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Abstract. Methane is a potent greenhouse gas, and accurate emission estimates are essential for effective climate
15 mitigation. Agricultural sources, particularly concentrated animal feeding operations (CAFOs), are significant
anthropogenic contributors, yet their emissions remain difficult to quantify, contributing to uncertainty in
inventories.
MethaneAlR, an aircraft-based imaging spectrometer and precursor to MethaneSAT, was primarily developed to
characterize methane emissions from oil and gas infrastructure. Between 2021 and 2024, MethaneAIR conducted
20 75 flights across the United States and Canada, producing orthorectified mosaics of column-averaged methane.
These data were used to assess agricultural emissions at high resolution through a novel scene-based approach.
Agricultural “scenes” were defined as spatial subsets of flight mosaics encompassing CAFOs and surrounding
areas, enabling targeted plume detection and quantification. Wavelet denoising and a Gaussian-based Divergence
Integral method were applied to 209 agricultural scenes coincident with 84 CAFOs. Of 200 detected plumes, 89

25 met our quantitative robustness criteria and were analysed further, with emphasis on northeast Colorado.

While limited on-farm data, such as the number of animals and waste management practices, constrained the
ability to fully interpret emission drivers, the analysis revealed elevated emissions relative to inventories and high
variability, likely influenced by interactions between wind and waste management systems. These findings both
30 highlight variability not captured in annual inventories and inform the design of future satellite missions like
MethaneSAT, which will improve global methane monitoring and climate models. With improved on-farm

information, this approach could provide a scalable pathway for emission and mitigation verification.

1 Introduction

Methane (CH4) emission reductions are an effective method to mitigate near term climate change as CHy is both
35 a potent greenhouse gas (GHG) and short lived (IPCC, 2023). Global atmospheric methane has increased
substantially since pre-industrial values (Saunois et al., 2024) with a record high growth rate between 2020 and

2022 (Michel et al., 2024). Globally, agriculture is the largest anthropogenic methane source, at 40% (Saunois et
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al., 2024). This is in turn dominated by emissions from livestock agriculture in the form of enteric fermentation

and manure management.

40
Enteric fermentation is a natural digestive process in ruminant animals where anaerobic microbes (methanogens)
break down feed, producing methane (CH4) as a byproduct, released through burping. The quantity of CHa
produced is dependent on animal species, animal life stage, diet composition, feed intake, and digestive efficiency
(Roques et al., 2024).

45

Within manure management systems, open anaerobic lagoons are a particularly important source of methane

emissions. These lagoons emit methane through microbial decomposition and are highly sensitive to

environmental conditions such as wind and temperature, which can influence emission rates and plume

detectability (Golston et al., 2020; Ouatahar et al., 2024). In the USA, 36% of anthropogenic methane emissions
50 are attributed to agriculture (U.S. Environmental Protection Agency, 2024).

CH4 emissions can be quantified using bottom-up (reported inventory) and top-down (atmospheric measurement)
approaches. Inventories of agricultural methane emissions, used for tracking and reporting, are primarily based
on an emission factor (EF) per animal (IPCC, 2006), which can be a default value or use more detailed country-
55 specific information to account for different animals, feed types and management practices (IPCC, 2019). As part
of the United States GHG reporting, the Environmental Protection Agency (EPA) Methane inventory applies
regional, animal, and process specific EF’s (IPCC’s tier 3) including enteric fermentation and manure
management and is made available in a gridded format on an annual basis. However, methane emissions can vary
considerably temporally far beyond the mean, due to animal behaviour, management practices, diet, and
60 environmental conditions(Tedeschi et al., 2022; Leytem et al., 2017; Mead et al., 2024; Golston et al., 2020).
While emission inventories are adopting more sophisticated methods to estimate methane emission factors
(Maasakkers et al., 2023; Mead et al., 2024), substantial uncertainties persist. This is exacerbated when

considering individual farms and facilities.

65 Top-down measurements, where atmospheric methane concentrations are used to infer emission rates, have been
widely applied at global to regional scales (e.g. Worden et al. (2022) and Jacob et al. (2022)) supporting the
validation and refinement of emission inventories (Maasakkers et al., 2019). However, discrepancies between
bottom-up and top-down approaches exist, with several reports of inventory underestimating regional and national
emissions compared to top-down approaches (Jacob et al., 2016; Jacob et al., 2022; Saunois et al., 2024; Yu et al.,

70 2021; Wojcik-Gront and Wnuk, 2025). Incongruities arise from multiple sources; for example, bottom-up
approaches do not always account for all methane sources (National Academies of Sciences, 2018), while top-
down do not generally have spatial and temporal resolutions to identify and quantify sources (Saunois et al., 2024),

though this is changing with high resolution point source mappers.

75 At a facility level, top-down approaches have advanced significantly through the wide-spread use of techniques
such as hyperspectral imaging enabling a shift to plume quantification (Varon et al., 2018; Li et al., 2024; Schuit
et al., 2023). TROPOMI and GHGSat have been used to detect large methane plumes, including those from urban
areas and landfills. Varon et al. (2018), using GHGSat-D, demonstrated that emissions as small as 0.03 t h™! could
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be detected under controlled conditions. Building on this, Sherwin et al. (2023) evaluated nine satellite platforms
80 including GHGSat-C, PRISMA, EnMAP, WorldView-3, Sentinel-2, and Landsat 8 and confirmed that GHGSat-
C was capable of detecting emissions down to 0.03 t h™', while other systems exhibited minimum detection
thresholds ranging from approximately 0.2 to 7.2 t h™!. Wind speed was identified as a key source of uncertainty
in quantification (Sherwin et al., 2024). Li et al. (2024) used the Chinese GF5-01A/02 hyperspectral satellites to
detect oil and gas plumes across in North America, with emission rates ranging from 0.52 to 16.07 t h™'. Schuit
85 (2023) notes that targeting known emission sites improves detection, and Li et al. (2024) similarly suggest that

future surveys could benefit from more targeted assessments with additional data.

MethaneSAT, a combined American initiative led by the Environmental Defense Fund (EDF) and its subsidiary
MethaneSAT LLC, together with Aotearoa New Zealand partners, was developed and launched in 2024 with the
90 primary purpose to quantify Oil and Gas CH4 emissions at better spatial and temporal resolution than existing
satellite measurements (Chan Miller et al., 2024). The MethaneSAT has a native resolution of 100 x 400 m over
targeted 200 km x 200 km regions of interest with precision of 2-3 ppb at 1.5 x 1.5 km resolution. This unique
combination is ideal for wide scale monitoring of oil and gas emissions and other large point sources, such as
intensive livestock operations, as well as diffuse agriculture. Although communication with MethaneSAT was
95 lost in 2025, the satellite collected a vast amount of data that can be analyzed to provide derived techniques and

information applicable to future missions.

MethaneAlR, is an aircraft-based precursor to MethaneSAT with similar spectroscopy and has by flown on ~75
flights from 2021 to 2024 in targeted regions of USA and Canada (Figure 1). Techniques developed to identify
100 and quantify CH4 emission sources using MethaneAIR data are transferable to MethaneSAT and other satellite
platforms, with the MethaneAIR data being used to directly test MethaneSAT algorithms and for validation with
coordinated campaigns. MethaneAIR flight data has been used successfully to quantify O&G point sources
(Guanter et al., 2025; Chulakadabba et al., 2023). Using mosaic images Chulakadabba applied both a physics
based, Integrated Mass enhancement (IME) and a Divergence Integral (DI) method to estimate emission rates.
105 Both methods detect single blind controlled releases. The IME method, which used winds from weather
simulations, was able to detect 200 kg h™! while the DI was effective over 500 kg h™! (Chulakadabba et al., 2023).

Guanter et al. (2025) used an optimized processing chain to retrieve AXCH4 (change in column-averaged methane

concentration) on MethaneAIR L1B data (calibrated and georeferenced) showing the ability to detect plumes with
emission rates of 120 kg h™!. In this work we present a modification of the workflow used in Chulakadabba et al.
110 (2023) by combining with the wavelet denoising method described by Zhang et al. (2024) via subsetting of area

maps. This allows the far weaker CAFO plumes to not only be detected but quantified.

Whilst several aircraft-based campaigns have been performed to measure methane emissions over Oil and Gas
(O&G) production (e.g. (Peischl et al., 2016; Karion et al., 2013; Chen et al., 2022), there are a limited number
115 that have focused on Agricultural emissions. One study that separated aircraft derived Agricultural methane
emissions from Oil and Gas was that by McCabe (2023) where they determined rates of 13 +- g of CHy animal”!
h! for a single CAFO, which was considerably higher than reported in the EPA inventory. Background noise and

wind speed are attributed as being major sources of uncertainty for plume detection (Saunois et al., 2024; Hancock
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et al., 2025; Petrescu et al., 2024). Tedeschi et al (2022) emphasized the need to use both top-down and bottom-

120 up methods to improve methane estimates.

2 Data and methods

This work quantifies agricultural plumes using a combination of MethaneAIR mosaics and known locations of
CAFOs. Agricultural Scenes derived using these data are then processed using a wavelet denoising method to
identify and mask plumes which are then quantified by the Divergence integral (DI) method. Robust plumes
125 associated with CAFO’s are quantified and discussed in relation to reported values from inventories and past

studies.

2.1  Farm-list Development

The farm list comprises identified Concentrated Animal Feeding Operations (CAFOs), including their locations,
types, and estimated maximum methane emissions. Site identification was initially guided by existing inventories
130 (Maasakkers et al., 2023; Chang et al., 2021; European Commission, 2021), satellite imagery (Google Earth, ©
Google), and ClimateTrace data (Davitt et al., 2024). Verification was conducted using business information from

Google Maps (© Google) and visible signage via Google Street View (© Google).

CAFOs were included if they were estimated to emit more than 100 kg CHa h™", equivalent to ~ 60000 - 20000
135 cattle depending on type and management, based on national emission factors and maximum reported livestock
numbers(U.S. Environmental Protection Agency, 2024). Sites were also required to be sufficiently distant from
oil and gas infrastructure to allow for source separation. Maximum livestock capacity was determined using the
following hierarchy of data sources: (1) state-reported values, (2) self-reported data, (3) facility footprint and type,
and (4) inventory estimates. Emissions were then calculated using EPA emission factors.
140
Each CAFO was assigned a unique numeric identifier. Prior to each MethaneAIR flight (2023), CAFOs near the
planned flight path were were supplied to flight planners for them to be flown over if the mission would allow.
After flight completion, additional CAFOs intersected by the actual flight paths were identified and added to the

list, including smaller facilities.
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Figure 1: a) MethaneAIR flightpaths and Distribution of CAFO targets on initial Farm-list. (b) EPA gridded inventory
field for combined enteric fermentation and manure management, and (c) oil & gas (Maasakkers et al., 2023). USA
administrative boundaries from Esri.

2.2 MethaneAIR data

MethaneAIR uses a pair of grating spectrometers: one targeting absorption bands at 1.61 and 1.65 um for CO:
and CHa detection, and another at 1.27 pm for O, used to constrain the optical path length (Staebell et al., 2021).
150 Installed and tested on NSF research aircraft in 2019 (Staebell et al., 2021), MethaneAIR operates at ~12 km
altitude with a swath width of ~5.05 km and spatial resolution of ~ 6 x 20 m. Its design enables high retrieval
precision (~17-20 ppb over flat terrain at 10m x 10m, (Chulakadabba et al., 2023) allowing the detection of both
large and small methane emission sources which are often missed by coarser satellite instruments. This capability
is essential for measuring methane emissions in complex environments such as oil and gas fields, landfills, and

155 agricultural areas.
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Level 3 (L3) data are delivered as gridded mosaics of column-averaged methane concentrations (XCHa), derived
using a CO: proxy retrieval algorithm that has been validated as a demonstration for the MethaneSAT mission
(Chan Miller et al., 2024). A total of 75 flights conducted between 2021 and 2024 were available for analysis
(Figure 1).

MethaneAIR
(CH, ppb)

2057

Farm type Max Capacity Estimate
O beef o <14,000 > 82,500
O dairy O ->34,000
0 500 1,000 ki O -> 50,000 ©-> 188,000
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160

Figure 2: MethaneAIR flight mosaic from MethaneAIR flight MX050 over Denver, 2023-09-25 showing CAFOs in
the area from the initial farm list. Maximum capacity values represent the registered animal capacity as reported by
the Colorado Public Health and Environment (CDPHE, 2017). USA administrative boundaries from Esri.

2.3 Scene determination

To isolate agricultural emissions, MethaneAIR L3 mosaics (Figure 2) were subset around CAFO targets before

applying wavelet denoising and the Divergence Integral (DI) method. This approach enhances the detectability of
165 agricultural plumes, which might otherwise be statistically overshadowed by larger oil and gas emissions.

For each flight, CAFOs located within the mosaic extent were identified and then screened for quality. Cases were

retained where no more than 2% of pixels within a £0.005° (~500 m) buffer were masked, typically a result of

cloud cover or close proximity to swath edge. For CAFOs meeting this threshold, an 'Agricultural Scene' was

extracted as a £0.02° subset of the Level 3 (L3) data centred on the CAFO. This process yielded 209 agricultural
170 scenes associated with 84 unique CAFOs across 75 flights, examples of which are shown in Figure la, these

scenes are then individually processed for plume detection and quantification.
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Figure 3: Example of Agricultural Scenes extracted from MethaneAIR L3 XCH4 Mosaics (a) extracted scene ~
0.005 degrees surrounding CAFO of interest (b) Denoised Scene (¢c) Masked Plume/s associated with the CAFO,
with different colours denoting individual plumes. Imagery © Vantor, 2024.

2.4  Plume Detection and Quantification

175  The plume detection method uses a 2D discrete wavelet transform to denoise the methane concentration imagery
(Figure 3). It separates image signals into low frequencies and high frequencies, so that the high-frequency noise
can be subtracted to produce a clean image with enhanced plume signals. Binary plume masks are then generated
using a combination of XCHa thresholding and a connected component algorithm. Additional filtering algorithms
are applied to mitigate false detections. Subsequently, plume origins are determined based on plume morphology

180 and wind direction. Compared to the divergence integral plume detection method that was previously applied in

MethaneAIR data (Warren et al., 2024), the wavelet-based method has higher performance in detecting low-

7
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volume plumes (Zhang et al., 2026). Therefore, we use the wavelet-based detection method to maximize our
plume finding capabilities in agricultural emissions. The combination of this approach with scene selection across
a wide range of targets is somewhat novel outside of a controlled release setting. Unlike Cusworth et al. (2021)
185 or Guanter et al. (2025) which apply detection algorithms across a the scene of the entire flight, limiting the scene
sizes to just known locations allows for a finer distribution of concentrations for thresholding/percentile based
identification methods. For flux quantification, the same divergence integral method in Chulakadabba et al. (2023)
is applied as it has been validated by multiple controlled release tests. Firstly, a series of growing boxes is drawn
around the plume origin. Then the surface flux divergence integral is computed for each box using wind fields
190 from the High-Resolution Rapid Refresh model (NOAA, 2025) and the final flux is taken as the average of these
values, with the uncertainty being the standard deviation. From the 209 agricultural scenes, 652 methane plumes

were detected.

195 2.5 Plume Source Attribution

Each detected plume was manually evaluated to determine i) whether the source was agricultural (associated with
a CAFO), ii) if it was unique, and iii) the likely on-farm source if apparent. For context, methane plume rasters
were overlaid on high-resolution imagery from Google Earth (imagery © Google, 2024) to assess spatial
alignment with the CAFO being considered. A plume was considered clearly associated with a CAFO when
200 multiple qualitative indicators agreed, including proximity of the plume origin to the CAFO footprint,
wind-consistent alignment, plume morphology, and the absence of nearby competing sources such as oil-and-gas

infrastructure or adjacent CAFOs.

Uniqueness was assigned by visually checking for plume continuity; segments judged to be parts of a single
205 contiguous plume were treated as one case (e.g. Figure 3¢). While most plumes are clearly associated with the
CAFO, it is not always possible to confidently determine the on-farm origin. Where possible, the specific on-
farm source (e.g., lagoons or infrastructure) was identified, and a confidence level was assigned. Only plumes that
can clearly be identified as coming from a Lagoon are flagged as such. Consequently, there will be many cases

with Lagoon-related emissions remaining within the general agricultural category.

210 3 Results

A total of 209 agricultural scenes, encompassing 84 unique CAFO’s including a mixture of beef, dairy and manure
management operations, were analyzed using the wavelet denoising and DI method. This analysis resulted in 652
individual plume detections. However, the majority of these plumes were not attributable to the targeted CAFOs.
Instead, they were typically associated with nearby oil and gas infrastructure, adjacent CAFOs, unidentified

215 sources transported into the scene, or clearly a single plume that has been split (non-unique).

A total of 200 unique agricultural plumes were identified, of which 89 (44%) were classified as robust (Figure
4b). Robust plumes are defined as having a ratio of the standard deviation of the DI-derived flux to the flux itself
of less than 1 (i.e., uncertainty below 100%). Although only 14% of detected plumes were both agricultural and

8
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220  met the most stringent robustness criteria, nearly 40% of all scenes contained at least one robust plume. This
demonstrates that the method is effective for detecting plumes at this scale, even within complex, mixed-source

landscapes.
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Figure 4. Summary of valid agricultural scenes (a) and associated plume detections (b), by state. Actual counts are
displayed on each bar. Note: for Oklahoma, Arizona, and “Other,” all valid scenes included plume detections.
230 Additionally, all plumes detected in Oklahoma were classified as unique.

Given that Colorado had the highest number of robust agricultural scenes and plumes (Figure 4), it was a logical
focal point for further analysis in this study. To better understand these results, accurate livestock population data
is essential for estimating expected emissions from enteric fermentation and manure management. The most

reliable and traceable dataset available for this analysis was the maximum capacity of registered and permitted

9
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feedlots reported by the Colorado Department of Public Health and Environment (CDPHE, 2017). While the
dataset is 7 years out of date for assessing emissions in 2024, it is still a consistent data source and in the absence
of real-time animal counts, these maximum values were used as a proxy for estimating per-animal emissions.
From the Colorado state inventory 2023 (CDPHE, 2023), the estimate state total methane emissions from enteric
fermentation and manure management in 2017, were 0.227 and 0.0297 MMT of CHj4 respectively, rising modestly
t0 0.2286 (~7%) and 0.03497 (~17%) MMT CH, by 2020. Such trends may continue, and may be systematically

reflected in the results from our analysis of MethaneAIR data
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Figure 5. Methane emissions per animal for individual CAFO’s, by type, and ranked low to high. Horizontal lines
represent EPA per animal rates for Colorado state.

To compare emissions per animal values derived from MAIR to EPA we calculated the combined enteric
fermentation and manure management emissions factors using the state specific data provided in Inventory of
U.S. Greenhouse Gas Emissions and Sinks: 1990-2022 — Annexes (U.S. Environmental Protection Agency,
2024). For consistency across both source types, the reported state level values for the sources (tables A-151 and
A-170) were divided by the state population (table A-124) using the values for dairy cows and beef on feedlot.
This results in a total of 22.25 g CHsanimal™' h™! for dairy and 6.57 g CHs animal™' h™! for beef. In the case of beef
90% of emissions are from enteric fermentation, whereas in dairy that value is 58%. Note that these values
represent the mean of all operations, no matter the size, over the state of Colorado. Individually operations may

have a wide range of emission factors.

These values were then compared to the total emissions for each scene. This was computed by averaging the

robust, disconnected, non-unique plumes (i.e. the same plume) and summing the remaining unique plumes within

10
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the scene to give total operational emissions. Overall Beef CAFOs, on average, exhibited lower emissions per

animal than dairy operations, although substantial variability was observed across both types (Figure 5). A
260 Welch’s t-test indicated beef values were significantly lower than dairy values, t(33.86) = —4.02, p = 0.00031.

Because CAFOs may not always operate at their permitted maximum capacity, methane emissions derived from

MethaneAIR observations could fall below EPA per-animal emission factors simply due to fewer animals being

present than the stated capacity. This pattern was largely met for beef operations, where most emission estimates

ranged between 0 and 10 g CHy animal™" h™" — in line with EPA’s estimate of 6.57 g CH, animal™" h! (Figure
265 5).

In contrast, dairy operations exhibited higher emissions, with most estimates falling between 40 and 80 g CHs
animal™" h'. This discrepancy may suggest that beef CAFOs typically operate below their permitted capacity,
whereas dairy CAFOs may be functioning closer to permitted capacity. Alternatively, the elevated emissions
270 observed in dairy operations may reflect a greater contribution from manure management systems, which are
known to exhibit high variability. It is also important to consider that the EPA emission factors represent annual
averages, whereas MethaneAIR captures instantaneous emissions. Although some diurnal and seasonal variability

is expected, the consistency and magnitude of the dairy results suggest an additional contributing factor.

Reported Measured
(Enteric fermentation + (Total farm-level emissions)
Manure management)
CAFO Type EPA IPCC Goltson et al. McCabe et al.” MethaneAIR
Colorado (Tier 2, USA) (landbased) (aircraft) (mean)
Beef 6.67 ~6.62 9.48+0.93 34.80 £4.49
13+2
Dairy 22.25 ~13.95 39.32+2.92 122.32 £ 13.62
275
Table 1 Approximate CH4 emissions (g animal™ h'), reported from EPA, IPCC defaults, and values obtained for
Colorado state covered by MethaneAlIR flights for this study. “McCabe et al. (2023) focussed primarily on beef feedlots
but included a small number of dairy operations.
280

Averaging over all Colorado scenes (Table 1), our results indicate average emissions of 34.80 g animal ™' h™! for
beef cattle and 122.32 g animal™ h™' for dairy cattle, which exceeds the EPA’s Tier 2 inventory estimates of 6.67
g animal™ h™! for beef and 22.25 g animal ™! h™' for dairy. The median values are, however, lower at 19.23 g
animal ™' h™! and 86.61 g animal! h™' but remain above EPA values. Other studies conducted in northeastern
285 Colorado also report lower values: Golston et al. (2020) measured 9.48 + 0.93 g animal™ h! for beef and 39.32 +
2.92 g animal ™! h™! for dairy using mobile labs during summer, while McCabe et al. (2023) reported a blended
average of 13+ 2 g animal™' h™! across the two CAFOs type. Additionally, Yu et al. (2021) used aircraft-based
inversions to quantify methane emissions across the Upper Midwest and found that livestock emissions were
approximately 25% higher than EPA estimates during summer and winter, though their approach focused on

290 regional fluxes rather than plume-based facility attribution

11
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To validate EPA and other studies methane emission estimates from CAFOs, a deeper understanding of actual
CAFO activity—beyond consented capacity—is essential. The current results are plausible and align with
expectations, showing clear differences between beef and dairy operations. However, several outliers in both
295 categories exhibit emissions far exceeding EPA estimates. While these cannot be directly attributed without more
detailed farm-level data, further work could be conducted to investigate the conditions under which these

anomalies occur to identify potential biases.

3.1 Detection Thresholds

To assess reliability and frequency of observation, detection thresholds were evaluated using plume detection

300 rates under varying conditions, focusing on estimated emission size and meteorological factors such as wind

speed.
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Figure 6. MethaneAIR scene-based plume detection rates for estimated emission size (left) and windspeed (right) for
concentrated animal feeding operations (CAFOs) in Northeast Colorado

305 Figure 6 shows the rate of plume and robust plume detection as a function of estimated CAFO emissions (based
upon permitted animal numbers and detected emission rates) and windspeed for the Colorado subset.
Unsurprisingly, the overwhelming number of negative detections (None) occur at low expected emission rates
based on CDPHE data (CDPHE, 2017), there are however a significant number of positive and robust detections
in this range too. The meteorological features are more nuanced, with wind speed showing modest increase in

310 negative detections at low and high wind speeds. Again, this makes sense intuitively, at high windspeeds, there
will be less buildup of methane, making plumes harder to detect, at low wind speeds the increased build up may
no longer be plume like. Temperature and preceding rainfall were also investigated but did not show significant

relationships due to the limited number of observations.

12
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315 Figure 7. Detection class as a function of estimated emissions and windspeed
The relationship between emission rate, wind speed, and detection performance was evaluated across three
detection classes (Figure 7). While the limited sample size precludes the development of statistically robust,
dynamic detection thresholds several trends are evident.
Detection and reliable quantification of emission sources emitting less than 100 kg h™' are occasionally achievable
320 when wind speeds range between 2 and 6 m s”'. Within this wind speed window, the atmospheric transport
conditions appear favourable for plume detection. At higher emission rates, particularly above 200 kg h™, the
influence of wind speed on detection success diminishes, suggesting that stronger sources are more readily
detectable regardless of moderate variations in wind conditions.
A subset of failed or non-robust detections occurred despite satisfying the nominal wind speed and emission rate
325 criteria. These anomalies may be attributed to several factors, including temporal variability in actual emission
rates, discrepancies between modelled wind data (e.g., HRRR) and on-site wind conditions, and elevated

background methane concentrations that may obscure the signal from emission sources.

3.2  Emission Variability Drivers

We can extend this analysis to explore the variability in observed, robust methane emissions from CAFOs, as in
330 the detection case we focus only on the influence of windspeed. Although the dataset is limited, most outliers
occurred during high windspeed conditions. While this pattern may reflect a windspeed-related bias in the
emission estimation methodology, it is notable that several high-wind cases exhibited minimal emission

enhancements, suggesting site-specific behavior (Figure 8).
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335 Figure 8. Methane emissions per animal (g h™') from dairy (left) and beef (right) concentrated animal feeding operations

(CAFOs) in Northeast Colorado.

For two CAFOs (Farm 1000 and Farm 950) with repeated observations across a range of wind conditions, elevated
emissions were only detected during periods of high wind speed. At other sites, however, high winds did not
correspond to increased enhancements. Together, these observations indicate that high windspeed alone does not
340 consistently produce larger observed enhancements. This pattern suggests that facility-specific factors likely
influence emission responsiveness to wind, and that the windspeed-emission relationship may be site-specific,

and shaped by the intermittent, weather-dependent nature of emissions from lagoon-based systems.

The site-dependent nature of the wind—emission relationship aligns with previous studies showing that methane
345 emissions from lagoon-based systems can respond strongly to weather events. Leytem et al. (2017) demonstrated
that wind events, alongside rainfall and freeze/thaw cycles, significantly increased CH4 emissions from dairy
lagoons in Idaho, independent of temperature. Their models identified windspeed as a key predictor. Confirming
this wind-driven variability more robustly would require expanded aerial surveys, improved traceability of CAFO-
related EPA data beyond Colorado, or additional facility operation data.
350
Other studies have identified several factors influencing variability of CH4 emissions from farms, including barn
temperature and humidity (Ouatahar et al., 2024), manure management practice, diurnal variability due to temp
and other atmospheric conditions (Golston et al., 2020; Ouatahar et al., 2024). Golston et al. also reported
substantial spatial variability within facilities. Dietary influence can also be significant. Yu et al. (2021) suggested
355 that management practices had a stronger influence than seasonality accounted for in bottom-up approaches; for
example, anaerobic lagoons produce significant emissions, and the length of time the manure is stored in them

following removal from housing can have an impact.

4  Conclusions and Implications

360 This study demonstrates the effectiveness of MethaneAlIR in detecting and quantifying methane emissions from
CAFOs in Northeast Colorado. A total of 652 methane plumes were identified across 209 agricultural scenes, with

89 (42%) of scenes yielding at least one robust CAFO related plume. These results highlight the potential as well
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as the complexity of isolating agricultural emissions in regions with overlapping oil and gas infrastructure and
underscore the importance of targeted analytical approaches.

365 A central methodology of this work is agricultural scene extraction prior to further processing, which isolates
CAFO-associated emissions from broader MethaneAIR flight mosaics. By spatially subsetting the data around
known CAFO locations and filtering out scenes with insufficient data coverage, this approach enhances the
detectability of smaller, diffuse agricultural plumes that would otherwise be statistically overshadowed by
dominant oil and gas emissions. This method improves attribution accuracy and provides a scalable framework

370 for future airborne and satellite-based methane monitoring in mixed-source landscapes.

As anticipated, our analysis revealed that dairy CAFOs generally emit more methane per animal than beef
operations, with many exceeding EPA emission factor estimates—likely due to higher operational intensity or
greater contributions from manure management systems. In contrast, beef CAFOs typically emitted below EPA
estimates, suggesting under-capacity operation or less intensive waste management practices. These findings align

375 with previous aircraft-based studies (Yu et al., 2021; McCabe et al., 2023) and highlight the limitations of static
emission factors in capturing real-world variability. Additional flights and more importantly, detailed on-farm
data, such as true stocking rates and waste practices, are be needed to tie the observed emissions to the underlying

activity, thus allowing the verification of emission factors.

380 Windspeed emerged as the dominant meteorological factor influencing plume detectability. Emissions below 100
kg CH4h™! were possible, but not consistently, detected when windspeed ranged between 2 and 6 m s™', while
higher emissions were detectable across a broader range. However, the relationship between windspeed and
emissions varied by site, suggesting that emission dynamics are influenced by localized infrastructure,
management practices, and lagoon behaviour.

385 This study focused on one region and relied on coincident CAFO location data. Broader application will require
validation across additional regions and incorporation of farm-specific information.

These findings provide critical insights for top-down methane monitoring efforts. Although MethaneSAT is no
longer operational, the agricultural scene extraction and attribution strategies developed here remain highly
relevant for other current and future missions. This approach offers an operational blueprint for applying airborne

390 and spaceborne sensors in agricultural regions. By advancing understanding of methane emissions from CAFOs,
this work establishes a methodological foundation for integrating airborne and satellite observations into

agricultural methane monitoring, inventory improvement, and mitigation studies.

395 Code/Data availability
Python code used for data analyses and visualizations can be obtained from the corresponding authors upon
reasonable request. MethaneAIR point source data can be accessed online from the Earth Engine Data Catalog

at https://developers.google.com/earth-engine/datasets/tags/methaneair (Earth Engine Data Catalog, 2025).
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