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Abstract. Methane is a potent greenhouse gas, and accurate emission estimates are essential for effective climate 

mitigation. Agricultural sources, particularly concentrated animal feeding operations (CAFOs), are significant 15 

anthropogenic contributors, yet their emissions remain difficult to quantify, contributing to uncertainty in 

inventories. 

MethaneAIR, an aircraft-based imaging spectrometer and precursor to MethaneSAT, was primarily developed to 

characterize methane emissions from oil and gas infrastructure. Between 2021 and 2024, MethaneAIR conducted 

75 flights across the United States and Canada, producing orthorectified mosaics of column-averaged methane. 20 

These data were used to assess agricultural emissions at high resolution through a novel scene-based approach. 

Agricultural “scenes” were defined as spatial subsets of flight mosaics encompassing CAFOs and surrounding 

areas, enabling targeted plume detection and quantification. Wavelet denoising and a Gaussian-based Divergence 

Integral method were applied to 209 agricultural scenes coincident with 84 CAFOs. Of 200 detected plumes, 89 

met our quantitative robustness criteria and were analysed further, with emphasis on northeast Colorado. 25 

 

While limited on-farm data, such as the number of animals and waste management practices, constrained the 

ability to fully interpret emission drivers, the analysis revealed elevated emissions relative to inventories and high 

variability, likely influenced by interactions between wind and waste management systems. These findings both 

highlight variability not captured in annual inventories and inform the design of future satellite missions like 30 

MethaneSAT, which will improve global methane monitoring and climate models. With improved on-farm 

information, this approach could provide a scalable pathway for emission and mitigation verification. 

1 Introduction 

Methane (CH4) emission reductions are an effective method to mitigate near term climate change as CH4 is both 

a potent greenhouse gas (GHG) and short lived (IPCC, 2023). Global atmospheric methane has increased 35 

substantially since pre-industrial values (Saunois et al., 2024) with a record high growth rate between 2020 and 

2022 (Michel et al., 2024). Globally, agriculture is the largest anthropogenic methane source, at 40% (Saunois et 
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al., 2024). This is in turn dominated by emissions from livestock agriculture in the form of enteric fermentation 

and manure management.  

 40 

Enteric fermentation is a natural digestive process in ruminant animals where anaerobic microbes (methanogens) 

break down feed, producing methane (CH₄) as a byproduct, released through burping. The quantity of CH4 

produced is dependent on animal species, animal life stage, diet composition, feed intake, and digestive efficiency 

(Roques et al., 2024). 

 45 

Within manure management systems, open anaerobic lagoons are a particularly important source of methane 

emissions. These lagoons emit methane through microbial decomposition and are highly sensitive to 

environmental conditions such as wind and temperature, which can influence emission rates and plume 

detectability (Golston et al., 2020; Ouatahar et al., 2024). In the USA, 36% of anthropogenic methane emissions 

are attributed to agriculture (U.S. Environmental Protection Agency, 2024). 50 

 

CH4 emissions can be quantified using bottom-up (reported inventory) and top-down (atmospheric measurement) 

approaches.  Inventories of agricultural methane emissions, used for tracking and reporting, are primarily based 

on an emission factor (EF) per animal  (IPCC, 2006), which can be a default value or use more detailed country-

specific information to account for different animals, feed types and management practices (IPCC, 2019). As part 55 

of the United States GHG reporting, the Environmental Protection Agency (EPA) Methane inventory applies 

regional, animal, and process specific EF’s (IPCC’s tier 3) including enteric fermentation and manure 

management and is made available in a gridded format on an annual basis. However, methane emissions can vary 

considerably temporally far beyond the mean, due to animal behaviour, management practices, diet, and 

environmental conditions(Tedeschi et al., 2022; Leytem et al., 2017; Mead et al., 2024; Golston et al., 2020). 60 

While emission inventories are adopting more sophisticated methods to estimate methane emission factors 

(Maasakkers et al., 2023; Mead et al., 2024), substantial uncertainties persist. This is exacerbated when 

considering individual farms and facilities.  

 

Top-down measurements, where atmospheric methane concentrations are used to infer emission rates, have been 65 

widely applied at global to regional scales (e.g. Worden et al. (2022) and Jacob et al. (2022)) supporting the 

validation and refinement of emission inventories (Maasakkers et al., 2019). However, discrepancies between 

bottom-up and top-down approaches exist, with several reports of inventory underestimating regional and national 

emissions compared to top-down approaches (Jacob et al., 2016; Jacob et al., 2022; Saunois et al., 2024; Yu et al., 

2021; Wójcik-Gront and Wnuk, 2025). Incongruities arise from multiple sources; for example, bottom-up 70 

approaches do not always account for all methane sources (National Academies of Sciences, 2018), while top-

down do not generally have spatial and temporal resolutions to identify and quantify sources (Saunois et al., 2024), 

though this is changing with high resolution point source mappers. 

 

At a facility level, top-down approaches have advanced significantly through the wide-spread use of techniques 75 

such as hyperspectral imaging enabling a shift to plume quantification  (Varon et al., 2018; Li et al., 2024; Schuit 

et al., 2023). TROPOMI and GHGSat have been used to detect large methane plumes, including those from urban 

areas and landfills. Varon et al. (2018), using GHGSat-D, demonstrated that emissions as small as 0.03 t h⁻¹ could 
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be detected under controlled conditions. Building on this, Sherwin et al. (2023) evaluated nine satellite platforms 

including GHGSat-C, PRISMA, EnMAP, WorldView-3, Sentinel-2, and Landsat 8 and confirmed that GHGSat-80 

C was capable of detecting emissions down to 0.03 t h⁻¹, while other systems exhibited minimum detection 

thresholds ranging from approximately 0.2 to 7.2 t h⁻¹. Wind speed was identified as a key source of uncertainty 

in quantification (Sherwin et al., 2024). Li et al. (2024) used the Chinese GF5-01A/02 hyperspectral satellites to 

detect oil and gas plumes across in North America, with emission rates ranging from 0.52 to 16.07 t h-1. Schuit 

(2023) notes that targeting known emission sites improves detection, and Li et al. (2024) similarly suggest that 85 

future surveys could benefit from more targeted assessments with additional data. 

 

MethaneSAT, a combined American initiative led by the Environmental Defense Fund (EDF) and its subsidiary 

MethaneSAT LLC, together with Aotearoa New Zealand partners, was developed and launched in 2024 with the 

primary purpose to quantify Oil and Gas CH4 emissions at better spatial and temporal resolution than existing 90 

satellite measurements (Chan Miller et al., 2024). The MethaneSAT has a native resolution of  100 x 400 m over 

targeted 200 km x 200 km regions of interest with precision of 2-3 ppb at 1.5 x 1.5 km resolution. This unique 

combination is ideal for wide scale monitoring of oil and gas emissions and other large point sources, such as 

intensive livestock operations, as well as diffuse agriculture. Although communication with MethaneSAT was 

lost in 2025, the satellite collected a vast amount of data that can be analyzed to provide derived techniques and 95 

information applicable to future missions. 

 

MethaneAIR, is an aircraft-based precursor to MethaneSAT with similar spectroscopy and has by flown on ~75 

flights from 2021 to 2024 in targeted regions of USA and Canada (Figure 1). Techniques developed to identify 

and quantify CH4 emission sources using MethaneAIR data are transferable to MethaneSAT and other satellite 100 

platforms, with the MethaneAIR data being used to directly test MethaneSAT algorithms and for validation with 

coordinated campaigns. MethaneAIR flight data has been used successfully to quantify O&G point sources 

(Guanter et al., 2025; Chulakadabba et al., 2023). Using mosaic images Chulakadabba applied both a physics 

based, Integrated Mass enhancement (IME) and a Divergence Integral (DI) method to estimate emission rates. 

Both methods detect single blind controlled releases. The IME method, which used winds from weather 105 

simulations, was able to detect 200 kg h-1 while the DI was effective over 500 kg h-1 (Chulakadabba et al., 2023). 

Guanter et al. (2025) used an optimized processing chain to retrieve ΔXCH4 (change in column-averaged methane 

concentration) on MethaneAIR L1B data (calibrated and georeferenced) showing the ability to detect plumes with 

emission rates of 120 kg h-1. In this work we present a modification of the workflow used in Chulakadabba et al. 

(2023) by combining with the wavelet denoising method described by  Zhang et al. (2024) via subsetting of area 110 

maps. This allows the far weaker CAFO plumes to not only be detected but quantified.  

 

Whilst several aircraft-based campaigns have been performed to measure methane emissions over Oil and Gas 

(O&G) production (e.g. (Peischl et al., 2016; Karion et al., 2013; Chen et al., 2022), there are a limited number 

that have focused on Agricultural emissions. One study that separated aircraft derived Agricultural methane 115 

emissions from Oil and Gas was that by McCabe (2023) where they determined rates of 13 +- g of CH4 animal-1 

h-1 for a single CAFO, which was considerably higher than reported in the EPA inventory. Background noise and 

wind speed are attributed as being major sources of uncertainty for plume detection (Saunois et al., 2024; Hancock 
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et al., 2025; Petrescu et al., 2024). Tedeschi et al (2022) emphasized the need to use both top-down and bottom-

up methods to improve methane estimates.  120 

2 Data and methods 

This work quantifies agricultural plumes using a combination of MethaneAIR mosaics and known locations of 

CAFOs. Agricultural Scenes derived using these data are then processed using a wavelet denoising method to 

identify and mask plumes which are then quantified by the Divergence integral (DI) method. Robust plumes 

associated with CAFO’s are quantified and discussed in relation to reported values from inventories and past 125 

studies.  

2.1 Farm-list Development 

The farm list comprises identified Concentrated Animal Feeding Operations (CAFOs), including their locations, 

types, and estimated maximum methane emissions. Site identification was initially guided by existing inventories 

(Maasakkers et al., 2023; Chang et al., 2021; European Commission, 2021), satellite imagery (Google Earth, © 130 

Google), and ClimateTrace data (Davitt et al., 2024). Verification was conducted using business information from 

Google Maps (© Google) and visible signage via Google Street View (© Google). 

 

CAFOs were included if they were estimated to emit more than 100 kg CH₄ h⁻¹, equivalent to ~ 60000 - 20000 

cattle depending on type and management, based on national emission factors and maximum reported livestock 135 

numbers(U.S. Environmental Protection Agency, 2024). Sites were also required to be sufficiently distant from 

oil and gas infrastructure to allow for source separation. Maximum livestock capacity was determined using the 

following hierarchy of data sources: (1) state-reported values, (2) self-reported data, (3) facility footprint and type, 

and (4) inventory estimates. Emissions were then calculated using EPA emission factors.  

 140 

Each CAFO was assigned a unique numeric identifier. Prior to each MethaneAIR flight (2023), CAFOs near the 

planned flight path were were supplied to flight planners for them to be flown over if the mission would allow. 

After flight completion, additional CAFOs intersected by the actual flight paths were identified and added to the 

list, including smaller facilities. 
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2.2 MethaneAIR data 

MethaneAIR uses a pair of grating spectrometers: one targeting absorption bands at 1.61 and 1.65 µm for CO₂ 

and CH₄ detection, and another at 1.27 µm for O₂, used to constrain the optical path length (Staebell et al., 2021). 

Installed and tested on NSF research aircraft in 2019 (Staebell et al., 2021), MethaneAIR operates at  ~12 km 150 

altitude with a swath width of ~5.05 km and spatial resolution of ~ 6 × 20 m. Its design enables high retrieval 

precision (~17–20 ppb over flat terrain at 10m x 10m, (Chulakadabba et al., 2023) allowing the detection of both 

large and small methane emission sources which are often missed by coarser satellite instruments. This capability 

is essential for measuring methane emissions in complex environments such as oil and gas fields, landfills, and 

agricultural areas. 155 

Figure 1: a) MethaneAIR flightpaths and Distribution of CAFO targets on initial Farm-list. (b) EPA gridded inventory 

field for combined enteric fermentation and manure management, and (c) oil & gas (Maasakkers et al., 2023). USA 

administrative boundaries from Esri. 
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Level 3 (L3) data are delivered as gridded mosaics of column-averaged methane concentrations (XCH₄), derived 

using a CO₂ proxy retrieval algorithm that has been validated as a demonstration for the MethaneSAT mission 

(Chan Miller et al., 2024). A total of 75 flights conducted between 2021 and 2024 were available for analysis 

(Figure 1). 

 160 

 

2.3  Scene determination 

To isolate agricultural emissions, MethaneAIR L3 mosaics (Figure 2) were subset around CAFO targets before 

applying wavelet denoising and the Divergence Integral (DI) method. This approach enhances the detectability of 

agricultural plumes, which might otherwise be statistically overshadowed by larger oil and gas emissions. 165 

For each flight, CAFOs located within the mosaic extent were identified and then screened for quality. Cases were 

retained where no more than 2% of pixels within a ±0.005° (~500 m) buffer were masked, typically a result of 

cloud cover or close proximity to swath edge. For CAFOs meeting this threshold, an 'Agricultural Scene' was 

extracted as a ±0.02° subset of the Level 3 (L3) data centred on the CAFO. This process yielded 209 agricultural 

scenes associated with 84 unique CAFOs across 75 flights, examples of which are shown in Figure 1a, these 170 

scenes are then individually processed for plume detection and quantification.  

Figure 2: MethaneAIR flight mosaic from MethaneAIR flight MX050 over Denver, 2023-09-25 showing CAFOs in 

the area from the initial farm list. Maximum capacity values represent the registered animal capacity as reported by 

the  Colorado Public Health and Environment  (CDPHE, 2017). USA administrative boundaries from Esri.  
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2.4 Plume Detection and Quantification 

The plume detection method uses a 2D discrete wavelet transform to denoise the methane concentration imagery 175 

(Figure 3). It separates image signals into low frequencies and high frequencies, so that the high-frequency noise 

can be subtracted to produce a clean image with enhanced plume signals. Binary plume masks are then generated 

using a combination of XCH₄ thresholding and a connected component algorithm. Additional filtering algorithms 

are applied to mitigate false detections. Subsequently, plume origins are determined based on plume morphology 

and wind direction. Compared to the divergence integral plume detection method that was previously applied in 180 

MethaneAIR data (Warren et al., 2024), the wavelet-based method has higher performance in detecting low-

Figure 3:  Example of Agricultural Scenes extracted from MethaneAIR L3 XCH4 Mosaics (a) extracted scene ~ 

0.005 degrees surrounding CAFO of interest (b) Denoised Scene (c) Masked Plume/s associated with the CAFO, 

with different colours denoting individual plumes. Imagery © Vantor, 2024. 
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volume plumes (Zhang et al., 2026). Therefore, we use the wavelet-based detection method to maximize our 

plume finding capabilities in agricultural emissions. The combination of this approach with scene selection across 

a wide range of targets is somewhat novel outside of a controlled release setting. Unlike Cusworth et al. (2021) 

or Guanter et al. (2025) which apply detection algorithms across a the scene of the entire flight, limiting the scene 185 

sizes to just known locations allows for a finer distribution of concentrations for thresholding/percentile based 

identification methods. For flux quantification, the same divergence integral method in Chulakadabba et al. (2023) 

is applied as it has been validated by multiple controlled release tests. Firstly, a series of growing boxes is drawn 

around the plume origin. Then the surface flux divergence integral is computed for each box using wind fields 

from the High-Resolution Rapid Refresh model (NOAA, 2025)  and the final flux is taken as the average of these 190 

values, with the uncertainty being the standard deviation. From the 209 agricultural scenes, 652 methane plumes 

were detected.  

 

 

2.5 Plume Source Attribution 195 

Each detected plume was manually evaluated to determine i) whether the source was agricultural (associated with 

a CAFO), ii) if it was unique, and iii) the likely on-farm source if apparent. For context, methane plume rasters 

were overlaid on high-resolution imagery from Google Earth (imagery © Google, 2024) to assess spatial 

alignment with the CAFO being considered. A plume was considered clearly associated with a CAFO when 

multiple qualitative indicators agreed, including proximity of the plume origin to the CAFO footprint, 200 

wind‑consistent alignment, plume morphology, and the absence of nearby competing sources such as oil‑and‑gas 

infrastructure or adjacent CAFOs.  

 

Uniqueness was assigned by visually checking for plume continuity; segments judged to be parts of a single 

contiguous plume were treated as one case (e.g. Figure 3c). While most plumes are clearly associated with the 205 

CAFO, it is not always possible to confidently determine the on-farm origin.  Where possible, the specific on-

farm source (e.g., lagoons or infrastructure) was identified, and a confidence level was assigned. Only plumes that 

can clearly be identified as coming from a Lagoon are flagged as such. Consequently, there will be many cases 

with Lagoon-related emissions remaining within the general agricultural category. 

3 Results 210 

A total of 209 agricultural scenes, encompassing 84 unique CAFO’s including a mixture of beef, dairy and manure 

management operations, were analyzed using the wavelet denoising and DI method. This analysis resulted in 652 

individual plume detections. However, the majority of these plumes were not attributable to the targeted CAFOs. 

Instead, they were typically associated with nearby oil and gas infrastructure, adjacent CAFOs, unidentified 

sources transported into the scene, or clearly a single plume that has been split (non-unique).   215 

 

A total of 200 unique agricultural plumes were identified, of which 89 (44%) were classified as robust (Figure 

4b). Robust plumes are defined as having a ratio of the standard deviation of the DI-derived flux to the flux itself 

of less than 1 (i.e., uncertainty below 100%). Although only 14% of detected plumes were both agricultural and 
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met the most stringent robustness criteria, nearly 40% of all scenes contained at least one robust plume. This 220 

demonstrates that the method is effective for detecting plumes at this scale, even within complex, mixed-source 

landscapes. 

 

 

 225 

 

 

Figure 4. Summary of valid agricultural scenes (a) and associated plume detections (b), by state. Actual counts are 

displayed on each bar. Note: for Oklahoma, Arizona, and “Other,” all valid scenes included plume detections. 

Additionally, all plumes detected in Oklahoma were classified as unique. 230 

Given that Colorado had the highest number of robust agricultural scenes and plumes (Figure 4), it was a logical 

focal point for further analysis in this study. To better understand these results, accurate livestock population data 

is essential for estimating expected emissions from enteric fermentation and manure management. The most 

reliable and traceable dataset available for this analysis was the maximum capacity of registered and permitted 
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feedlots reported by the Colorado Department of Public Health and Environment (CDPHE, 2017). While the 235 

dataset is 7 years out of date for assessing emissions in 2024, it is still a consistent data source and in the absence 

of real-time animal counts, these maximum values were used as a proxy for estimating per-animal emissions. 

From the Colorado state inventory 2023 (CDPHE, 2023), the estimate state total methane emissions from enteric 

fermentation and manure management in 2017, were 0.227 and 0.0297 MMT of CH4 respectively, rising modestly 

to 0.2286 (~7%)  and 0.03497 (~17%) MMT CH4 by 2020. Such trends may continue, and may be systematically 240 

reflected in the results from our analysis of MethaneAIR data 

 

Figure 5. Methane emissions per animal for individual CAFO’s, by type, and ranked low to high. Horizontal lines 

represent EPA per animal rates for Colorado state. 

 245 

To compare emissions per animal values derived from MAIR to EPA we calculated the combined enteric 

fermentation and manure management emissions factors using the state specific data provided in Inventory of 

U.S. Greenhouse Gas Emissions and Sinks: 1990-2022 – Annexes  (U.S. Environmental Protection Agency, 

2024). For consistency across both source types, the reported state level values for the sources (tables A-151 and 

A-170) were divided by the state population (table A-124) using the values for dairy cows and beef on feedlot. 250 

This results in a total of 22.25 g CH4 animal-1 h-1 for dairy and 6.57 g CH4 animal-1 h-1 for beef. In the case of beef 

90% of emissions are from enteric fermentation, whereas in dairy that value is 58%. Note that these values 

represent the mean of all operations, no matter the size, over the state of Colorado. Individually operations may 

have a wide range of emission factors.  

 255 

These values were then compared to the total emissions for each scene. This was computed by averaging the 

robust, disconnected, non-unique plumes (i.e. the same plume) and summing the remaining unique plumes within 
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the scene to give total operational emissions. Overall Beef CAFOs, on average, exhibited lower emissions per 

animal than dairy operations, although substantial variability was observed across both types (Figure 5). A 

Welch’s t-test indicated beef values were significantly lower than dairy values, t(33.86) = –4.02, p = 0.00031. 260 

Because CAFOs may not always operate at their permitted maximum capacity, methane emissions derived from 

MethaneAIR observations could fall below EPA per‑animal emission factors simply due to fewer animals being 

present than the stated capacity. This pattern was largely met for beef operations, where most emission estimates 

ranged between 0 and 10 g CH4 animal⁻¹ h⁻¹ — in line with EPA’s estimate of 6.57 g CH4 animal⁻¹ h-1 (Figure 

5). 265 

 

In contrast, dairy operations exhibited higher emissions, with most estimates falling between 40 and 80 g CH4 

animal⁻¹ h-1. This discrepancy may suggest that beef CAFOs typically operate below their permitted capacity, 

whereas dairy CAFOs may be functioning closer to permitted capacity. Alternatively, the elevated emissions 

observed in dairy operations may reflect a greater contribution from manure management systems, which are 270 

known to exhibit high variability. It is also important to consider that the EPA emission factors represent annual 

averages, whereas MethaneAIR captures instantaneous emissions. Although some diurnal and seasonal variability 

is expected, the consistency and magnitude of the dairy results suggest an additional contributing factor. 

 

 Reported 

(Enteric fermentation + 

Manure management) 

Measured 

(Total farm-level emissions) 

CAFO Type EPA  

Colorado  

IPCC 

(Tier 2, USA) 

Goltson et al. 

(landbased) 

 McCabe et al.* 

(aircraft) 

MethaneAIR 

(mean) 

Beef  6.67 ~6.62 9.48 ± 0.93  
13 ± 2  

34.80 ± 4.49 

Dairy 22.25 ~13.95 39.32 ± 2.92  122.32 ± 13.62 

 275 

Table 1 Approximate CH4 emissions (g animal⁻¹ h-1), reported from EPA, IPCC defaults, and values obtained for 

Colorado state covered by MethaneAIR flights for this study. *McCabe et al. (2023) focussed primarily on beef feedlots 

but included a small number of dairy operations. 

 

 280 

Averaging over all Colorado scenes (Table 1), our results indicate average emissions of  34.80 g animal⁻¹ h⁻¹ for 

beef cattle and 122.32 g animal⁻¹ h⁻¹ for dairy cattle, which exceeds the EPA’s Tier 2 inventory estimates of 6.67 

g animal⁻¹ h⁻¹ for beef and 22.25 g animal⁻¹ h⁻¹ for dairy. The median values are, however, lower at 19.23 g 

animal⁻¹ h⁻¹ and 86.61 g animal⁻¹ h⁻¹ but remain above EPA values.  Other studies conducted in northeastern 

Colorado also report lower values: Golston et al. (2020) measured 9.48 ± 0.93 g animal⁻¹ h⁻¹ for beef and 39.32 ± 285 

2.92 g animal⁻¹ h⁻¹ for dairy using mobile labs during summer, while McCabe et al. (2023) reported a blended 

average of 13± 2 g animal⁻¹ h⁻¹ across the two CAFOs type.  Additionally, Yu et al. (2021) used aircraft-based 

inversions to quantify methane emissions across the Upper Midwest and found that livestock emissions were 

approximately 25% higher than EPA estimates during summer and winter, though their approach focused on 

regional fluxes rather than plume-based facility attribution  290 
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To validate EPA and other studies methane emission estimates from CAFOs, a deeper understanding of actual 

CAFO activity—beyond consented capacity—is essential. The current results are plausible and align with 

expectations, showing clear differences between beef and dairy operations. However, several outliers in both 

categories exhibit emissions far exceeding EPA estimates. While these cannot be directly attributed without more 295 

detailed farm-level data, further work could be conducted to investigate the conditions under which these 

anomalies occur to identify potential biases.  

3.1  Detection Thresholds 

To assess reliability and frequency of observation, detection thresholds were evaluated using plume detection 

rates under varying conditions, focusing on estimated emission size and meteorological factors such as wind 300 

speed. 

 

Figure 6. MethaneAIR scene-based plume detection rates for estimated emission size (left) and windspeed (right) for 

concentrated animal feeding operations (CAFOs) in Northeast Colorado 

Figure 6 shows the rate of plume and robust plume detection as a function of estimated CAFO emissions (based 305 

upon permitted animal numbers and detected emission rates) and windspeed for the Colorado subset. 

Unsurprisingly, the overwhelming number of negative detections (None) occur at low expected emission rates 

based on CDPHE data (CDPHE, 2017), there are however a significant number of positive and robust detections 

in this range too. The meteorological features are more nuanced, with wind speed showing modest increase in 

negative detections at low and high wind speeds. Again, this makes sense intuitively, at high windspeeds, there 310 

will be less buildup of methane, making plumes harder to detect, at low wind speeds the increased build up may 

no longer be plume like. Temperature and preceding rainfall were also investigated but did not show significant 

relationships due to the limited number of observations.  
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Figure 7. Detection class as a function of estimated emissions and windspeed 315 

The relationship between emission rate, wind speed, and detection performance was evaluated across three 

detection classes (Figure 7). While the limited sample size precludes the development of statistically robust, 

dynamic detection thresholds several trends are evident. 

Detection and reliable quantification of emission sources emitting less than 100 kg h-1 are occasionally achievable 

when wind speeds range between 2 and 6 m s-1. Within this wind speed window, the atmospheric transport 320 

conditions appear favourable for plume detection. At higher emission rates, particularly above 200 kg h-1, the 

influence of wind speed on detection success diminishes, suggesting that stronger sources are more readily 

detectable regardless of moderate variations in wind conditions. 

A subset of failed or non-robust detections occurred despite satisfying the nominal wind speed and emission rate 

criteria. These anomalies may be attributed to several factors, including temporal variability in actual emission 325 

rates, discrepancies between modelled wind data (e.g., HRRR) and on-site wind conditions, and elevated 

background methane concentrations that may obscure the signal from emission sources. 

3.2 Emission Variability Drivers 

We can extend this analysis to explore the variability in observed, robust methane emissions from CAFOs, as in 

the detection case we focus only on the influence of windspeed. Although the dataset is limited, most outliers 330 

occurred during high windspeed conditions.  While this pattern may reflect a windspeed-related bias in the 

emission estimation methodology, it is notable that several high-wind cases exhibited minimal emission 

enhancements, suggesting site-specific behavior (Figure 8). 
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Figure 8. Methane emissions per animal (g h-1) from dairy (left) and beef (right) concentrated animal feeding operations 335 
(CAFOs) in Northeast Colorado. 

For two CAFOs (Farm 1000 and Farm 950) with repeated observations across a range of wind conditions, elevated 

emissions were only detected during periods of high wind speed. At other sites, however, high winds did not 

correspond to increased enhancements. Together, these observations indicate that high windspeed alone does not 

consistently produce larger observed enhancements. This pattern suggests that facility‑specific factors likely 340 

influence emission responsiveness to wind, and that the windspeed-emission relationship may be site-specific, 

and shaped by the intermittent, weather-dependent nature of emissions from lagoon-based systems.  

 

The site‑dependent nature of the wind–emission relationship aligns with previous studies showing that methane 

emissions from lagoon‑based systems can respond strongly to weather events. Leytem et al. (2017) demonstrated 345 

that wind events, alongside rainfall and freeze/thaw cycles, significantly increased CH₄ emissions from dairy 

lagoons in Idaho, independent of temperature. Their models identified windspeed as a key predictor. Confirming 

this wind-driven variability more robustly would require expanded aerial surveys, improved traceability of CAFO-

related EPA data beyond Colorado, or additional facility operation data. 

 350 

Other studies have identified several factors influencing variability of CH4 emissions from farms, including barn 

temperature and humidity (Ouatahar et al., 2024), manure management practice, diurnal variability due to temp 

and other atmospheric conditions (Golston et al., 2020; Ouatahar et al., 2024). Golston et al. also reported 

substantial spatial variability within facilities. Dietary influence can also be significant. Yu et al. (2021) suggested 

that management practices had a stronger influence than seasonality accounted for in bottom-up approaches; for 355 

example, anaerobic lagoons produce significant emissions, and the length of time the manure is stored in them 

following removal from housing can have an impact. 

 

4 Conclusions and Implications  

This study demonstrates the effectiveness of MethaneAIR in detecting and quantifying methane emissions from 360 

CAFOs in Northeast Colorado. A total of 652 methane plumes were identified across 209 agricultural scenes, with 

89 (42%) of scenes yielding at least one robust CAFO related plume. These results highlight the potential as well 
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as the complexity of isolating agricultural emissions in regions with overlapping oil and gas infrastructure and 

underscore the importance of targeted analytical approaches. 

A central methodology of this work is agricultural scene extraction prior to further processing, which isolates 365 

CAFO-associated emissions from broader MethaneAIR flight mosaics. By spatially subsetting the data around 

known CAFO locations and filtering out scenes with insufficient data coverage, this approach enhances the 

detectability of smaller, diffuse agricultural plumes that would otherwise be statistically overshadowed by 

dominant oil and gas emissions. This method improves attribution accuracy and provides a scalable framework 

for future airborne and satellite-based methane monitoring in mixed-source landscapes. 370 

As anticipated, our analysis revealed that dairy CAFOs generally emit more methane per animal than beef 

operations, with many exceeding EPA emission factor estimates—likely due to higher operational intensity or 

greater contributions from manure management systems. In contrast, beef CAFOs typically emitted below EPA 

estimates, suggesting under-capacity operation or less intensive waste management practices. These findings align 

with previous aircraft-based studies (Yu et al., 2021; McCabe et al., 2023) and highlight the limitations of static 375 

emission factors in capturing real-world variability. Additional flights and more importantly, detailed on-farm 

data, such as true stocking rates and waste practices, are be needed to tie the observed emissions to the underlying 

activity, thus allowing the verification of emission factors. 

 

Windspeed emerged as the dominant meteorological factor influencing plume detectability. Emissions below 100 380 

kg CH4 h-1 were possible, but not consistently, detected when windspeed ranged between 2 and 6 m s-1, while 

higher emissions were detectable across a broader range. However, the relationship between windspeed and 

emissions varied by site, suggesting that emission dynamics are influenced by localized infrastructure, 

management practices, and lagoon behaviour. 

This study focused on one region and relied on coincident CAFO location data. Broader application will require 385 

validation across additional regions and incorporation of farm-specific information. 

These findings provide critical insights for top-down methane monitoring efforts. Although MethaneSAT is no 

longer operational, the agricultural scene extraction and attribution strategies developed here remain highly 

relevant for other current and future missions. This approach offers an operational blueprint for applying airborne 

and spaceborne sensors in agricultural regions. By advancing understanding of methane emissions from CAFOs, 390 

this work establishes a methodological foundation for integrating airborne and satellite observations into 

agricultural methane monitoring, inventory improvement, and mitigation studies. 

 

 

Code/Data availability 395 

Python code used for data analyses and visualizations can be obtained from the corresponding authors upon 

reasonable request. MethaneAIR point source data can be accessed online from the Earth Engine Data Catalog 

at https://developers.google.com/earth-engine/datasets/tags/methaneair (Earth Engine Data Catalog, 2025). 
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