (Oerlemans et al., 2009; Abermann et al., 2014; Zhang et al., 2021; Zolles and Born, 2021). Additionally,

while traditionally calibrated for a single optimal parameter set, these models also exhibit the potential for equifinality, i.e.

multiple equally well-fitting solutions (Rye et al., 2012; Zolles et al., 2019; Arndt and Schneider, 2023).45

The primary limitation for applying SEB models however remains their high demand for in-situ observations, which are needed

to constrain numerous tunable parameters and provide high-quality forcing data (Mölg et al., 2012; Gabbi et al., 2014; Réveillet

et al., 2018). Only a few glaciers have in-situ observations to address this demand (Zemp et al., 2015), but tuned parameters are

not directly transferable to other glaciers (Gurgiser et al., 2013; Zolles et al., 2019), while calibrating to regional mass balance

averages leads to significant uncertainties and inaccuracies at the glacier level (Temme et al., 2023; Zekollari et al., 2024).50

Therefore, SEB models currently represent only three out of the 17 glacier evolution models employed throughout phases one

to three of Glacier-MIP (Hock et al., 2019; Marzeion et al., 2020; Zekollari et al., 2025). The few regional-scale SEB applica-

tions, in turn, are often forced using coarse reanalysis data and calibrated assuming transferable parameters (Sakai and Fujita,
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2017; Shannon et al., 2019; Temme et al., 2023; Mackay et al., 2025).

Satellite-derived geodetic mass balance estimates (Hugonnet et al., 2021) present in many cases the only direct mass change55

observation at the glacier level. While they enabled the calibration of TI-based glacier evolution models (e.g., Rounce et al.,

2023; Zekollari et al., 2024), their temporal resolution is limited as a consequence of the signal-to-noise ratio in the change

signal and the uncertainties in the density assumptions (Huss, 2013; Berthier et al., 2023). Therefore, they offer only limited

information and give rise to equifinality problems (e.g., Rounce et al., 2020; Schuster et al., 2023).

In the absence of adequate in-situ measurements, the growing body of remotely available observations, including transient60

snow-cover data (Rastner et al., 2019; Racoviteanu et al., 2019; Loibl et al., 2025) and glacier albedo (Brun et al., 2015;

Naegeli et al., 2019; Ren et al., 2024), offer a promising alternative to calibrate (glacier) models (e.g., Sirguey et al., 2016;

Rabatel et al., 2017; Barandun et al., 2018; Williamson et al., 2020; Cremona et al., 2025). The integration of these observations

into models has been enabled by recent advances in data assimilation techniques tailored for glaciology (Dumont et al., 2012;

Landmann et al., 2021; Morlighem and Goldberg, 2023).65

Concurrently, there has been significant progress in high-resolution and convection-permitting climate modelling (CPM; e.g.,

Collier et al., 2013; Bonekamp et al., 2019; Coppola et al., 2020; Mott et al., 2023), relevant process understanding (Voor-

dendag et al., 2024; Quéno et al., 2024; Saigger et al., 2024) and downscaling (e.g., Reynolds et al., 2023). CPMs have shown

an improved representation of various precipitation-related metrics (e.g., Ban et al., 2021; Li et al., 2021) and their uncertainties

(Fosser et al., 2024). These models offer a promising avenue as meteorological forcing for SEB models where in situ measure-70

ments are sparse (Blau et al., 2021; Mackay et al., 2025; Ing et al., 2025). This is reflected in the portrayed added value for to

snow cover (Lüthi et al., 2019; Gao et al., 2020) and snowpack simulations (e.g., Vionnet et al., 2019; He et al., 2019; Havens

et al., 2019), air temperature and wind fields (Ma et al., 2023), clouds and top-of-atmosphere radiation budget (Hentgen et al.,

2019).

Building on the pioneering calibrational framework for TI models established by Rounce et al. (2020) and Sjursen et al.75

(2023, 2025) and capitalising on a recent suite of CPM simulations at 2.2 km grid spacing (Leutwyler et al., 2017; Ban et al.,

2020), we explore the applicability of a Bayesian parameter calibration scheme to the open-source COupled Snowpack and Ice

surface energy and mass balance model in PYthon (COSIPY; Sauter et al., 2020). We synthesise these and globally available

remotely-sensed glacier observations with the following aims:

1. Develop a calibration scheme for a physically-based SEB model where in-situ data are absent80

2. Diagnose the sources of parameter equifinality within the model and assess the parametric uncertainty

3. Evaluate the resultant SEB simulations and the consequences of using this "remote-only" application in terms of forcing

and parametric accuracy

This work presents, to our knowledge, the first application of recent advances in both glacier model calibration and climate

modelling to a physically-based SEB model. Our goal is to critically assess our current capabilities towards a remote-only85

application of glacier SEB modelling, and we expect this relevance to grow in parallel with future improvements in glacier
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observations and forcing data. We test our method at a well-studied glacier site in order to enable the comparison of the output

of our workflow with more traditional applications of SEB models using high quality in situ data.

2 Methods and Data

Within this study, we built a Bayesian calibration framework to calibrate an established SEB model using only globally avail-90

able remotely sensed data, while explicitly accounting for the uncertainty in these satellite products. This section first describes

the SEB model and the meteorological and calibration datasets, before addressing the employed calibration framework and

its evaluation against available automatic weather station (AWS) measurements and glaciological observations. We tested this

workflow at the well-monitored Hintereisferner (HEF), a valley glacier in the Austrian Alps (Fig. 1), which is one of the

world’s reference glaciers recognised by the World Glacier Monitoring Service (WGMS, 2024), with continuous mass balance95

measurements since 1952/1953 (Kuhn et al., 1999; Strasser et al., 2018) as well as numerous additional meteorological and

glaciological studies (e.g., Dirmhirn and Trojer, 1955; Kuhn et al., 1999; Klug et al., 2018; Mott et al., 2020; Goger et al.,

2022; Voordendag et al., 2024).

2.1 COSIPY Model

The COSIPY model (Sauter et al., 2020) is a physically based, medium complexity glacier SEB model that can be accessed100

freely on GitHub (https://github.com/cryotools/cosipy, last accessed: 25.07.25). It is optimised for computational performance

using High-Performance Computing Clusters and builds on a one-dimensional column-style architecture, allowing for fast

parallelisation at scalable temporal and spatial resolutions. The model excludes basal processes and lateral exchanges of energy

and mass between grid cells.

COSIPY is based on the conservation of mass and energy and combines the SEB with an adaptive, multi-layered subsurface105

scheme. In COSIPY, the SEB is defined at an infinitesimally thin skin layer as follows:

QM = QSWin(1−α) +QLWin + QLWout + QH + QE + QG + QR, (1)

where QM denotes available melt energy, QSWin incoming shortwave radiation, α surface albedo, QLWin and QLWout incoming

and outgoing longwave radiation, QH sensible heat flux, QE latent heat flux, QG glacier heat flux and QR the sensible heat flux

of rain, with fluxes towards the surface being taken as positive. The SEB is solved iteratively using an optimisation algorithm110

aimed at minimising the residual of equation 1. Except for QSWin, α and QLWin, all terms of Equation 1 are dependent on the

surface temperature Ts, which constitutes the upper boundary condition to the heat equation of the subsurface. The surface and

subsurface are thus linked through Ts and percolating surface melt and rain.

Turbulent fluxes were calculated using a bulk approach (see Sauter et al., 2020) assuming SEB closure (Van Tiggelen et al.,

2024) and applying a stability correction based on the Monin–Obukhov similarity theory in favour of the bulk-Richardson115

number approximation (Lapo et al., 2015; Fitzpatrick et al., 2017). Since Ts is bounded by the melting point, any surplus

energy from the SEB that would increase Ts beyond the melting point is redirected as melting energy. Similarly, a small
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Orthofoto:	Land	Tirol	2023
DEM:	Copernicus	DEM,		https://doi.org/10.5270/ESA-c5d3d65
Outlines:	RGI6.0,	and	digitized	using	Pléiades	©	CNES	2022,	Distribution	Airbus

Figure 1. Map of the study area including the location of the available automatic weather stations (Upper AWS and Lower AWS), present-day

reference stations (Station Hintereis and Im Hinteren Eis), manually digitised outlines based on the Pléiades Glacier Observatory imagery

acquired in August 2022 (dark blue) and the Randolph Glacier Inventory version 6.0 outlines from 2003 (light blue) used within this study.

The grid lines correspond to the COSMO grid at 2.2 km grid spacing. The background image was provided by the Land Tirol (data.tirol.gv.at)

and the contour lines derived from Copernicus WorldDEM-30 (©DLR e.V. 2010 to 2014; ©Airbus Defence and Space GmbH 2014 to 2018),

available under the Copernicus Programme (https://doi.org/10.5270/ESA-c5d3d65).

percentage (10 to 20%) of QSWin penetrates the subsurface following Bintanja and Van Den Broeke (1995), which can result

in subsurface melting if the additional energy input would warm the subsurface layers beyond the melting point. As COSIPY

neglects basal processes, the calculated mass balance is defined as the climatic mass balance (Cogley et al., 2011):120

bclim = csfc + asfc + ci + ai. (2)

Then surface accumulation csfc is the sum of accumulated snowfall and deposition of water vapour, while surface ablation asfc

is the result of surface melt and sublimation. Refreezing can lead to internal accumulation ci, and internal ablation ai is the
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result of subsurface melting.

The model uses parameterisations for the fresh snow density (Vionnet et al., 2012), snow densification (Essery et al., 2013)125

and the temperature-dependent rain and snow partitioning (Hantel et al., 2000) when only total precipitation is provided. The

parameterisation defines the fraction of precipitation falling as snow fsnow based on the near-surface air temperature at two

meters T2 as:

fsnow = 0.5(1− tanh(sp (T2−Trs))) . (3)

This parameterisation introduces two parameters: the central temperature at which 50% of the total precipitation is solid130

Trs and the spread parameter sp which influences the transition between the two phases. Surface roughness is approximated

based on surface facies and is set either constant when ice-covered or, in the case of snow or firn, linearly evolves from the

prescribed fresh snow roughness to the roughness of firn (Mölg et al., 2009, 2012). The snow albedo αsnow is parameterised

after Oerlemans and Knap (1998):

αsnow = αfirn + (αfs−αfirn)exp
(
− s

αaging

)
, (4)135

where αfs is the constant fresh snow albedo and αfirn is the constant firn albedo. The constant albedo time scale αaging describes

how fast the snow albedo decays based on the time since the last snowfall s. In a consecutive step, the scheme accounts for

snow thickness d:

α = αsnow + (αice−αsnow)exp
(
−d

αdepth

)
, (5)

with the constant albedo of ice αice and the snow depth scale αdepth. COSIPY’s modular structure allows for a fast implemen-140

tation of additional parameterisation, depending on the user’s needs (Gastaldello et al., 2025).

The model does not account for debris-covered surfaces or processes associated with snow redistribution and does not resolve

ice dynamics. For a detailed description of the model, please refer to Sauter et al. (2020). In this manuscript, we utilise a cus-

tomized version of the recent COSIPYv2.0.2 (Richter, 2025) adapted to employ the ray-tracing shortwave radiation correction

scheme that accounts for both terrain- and self-shading (HORAYZON; Steger et al., 2022) and modified to calculate the mod-145

elled snowline altitudes (SLAs). We calculate the modelled SLA by first converting COSIPY’s snowheight field to daily means

and then taking the mean between maximum ice- and minimum snow-covered elevation defined with a minimum snow depth

of 0.1 mm. If the glacier is fully snow-covered, the value is instead set to the minimum glacier elevation, and if it is entirely

snow-free, it is set to the maximum glacier elevation.

2.2 Meteorological and static glacier forcing data150

In this study, we used 2.2 km grid spacing convection-permitting Consortium for Small-scale Modelling - Climate Limited-area

Modelling Community (COSMO-CLM; Rockel et al., 2008; Baldauf et al., 2011) simulations produced as part of the World

Climate Research Programme sponsored Coordinated Regional Climate Downscaling Experiment (CORDEX) Flagship Pilot

Study on convection over Europe and the Mediterranean (Coppola et al., 2020) and conducted by the ETH Zurich (Leutwyler
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et al., 2017; Ban et al., 2021). The simulations cover January 1999 to 2010 and are the result of a two-step, one-way nesting155

approach, with the boundary and initial conditions for the larger 12 km grid spacing domain provided by ERA-Interim (Dee

et al., 2011) at six-hourly timesteps. For a detailed description of the simulations, see Leutwyler et al. (2017).

Forcing COSIPY requires hourly fields of near surface air temperature (T2), relative humidity, wind speed, air pressure, total

precipitation and snowfall (optional), incoming shortwave- and longwave radiation (QSWin and QLWin) or in the absence of

the latter, total cloud cover fraction. Except for snowfall (daily), air pressure (6 hourly) and incoming long wave radiation160

(not available), we obtained all fields at hourly resolution directly from the Earth System Grid Federation (ESGF; https:

//esgf-ui.ceda.ac.uk/search, last accessed: 04.11.2025). Hourly air pressure fields are derived by linearly interpolating the six-

hourly pressure fields.

We identified frequent mismatches in the snowfall and total precipitation fields and corrected a singular outlier at the end of

March 2005, with a total precipitation value of more than 150 mm, by replacing it with the average of the surrounding two165

hourly timesteps. Instead of relying on the daily snowfall field, we derive hourly snowfall from hourly total precipitation using

the temperature-based precipitation partitioning function (see Equation 3). We keep sp at its default value of 1.0 °C and set Trs

to 1.55 °C which is similar to the value employed in other studies (e.g., Huss and Hock, 2015) and based on the analysis of

Jennings et al. (2018).

We calculate two-meter wind speed assuming a logarithmic wind profile and a roughness length of 2.12 mm, based on the170

mean of the aerodynamic roughness length for firn and snow (Brock et al., 2006; Gromke et al., 2011; Arndt et al., 2021).

We applied lapse rates for relative humidity, T2, total precipitation and snowfall to distribute the forcing data over the glacier

surface, and extrapolated surface pressure with the barometric formula. We used the horizontal grid to derive local lapse rates

over a three-by-three stencil located over the glacier centroid, due to the large spacing between vertically stored levels in the

stored COSMO simulation at the standard pressure levels. Hourly lapse rates were calculated not to suppress small-scale and175

mesoscale interactions in the original COSMO-grid (Mölg and Kaser, 2011) and to allow for robust temporal variability. The

resultant lapse rates are thus the product of a nine-sample linear regression. We chose this size since a comparison to a larger

five-by-five stencil revealed only minor differences, and land surface types in COSMO-CLM and north-south divide effects

remained consistent (Quéno et al., 2016; Vionnet et al., 2016). Similar to Buri et al. (2024), lapse rates were only applied when

the elevation dependence exceeded a coefficient of determination R2 of 0.7. Otherwise, they were set to zero or for temperature180

the environmental lapse rate of -6.5 K km−1.

Finally, incoming longwave radiation was calculated based on the Stefan-Boltzmann law:

QLWin = ϵa σT 4
2 , (6)

where σ is the Stefan–Boltzmann constant and ϵa the atmospheric emissivity. We followed the formulation implemented

in COSIPY, which combines the parameterisation of Konzelmann et al. (1994) with optimised parameters from Klok and185

Oerlemans (2002) to calculate ϵa based on fractional cloud cover n:

ϵa = ϵcs(1−np) + ϵcln
p. (7)
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In COSIPY, p is set to two (Greuell et al., 1997), ϵcl is the emissivity of clouds (set to 0.984; Klok and Oerlemans, 2002), and

ϵcs denotes the clear-sky emissivity, given by:

ϵcs = 0.23 + b(e2/T2)1/8, (8)190

where b is set to 0.433 (Klok and Oerlemans, 2002), T2 is the air temperature at two meters and e2 the water vapour pressure

(Klok and Oerlemans, 2002).

Since most forcing fields are extrapolated using lapse rates, we applied a 20 m elevation band setup in COSIPY by averaging

the shortwave correction factors generated from HORAYZON at each grid cell of the one-arcsecond resolution NASADEM

(NASA JPL, 2020, last accessed: 19.03.2025).195

To represent the glacier state during the time of the COSMO data availability, we used the glacier outlines from version 6.0 of

the Randolph Glacier Inventory (RGI; RGI Consortium, 2017) dated to 2003 and representing a glacier extent of 8.04 km2. In

this study, we assume the glacier geometry to be unchanging over time, though we note the glacier has undergone continuous

recession since the mid-20th century and in recent years (Fig. 1). We initialised the model in January 1999 with snow height

simulated by the COSMO model and discarded the first year as spin-up in all further steps. We set the lower boundary condition200

for the subsurface temperature to 270.16 K and appointed an ice thickness of 191 m (Farinotti et al., 2019). This ensures

numerical stability by preventing complete grid cell melt-out, which can occur under unrealistic parameter combinations.

2.3 Calibration data

We obtain the annual average specific mass change rate and its uncertainty of -1.0425± 0.261 meters water-equivalent per

year (m w.e. a−1) at HEF for the years 2000 to 2010 from the geodetic dataset of Hugonnet et al. (2021). Henceforth, we205

will report these values with two floating-point precision to improve readability. When comparing the observed and modelled

mass balances, we loosely refer to both as Bgeod, despite the fundamental differences between the two sources. While COSIPY

simulates the climatic mass balance and thus ignores the typically one order of magnitude lower basal processes, these are

inherently included in the geodetic mass balance. For more details, we refer the reader to Hugonnet et al. (2021).

While Bgeod provides an integral calibration target, the temporal information remains limited. To address this gap, we employ210

transient SLA observations, derived from the Mountain Glacier Transient snowline Retrieval Algorithm (MANTRA; Loibl,

2023; Loibl et al., 2025) and glacier-averaged albedo ᾱ as additional calibration targets.

The SLA values are computed from calibrated top-of-atmosphere Landsat data as the median of the lowest two elevation

bands classified as snow-covered, and uncertainties are provided by the band’s standard deviation. We refer the reader to Loibl

et al. (2025) for further information. This calculation has two limitations. First, the measured SLA under fully snow-covered215

conditions does not directly reflect the glacier’s minimum elevation. Second, cloud cover or terrain shading cannot be fully

corrected for. This is especially relevant when cloud cover obstructs the glacier tongue and the SLA may be falsely classified

on the cloud-free section. We corrected for the mismatch between minimum glacier elevation and SLA values on fully snow-

covered days and manually filtered 21 misclassified scenes. As the uncertainties provided by the standard deviation can be very

small, we set the minimum standard deviation to 20 m, which corresponds to the size of the elevation bands in COSIPY.220
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In addition, we derived remotely-sensed Landsat 5 and 7 per-pixel albedo measurements through the Google Earth Engine

(Gorelick et al., 2017) following the anisotropy correction of Ren et al. (2021). In the first step, we applied terrain- and

self-shading, combining the methods applied in Loibl et al. (2025) and in HORAYZON (Steger et al., 2022) based on the

NASADEM. Next, we grouped all albedo pixel values into winter (DJFM) and summer (JJAS) seasons. We deleted values

that extended beyond published ranges to mitigate the influence of potential outliers caused by sensor issues and filtered the225

data based on the second and 98th percentiles for each season. To provide information on likely albedo parameter ranges, we

assumed that the αfs must be in the upper 50% of observed values, giving a range of 0.887 to 0.93. Similarly, αice and αfirn

should be in the lower 50% of observed values, ranging from 0.115 to 0.233 and 0.506 to 0.692, respectively (see Fig. S7 to

S9).

Next, we derived ᾱ as a third calibration target. Using all available scenes with a cloud cover less than 30%, we considered230

individual Landsat pixels to be correlated up to a radial distance Lcorr of 500 m as assuming spatial independence results in

unrealistically small uncertainties. Next, we estimated the number of effective samples Neff using this correlation length as:

Neff =
Atotal

πLcorr
2 , (9)

where Atotal is the summed area of all valid glacier pixels per scene. We adopted a constant per-pixel standard error σsys of

0.017 from Ren et al. (2021) to further account for sensor errors. The total uncertainty in glacier albedo was then estimated as:235

σalb
i =

√
(
σspatial

i√
Neff

)2 + (σsys)2 (10)

where σspatial
i is the spatial standard deviation at each time step. The resulting uncertainty matches those estimated by Fugazza

et al. (2016).

2.4 Parameter calibration and uncertainty analysis

To calibrate COSIPY at unmonitored sites using only globally available remote sensing data, we employed a Bayesian frame-240

work to account for the uncertainties inherent in these observational products. This approach was implemented using a Markov

Chain Monte Carlo (MCMC) sampler to derive the full posterior probability distribution for each model parameter (Section

2.4.1). When considering unmonitored glaciers, a key challenge is defining informative prior distributions, which must be

sensibly constrained for the site of interest. We addressed this by first conducting a sensitivity analysis and Latin Hypercube

Sampling (LHS; McKay et al., 1979) of the parameter space to constrain the parameter choices and plausible parameter range.245

The resulting parameter space is then further investigated in detail regarding the model’s parameter behaviour and the provided

parameter constraints based on each observational dataset (Section 2.4.2). Finally, because MCMC methods require a large

number of otherwise computationally intractable simulations, we developed a surrogate model to emulate COSIPY’s outputs,

ensuring the computational feasibility of the calibration scheme (Section 2.4.3).
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Figure 2. Overview of the workflow applied within this study. The dotted, dashed and solid lines highlight the respective elements used

for the priors, the likelihood calculation and the posteriors. The observational datasets, highlighted with a star, of the glacier-mean albedo,

snowlines and geodetic mass balances were used throughout the whole workflow as described in the text. To maintain overview, we have not

drawn an arrow from the automatic weather station (AWS) to the Latin Hypercube Sampling nor from any other stage to the COSIPY model.

We have roughly grouped the processes and tools into three categories, as outlined at the top of the figure, but these categories are not always

clearly distinguishable. The COSIPY figure was adapted from Huintjes (2014).

2.4.1 Bayesian calibration framework250

We used Bayesian inference (see, e.g., Gelman et al., 2013) to estimate the probability distribution of our model parameters θ

and their associated uncertainties, neglecting explicit treatment of uncertainties in the forcing data or model physics. Following

the approach from Rounce et al. (2020) and Sjursen et al. (2023, 2025), we assume that the calibration data represent the
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truth, and that the output of the forward model (F ; here COSIPY) deviates from this truth according to a normally distributed

observational error and an unknown model error. Let d be the vector combining all N observations from our three observed255

data streams (Bgeod, SLA and ᾱ). A single observation di is related to the model output ymod
i by:

di = ymod
i + ϵi + ηi, (11)

where ymod
i = F (X,θ) is the corresponding model output generated by one realisation of COSIPY produced by the climatolog-

ical forcing data X with parameter choices θ. We define the Gaussian observational error ϵi with a mean of zero and a variance

given by the respective observational product for each data point σ2
obs,i. The systematic error ηi accounts for any uncertainty260

not related to the parameter choices for example through missing processes or structural model errors. This error was set to

zero during the accumulation season (here October to April) and we used it for the snowline and albedo data in the ablation

season (May to September), since the model matches well the fully snow-covered winter conditions (not shown). We assume

that both error terms are independent and ηi also has a mean of zero but an unknown variance σ2
η,i so that:

ϵi ∼N (0,σ2
obs,i) (12)265

ηi ∼N (0,σ2
η,i). (13)

We estimate the standard deviation ση,i as constant for all ablation season data points for SLA and ᾱ with small magnitude

half-normal priors chosen to be minimally invasive:

σSLA
η ∼ HalfNormal(σ2 = 0.032) (14)

σᾱ
η ∼ HalfNormal(σ2 = 0.022). (15)270

Combining the systematic model error and the observational error gives the total variance:

σ2
i = σ2

obs,i + σ2
η,i (16)

The foundation for the Bayesian inference is provided by Bayes’ theorem (see, e.g., Gelman et al., 2013):

p(θ|d,X) =
p(θ)p(d|θ,X)

p(d)
(17)

where p(θ) denotes the joint prior distribution of the parameters before any data is considered. The data vector d contains the275

observations Bgeod (Hugonnet et al., 2021), SLA (Loibl, 2023; Loibl et al., 2025) and ᾱ (Ren et al., 2021) as previously defined.

The likelihood term p(d|θ,X) is the probability distribution of the datasets given θ and X and p(d) refers to the evidence or

marginal distribution of the data (Gelman et al., 2013; Rounce et al., 2020). It acts as a normalising constant and is defined as:

p(d) =
∫

p(θ)p(d|θ)dθ. (18)

This integral is often intractable to calculate for complex model systems. Since it does not depend on θ, it is treated as a280

constant and the posterior can be reduced to:

p(θ|d,X)∝ p(θ) · p(d|θ,X), (19)
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assuming a given climate forcing X and no variations therein.

We assumed that the observations and their errors are independent. The joint likelihood function can then be simplified to:

p(d|θ,X) = p(Bgeod|θ,X) · p(SLA|θ,X) · p(ᾱ|θ,X) (20)285

which can be reduced to sums considering the log-likelihood. We defined the respective log-likelihood scores as the average

over all data points for the mass balance (one point), SLA (58 points) and albedo values (98 points):

L=
1
N

N∑

i=1

log
[

1√
2πσi

exp
(
− (ymod

i − di)2

2σ2
i

)]
. (21)

This log-likelihood score serves as direct input for the analysis of the model’s parameter behaviour. To facilitate its interpre-

tation, it can be viewed as a measure of quality of fit, with higher values indicating a better match between observations and290

simulations. To ensure the same weight when calculating the joint log-likelihood, we normalised each log-likelihood score (see

Section S2).

2.4.2 Establishing priors and parameter behaviour

To reduce the number of tunable model parameters, we relied on a local sensitivity study based on previously published

parameter ranges (more details in Section S1). After performing the one-at-a-time parameter perturbations, our final parameter295

selection includes all albedo-related parameters, as well as the roughness length of ice (z0ice) and the precipitation scaling

factor (pf). These sensitivities are in line with previous sensitivity studies using the COSIPY model (Arndt et al., 2021; Temme

et al., 2023; Khadka et al., 2024).

We performed a two-step Latin-Hypercube-Sampling, similar to Lecavalier and Tarasov (2025), to derive meaningful priors and

provide a baseline for the development of the surrogate model and the investigation of the parameter behaviour. LHS ensures300

a random, stratified sampling behaviour by dividing each parameter’s range into equally-sized probability density intervals.

In the first iteration, we run 500 LHS samples with the literature-defined prior ranges for all parameters except αfs, αfirn and

αice, which we constrained using the Landsat-derived per pixel values (see Section 2.3 and Fig. S7 to S9). After filtering the

data based on 3-σ residuals of the best performing simulation to the observed data, we run a second iteration of the LHS for

2500 samples with updated priors based on the filtered first iteration. The resultant 2500 parameter and output pairs provide305

the basis for the surrogate model. In the next step, we employed the same 3-σ filtering to retain 517 simulations. We refer to

this as the COSMO-forced LHS ensemble. This ensemble was not used to actually run COSIPY but instead to provide a priori

information on the model’s parameter behaviour. A detailed description of both approaches is provided in the Supplementary

material, and an overview of the applied parameters and their ranges can be found in Table 1.

To identify which parameter combinations can produce similar model results (i.e., equifinality), we employed a Spearman rank310

correlation on the COSMO-forced LHS ensemble. This method cannot capture non-monotonic relationships, and we therefore

correlated parameters against each other and against the model bias for each of the three observational datasets. This serves as

a first-order approximation of parameter interactions only, as the model system is highly non-linear (e.g., Johnson and Rupper,
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2020). These methods were supported by a Principal Component Analysis (PCA) based on the standardised parameter vectors

of the COSMO-forced LHS ensemble.315

To understand which datasets constrain specific parameters, we applied K-Means clustering to the 517 ensemble members.

We grouped the simulations into four clusters based on the joint log-likelihood scores and the individual log-likelihood scores

for each observed dataset, respectively. These clusters were investigated to identify differences in parameter distributions and

isolate the effect of the observed data on each parameter value. The parameter distributions of the best-performing cluster were

transformed into truncated normal distributions, serving as the priors for the MCMC. An overview of the main methodology is320

provided in Figure 2.

Table 1. Table of the prior parameter with two-floating point precision. The literature-derived parameter ranges served as the uniform input

for the local sensitivity study, the values of the first LHS stage (LHS1) as uniform priors to the LHS1 and so forth. The prior ranges for

the MCMC are truncated normal distributions and were derived from the best-performing LHS2 cluster (see Section 2.4.2). Parameters

highlighted in bold were deemed sensitive and used for the calibration.

Parameter Unit Literature Range LHS1 LHS2 MCMC (µ, σ, lower, upper)

Albedo of fresh snow (αfs) - 0.75 to 0.98 0.89 to 0.93 0.89 to 0.93 NT(0.90, 0.1, 0.89 - 0.93)

Albedo of ice (αice) - 0.10 to 0.46 0.12 to 0.23 0.12 to 0.23 NT(0.18, 0.1, 0.12, 0.23)

Albedo of firn (αfirn) - 0.46 to 0.75 0.51 to 0.69 0.51 to 0.69 NT(0.60, 0.1, 0.52, 0.68)

Albedo aging factor (αaging) days 1.0 to 25.0 1.0 to 25.0 2.0 to 25.0 NT(13.82, 5.37, 5.07, 24.77)

Albedo depth scale (αdepth) cm 1.0 to 15.0 1.0 to 15.0 1.0 to 14.2 NT(1.78, 0.67, 1.0, 4.0)

Roughness length of fresh snow (z0fs) mm 0.02 to 1.6 - - -

Roughness length of ice (z0ice) mm 0.7 to 20 0.7 to 20 0.7 to 20 NT(8.61, 9, 1.2, 19.65)

Roughness length of firn (z0firn) mm 1.6 to 6.5 - - -

Aging factor roughness (z0aging) mm h−1 0.0013 to 0.0039 - - -

Precipitation factor (pf) - 0.5 to 2.0 0.5 to 2.0 0.57 to 1.342 NT(0.78, 0.08, 0.65, 0.95)

2.4.3 Calibration with MCMC and surrogate model for COSIPY

To robustly quantify parameter uncertainty in the COSIPY model, we ran an MCMC calibration which generates samples from

the otherwise analytically challenging joint posterior distribution. The calibration procedure involved 15 independent MCMC

chains, each run for 100,000 samples following a 10,000-sample burn-in phase using the Metropolis-Hastings algorithm imple-325

mented with the open source PyMC (Abril-Pla et al., 2023). The chains were initialised at 15 dispersed starting points drawn

from a Latin Hypercube Sample to ensure a thorough exploration of the parameter space. Based on the result of the parameter

inference and identifiability provided in Section 3.1, we performed a two-step calibration first using ᾱ and Bgeod as calibration

targets and then using SLA similar to the setup employed in Aschwanden and Brinkerhoff (2022).

While we did not explicitly test for the minimum required chain length and burn-in phase, initial testing revealed that the330

problem’s complexity and the resulting strong autocorrelation rendered shorter chains on the order of 104 to 2 ·104 and smaller
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burn-in phases (e.g., 2000 samples) insufficient for achieving robust convergence. We evaluated chain convergence and pos-

terior parameter distributions using all available samples. To evaluate the model performance in comparison to the various

observations, we created a posterior ensemble. To do so, we reduced the 15 · 105 samples by first thinning the posterior series

based on the results of the convergence diagnostics (see Section 3.2.1) and then taking 300 random samples to re-run the full335

COSIPY model.

We circumvented the high computational cost of running the full COSIPY model for thousands of parameter sets by using

the output of the second LHS stage to develop three surrogate models replicating the required COSIPY output. The 2500

LHS simulations were partitioned into a training set of 2000 and a validation set of 500 samples. The surrogate is built as a

three-branch neural network, taking an input vector of the standardised COSIPY parameters and a temporal encoding of the340

snowline and albedo observing time, and predicting the mean annual mass change rate for 2000 to 2010, the SLA, and ᾱ at

the same time. The mass balance branch consists of a simple multilayer perceptron (Rumelhart et al., 1986) with two dense

hidden layers, while the snowline and albedo branch relies on a recurrent neural network built around bidirectional long short-

term memory layers (Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997). Since the forcing data, except for the

precipitation field, stays constant between samples, we do not include time-lagged forcing fields, relying on the neural network345

to learn their effect as a stationary background forcing implicitly. The surrogates show a good performance when compared to

the independent test data, and we deem them an acceptable substitute for COSIPY (see Fig. S10 to S12).

2.4.4 Model evaluation with in-situ data

We evaluated the performance of the calibrated model by conducting posterior predictive checks using the 300-member en-

semble drawn from the thinned posterior distribution. In addition, the calibrated model performance was compared to the mass350

balance profiles reported by the WGMS (2024), to the geodetic results of Klug et al. (2018), the on-glacier AWS data and to a

COSIPY model ensemble partially forced and calibrated with the AWS data.

Two AWS were installed at HEF in the hydrological year 2003/04, one at the tongue at 2640 m a.s.l. and one in the accu-

mulation area at 3048 m a.s.l. These stations recorded air temperature and humidity at 2.5 m, wind speed and wind direction,

all radiation components, surface height change and snow temperature (Olefs and Obleitner, 2007; Obleitner, 2022) although355

the true measurement height varied substantially between 0.5 m and 2.7 m (Schrott, 2006). As the lower station suffered from

numerous system failures and data gaps, we focus our evaluation on the upper station, using the lower station as a qualita-

tive reference only. Although the data provided at hourly resolution (Obleitner, 2022) come in a clean format, we performed

several quality checks and corrections. For the sake of brevity, we refer the reader to Nicholson et al. (2013) for an overview

of the correction methods. We only deviated in the calculation of saturation vapour pressure by using the equation provided360

by Huang et al. (2018). Atmospheric pressure for the 2003/04 hydrological year was extrapolated from a station at Pitztaler

Glacier (GeoSphere Austria, 2024) for both stations.

The upper station data was used as in-situ forcing for COSIPY in order to examine how the energy flux partitioning differs

between model simulations calibrated with remotely sensed data and in situ data. Since the AWS did not record total precipi-

tation, we instead inserted the COSMO-simulated field, thereby minimising differences caused by the precipitation time series365
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but creating a not entirely measured benchmark. We did not provide the model with the measured time series of α and QLWout,

instead focusing on achieving the best possible model performance given better-resolved meteorological forcing fields and cal-

ibration data. Thus, we force an assessment of physical coherence and parameterisation performance, but must acknowledge

that this reference does not necessarily correspond to the physical truth.

COSIPY was initialised at the start of October 2002 with a snow height of zero and all other initial conditions taken from370

the COSMO-forced simulations. We repeated the forcing data for the hydrological year 2003/04 to allow for model spin-up

and ran 7500 LHS iterations. The 7500 simulations were then filtered based on a ten percent deviation from the best solution

according to the sum of normalised Root Mean Squared Errors (RMSE) computed with measured daily surface height change,

QLWout and albedo. The final ensemble consists of 67 members and we henceforth refer to it as the AWS-assisted ensemble.

The SEB conditions were then evaluated using five-day rolling means.375

3 Results

This section first analyses the parameter identifiability, that is, the possibility of uniquely determining model parameters from

the data, and their compensating effects based on the COSMO-forced LHS ensemble and the correlation and PCA analysis.

Next, we assess the parameter inference from the different data streams by determining which observations influence which

parameter selection using the K-means clustering. Afterwards, the performance and posterior distributions of the parameter380

calibration using the MCMC are investigated and assessed in comparison to existing literature and various in-situ observations,

including glacier-wide mass balances and AWS measurements. Lastly, the SEB is evaluated in comparison to the AWS-assisted

ensemble as detailed in Section 2.4.4.

3.1 Parameter inference and identifiability

The correlation heatmap (Fig. 3) shows the correlation strength between model parameters and the simulation biases of the385

COSMO-forced LHS ensemble. We find that pf exerts a strong influence on the model system, with large absolute correlations

(|ρ|> 0.4) across all three biases. That said, the strongest parameter and model output correlation (ρ = 0.73) is between αaging

and the albedo bias ∆ᾱ. ∆ᾱ also shows a smaller but significant correlation to αfs and αfirn. This correlation would likely be

greater if the αfs range were left unconstrained.

We attribute the absence of similar distinct signals for snowline and mass balance biases and the weaker correlation of the390

other parameters (|ρ| < 0.25) to the limitations of the Spearman rank correlation as it only captures monotonic correlations

between single parameters. This correlation absence is even more pronounced under persistently snow-covered conditions that

can completely suppress the sensitivity of parameters such as αice (see Fig. S4). Thus, the model output variability induced by

pf suppresses the influence of other parameters. We also find that biases of mass balance, snowlines, and albedo are strongly

correlated, in contrast to the assumptions we made during the definition of our Bayesian framework. A negative correlation395

between pf and αaging (ρ = -0.64) highlights the primary mode of parameter compensation in COSIPY, confirmed by the PCA

analysis, which also indicates a parameter space with strong potential for equifinality (Fig. S14).
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Figure 3. Spearman rank correlation heatmap of the COSMO-forced Latin Hypercube Sample ensemble (n=517). Only statistically signifi-

cant correlations are displayed in colour (p < 0.01). The parameters are defined as summarised in Table 1, while ∆Bgeod, ∆SLA, ∆ᾱ refer

to the biases between simulated and observed values.

The K-means cluster analysis (Fig 4) based on the joint log-likelihood score reveals a single high-performing group of param-

eter sets (Cluster 4) but also tension between the observational constraints. The best-performing Cluster 4 is characterised by a

high joint log-likelihood score (median = 2.27) driven by strong fits to both SLA (median = 1.30) and ᾱ (median = 1.01). This400

cluster does not produce the optimal fit for Bgeod, which instead shows the largest log-likelihoods in Cluster 1. This illustrates

the difficulty of satisfying all three observational constraints simultaneously. For example, the best-performing cluster for the

SLA shows a large spread in log-likelihood (and thus performance) for the other log-likelihood scores. Conversely, clusters

that perform best for Bgeod or ᾱ show worse scores for the SLA log-likelihood (red and blue distributions in panel j).

The analysis of Cluster 4 reveals strong constraints on pf with an interquartile range (IQR) of 0.73 to 0.83, αfs (IQR: 0.89 to405

0.91), αaging (IQR: 9.30 to 17.28 days) and αdepth (IQR: 1.28 to 2.05 cm). While ᾱ provides the tightest constraints on albedo-

specific parameters (αfs and αaging), the SLA observations primarily determine αdepth and compared to the other scores prefers a

lower pf. The other parameters, including αice, αfirn and z0ice, are only marginally constrained by the Bgeod and ᾱ. This signal is

largely obscured in the joint log-likelihood because of their comparably low sensitivity, and a denser sampling of the parameter

space might better resolve their optimal range.410
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Figure 4. Boxplots of parameter values based on the K-means clustering of the COSMO-forced Latin Hypercube Sampling ensemble in

panels a) to e) and g) to h). Panel f) displays the subplot legend, while panels i) to l) show the log-likelihood scores for Bgeod, SLA, ᾱ and

their sumL(total|θ,X). The side panels display the parameter distributions of the best-performing cluster, clustering based on only snowline

altitudes (yellow), mass balances (red), and albedo (blue) as defined in text. The horizontal line denotes the median of the COSMO-forced

Latin Hypercube Sampling ensemble (n=517).

3.2 Calibration results

3.2.1 Convergence diagnostics

Visual inspection of the trace plots for the log-likelihood (Fig. 5) and all individual parameters (Fig. A1) show stable, well-

mixed, and converging chains. This is confirmed by several convergence diagnostics, including the Gelman-Rubin statistics R̂,

the effective sample size (ESS), the integrated autocorrelation time (IAT), and the Monte Carlo standard error (MCSE). The R̂415

is approximately 1.0 for all parameters, indicating that all chains converged to the same target distribution. The ESS ranges from

32,000 to 85,000 for both bulk and tail estimates, demonstrating a very high number of independent samples. Furthermore,

numerical uncertainty in the posterior is negligible, with MCSE values for the posterior mean and standard deviation well
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Figure 5. Traces of the fifteen chains and the 100,000 posterior samples of the log-likelihood for mass balance, snowlines and mean glacier

albedo (a to c). The mean across chains is displayed in black. Panel d) shows the integrated autocorrelation time per parameter, averaged

across the chains. The black line in panel d) corresponds to the mean integrated autocorrelation time of all parameters.

below 0.15% and 0.1% of the 95% credible interval (CI) width, respectively. The IAT stabilise at values between 25 and 40.

Therefore, we thinned the posterior distributions by retaining every 40th sample for the model evaluation (see Section 2.4.3).420

3.2.2 Posterior parameter distributions

Comparing prior and posterior parameter distributions, we find that the data provide strong constraints on all model parameters,

significantly narrowing their distribution compared to the LHS-based priors (Fig. A1). The posterior for αdepth is strongly

constrained with a mean of 1.01 cm and a 95% CI of 0.99 to 1.03 cm. For brevity, we report this and subsequent results as the

posterior mean, followed by the 95% credible interval in brackets.425
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Figure 6. Posterior predictive checks for mass balance in red (left), albedo in blue (centre) and snowlines in yellow (right). Green and blue

dots in panel d) show observed annual mass balances, and dots in panels e) and f) correspond to the observed data points. Points in the time

series were interpolated between observed times and do not necessarily reflect the model state at those times. The shading combines the

parametric 95% credible interval and the systematic errors. Note that the cumulative mass balance comparison (d) does not show a posterior

predictive check.

The posterior probability of the albedo parameters αice, αfirn and αfs are well defined around values of 0.23 [0.22, 0.24], 0.64

[0.62, 0.67] and 0.89 [0.88, 0.90], respectively. Consistent with the inference strength identified previously, both pf and αaging

are strongly constrained to ranges of 0.70 [0.69, 0.73] and 14.21 [12.46, 15.95] days, respectively, despite their compensating

effects. The posterior pair plots confirm that compensating effects are largest between αfirn, αaging, and pf (Fig. S15). The least

constrained parameter is z0ice, with 3.16 [0.7, 5.63] mm, confirming its weaker inference signal from the clustering analysis.430

Lastly, both systematic ablation season error terms (σSLA
η and σᾱ

η ) are identified at the tails of their prior distributions. This

indicates a strong inference signal from the data, allowing the model to quantify the magnitude of its structural uncertainty.

While σᾱ
η is relatively small and comparable to the observational uncertainty (0.06 [0.04, 0.07]), σSLA

η is substantially larger

(0.14 [0.12, 0.16]). The strong constraint on both error terms confirms a systematic model limitation that is successfully

captured by the error model. These results are stable across all chains.435
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Figure 7. Panel a) shows the comparison of modelled glacier-wide mean annual mass balances as recorded by WGMS (2024) and Klug et al.

(2018) and this study’s posterior ensemble median and the respective uncertainties for the hydrological years 2002 to 2009. Uncertainties in

the COSIPY ensemble refer to the 95% credible interval. The bottom panels show the average hypsometry and mass balance gradients for the

same years (b) and just those for the hydrological year 2004, where AWS measurements were available (c). The glacier area is related to the

top x-axis and shown in red for COSIPY (constant in time), and for 2002 (blue) and 2009 (grey) in the left subplot and for the hydrological

year 2004 as derived from the WGMS in the right subplot in grey. The bottom x-axis shows the mean annual mass balance per 50 m elevation

band, as recorded in WGMS (2024). The simulated 20 m elevation bins are aggregated to 50 m elevation bins using an area-weighted average.

Note that these bands do not perfectly add up.
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3.3 Calibrated model performance and validation

3.3.1 Posterior Predictive Checks

The posterior predictive checks are displayed in Figure 6, representing the posterior ensemble output alongside the observa-

tional data from all three datasets. The shaded envelopes represent the 95% CI, reflecting both parameter uncertainty and the

calibrated systematic error terms. The posterior predictive checks reveal a negative bias of Bgeod with a simulated mean at440

-1.44 m w.e.a−1 compared to the observed -1.04 m w.e.a−1 (Hugonnet et al., 2021). Nevertheless, there is no significant statis-

tical difference between both distributions, as indicated by a Kolmogorov-Smirnov test (p > 0.05). The mass balance bias is

also apparent in the diverging simulated cumulative mass balance in comparison to Bgeod (panel d in Fig. 6) of both geodetic

estimates (Klug et al., 2018; Hugonnet et al., 2021) and the end-of-year glaciological mass balance (WGMS, 2024). This bias

can be effectively eliminated by increasing pf, which produces a good match with both WGMS and geodetic observations. We445

revisit this important point in the discussion section.

In contrast, the posterior ensemble median demonstrates a strong fit to ᾱ, with an R2 of 0.77 and an RMSE of 0.08 with respect

to the observations. The time series (panel e in Fig. 6) shows the extended 95% CI bracketing nearly all observational points

and a general well-replicated progression of ᾱ. However, this strong performance must be qualified. First, the dataset mainly

contains snow-covered scenes, which also affects the SLAs. This actually makes the calibration task easier. Second, achieving450

this fit still requires a systematic error term for ablation season albedo values, whose mean of 0.06 is nearly as large as the

RMSE. The model successfully matches the overall progression of the mean glacier-wide albedo from its winter maximum

(∼ 0.9) to its summer minimum (∼ 0.26). Nevertheless, the model often fails to capture the lowest summer albedo values,

showing a positive bias when the glacier is not fully snow-covered.

The fit to the normalised SLA is considerably weaker (R2 = 0.30, RMSE = 0.14) and reveals a structural deficiency, which is455

confirmed by the large systematic error estimated during calibration. A comparison of modelled and observed snowlines re-

veals two error features. The first feature is an overestimation of the SLA. The smaller overestimations occur primarily during

times of observed maximum SLA, while larger ones are found during the ablation season when summer snowfall might have

occurred (e.g., Voordendag et al., 2023).

The second feature is a negative bias, where the model simulates a snow-covered glacier while observations show exposed460

glacier ice. This occurs more often than the positive biases and indicates a systematic delay in the simulated snow melt-out

date.

3.3.2 Mass balances

The mismatch between the posterior ensemble median and observed mass balance gradients points to a limitation in the

representation of physical processes or forcing data (Fig. 7). Most notably, the model ensemble overestimates the mass balance465

at high elevations compared to the glaciological method in the hydrological years 2002 to 2009. While the ensemble shows

steadily increasing mass balances with elevation up to 1.37 m w.e.a−1 at elevations above 3625 m a.s.l., the glaciological mass

balance has its most positive value at ∼3325 m a.s.l. and reaches negative mass balances up to -0.30 m w.e.a−1 at higher
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Figure 8. Comparison of daily means of measured surface height change (a, b), outgoing longwave radiation (c, d) and albedo (e, f) at the

upper (left) and lower (right) AWS stations. The red line and shading show the posterior ensemble median and 95% credible interval, while

the blue line and shading refer to the weighted median and 95% credible interval derived from the AWS-assisted ensemble. The black line

shows the AWS measurements and metrics refer to the posterior ensemble median (black) or the AWS-assisted weighted median (blue).

Background stripes indicate days with snowfall in the COSMO forcing.

elevations. Similarly, mass balances are less negative than observations at lower elevations by up to 1.43 m w.e.a−1. At the

glacier scale, these biases are cancelled out by simulating consistently more negative mass balance than observations (mean470

bias of -0.69 m w.e.a−1) between 2625 m a.s.l. and 3175 m a.s.l., where the majority of the glacier area resides. Consequently,

the annual glacier-wide mass balances show a negative bias compared to the WGMS data (Table 2 and Fig. 7a)).

On an annual basis, we find that the model aligns more closely with the geodetic results of Klug et al. (2018) in most years,

except for the hydrological years 2004/05 and 2006/07. This is reflected in the mean absolute errors (MAE) of 0.38 and

0.50 m w.e.a−1 to the geodetic observations of Klug et al. (2018) and the WGMS. The WGMS reference series has known475

limitations related to the point data extrapolation in the years 2002/03, 2005/06, and 2006/07, when the absence of glaciological

data above 3000 m a.s.l. led to significant mass balance overestimations (2002/03 and 2005/06) and an underestimation in
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Table 2. Comparison of modelled and observed glacier-wide mass balance between the posterior ensemble with constant glacier area, and

the homogenised records of Klug et al. (2018) and the WGMS (2024). All displayed values are reported in m w.e. and σ refers to the related

random uncertainties as outlined in Klug et al. (2018), while we report the credible interval (CI) for the posterior ensemble.

Hydrological Year Modelled (COSIPY) Observed (WGMS) Observed (Klug et al., 2018)

MB 95% CI MB σ MB σ

2001/02 -0.587 [-0.667, -0.49] -0.624 0.21 -0.685 0.062

2002/03 -2.647 [-2.824, -2.437] -1.796 0.21 -2.713 0.183

2003/04 -0.892 [-1.002, -0.761] -0.651 0.21 -0.654 0.063

2004/05 -1.791 [-1.954, -1.607] -1.022 0.21 -1.028 0.056

2005/06 -2.228 [-2.382, -2.036] -1.493 0.21 -2.091 0.1

2006/07 -2.129 [-2.292, -1.930] -1.813 0.21 -1.363 0.041

2007/08 -1.905 [-2.069, -1.708] -1.246 0.21 -1.252 0.046

2008/09 -1.536 [-1.669, -1.376] -1.182 0.21 -1.209 0.06

2006/07 (Klug et al., 2018). We find that COSIPY adequately captures the extremely negative mass balances in 2002/03

associated with the European heatwave (e.g., Schär et al., 2004; Huss et al., 2008; Braithwaite et al., 2013). Generally, COSIPY

reproduces the observed interannual mass balance variability well, as evidenced by high correlation coefficients of r = 0.87480

and r = 0.93 with Klug et al. (2018) and the WGMS observations, respectively.

3.3.3 Surface Energy Balance conditions

Net shortwave radiation (QSWnet) is the largest energy source throughout the year, similar to other mid-latitude glaciers (Cuffey

and Paterson, 2010; Chen et al., 2023). Unless stated otherwise, we report all energy balance terms as five-day rolling means.

The posterior ensemble’s five-day rolling means range from 2 to 40 Wm−2 in the accumulation season to 16 to 176 Wm−2 in485

the ablation season (panel a in Fig. 9). The posterior ensemble shows little variability in the SEB components associated with

the high confidence in the posterior parameters and prevailing snow cover until July 2004. Uncertainty increases significantly

in September when different parameter combinations produce varied snow melt-out dates (Fig. 8e)). When QSWnet peaks at

176 Wm−2 in September, the available melt energy QME also peaks at -147 Wm−2, indicating substantial surface melting (see

also Fig. 8a)).490

This energy source is mildly moderated by the net longwave radiation (QLWnet). The good fit to the observed QLWout confirms a

systematic overestimation of the QLWin in the posterior ensemble (see also Fig. A2d). Thus, QLWnet acts only as a small energy

sink throughout the year (mean -15.36 Wm−2), except in early August when it reaches 20.66 Wm−2.

QH is an energy source, except from May to June when the surface is warmer than the air. During winter, QH can amount to

30 Wm−2 (Fig. 8c) and the flux peaks at 49 Wm−2 in early September. QE reaches 37 Wm−2 between June and August when495
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Figure 9. Five-day rolling means of the surface energy balance fluxes as simulated by the posterior ensemble median and 95% credible

interval (a) and the AWS-assisted ensemble and its weighted median and 95% credible interval (b). Panel c) shows the flux difference

between the two. Fluxes are defined as in text and the black dotted and dashed line show AWS-observed QLWnet and QSWnet, respectively. The

hatchings indicate days where the mean absolute error between simulated and observed albedo is larger than 0.2, and accumulation season

(light blue) and ablation season (light orange) are separated by background shading.
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condensation is largest (Fig. S22). This partly coincides with the positive QLWnet contribution, suggesting high air moisture

and cloud cover which may indicate frequent convection and thunderstorms. Both fluxes are however also linked through their

parameterisation based on air temperature and humidity. For the rest of the year, QE fluxes are near zero or a small energy sink

as evidenced by the year-round sublimation (Fig. S23). QR is negligible throughout the year. Similarly, QG provides only a

small positive contribution in summer with an annual amplitude of -14 to 14 Wm−2.500

The AWS-assisted ensemble (Fig. 9b) shows a similar annual flux evolution as the posterior ensemble. Compared to the pos-

terior ensemble, QSWnet in the AWS-assisted ensemble shows larger inter-annual variability, with an earlier and larger increase

in the second half of the hydrological year. The albedo time series (Fig. 8e) reveals that this is due to an albedo decay that is

closer to the observations from May to September. However, the AWS ensemble generates excessive albedo decay under cold

conditions and underestimates QSWnet in the late melt season due to unaccounted ice exposure. Therefore, the AWS-assisted505

ensemble does not represent the physical truth but instead the best possible solution given the parameterisations and higher

resolution calibration data.

The posterior ensemble consistently underestimates QSWnet by up to -82 Wm−2 when considering periods where the AWS-

assisted ensemble agrees well with measured albedo. This effect is even larger considering the raw observations. We attribute

this difference to the misrepresentation of surface albedo and to an underestimation of QSWin (Fig. A2, S17). While the AWS-510

assisted ensemble shows good agreement with observed QLWnet, the posterior ensemble has a mean difference of 26 Wm−2

(max. 73 Wm−2) compared to the AWS-assisted ensemble. This year-round underestimation of QLWnet offsets the aforemen-

tioned QSWnet discrepancy, and the posterior ensemble receives on average 9.3 Wm−2 more net radiation.

The posterior ensemble further underestimates the turbulent fluxes during winter and spring, but overestimates them during

summer. These deviations peak from August to late September, reaching 34 Wm−2. The underestimation in the posterior en-515

semble compared to the AWS-assisted ensemble coincides with a cold bias in AWS-assisted surface temperatures (see Fig.

8c). There is also strong evidence that the surplus of turbulent heat flux in summer is due to an overestimation of humidity,

near-surface air temperature, and wind speed in COSMO forcing data (see Fig. A2f and l and Fig. S16). The temperature and

humidity biases may also contribute to the overestimation of QLWin, as they are used in the parameterisation relating cloud

cover to QLWin.520

Differences in QR are negligible since both ensembles use the same precipitation forcing, and the posterior ensemble QG shows

a small negative bias, especially during the late melt season.

The net effect of the energy flux differences on the overall available melt energy is complex. The posterior ensemble shows

less available melt energy compared to the AWS-assisted ensemble (max. -32 Wm−2) in the early summer season (June to

mid July), followed by a strong overestimation later in summer with peak deviations up to 109 Wm−2 related to the albedo525

overestimation in the AWS-assisted ensemble. Comparing the posterior ensemble net radiation terms to the observations, it is

evident that during peak melt season underestimated QSWnet is counterbalanced by the overestimation of QLWnet and too large

turbulent heat fluxes caused by the biased air temperature and humidity fields. This translates to an underestimation of melt

between June and mid July of 0.07 m w.e., while cumulative melt is overestimated over the hydrological year by 0.33 m w.e.,

in line with the negative mass balance bias identified previously (Section 3.3.1).530
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4 Discussion

4.1 Parameter plausibility

We consider the quality of our posterior parameter distributions based on previously published results. We note, however, that

the optimal parameters are a result of the specific timescale and meteorological conditions, the measurement and optimisation

approach, and the model structure used.535

The posterior probability of αdepth is strongly constrained at the lower boundary of the allowed parameter range, effectively

resetting the surface albedo with small snowfall amounts. This may be attributed to either too much available QME or too

low summer snowfall in the forcing, which occasionally occurs at HEF (e.g., Voordendag et al., 2023). It is comparable to

the 3.2 cm found by Oerlemans and Knap (1998) at Morteratschgletscher and the constant 0.001 m w.e. employed in Giesen

and Oerlemans (2012). The latter value converts to approximately 0.33 to 2.0 cm depth, assuming snow densities of 50 to540

300 kg m−3 (Cuffey and Paterson, 2010).

The posteriors of αfs, αfirn and αice are of a similar magnitude to those found in other studies at HEF ((Dirmhirn and Trojer,

1955; Van De Wal et al., 1992; Zolles et al., 2019). For example, Zolles et al. (2019) reported αfs values of 0.86 to 0.9 but a

lower αfirn of 0.52 to 0.6 in 2012 at HEF. Measuring albedo at HEF across ten days in late summer 1954, Dirmhirn and Trojer

(1955) found lower dry fresh snow albedos at 0.82 and αfirn ranging from 0.46 (dirty) to 0.63 (clean). Their measured dirty αice545

of 0.29 aligns well with our calibrated value, but they also note clean ice albedos of 0.41. These findings are consistent with

Van De Wal et al. (1992), who observed very low αice (0.1 to 0.16) due to dust accumulation and the presence of meltwater,

but also higher values (0.3 to 0.4) towards the centre of the tongue, highlighting strong spatial variability.

The calibrated pf (mean = 0.70) is consistent with findings that report a positive precipitation bias in regional climate models

over the Alps (Ban et al., 2014, 2020). However, it remains unclear how much of this bias can be attributed to model deficiencies550

versus observational shortcomings (Kochendorfer et al., 2017; Prein and Gobiet, 2017; Lundquist et al., 2019). While correcting

for precipitation biases improves mean daily snowfall, strong biases can remain in snowfall frequency and intensity (Frei

et al., 2018). This supports our results, where the calibrated pf corrects for the total precipitation bias, while the low αdepth

compensates for underestimated snowfall intensity in summer by increasing the albedo of thin snow layers.

The least constrained parameter is z0ice, which contrasts with the high sensitivity at point scale in other studies (e.g., Sauter555

and Obleitner, 2015). Our posterior range is consistent with values of 1.3 to 5.0 mm found by Van De Wal et al. (1992) and the

glacier-scale 3.0 to 6.0 mm derived from a terrestrial laser scanner at HEF (Smith et al., 2020). However, the roughness length

at HEF is highly heterogeneous in space and time with values ranging from < 3 mm to > 40 mm and changing rates as large

as 0.25 mm per day (Smith et al., 2020; Chambers et al., 2021). This high variability questions the use of a single, constant

z0ice parameter in our model. This holds for many of our model parameters (Brock et al., 2000, 2006; Gurgiser et al., 2013)560

and restricts the model’s ability to capture the full complexity of glacier surface evolution.

While the AWS-assisted ensembles αfs (weighted median = 0.896) shows good agreement to our posterior, the measured albedo

timeseries at the AWS sites indicates that our calibrated model’s αaging (weighted median = 1.65 days) and αfirn (weighted

median = 0.54) are likely overestimated. This is evident by a delayed lowering of the surface albedo during summer. In
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contrast, the AWS-assisted ensemble at the upper station matches the lowering quite closely during summer but overestimates565

it in winter, indicating that the albedo scheme may be inadequate (Brock et al., 2000; Bougamont et al., 2005).

4.2 Diagnosing model biases

Our results reveal systematic biases in simulated Bgeod and SLA that cannot be resolved by parameter tuning alone. Drawing

upon the measured AWS data (Fig. 8 and A2), we propose the following explanation: The model shows a structural limitation

related to the spatial averaging of QSWin within 20 m elevation bands. By smoothing topographic variability, this method570

suppresses higher QSWin inputs received by sun-exposed grid cells (see Fig. S17). This leads to an underestimation of the

available QM and penetrating QSWin in the early melt season on the glacier tongue. This effect is worsened in QSWnet (Fig. S18)

by the overestimation of albedo decay parameters (αaging and αfirn), leading to the systematic underestimation of the meltout

date and thus a delay in the simulated rise of the SLA. These processes may be exacerbated by other model limitations related

to the snow settling or the forcing data distribution and snowfall derivation.575

Since the satellite observations are predominantly available in winter, the information on these albedo decay related parameters

was limited, as confirmed by the small positive bias in simulated ᾱ. To compensate for this artificially slow melt, the calibration

process reduces pf, which in turn partly drives the strong negative bias in the modelled Bgeod. This central offset is a direct

consequence of the multi-objective calibration and the conflicting inferences from the different datasets. While a higher pf

would correct the bias in the modelled mass balance, such a change is penalised by the SLA and ᾱ log-likelihoods, which580

favour a lower precipitation input to match their respective observations.

The resulting posterior therefore represents a compromise solution. The negative mass balance bias at the glacier-scale is a

direct consequence of these model and forcing errors that the calibration cannot account for (Günther et al., 2019). Given tight

constraints on the albedo evolution enforced by the provided per-pixel and glacier-integrated albedo and snowline observations,

the model forced by COSMO-CLM is unable to find a perfect solution fulfilling all three observational constraints.585

The initial energy deficit at the glacier surface by the underestimated QSWnet is offset at the annual scale by overestimated

energy inputs from QLWin and the turbulent fluxes. The systematic nature of the QLWin bias is particularly detrimental for an

accurate simulation of the SEB and surface temperatures (Lapo et al., 2015; Raleigh et al., 2015). This is enhanced by the

consistent, unmodulated nature in comparison to QSWin and the complex interaction with various parts of the SEB (Sauter and

Obleitner, 2015; Raleigh et al., 2016; Conway and Cullen, 2016; Conway et al., 2022). This effect can be exacerbated because590

an underestimated Ts can enhance atmospheric stability, and an overeager stability correction may suppress turbulent heat

exchange (Slater et al., 2001; Lapo et al., 2015; Raleigh et al., 2016). However, we find that COSMO-CLM’s overestimation

of T2 and specific humidity (Fig. S19) during the later ablation season leads to overestimated turbulent fluxes in COSIPY (Fig.

S20) and QLWin (see Fig. A2 and S17). Therefore, while the initial delayed SLA rise is caused by too low QSWnet because of

aforementioned reasons, the overall negative annual mass balance bias is a direct consequence of overestimated QLWin (year-595

round) and turbulent heat fluxes, especially during peak melt season.

The connected biases in the turbulent fluxes and QLWin likely stem from the model’s coarse 2.2 km horizontal grid spacing,

which is insufficient to resolve the specific microclimate of the glacier boundary layer and its shallow katabatic flow (Goger
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et al., 2022; Draeger et al., 2024; Nicholson et al., 2025). In reality, this boundary layer tends to decouple the glacier surface

from the warmer, moister ambient atmosphere in summer (e.g., Mott et al., 2020). By failing to resolve this stable boundary600

layer, COSMO-CLM likely simulates stronger vertical mixing, thereby enhancing the exchange of warmer and humid air

between the overlying atmosphere and the glacier surface. This process is likely compounded by an inaccurate representation

of the glacier surface and the parameter choices within the land surface scheme, and may be enhanced by an overestimated

simulated cloud cover.

Indeed, trying to tune the b parameter in Equation 8 (see e.g., Conway et al., 2022) still results in a substantial bias that can605

only be reduced by strongly adjusting ϵcl or employing a cloud cover correction factor (not shown). These findings highlight

the paramount need for accurate climatological forcing and downscaling measures to advance process-based glacier modelling.

We did not include the parameters of the QLWin parameterisation into our framework, but the employed calibration and model

chain shows the diagnostic abilities to help identify such forcing biases. Such a calibration framework can thus be a useful

tool to diagnose inconsistencies in the model chain and can help bias-adjust climatological data as more observations become610

available. The well-constrained systematic error terms support this.

4.3 Future research

While we have shown that an SEB model can be calibrated using exclusively globally available remote observations and high-

resolution climate model data in place of scarce in situ measurements, limitations regarding the performance and transferability

of this study arise. We have split these caveats into three parts: limitations related to the forcing data, those related to structural615

model errors including process representation and those related to the methodological design.

First, the underlying assumption in our study is that the atmospheric forcing data and intermediate steps such as the surro-

gate model development or forcing data extrapolation are flawless. The exception is total precipitation, which is corrected in

COSIPY with a constant pf. In reality, forcing uncertainty is often the largest contributor to SEB variance (Günther et al.,

2019). Our results show that calibrated parameters are tightly linked to the biases in COSMO-CLMs air temperature, humidity,620

QLWin and QSWin. While we did not investigate accumulation mechanisms, other studies highlight the critical role of accurate

precipitation timing beyond the seasonal scale and a simple bias correction (Johnson and Rupper, 2020; Shaw et al., 2025).

Future implementations may also benefit from more advanced solid precipitation fractionation schemes, which can have a

strong impact on snowpack simulations (Günther et al., 2019; Jennings and Molotch, 2019; Bernat et al., 2025). Following the

results of Vionnet et al. (2022), a better parameterisation would be a wet-bulb scheme (e.g., Ding et al., 2017; Buri et al., 2023)625

or incorporating vertical atmospheric profiles as resolved by high-resolution CPM. In the absence of additional observations,

accurately accounting for these parameters and the aforementioned biases at unmonitored glaciers remains a key challenge.

Second, COSIPY is limited by structural simplifications, including the lack of a representation for debris cover and snow redis-

tribution and the application of linear lapse rates (Voordendag et al., 2024; Zhu et al., 2024), as evidenced by the mismatches

between observed and simulated mass balance gradients. New developments in the parameterisation of these processes (Saigger630

et al., 2024) and the advent of online-coupled glacier-atmosphere models at resolutions on the hectometer scale offer exciting

opportunities to address these limitations (Collier and Immerzeel, 2015; Bonekamp et al., 2019; Reynolds et al., 2024). Yet,
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even at these scales, exchanges between the glacier and the atmosphere and complex boundary-layer phenomena like katabatic

winds may not be accurately reflected (Goger et al., 2022; Draeger et al., 2024). In addition, we find that even the AWS-assisted

ensemble cannot match the observed albedo evolution, indicating that the employed parameterisation is inadequate.635

Third, parameters are assumed to be constant in time and space. Several studies show that optimal parameter values vary with

local climatic settings and surface characteristics (Gurgiser et al., 2013; Prinz et al., 2016; Galos et al., 2017; Zolles et al.,

2019; Zolles and Born, 2021). Additionally, we neglected the covariance between the observational datasets which leads to an

underestimation of the uncertainty in the posterior parameter distributions. This issue is compounded by the higher availability

of satellite observations with less cloudy and thus often winter and snow-covered conditions that provide insufficient guidance640

for melt-related parameters. This framework will scale well with advancements in climate models and data availability, partic-

ularly from high-temporal and spatial-resolution satellite missions (Scher et al., 2021; Falaschi et al., 2023; Jiao et al., 2025)

or their synthesis toward spatially resolved mass balances (Miles et al., 2021; Kneib et al., 2024).

Data assimilation in glaciology is a growing field (Morlighem and Goldberg, 2023), and different assimilation schemes can

better address the temporal variability of model parameters (e.g., Landmann et al., 2021) at the cost of a reduced uncertainty645

exploration. We consider this a lower priority compared to the adverse conditions created by forcing biases and structural sim-

plifications. If anything, our results indicate that choosing fixed observed albedo constants, but allowing for the calibration of

forcing bias correction parameters, may be more beneficial for the application at unmonitored glaciers. Although not explicitly

quantified, the impact of parameter uncertainty is small compared to that of the forcing data, except when a parameter set

triggers a premature or delayed bare ice exposure. Indeed, inspecting the ensemble spread induced by the parameter choice650

versus the bias between observed and simulated net radiation emphasises the smaller role of parametric uncertainty. While the

strong data inference may warrant that a more simplistic uncertainty quantification, as obtained by a state estimation method,

is sufficient, another compromise could be the use of a hierarchical Bayesian model. Such a model could better use the varying

temporal resolution of the observations. While the long-term geodetic mass balance target could constrain the hyperparam-

eters of a common top-level distribution, higher frequency snowline and albedo observations would then inform each year’s655

specific parameters. This would provide a fallback estimate from the common parameter pool in years where high-frequency

observations are sparse. Applying such a framework at other glaciers or larger scales requires a new surrogate per glacier, as

the training data required to account for variable forcing and parameters is too large. We find that this can be achieved with

approximately 1000 LHS iterations (see Fig. S13), enabling such a calibration framework at manageable computational cost.

Given the high demand for accurate forcing data and the potential for compounding errors, it remains unclear whether this660

physically-based calibration allows for an accurate assessment of the individual energy fluxes when forcing biases are un-

known. Nevertheless, the calibration reproduces the interannual mass balance variability well. This indicates that, even though

compensating errors exist among the flux components and also along the elevational gradient, the model chain correctly cap-

tures the overall glacier-wide response to atmospheric variability. This is a promising result for improving our understanding

of the atmospheric drivers at unmonitored glaciers. In addition, the demonstrated ability to diagnose errors within the model665

chain suggests that including additional bias correction terms may be possible, in the same way as the pf is included as a tuning

parameter.
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5 Conclusion

Motivated by the paucity of in-situ surface energy balance measurements for most glaciers worldwide, this study developed and

evaluated a Bayesian calibration framework for a physically based SEB model using only globally available satellite data and670

high-resolution climate simulations. By combining a multi-objective MCMC calibration with surrogate models, we achieved

robust parameter estimates and quantified their uncertainty at otherwise prohibitive computational cost. The applicability of

such surrogates provides an exciting avenue for future research, and the calibration yields robust estimates for parameter values

and their uncertainty. Our study provides several findings:

– Within COSIPY, and likely other SEB models, parameter equifinality arises mainly among the precipitation factor and675

albedo decay-related parameters such as albedo aging and firn albedo. These parameters remain difficult to constrain

without in-situ data, but higher frequency remotely sensed observations could help address this.

– The surface energy balance uncertainty introduced by parameter choices is small unless parameter sets shift the timing

of snow melt-out. Parameter uncertainty itself is tightly constrained and flux variations introduced by errors in the

meteorological forcing generally exceed their sensitivity. Therefore, it is paramount to improve the representation of the680

near-surface boundary layer, (solid) precipitation, humidity and cloud cover in high-resolution climate simulations in

complex terrain. Such efforts would also benefit from (meteorological) glacier observation databases to better identify

accurate parameterisations and forcing biases.

– The calibration reveals inconsistencies between long-term mass budgets and higher frequency snow-cover or albedo

observations. This diagnostic capability could help identify and be extended to include explicit forcing bias corrections685

as more observations become available. In turn, with reliable forcing, a model calibrated this way provides a physically

consistent flux partitioning. This provides further motivation to develop non-stationary parameterisations that could be

more robust under changing climate conditions.

– The remote-only calibration reproduces the observed interannual mass balance variability and glacier mean albedos, but

shows a delayed snowline rise and a negative mass balance bias. This can be explained by initially too low net shortwave690

radiation in the early melt-season, which is offset at the annual scale by excessive incoming longwave radiation and

turbulent fluxes. We find that the uncertainty-aware calibration can capture the glacier response to changing atmospheric

conditions. When meteorological biases are known, the same framework can also provide robust estimates of the sur-

face energy balance. This workflow circumvents the need for in-situ data to calibrate model parameters, and enables

physically based glacier modelling in remote regions at the cost of higher computational demand.695

Notwithstanding its limitations, this study provides a robust and transferable parameter calibration framework for unmonitored

glaciers, capable of reproducing the interannual mass balance variability. While parameter choice and its associated uncertainty

are a tractable challenge, forcing uncertainty remains the main obstacle to the application of surface energy balance models

for remote-only applications. The presented framework offers diagnostic capabilities to help identify shortcomings and incon-

sistencies between model parameters, model structure and forcing, paving the way for also including forcing bias corrections700
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when more observations become available.

Without prior knowledge of the forcing quality, this raises questions about whether a remote-only surface energy balance model

calibration can reliably diagnose the individual energy balance fluxes or if the model appears plausible while misrepresenting

the underlying physical processes. Nevertheless, the framework successfully reproduces the interannual mass balance vari-

ability, indicating that it captures the overall glacier-wide response to atmospheric variability even when individual fluxes are705

biased. Conversely, knowledge of well-established parameters or the inclusion of additional bias correction or downscaling

parameters in such a Bayesian framework can serve to detect and correct forcing biases. We conclude that a comprehensive

assessment of forcing data uncertainty is essential for advancing process-based glacier modelling in unmonitored regions and

at larger scales. By addressing these limitations, surface energy balance models can be enabled as powerful tools for robust,

large-scale assessments of glacier–atmosphere interactions in unmonitored regions.710

Appendix A: Additional figures
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Figure A1. Traces (left) and prior and posterior marginal distributions (right) of the model parameters and systematic errors in orange and

blue, respectively. The black lines in the traces correspond to the mean across the fifteen chains.
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Figure A2. Scatterplot of all input variables except for total precipitation at the upper and lower station in comparison to the nearest COSIPY

grid cell. To isolate the moisture signal in the relative humidity input, we instead display the specific humidity (Q2). The contour lines

represent the data density, and points are colored based on the day of the year in the hydrological year 2003/04. Metrics refer to the coefficient

of determination R2, the mean bias error (MBE) and the root mean squared error (RMSE) in the respective units.
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Code and data availability. The model code is based on the open-source COSIPY model (https://github.com/cryotools/cosipy, last accessed:

04.11.2025). The adapted COSIPY code used within this paper and the subsequent analysis is freely accessible via Zenodo at https://doi.

org/10.5281/zenodo.17426863 (Richter, 2025). As output file sizes are quite large, they are available upon request. The COSMO-CLM

simulations are available from the ESGF (https://esgf-ui.ceda.ac.uk/search, last accessed: 04.11.2025). Access to the calibration data and the715

required code can be found in Hugonnet et al. (2021), Ren et al. (2024), and Loibl et al. (2025), respectively.
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