

1 Balloon Observations Suggesting Sea Salt Injection into the 2 Stratosphere from Hunga Tonga-Hunga Ha'apai

3

4 Hazel Vernier^{1,2,13}, Demilson Quintão³, Bruno Biazon³, Eduardo Landulfo⁴, Giovanni
5 Souza⁴, V. Amanda Santos⁴, J. S. Fabio Lopes⁴, C.P. Alex Mendes⁴, A.S. José da Matta^{4,5},
6 K. Pinheiro Damaris⁶, Benoit Grosslin⁷, P.M. P. Maria Jorge⁸, Maria de Fátima
7 Andrade^{8,9}, Neeraj Rastogi¹⁰, Akhil Raj¹¹, Hongyu Liu^{12,13}, Mahesh Kovilakam¹², Suvarna
8 Fadnavis¹⁴, Frank G. Wienhold¹⁵, Mathieu Colombier¹⁶, D. Chris Boone¹⁷, Gwenael
9 Berthet², Nicolas Dumelie¹, Lilian Joly¹, Jean-Paul Vernier^{12,13,1}

10

11 ¹Université de Reims, Champagne-Ardenne, GSMA, 51687, France

12 ²Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace, Orléans, 45071,
13 France

14 ³Instituto de Pesquisas Meteorológicas - IPMet – UNESP, Chácaras Bauruenses, Bauru - SP,
15 17048-699, Brazil

16 ⁴Instituto de Pesquisas Energéticas e Nucleares, University of São Paulo Butantã, São Paulo - SP,
17 05508-000, Brazil

18 ⁵Escola Politécnica da Universidade de São Paulo, Butantã, São Paulo - SP, 05508-010, Brazil

19 ⁶Departamento de Engenharia Química UFSM, Camobi, Santa Maria - State of Rio Grande do
20 Sul, 97105-340, Brazil

21 ⁷Institut de Combustion Aérothermique Réactivité Environnement (ICARE), 45100 Orléans,
22 France

23 ⁸Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos - SP, 12227-010, Brazil

24 ⁹Instituto de Astronomia, Geofísica e Ciências Atmosféricas, São Paulo - SP, 05508-090, Brazil

25 ¹⁰Physical Research Laboratory, Ahmedabad, Gujarat 380009, India

26 ¹¹India Meteorological Department, New Delhi, Delhi 110003, India

27 ¹²NASA Langley Research Centre, Hampton, 23666, USA

28 ¹³National Institute of Aerospace, Hampton, 23666, USA

29 ¹⁴Indian Institute of Tropical Meteorology, Pune, Maharashtra 411008, India

30 ¹⁵Institut für Atmosphäre und Klima, ETH Zürich, 8006, Switzerland

31 ¹⁶Department of Earth and Environmental Sciences, Munich University, München, 80333
32 Germany

33 ¹⁷Department of Chemistry, University of Waterloo, ON N2L 3G1, Canada

34

35

36

37

38

39 Correspondence to: Hazel Vernier (hazel.vernier@gmail.com)

40 **Abstract.**

41

42 The explosive eruption of Hunga Tonga-Hunga Ha'apai (HTHH) in January 2022 marked a
43 historic event as one of the largest volcanic explosions in the past 140 years. Unlike typical
44 volcanic eruptions, which primarily inject sulfur dioxide (SO_2), HTHH introduced a massive
45 plume of marine water vapor up to an altitude of \sim 57 km, reaching the mesosphere.

46 In this study, we use balloon-borne measurements to investigate the optical, microphysical and
47 chemical properties of the HTHH aerosol plume eight months after the eruption. The peak
48 concentration of the Hunga plume located between 20.5-23 km was near $8\text{-}9 \text{#/cm}^3$ for aerosol
49 diameter greater than $0.3\text{ }\mu\text{m}$ and scattering ratio at 940 nm near 4-5. Our balloon-based sampling
50 and ion chromatographic analysis revealed the presence of key ions such as Na^+ , K^+ , NH_4^+ , Ca^{2+} ,
51 Cl^- , and traces of SO_4^{2-} in the samples collected in the lower part of the HTHH plume. These
52 findings suggest a substantial contribution of marine aerosols to the stratospheric aerosol burden.

53 The results suggest that the interaction between volcanic ash, water vapor, and marine aerosols
54 led to unique chemical processes, which significantly influenced the composition and behavior
55 of the stratospheric aerosol layer.

56

57

58

59

60

61

62

63

64

65

66 **1. Introduction**

67 The eruption of Hunga Tonga-Hunga Ha'apai (HTHH), a submarine volcano, stands out for its
68 direct injection of a massive plume of volcanic and submarine material up to mesospheric levels,
69 with a record-breaking altitude of ~57 km for the uppermost part of the plume (Proud et al.,
70 2022; Khaykin et al., 2022). Unlike typical volcanic eruptions with a Volcanic Explosivity Index
71 (VEI) of 6 or greater, which are known for producing long-lasting sulfate aerosols from SO₂
72 emissions that cool surface temperatures for years (e.g., Mt. Pinatubo, Parker et al., 1996), the
73 HTHH eruption injected a modest amount of SO₂ (~0.42 Tg) into the atmosphere (Millán et al.,
74 2022). In addition, it introduced a substantial quantity of water vapor (146 ± 5 Tg), accounting
75 for approximately 10% of the total stratospheric water vapor burden (Millán et al., 2022; Sellitto
76 et al., 2022).

77 Satellite observations using the Aura Microwave Limb Sounder (MLS) documented this
78 unprecedented water vapor injection (Millán et al., 2022). The abundant water vapor accelerated
79 the transformation of SO₂ into sulfate aerosols, causing the plume to descend to 24-26 km within
80 three weeks due to radiative cooling (Sellitto et al., 2022; Legras et al., 2022). Studies suggest
81 that the injected H₂O vapor may have halved the lifetime of SO₂ by accelerating its conversion to
82 sulfate aerosols (Zhu et al., 2022; Asher et al., 2023).

83 Early measurements from ground-based lidar and balloon-borne observations from Reunion
84 Island documented unprecedented aerosol characteristics, including height, backscatter, and
85 extinction coefficients, surpassing those observed since the Mt. Pinatubo eruption in 1991 (Asher
86 et al., 2023; Baron et al., 2023). The abundant water vapor from HTHH also triggered chlorine
87 activation, leading to rapid ozone depletion observed through balloon-borne measurements
88 (Evan et al., 2023).

89 Months following the eruption, satellite observations revealed a mid-stratospheric volcanic
90 aerosol layer and a distinct H₂O vapor layer positioned slightly above the aerosol layer at ~26 km
91 (Schoeberl et al., 2022). The H₂O vapor layer displayed a slow ascent (~0.044 km/day) driven by
92 the Brewer-Dobson circulation, while the aerosol layer descended due to gravitational settling of
93 particles with an estimated diameter of ~1.2 μm (Schoeberl et al., 2022; Legras et al., 2022).

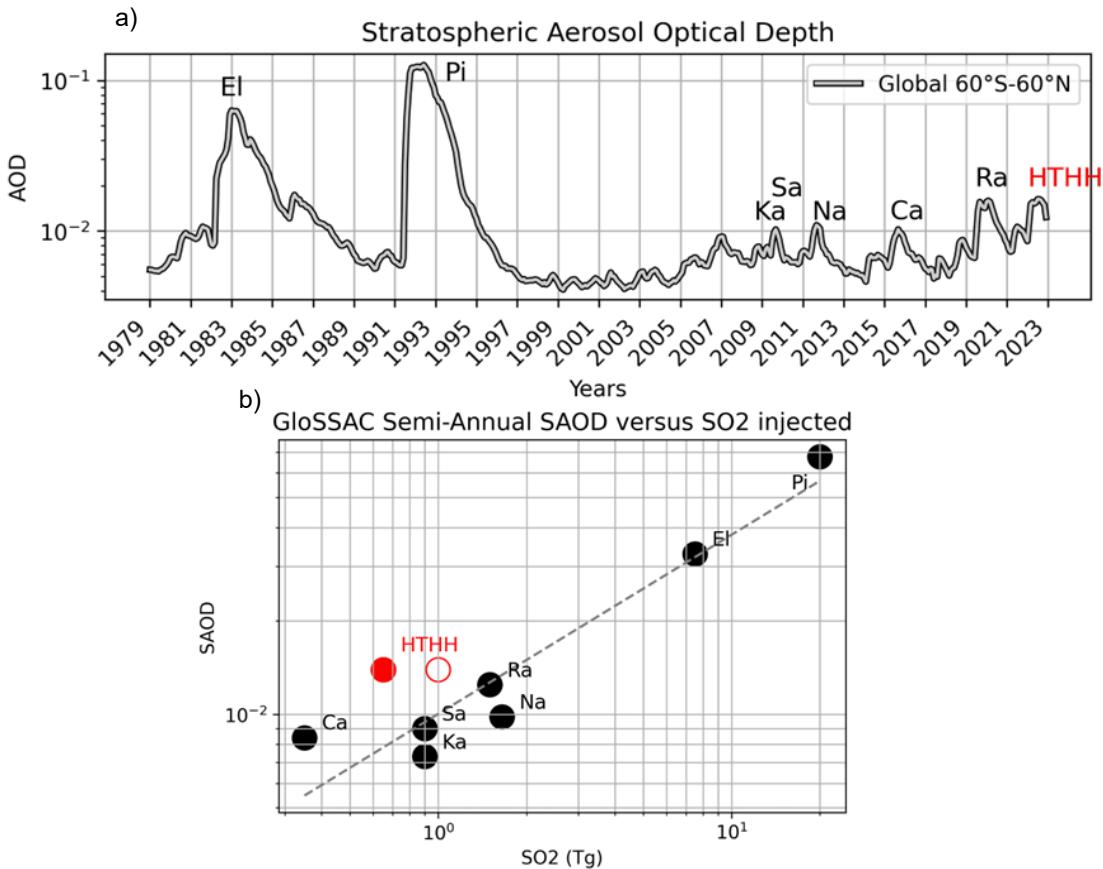
94 The HTHH eruption presents a new paradigm for volcanic aerosol research due to its
95 unprecedented water vapor injection and unique aerosol characteristics. The warming effect of
96 water vapor may have contributed to surpassing the Earth's average temperature increase of
97 1.5°C above pre-industrial levels, a critical threshold outlined in the Paris Agreement (Jenkins et
98 al., 2023). However, recent radiative forcing estimates suggest a net cooling effect due to the
99 dominance of aerosol-induced cooling (Schoeberl et al., 2023; Zhu et al., 2022; Sellitto et al.,
100 2022).

101 We investigated the impacts of HTHH on stratospheric aerosol burden using the Global Satellite-
102 based Stratospheric Aerosol Climatology (GloSSAC), a dataset designed to provide a cohesive
103 time series of stratospheric aerosol properties for chemistry and climate models (Thomason et
104 al., 2018). Figure 1 shows the temporal evolution of Stratospheric Aerosol Optical Depth
105 (SAOD) from GloSSAC between 60° S and 60° N. The full names, eruption dates, locations,
106 injection altitudes, Volcanic Explosivity Index (VEI), and SO₂ injection amounts corresponding
107 to the volcanoes' names abbreviated in Figure 1, are provided in Table 1.

108 Figure 1a illustrates that both the Raikoke and Hunga eruptions resulted in the largest increases
109 of SAOD since the Mount Pinatubo eruption in June 1991. We note that the SAOD for this
110 comparison was calculated from the tropopause to 40 km, not from the 380 K isentropic level
111 (Khaykin et al., 2022). Given that the Hunga plume was injected directly into the stratosphere,
112 while a significant portion of the Raikoke plume remained confined to the lowermost
113 stratosphere (between the tropopause to 380 K), the overall SAOD values for both eruptions
114 appear similar in these calculations. Therefore, the Hunga eruption did not produce significantly
115 larger SAOD (calculated over the full tropopause-to-40 km column) than Raikoke, contrary to
116 previous suggestions calculating the SAOD from 380 K (Khaykin et al., 2022).

117

118
119
120
121
122



123 **Table 1.** Summary of high-magnitude volcanic eruptions corresponding to their SO₂ injections in
124 the stratosphere.

Abbreviation	Full name	Erupted on	Lat, Lon	Injection altitude (km)	VEI	Amount of SO ₂ injected (Tg)
El	El Chinchon	03/28/19 82	17.3° N, 93.2° W	~31	5	7.5
Pi	Pinatubo	06/15/19 91	15.14° N, 20.3° E	~18-25	6	20
Ka	Kasatochi	08/07/20 08	52.17° N, 175.5° W	14.5-16.5	3-4	0.9
Sa	Sarychev	06/11/20 09	48° N, 153.2° E	15	4	0.9
Na	Nabro	06/12/20 11	13.3° N, 41.7° E	21	4	1.65
Ca	Calbuco	04/22/20 15	41.3° S, 72.6° W	~15-22	4	0.35
Ra	Raikoke	06/22/20 19	48.2° N, 153.2° E	~13-17	4	1.5
HTHH	HTHH	01/15/20 22	20.5° S, 175.3° W	57	5-6	0.45

125

126

127

128 **Figure 1.** (a) Quasi-global [60°N-60°S] Stratospheric Aerosol Optical Depth (SAOD) from the
129 Global Satellite-based Stratospheric Aerosol Climatology (GloSSAC). (b) Semi-Annual mean
130 SAOD and SO₂ injected by the most significant volcanic eruptions of the last 35 years. The filled
131 red circle for HTHH corresponds to early SO₂ injected estimates (Carn et al., 2022) and the
132 unfilled red circle to the revised estimates.

133 Explosive volcanic eruptions inject SO₂ into the stratosphere, where it undergoes oxidation and
134 nucleation, transforming into sulfate aerosols (Robock, 2000). These aerosols play a crucial role
135 in Earth's radiative budget by reducing incoming shortwave radiation reaching the surface while
136 absorbing near-infrared radiation and trapping outgoing longwave radiation. This combined
137 effect leads to cooler surface temperatures and a warmer stratosphere (Robock, 2000).
138 Furthermore, the altered radiative budget can trigger a cascade of global climate effects,
139 including a suppressed global water cycle (Robock, 2000; Zuo et al., 2022), anomalous winter
140 warming over Eurasia (Robock, 2000; Stenchikov et al., 2002), El Niño-like sea surface

141 temperature responses (Zuo et al., 2018; Sun et al., 2019), and a weakening of monsoon
142 circulation. These findings highlight the complex interplay between volcanic eruptions, aerosol
143 formation, and global climate dynamics.

144 To investigate the link between volcanic sulfur dioxide (SO_2) injections and their impact on
145 stratospheric aerosol burden over the past four decades, we used data from the GloSSAC
146 database (Kovilakam et al., 2022), since sulfate aerosols formed from volcanic SO_2 are
147 considered the main driver of Stratospheric Aerosol Optical Depth (SAOD) and subsequent
148 radiative and climate impacts. Figure 1b presents a scatter plot illustrating the relationship
149 between the semi-annual sulfate SAOD (sSAOD) following major eruptions and the
150 corresponding volcanic SO_2 injection. sSAOD was calculated by averaging SAOD data for the
151 first 6 months after each eruption.

152

153 The HTHH eruption stands out (filled red circle). Despite injecting a relatively modest amount of
154 SO_2 ($\sim 0.42 \text{ Tg}$) (Carn et al., 2022), it produced a significantly lower sSAOD than moderate
155 eruptions observed since the late 2000s (Fig. 1b). For instance, the Raikoke eruption in 2019
156 injected about 1.5 Tg SO_2 but resulted in an sSAOD of 0.012, whereas HTHH, with its lower
157 SO_2 injection, produced an sSAOD 16 % higher. Compared to the two largest eruptions (8 Tg for
158 El Chichón and 20 Tg for Mt. Pinatubo) with direct stratospheric injection, the HTHH eruption
159 exhibited a remarkably low SO_2/sSAOD ratio.

160

161 The effect of high water vapor (H_2O) on the plume evolution likely halved the lifetime of SO_2
162 (Zhu et al., 2022) by producing additional OH radicals for the oxidation reaction, though with
163 relatively limited impact on the resulting maximum SAOD. The unusually high sSAOD could be
164 partially attributed to enhanced extinction caused by water vapor-induced swelling of existing
165 aerosols (Asher et al., 2023). While initial plume analysis revealed a 30 % increase in particle
166 size likely caused by the high H_2O content (Asher et al., 2023), this effect likely diminished over
167 time as the water vapor dispersed.

168

169 Further evidence from new aerosol/ SO_2 retrievals using the TROPOMI instrument on Sentinel
170 5P (Sellitto et al., 2024) indicates that a significant fraction of sulfate (0.6 Tg) was already
171 present in the plume two days after the eruption on January 17th, coexisting with $\sim 0.5 \text{ Tg}$ of SO_2 ,

172 similar to previous estimates (Carn et al., 2022). Therefore, unaccounted sulfate production
173 within the early eruptive column could contribute to the unusual sSAOD observed and could
174 indicate that the initial SO₂ injection was largely underestimated. Figure 1b shows that the new
175 SO₂ estimates (unfilled red circle) align HTHH better with the expected behavior of other
176 eruptions.

177

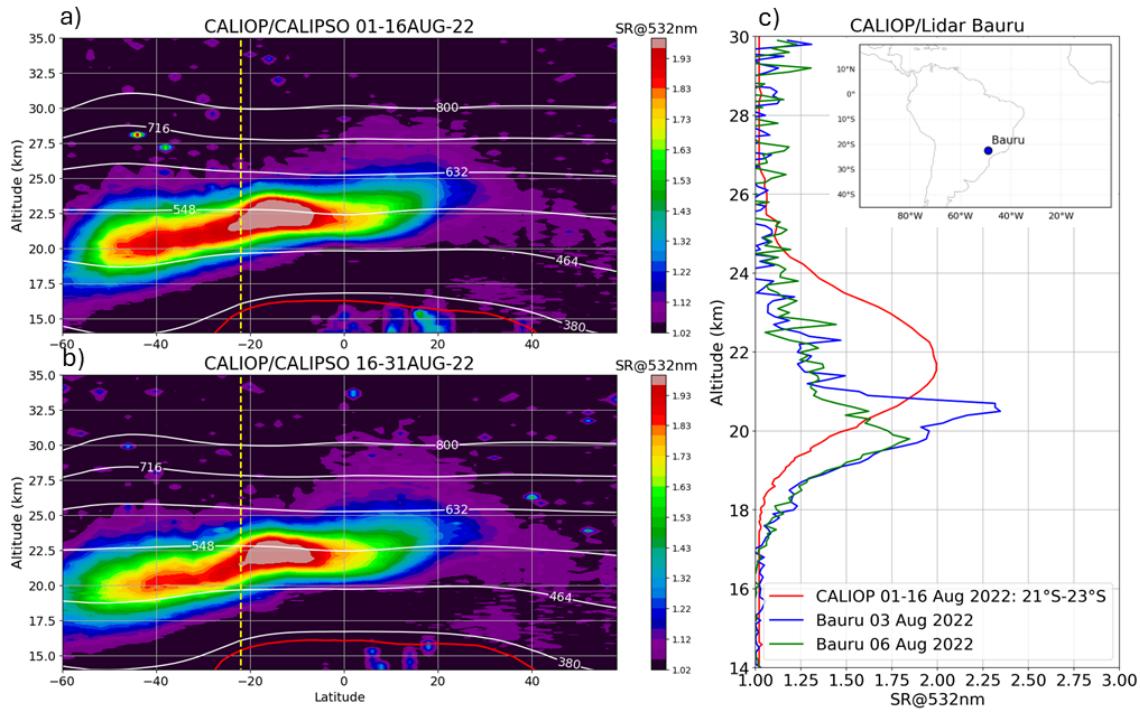
178 The HTHH eruption resulted in distinct aerosol particle properties in two layers: near the
179 tropopause and in the mid-stratosphere (Kahn et al., 2024). The Multi-angle Imaging
180 SpectroRadiometer (MISR) instrument on NASA's Terra satellite detected only spherical, non-
181 light-absorbing particles for a week. Near-tropopause particles maintained relatively constant
182 sizes, while mid-stratosphere particles were smaller but experienced growth downwind (Kahn et
183 al., 2024). Despite depolarization measurements from CALIOP suggesting that aspherical
184 particles inside the plume quickly vanished within a week after the eruption (Duchamp et al.,
185 2025), the influence of the marine environment on the final aerosol composition remains unclear.

186

187 To study this unprecedented volcanic event, the Brazil Volcano (BraVo) project was launched to
188 address these questions. Section 2 describes the balloon measurements conducted during the
189 BraVo campaign. Section 3 shows the results of the Ion Chromatography (IC) analysis of the
190 samples collected inside the Hunga plume on 8/12/2022. The interpretation of the results is
191 discussed in Section 4, preceding the Conclusion.

192

193 **2. BraVo campaign**


194

195 **2.1. Campaign description**

196 The BraVo campaign deployed a suite of balloon-borne sensors in Bauru, São Paulo state
197 (22.36° S, 49.03° W), Brazil, to investigate the physical, chemical, optical, and
198 microphysical properties of the HTHH aerosol layer in August 2022. Ground-based lidar
199 measurements conducted in both São Paulo and Bauru (approximately 400 km to the
200 west of São Paulo) consistently detected a mid-stratospheric aerosol layer between 17
201 and 25 km throughout August 2022. Figure 2 presents the latitudinal Scattering Ratio
202 (SR) cross-sections from the Cloud Aerosol Lidar with Orthogonal Depolarization
203 (CALIOP) onboard the Cloud Aerosol Lidar and Infrared Pathfinder Satellite

204 Observations (CALIPSO) for the first and second halves of August (Fig. 2a and 2b),
205 together with zonal-mean SR profiles averaged between 21° S and 23° S and the mean
206 SR profiles retrieved on 3 and 6 August from the ground-based lidar in Bauru.

207
208 **Figure 2.** Scattering Ratio (SR) cross-sections derived from 16 days of CALIOP/CALIPSO
209 observations between 01-16 August (a) and 16-31 August (b) 2022. The yellow dashed line denotes
210 the latitude of Bauru. (c) SR profiles from a ground-based lidar operated from Bauru during the
211 BraVo campaign on 3 and 6 August 2022, compared with CALIOP SR profiles averaged between
212 21°S and 23°S around Bauru. Due to instrumental noise, data in the South Atlantic Anomaly have
213 been removed.

214

215

216 The HTHH plume observed by CALIOP appears to be shifted upward by 1-2km in altitude
217 compared to the ground-based measurements, which indicate that the plume was still not
218 homogeneously dispersed 8 months after the eruption. In addition, CALIOP cross-sections
219 suggest significant changes in the vertical structure of the plume near 20°S with a higher
220 and thicker plume located toward the tropics, while the plume height and strength decrease
221 toward southern mid-latitudes. It is important to note that CALIPSO data were unavailable

222 over Brazil due to interference from the South Atlantic Anomaly (SAA), and a direct
223 comparison is therefore not possible. In addition to the ground-based lidar observations
224 from Bauru, a series of balloon flights was conducted in August 2022 as part of the BraVo
225 project.

226

227 **2.2. Optical and Microphysical measurements inside the HTHH plume**

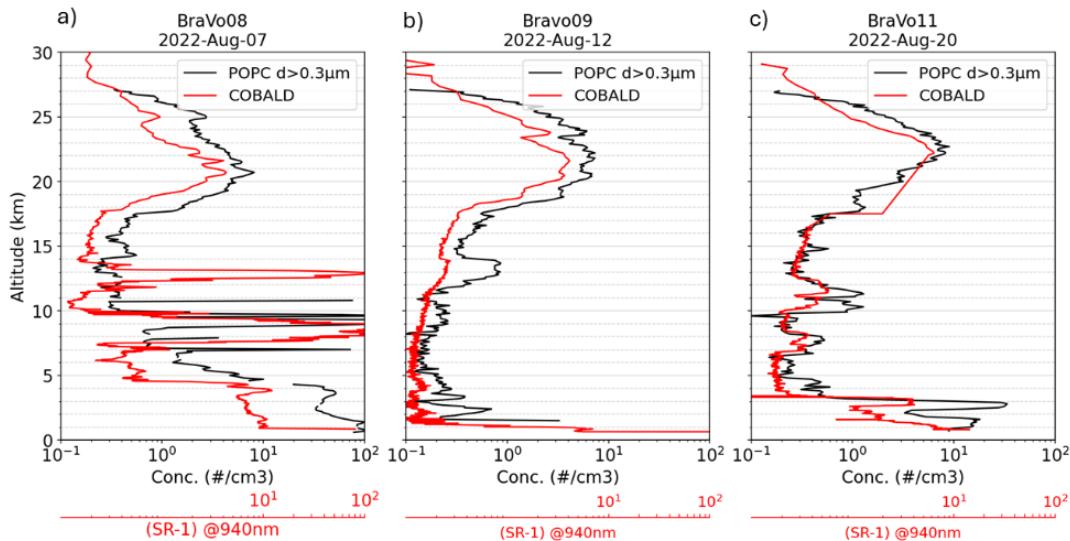
228

229 Table. 2 describes the dates of the balloon flights and the aerosol instruments used during the
230 BraVo campaigns in August 2022. One flight on 08/12 was co-located with a sunrise occultation
231 from the Stratospheric Aerosol and Gas Experiment (SAGE) III/ISS (see Supplementary
232 Materials). Further descriptions of the balloon-borne instruments are provided below.

233

234 **Table 2. List of balloon flights, launch time, and instruments used in August 2022 during the**
235 **BraVo campaign.**

Flight_ID	Launch Time (UTC)	POPC	COBALD	Sampler	SAGE III/ISS
20220807_BRU_BraVo_08	6h30m	x	x		
20220812_BRU_BraVo_09	6h30m	x	x		x
20220816_BRU_BraVo_10	18h30m			x	
20220820_BRU_BraVo_11	6h30m	x	x		

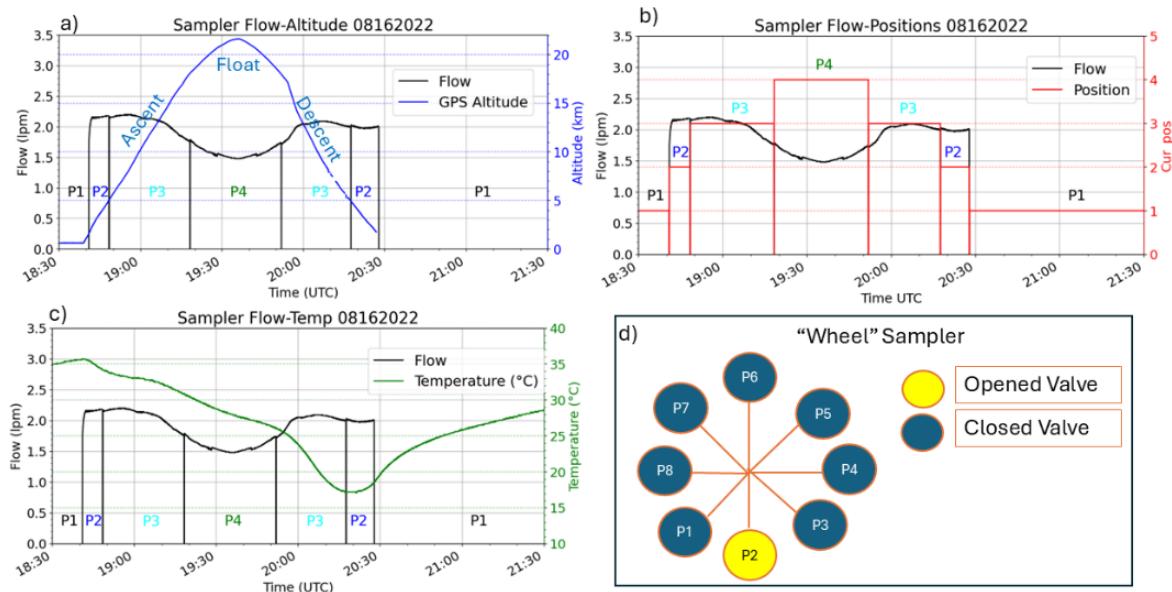

236

237 A lightweight balloon-borne Profiling Optical Particle Counter (POPC) (<2kg) was
238 developed from the Particle Plus 9301OEM instrument for weather balloon applications
239 (Dumelié et al., 2024). This POPC measures aerosol concentration profiles at 30 diameters
240 (radii) between 0.3-10 μm (0.15-5 μm) from the ground to the stratosphere. The system
241 employs a laser diode emitting at 785 nm. As particles enter the optical chamber, the

242 scattered light at 90 degrees is amplified and converted into a voltage using a high-speed
243 ADC (analog-to-digital converter), providing a digital measurement of the pulse height. The
244 data are then calibrated in the laboratory using PSL spheres for size channels to be defined
245 and raw data transformed into aerosol counts in the 30 size bins available. The scattering
246 efficiency of PSL, sulfate and sea salt (Fig. S1) shows that the size thresholds of the POPC
247 measurements need to be corrected.

248 COBALD is a lightweight (540g) instrument that consists of two high-power light-emitting
249 diodes (LEDs) emitting approximately 500 mW of optical power at wavelengths of 470 and
250 940 nm, respectively. The backscattered light from molecules, aerosols, or ice particles is
251 recorded by a silicon photodiode using phase-sensitive detection. The precision of the
252 backscatter ratio measurements is better than 1% in the UTLS region (Vernier et al., 2015).
253 Figure 3 presents total aerosol concentration profiles alongside the scattering ratio-minus
254 one for three flights conducted on August 7th, 12th, and 20th. Aerosol concentration peaks
255 within the Hunga plume range from 8 to 9 #/cm³ at altitudes between 20.5 and 23 km. The
256 corresponding variations in scattering ratio within the stratosphere show good qualitative
257 agreement with the aerosol concentration profiles, demonstrating consistency between these
258 independent measurements. The 3 flights show that the HTHH plume was still not
259 homogeneous. Additional comparisons between COBALD, POPC and SAGE III/ISS (Fig.
260 S2) for the flight on 08/12 indicate relative differences within +/- 50% for measured and
261 calculated extinction coefficients in the HTHH plume.

262
263
264
265


Figure 3. POPC aerosol profiles (radius $> 0.15 \mu\text{m}$) for August 7th, 12th, and 20th. COBALD aerosol backscatter ratio-minus-1 profiles at 940 nm for August 7th and 12th are also shown.

266 2.3. Chemical Sampler

267 The CHEM filter Sampler is a sampling device that captures aerosol particles on filters for offline
268 chemical analysis. It was previously used to study organic aerosols from the troposphere to the
269 stratosphere using Orbitrap through offline analysis (Benoit et al., 2023, 2024). The sampler has
270 eight filter cartridges that hold individual filters. Figure 4d provides a quick overview of the
271 sampler's working principle. The eight filters located in each position (marked "P") makes it
272 possible to perform time-resolved sampling under user control. The rotation of magnets allows the
273 opening and closing of the valves through a rotating wheel so that only one valve is opened at a
274 time. In the example provided (Figure 4d), only position 2 had the valve opened and sampled
275 aerosols while the others remained closed. The CHEM filter sampler was adapted for balloon flight
276 applications using an Imet radiosonde and a Raspberry PI system to control the sampling altitudes
277 along the flight altitudes. Only one sampler flight could be performed in August 2022. Figure 4
278 (a,b,c) shows the time evolution of the different parameters monitored along this flight (GPS
279 altitude, sampler flow, position number (Cur_pos), internal temperature). The controlled position

280 numbers along the flight are also annotated on Fig. 4a, 4b and 4c using “P” and a number as a
281 suffix.

282
283 **Figure 4.** Time evolution of (a) GPS altitude and sampler flow rate, (b) sampler position and
284 flow rate, and (c) internal temperature and flow rate during the sampler flight on 16 August
285 2022. Black Vertical lines indicate the boundaries between sampling positions when the pump is
286 turned off and the system moves to another position (d) Schematic of the “Wheel” sampler
287 concept, showing opened and closed valves during sampling, with an example of sampling at
288 position P2. During this flight Position 6,7,8 was not used for sampling and Position 1 remained
289 open when the instrument was on but without the pump on (Standby position). The total volume
290 of air on position 2,3 and 4 was 36 L, 113 L, and 53 L.

291 The balloon system was equipped with a radio-controlled valve to extend aerosol sampling in the
292 lower stratosphere (Vernier et al., 2018). The flight trajectory included a controlled reduction in
293 ascent rate near 19.0 km, followed by a slow climb to a peak altitude of 21.6 km before descent
294 (Fig. 4a). This maneuver allowed an extended float period for the sampler to remain within the
295 plume for approximately 40 min, significantly longer than conventional balloon flights
296 (~15min). The extended sampling time maximized aerosol collection, allowing additional mass
297 to be collected. The internal temperature of the sampler air flow ranged between 17 and 35 °C
298 during the flight (Fig. 4c) and remained below 36 °C up to the recovery before the samplers were
299 positioned into a dry to minimize aerosol loss and chemical reactions.

300 Due to weather and logistical constraints, only a single flight was conducted using this enhanced
301 system. The radio-controlled valve was critical for optimizing the flight path and sampling
302 duration, thereby enhancing the quality and reliability of the collected data for the subsequent
303 chemical analysis described herein. The Ion Chromatography (IC) technique used to analyze the
304 samples is presented in the next section.

305

306 **2.4. Offline Analysis and Ion Chromatography**

307 Water-soluble inorganic species (WSIS), including K^+ , Na^+ , Mg^{2+} , Ca^{2+} , NH_4^+ , Cl^- , F^- , Br^- , NO_2^- ,
308 NO_3^- , and SO_4^{2-} , were analyzed using two Dionex Integron High-Performance Ion
309 Chromatographs (HPIC) with conductivity detection. Anions were separated using an AS-18-
310 FAST-4 μm , 2×150 mm column with a KOH gradient eluent over 25 minutes: 10 mM from 0 to
311 6 minutes, increasing to 60 mM from 6 to 15 minutes, and maintained at 60 mM from 15 to 25
312 minutes. Cations were separated using a CS-12A, 4×250 mm column with a Methyl Sulfonic
313 Acid gradient eluent over 25 minutes: 10 mM from 0 to 6 minutes, increasing to 35 mM from 6
314 to 15 minutes, and maintained at 35 mM from 15 to 25 minutes.

315 Ultrapure water for dilutions, extractions, and mobile phase preparation was generated using an
316 EQ7000 Millipore water purification system (Resistivity $\geq 18.2 \text{ M}\Omega\cdot\text{cm}$). Calibration standards
317 were prepared from high-purity analytical grade solutions from Merck (NH_4Cl , CaCO_3 , KNO_3 ,
318 $\text{Mg}(\text{NO}_3)_2$, and NaNO_3 for cations; NaCl , NaNO_3 , NaBr , NaNO_2 , and Na_2SO_4 for anions).
319 Working standards with concentrations of 1, 5, 10, 50, and 100 $\mu\text{g/L}$ (ppb) were prepared and
320 injected into the instrument (250 μL sampling loop) to establish a calibration range.

321 The ultrapure water was pre-checked for potential cation and anion contamination before sample
322 analysis. The detection limits (LODs) for each ion were determined by injecting 15 ultrapure
323 water blanks from the EQ7000 system, with LODs calculated as the average blank value plus
324 three times the standard deviation ($\text{LOD} = \bar{x} + 3s$). The LOD values for each ion are provided in
325 Table 3.

326

327

328

329 **2.5. IC Data Analysis and Error Calculation of IC**

330 Filters from positions P 1-P 5 were extracted and analyzed by ion chromatography. Each extract
331 was injected three times to assess reproducibility. For each position (P1–P4), the two injection
332 results with the smallest difference were selected to minimize the impact of potential outliers.
333 The average, standard deviation, and percent relative standard deviation (%RSD) were calculated
334 for these selected values.

335 Since no collection was performed on P5, it was used as a blank. Its average and standard
336 deviation were calculated across all three injections. To correct for the background signal, the
337 average of the reference blank (P5) was subtracted from the average of each sample, yielding the
338 corrected average for each sample.

339 The error bars for the corrected averages were determined by propagating the uncertainty from
340 both the sample and reference blank measurements. The standard error of the mean (SEM) was
341 calculated for the selected injections of each sample and for the reference blank. The total SEM
342 was derived using the quadrature sum of the individual SEMs, and the error bars were reported
343 as $\pm 1.96 \times$ total SEM, corresponding to a 95% confidence interval (CI).

344 Finally, the corrected averages and their associated error bars were multiplied by the dilution
345 factor and divided by the volume of air filtered (in m³) to report the final concentrations in ng/m³.

346

347

348

349

350

351

352

353 **3. Results**

354

355 **3.1. Raw mass concentrations**

356 The raw mass concentrations of major ions, measured by ion chromatography (IC) before blank
357 correction, are presented in Table 3. These values represent the detected mass of each ion in the
358 samples, along with their respective Limits of Detection (LOD). We note that only one value
359 reported was lower than the LOD for K⁺ on Position 3. We observed that the ionic mass
360 observed in each position is highly correlated as a function of ion types.

361 **Table 3** Raw mass concentrations of major ions at Positions 2, 3, 4, and 5 analyzed using ion
362 chromatography (IC). Values represent raw mass concentrations (ppb or ng/mL) measured by IC
363 before blank correction. LOD values are provided for each ion. These raw values were used to
364 ensure transparency and avoid bias in the initial detection of ions.

Ions	P 2 (ppb)	P 3 (ppb)	P 4 (ppb)	P 5 (ppb)	LOD (ppb)
Na ⁺	22.71	15.63	25.67	14.94	7.76
K ⁺	7.62	3.58	12.29	7.65	6.34
NH ₄ ⁺	36.81	30.58	39.32	25.75	4.05
Mg ²⁺	2.34	1.90	2.35	1.80	0.36
Ca ²⁺	20.42	27.52	33.87	15.78	13.70
F ⁻	11.70	17.20	24.40	14.48	3.71
Cl ⁻	28.27	17.04	37.95	16.12	2.91
NO ₂ ⁻	4.80	28.67	14.21	13.04	0.28
NO ₃ ²⁻	19.73	7.70	9.24	5.03	1.01
SO ₄ ²⁻	8.70	4.51	5.52	5.52	1.48

365 **3.2. Processed Data**

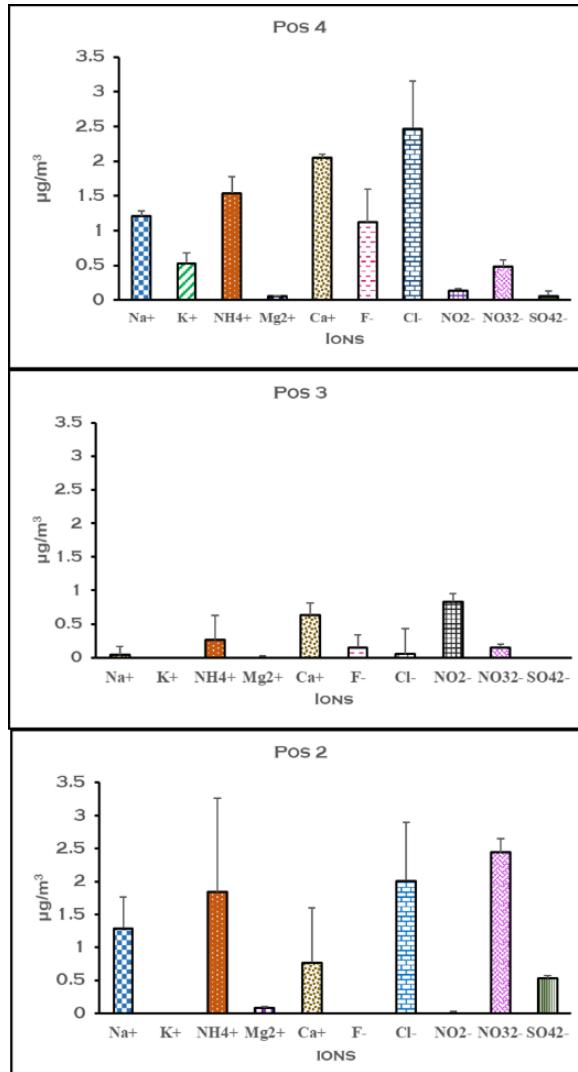
366 The processed mass concentrations of major ions, after blank correction, were derived by using
367 the total volume of air that passed through each filter measured onboard the sampler. The total
368 volume of air on positions 2,3 and 4 was 36 L, 113 L, and 53 L. The mass concentrations

369 reported in Table 4 are in $\mu\text{g}/\text{m}^3$. These values include 95% confidence intervals (CI) and are
370 used for the IC bar plots shown in Figure 5.

371 **Table 4.** Processed concentrations of major ions at P 2, P 3, and P 4, with 95% confidence
372 intervals derived from raw mass values. Concentrations represent statistically processed data
373 derived from the raw mass values presented in Table 1. Values are blank-corrected and
374 converted to $\mu\text{g}/\text{m}^3$. The 95% confidence intervals (CI) are provided for each ion concentration.
375 Values below the LOD or negative after blank subtraction are indicated by a dash (—). These
376 processed values are used for further statistical analysis and graphical representation in the IC
377 bar plots.

378

Ions	P 2 ($\mu\text{g}/\text{m}^3$)	P 3 ($\mu\text{g}/\text{m}^3$)	P 4 ($\mu\text{g}/\text{m}^3$)
Na^+	1.29 \pm 0.47	0.04 \pm 0.13	1.21 \pm 0.07
K^+	-	-	0.53 \pm 0.15
NH_4^+	1.84 \pm 1.42	0.26 \pm 0.37	1.53 \pm 0.24
Mg^{2+}	0.08 \pm 0.02	0.01 \pm 0.01	0.06 \pm 0.01
Ca^{2+}	0.77 \pm 0.83	0.63 \pm 0.18	2.05 \pm 0.05
F^-	-	0.15 \pm 0.19	1.12 \pm 0.48
Cl^-	2.02 \pm 0.89	0.05 \pm 0.38	2.47 \pm 0.68
NO_2^-	-	0.83	0.14 \pm 0.03
NO_3^{2-}	2.44 \pm 0.21	0.15 \pm 0.05	0.48 \pm 0.1
SO_4^{2-}	0.53 \pm 0.04	-	0.06 \pm 0.07


379 Table 4 presents the processed concentrations after blank correction and conversion to $\mu\text{g}/\text{m}^3$,
380 including 95% confidence intervals. This approach allows readers to distinguish between raw
381 detection data and statistically processed results used for further analysis.

382

383 The concentrations of major ions are visualized in Figure 5. The bar graphs illustrate the
384 concentrations ($\mu\text{g}/\text{m}^3$) of Na^+ , K^+ , NH_4^+ , Mg^{2+} , Ca^{2+} , F^- , Cl^- , NO_2^- , NO_3^- , and SO_4^{2-} at three
385 altitudes: Position 2 (1.6–5.0 km), Position 3 (5.0–18.1 km), and Position 4 (18.1–21.6 km).

386 Error bars represent the 95% confidence intervals for each ion concentration, indicating the
387 reliability of the measurements.
388

389
390 **Figure 5:** Concentrations of major ions at Positions 2, 3, and 4 in the Hunga Tonga volcanic
391 plume. The bar graphs show the concentrations ($\mu\text{g}/\text{m}^3$) of Na^+ , K^+ , NH_4^+ , Mg^{2+} , Ca^{2+} , F^- , Cl^- ,
392 NO_2^- , NO_3^{2-} , and SO_4^{2-} .
393
394
395
396

397 The concentrations of major ions at different positions are illustrated in Figure 5. The bar graphs
398 represent the concentrations ($\mu\text{g}/\text{m}^3$) of Na^+ , K^+ , NH_4^+ , Mg^{2+} , Ca^{2+} , F^- , Cl^- , NO_2^- , NO_3^- , and SO_4^{2-}
399 at three altitudes at Position 2 (1.6-5.0 km), Position 3 (5.0-18.1 km), and Position 4 (18.1-21.6
400 km). Error bars represent the 95% confidence intervals for each ion concentration, indicating the
401 reliability of the measurements. Sodium (Na^+) and chloride (Cl^-) exhibited pronounced
402 enhancements at Pos 4 (16–18 km), reaching concentrations of $1.21 \pm 0.07 \mu\text{g}/\text{m}^3$ and 2.47 ± 0.68
403 $\mu\text{g}/\text{m}^3$, respectively. Sulfate (SO_4^{2-}) concentrations decreased vertically, from $0.53 \pm 0.04 \mu\text{g}/\text{m}^3$
404 at Pos 2 to $0.06 \pm 0.07 \mu\text{g}/\text{m}^3$ at Pos 4. In contrast, calcium (Ca^{2+}) showed significant enrichment
405 at Pos 4 ($2.05 \pm 0.05 \mu\text{g}/\text{m}^3$) compared to Pos 2 and Pos 3. Ammonium (NH_4^+) and nitrate (NO_3^-)
406 dominated at Pos 2 ($1.84 \pm 1.42 \mu\text{g}/\text{m}^3$ and $2.44 \pm 0.21 \mu\text{g}/\text{m}^3$, respectively).

407

408 3.3. Molar Ratios of Major Ions

409

410 We calculated the concentrations in $\mu\text{mol}/\text{m}^3$ to further analyze the relative abundance and
411 potential chemical interactions of these ions. The molar ratios of major ions relative to Na^+ and
412 SO_4^{2-} at Positions 2, 3, and 4 are presented in Table 5.

413

414 **Table 5.** Key molar ratios used to identify sea salt injection, volcanic ash contribution, and
415 sulfate depletion *

Ratios	Interpretation	Seawater Reference	Pos 2 (1.6–5 km)	Pos 3 (5–18.1 km)	Pos 4 (18.1–21.6 km)
Na^+/Cl^-	Sea salt signature	0.86	0.98	1.23	0.76
$\text{Mg}^{2+}/\text{Na}^+$	Sea salt consistency	0.12	0.06	0.24	0.047
K^+/Na^+	Volcanic ash enrichment	0.02	-	-	0.26
$\text{Ca}^{2+}/\text{Na}^+$	Ash & crustal source	0.02	0.34	12.6	0.97
$\text{Cl}^-/\text{SO}_4^{2-}$	Sulfate depletion indicator	19.00	10.25	-	110.47
$\text{Ca}^{2+}/\text{SO}_4^{2-}$	Gypsum formation diagnostic	0.36	3.50	-	81.40

NO ₃ ⁻ /SO ₄ ²⁻	Neutralization / secondary aerosol	1.00	19.10	-	142.70
--	---------------------------------------	------	-------	---	--------

416 **Table Notes:** *BDL = Below Detection Limit. Seawater reference ratios are derived from
417 Millero et al. (2008). Measured values are presented for three altitude ranges: Pos 2 (1.6–5 km),
418 Pos 3 (5–18.1 km), and Pos 4 (18.1–21.6 km).
419

420 **3.4. Calculating Marine Enrichment Factors (EFs)**

421 Enrichment factors (EFs) compare the ratio of an element to a reference element. Herein, we
422 calculate the Marine Enrichment Factors (MEFs) since we study the enhancement of an element
423 to compare to what is expected in sea water. This helps identify non-marine sources or processing.
424 MEFs were determined using the formula:

425
$$\text{MEF}_{\text{ion}} = (\text{Ion}/\text{Na}^+)_{\text{sample}} / (\text{Ion}/\text{Na}^+)_{\text{seawater}}$$

426 if $\text{MEF} \approx 1$, the element is primarily marine-derived.

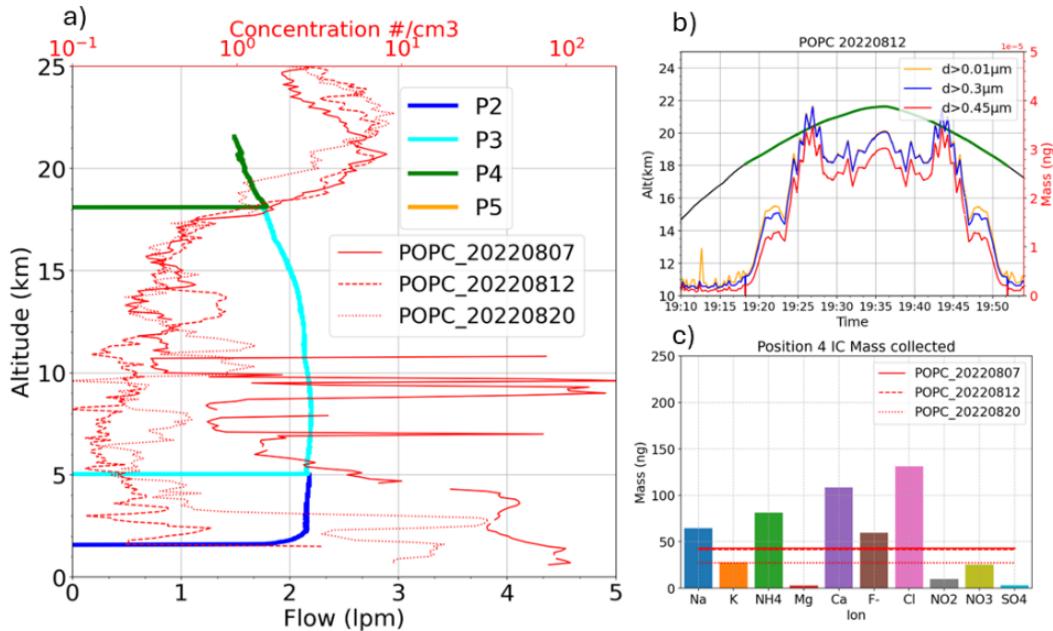
427 If $\text{MEF} > 1$, there is an additional non-marine source or enrichment.

428 If $\text{MEF} < 1$, the element is depleted relative to seawater.

429 MEFs were calculated following the methodology described in the supplement of Barbaro et al.
430 (2024). MEFs were used to assess the marine contribution to aerosol composition. Table 4 shows
431 the MEFs using the $\text{Na}^+:\text{Cl}^-$, $\text{Na}^+:\text{Mg}^{2+}$, and $\text{Na}^+:\text{SO}_4^{2-}$ ratios from our data and comparing them to
432 seawater ratios.

433
434 **Table 6.** MEFs values using $\text{Na}^+:\text{Cl}^-$, $\text{Na}^+:\text{Mg}^{2+}$, and $\text{Na}^+:\text{SO}_4^{2-}$ ratios from our data compared to
435 ratios in seawater*.

Ion	Seawater (Ion/Na^+)	Pos 2 MEF	Pos 3 MEF	Pos 4 MEF
Cl ⁻	1.16	0.87	0.70	1.14
Mg ²⁺	0.11	0.52	2.09	0.42
SO ₄ ²⁻	0.06	1.63	MDL	0.20


436 *MDL = Measurable Detection Limit not achieved. These MEFs quantify deviations of the
437 measured ionic composition from seawater reference ratios. Values greater or less than 1 indicate
438 enrichment or depletion relative to seawater

439 The combined ppb concentrations, molar ratios, and enrichment factors display systematic
440 differences among Positions 2, 3, and 4. Variations occur in the relative abundances of Na^+ , Cl^- ,
441 Ca^{2+} , and SO_4^{2-} , and in the magnitude of the corresponding ratios. These differences describe the
442 vertical structure of the sampled aerosol composition. Interpretation of these differences is
443 provided in the Discussion section below.

444 **4. Discussion**

445
446 **4.1. Theoretical considerations: Sampling efficiency inside the HTHH plume**
447

448 The sampler flight on 08/16 was performed without additional aerosol measurements due to
449 weight restrictions. However, we investigate the theoretical mass that the sampler would have
450 collected based on size distribution measurements from the POPC flights before (08/07, 08/12)
451 and after (08/20) the sampler flight to understand the connections between the IC chemical
452 analysis in section 3 and microphysical properties of the plume in section 2.
453

454
455 **Figure 6.** (a) Vertical profile of sampler flow rate colored as a function of position number for
456 the ascending part of the balloon flight on 08/16, along with total aerosol concentration from
457 POPC measurements on 08/07, 08/12, and 08/20. (b) Theoretical mass collected per second
458 for $d > 0.01 \mu\text{m}$, $0.3 \mu\text{m}$, and $0.45 \mu\text{m}$ along the sampler flight using sampler flow rate on 08/16
459 and POPC size distribution data on 08/07, 08/12, and 08/20. The green portion of the GPS time
460 series corresponds to the time and altitude at which sampling was done on position 4 (c). Total
461 ionic mass on position (colored bars) and total theoretical mass collected on position 4 derived
462 from the 3 POPC flights (horizontal red lines),

463 The theoretical mass of aerosols collected during flights was derived using a multi-step approach.
464 First, a log-normal distribution was fitted to the number concentration data obtained from the
465 POPC. An assumed aerosol density ($d=1.8\text{kg/L}$) consistent with sulfate aerosol was then used to
466 convert number concentrations to mass concentrations along the flight path. Finally, the mass
467 concentration data were interpolated along the sampler flight path, and the theoretical mass
468 collected was calculated based on the flow rate associated with each sampling position. Further
469 details are provided in the Supplemental Materials (S3).

470 Figure 6a shows the sampler flight traversed the lower region of the HTHH plume where aerosol
471 concentrations were estimated between $1\text{--}10$ particles cm^{-3} from the POPC flights before and after
472 08/16. Variations in aerosol concentrations in the boundary layer and upper troposphere were

473 observed across the three flights, likely due to changing weather conditions and contributions from
474 intermittent sources, such as forest fires in the Amazon region.

475 The theoretical mass derived from POPC data is near 42–43 ng for the first two flights and 27 ng
476 for the flight on 20 August. In comparison, the total ion mass measured by IC was 513 ng,
477 exceeding theoretical estimates largely (Fig. 6c). This difference may reflect variability in aerosol
478 size distributions not fully captured by POPC or a potential source of contamination in the IC data.
479 Importantly, the detected ion concentrations were consistently above the instrument's Limit of
480 Detection (LOD), confirming the high sensitivity and reliability of the IC measurements.

481 **4.2. $\text{Na}^+:\text{Cl}^-$ Ratios and Marine Source Identification**

482 Ion chromatography analysis of the aerosol samples collected post-eruption reveals distinct $\text{Na}^+:\text{Cl}^-$
483 molar ratios consistent with marine origins and subsequent chemical processing.

484 At Position 2 (1.6–5 km altitude), the $\text{Na}^+:\text{Cl}^-$ ratio of 0.98 suggests a predominantly marine
485 signature. While this altitude range represents the lower free or middle troposphere rather than
486 the marine boundary layer, the presence of sea salt aerosols at these altitudes is consistent with
487 observations of long-range transport and convective lofting of marine aerosols into the upper
488 troposphere (Murphy et al., 2018). Murphy et al. (2018) documented the global distribution of
489 sea salt aerosols, including their presence at altitudes up to 12 km, particularly in regions
490 influenced by strong convective activity and cyclonic systems.

491 At Position 3 (5–18.1 km), the elevated $\text{Na}^+:\text{Cl}^-$ ratio (1.23) indicates chloride depletion via acid
492 displacement reactions, such as HCl volatilization or sulfate-driven Cl^- loss, as previously
493 observed in volcanic plumes interacting with acidic gases (Zhao et al., 1996; Mather et al.,
494 2003). This process occurs when SO_2 is oxidized to sulfate, increasing aerosol acidity and
495 lowering the Henry's law constant (He) of HCl , which promotes its volatilization from fine
496 particles (Allen et al., 2000). As a result, fine aerosols exhibit elevated $\text{Na}^+:\text{Cl}^-$ ratios due to the
497 loss of Cl^- as gaseous HCl .

498 Similarly, Position 4 (18.1–21.6 km) exhibits a reduced $\text{Na}^+:\text{Cl}^-$ ratio (0.76), likely reflecting
499 partial Cl^- scavenging during ascent. Allen et al. (2000) observed that volatilized HCl can be
500 subsequently scavenged by coarser particles, leading to lower $\text{Na}^+:\text{Cl}^-$ ratios in those particles.

501 These deviations from seawater stoichiometry demonstrate progressive chemical modification of
502 marine aerosols with altitude, driven by interactions with volcanic acids and sulfates.

503 **4.3. Stratospheric Sea Salt Signature**

504

505 The near-marine Na^+/Cl^- ratio (0.76) at Position 4 confirms the presence of minimally processed
506 sea salt aerosols at 18.1–21.6 km altitude (Table 5). This ratio deviates only slightly from
507 seawater (0.86), indicating rapid vertical transport of marine material without significant
508 fractionation. Such efficient injection is characteristic of submarine eruptions with high water-to-
509 magma interaction ratios, as modeled for Hunga Tonga’s explosive phase (Colombier et al.,
510 2023). Comparable stratospheric sea salt enrichments have been documented during large
511 phreatomagmatic eruptions, including Pinatubo (1991) and Holuhraun (2014–2015) (Tabazadeh
512 et al., 2002; Ilyinskaya et al., 2017). However, Hunga Tonga’s Na^+ concentrations (0.056
513 $\mu\text{mol}/\text{m}^3$) exceed prior measurements due to its exceptional eruptive water flux.

514 **4.4. Calcium-Rich Ash and Sulfate Uptake Mechanisms**

515 Non-sea-salt species, particularly Ca^{2+} and SO_4^{2-} , exhibit marked deviations from seawater
516 composition. Elevated $\text{Ca}^{2+}/\text{Na}^+$ ratios ($\gg 1$) and $\text{Ca}^{2+}/\text{SO}_4^{2-}$ ratios confirm the dominance of Ca-
517 bearing volcanic ash in the aerosol mixture. The extreme Ca/SO_4 ratio ($\gg 1$) quantitatively supports
518 heterogeneous sulfate consumption via gypsum formation ($\text{Ca}^{2+} + \text{SO}_4^{2-} \rightarrow \text{CaSO}_4 \downarrow$), a process
519 favored under Ca-rich, sulfate-limited conditions (Stumm & Morgan, 2012). Insoluble CaSO_4
520 precipitation removes soluble SO_4^{2-} from the aerosol phase, directly explaining the anomalously
521 low sulfate concentrations measured in IC analyses. This mechanism aligns with experimental
522 studies of ash-sulfate interactions (Ayris & Delmelle, 2012) and satellite retrievals of fine ash
523 aggregation in the Hunga Tonga plume (Gupta et al., 2022).

524

525 **4.5. Marine Enrichment Factors (MEFs) and Source Apportionment**

526 MEF calculations relative to seawater compositions (Nozaki, 2010) corroborate source
527 contributions:

528 Position 2: Cl⁻ MEF (0.87) and Mg²⁺ MEF (0.52) near unity confirm marine dominance. Elevated
529 SO₄²⁻ MEF (1.65) reflects magmatic SO₂ oxidation products (Sellito et al., 2024).

530 Position 3: Reduced Cl⁻ MEF (0.70) validates acid-mediated chloride loss. Absence of detectable
531 SO₄²⁻ (MEF = 0.00) suggests localized sulfate depletion via CaSO₄ formation or measurement
532 artifacts.

533 Position 4: Near-unit Cl⁻ MEF (1.14) reaffirms marine chloride sourcing, while suppressed Mg²⁺
534 (0.42) and SO₄²⁻ (0.20) MEFs indicate mixing with Ca-rich ash or sulfate scavenging.

535 4.6. Implications for Stratospheric Aerosol Composition

536 The combined Na⁺:Cl⁻, Ca²⁺/SO₄²⁻, and MEF data provide conclusive evidence for co-injection of
537 sea salt aerosols and Ca-rich ash into the stratosphere. Observed sulfate depletion correlates
538 directly with Ca²⁺ availability, validating gypsum precipitation as the primary sink for SO₄²⁻.
539 Chloride loss patterns align quantitatively with acid-displacement kinetics parameterized in
540 volcanic plume models (Mather et al., 2003).

541 4.7. Factors Driving Low Sulfate Concentrations

542 The anomalously low SO₄²⁻ levels detected in IC analyses at Position 4 (18.1–21.6 km) can be
543 explained by the following mechanisms, which also help reconcile discrepancies with satellite
544 observations from ACE-FTS (Fig. S4).

545 **Heterogeneous Gypsum Formation:** The high Ca²⁺/SO₄²⁻ ratios ($\gg 1$) at Position 4 indicate
546 preferential sulfate removal via CaSO₄ precipitation, reducing aqueous-phase SO₄²⁻
547 concentrations by >90% in ash-rich regions (Zhao et al., 1996; Colombier et al., 2023). This
548 process leads to the formation of insoluble CaSO₄ aggregates, which are not detected by standard
549 IC protocols optimized for soluble aerosols. Satellite observations, which measure total sulfate
550 (including insoluble forms), may therefore show higher concentrations than IC analyses.

551

552 **Rapid SO₂ Oxidation and Aqueous-Phase Reactions:** Unlike typical volcanic eruptions, the
553 Hunga Tonga event injected massive amounts of water vapor into the stratosphere (Millán et al.,
554 2022), creating conditions favorable for rapid SO₂ oxidation and sulfate formation (Eatough et

555 al., 1994; Farlow et al., 1981). However, the resulting sulfate may have precipitated as insoluble
556 CaSO_4 or been scavenged by ash particles, reducing the soluble sulfate fraction detected by IC.
557 The high- H_2O content would accelerate aqueous-phase reactions, but the presence of Ca-rich ash
558 would promote gypsum formation, removing soluble sulfate from the aerosol phase.

559

560 **Acid Displacement and Chloride Scavenging:** Volcanic HCl and H_2SO_4 react with sea salt
561 particles, releasing Cl^- as HCl(g) and displacing SO_4^{2-} adsorption sites (Finlayson-Pitts & Pitts,
562 2000). This process can lead to low soluble sulfate concentrations in IC analyses, even if total
563 sulfate (including insoluble forms) remains high.

564

565 **Neutralization by Background Ammonia:** As the plume ages, neutralization of acidic species
566 by background ammonia can further reduce soluble sulfate levels (Allen et al., 2000). This
567 process is highly variable and depends on local atmospheric conditions, potentially leading to
568 underestimation of sulfate in IC analyses if neutralization products (e.g., $(\text{NH}_4)_2\text{SO}_4$) are not fully
569 dissolved or detected. The neutralization of acidic species by background ammonia may
570 contribute to the low soluble sulfate concentrations observed in our IC analyses. At Position 2
571 (1.6–5 km), the concentration of NH_4^+ ($1.84 \pm 1.42 \mu\text{g/m}^3$) is significantly higher than at Position
572 3 ($0.26 \pm 0.37 \mu\text{g/m}^3$) and Position 4 ($1.53 \pm 0.24 \mu\text{g/m}^3$) (Table 2). This suggests that ammonia
573 neutralization of acidic sulfate species (e.g., H_2SO_4) may have occurred more extensively at
574 lower altitudes, where NH_4^+ concentrations are elevated.

575 The formation of ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$) or ammonium bisulfate (NH_4HSO_4) through
576 neutralization reactions can reduce the concentration of soluble SO_4^{2-} in the aerosol phase. For
577 example, at Position 2, where NH_4^+ levels are highest, the SO_4^{2-} concentration is 0.53 ± 0.04
578 $\mu\text{g/m}^3$, while at Position 3, where NH_4^+ levels are lower, SO_4^{2-} is below the detection limit (Table
579 2). This pattern supports the hypothesis that ammonia neutralization may have contributed to the
580 underestimation of soluble sulfate in our IC analyses, particularly if the resulting ammonium
581 sulfate particles were not fully dissolved or detected.

582 This process is highly variable and depends on local atmospheric conditions, including the
583 availability of ammonia and the degree of mixing within the plume (Allen et al., 2000). The
584 variability in NH_4^+ and SO_4^{2-} concentrations across altitudes suggests that neutralization

585 reactions played a role in modifying the soluble sulfate content of the aerosols, particularly in the
586 lower altitudes where NH_4^+ was more abundant.

587 **Analytical Limitations of IC:** Insoluble CaSO_4 aggregates ($>1 \mu\text{m}$) and other sulfate-containing
588 particles may evade detection by IC, which is optimized for submicron soluble aerosols. Satellite
589 remote sensing, however, can detect the total sulfate burden (including insoluble and gas-phase
590 SO_2), leading to apparent discrepancies between the two methods.

591 **5. Summary and Conclusion**

592

593 The HTHH plume produced unusual SAOD compared to early estimates of SO_2 emitted
594 from satellite observations. Recent studies have suggested that those initial estimates could
595 have been underestimated due to the rapidly formed sulfate aerosol in the very early stage
596 of the eruption (Sellitto et al., 2024). Furthermore, microphysical calculations indicated that
597 nucleation processes in the moist plume may have led to the production of aerosols with
598 effective radius near $0.4 \mu\text{m}$ with higher scattering efficiency than smaller aerosols produced
599 by traditional medium size volcanic eruptions and may explain this unusual SAOD (Li et
600 al., 2024).

601 This eruption injected an exceptional mass of seawater directly into the stratosphere,
602 providing a unique opportunity to examine the impact of such events on stratospheric
603 aerosols. Utilizing balloon-borne data from the BraVo campaign in Brazil, we analyzed the
604 optical, microphysical, properties and chemical composition of the plume. Our analysis
605 shows consistency between POPC, COBALD and SAGE III/ISS regarding the vertical
606 structure of the HTHH plume and the derived extinction coefficients. The chemical analysis
607 demonstrates that sea salt aerosols played a significant role in the composition and behavior
608 of the stratospheric plume, alongside magmatic SO_2 and fine ash. The efficient lofting of
609 sea salts and their interaction with volcanic ash (e.g., gypsum formation) may have
610 contributed to the rapid removal of coarse particles and the persistent presence of fine
611 aerosols in the stratosphere. These processes are likely characteristic of large-scale
612 submarine eruptions and warrant further investigation to improve our understanding of their
613 radiative and climatic effects (Zhu et al., 2023; Sellitto et al., 2024).

614

615 **Data availability**

616 All raw data can be provided by the corresponding authors upon request.

617

618 **Author contributions**

619 DQ, HV, EL, and JPV planned the campaign; HV, DQ, BB, GL, FL, AS, AM, JM, and JPV
620 performed the measurements; HV, DQ, FL, GS, DP, BG, HL, AR, MK, FW, CB, and JPV
621 analyzed the data; HV and JPV wrote the manuscript draft; DQ, BB, EL, FL, NR, HL, SF, FW,
622 ND, MC, GB, MJ, MA, JPV, and ND reviewed and edited the manuscript.

623

624 **Acknowledgments**

625

626 This research was funded by the NASA Upper Atmospheric Observation Composition (UACO)
627 program and the Atmospheric Composition Modeling and Analysis Program (ACMAP).
628 Additional support was provided by the Agence Nationale de la Recherche (ANR) through grant
629 ANR-LABX-100-01 from Labex VOLTAIRE, managed by the University of Orleans.
630 We thank Amit K. Pandit and Johnny Mau for their invaluable technical assistance in preparing
631 the balloon campaign. We are grateful to Yunqian Zhu and Xinyue Wang for their insightful
632 discussions and contributions to WACCM simulations.

633

634 **Competing interests**

635 At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and
636 Physics.

637

638

639

640

641

642

643

644

645

646

647

648 References:

649 Allen, A. G., Baxter, P. J., and Ottley, C. J.: Gas and particle emissions from Soufrière Hills
650 Volcano, Montserrat, West Indies: characterization and health hazard assessment, Bull.
651 Volcanol., 62, 8–19, 2000.

652 Asher, E., Todt, M., Rosenlof, K., Thornberry, T., et al.: Unexpectedly rapid aerosol formation in
653 the Hunga Tonga plume, Proc. Natl. Acad. Sci. U.S.A., 120, e2219547120,
654 <https://doi.org/10.1073/pnas.2219547120>, 2023.

655 Ayris, P. M. and Delmelle, P.: The immediate environmental effects of tephra emission, Bull.
656 Volcanol., 74, 1905–1936, <https://doi.org/10.1007/s00445-012-0654-5>, 2012.

657 Barbaro, E., et al.: Supplement of Chemical characterization of atmospheric aerosols at a high-
658 altitude mountain site: a study of source apportionment, Atmos. Chem. Phys., 24, 2821–
659 2835, <https://doi.org/10.5194/acp-24-2821-2024-supplement>, 2024.

660 Baron, A., Chazette, P., Khaykin, S., Payen, G., Marquestaut, N., Bègue, N., and Duflot, V.:
661 Early evolution of the stratospheric aerosol plume following the 2022 Hunga Tonga–
662 Hunga Ha'apai eruption: Lidar observations from Reunion (21° S, 55° E), Geophys. Res.
663 Lett., 50, e2022GL101751, <https://doi.org/10.1029/2022GL101751>, 2023.

664 Duchamp, C., Legras, B., Podglajen, A., Sellitto, P., Bourassa, A. E., Rozanov, A., Taha, G., and
665 Zawada, D. J.: Aerosol Composition and Extinction of the 2022 Hunga Plume Using
666 CALIOP, EGUsphere, <https://doi.org/10.5194/egusphere-2025-3355>, 2025.

667 Evan, S., et al.: Rapid ozone depletion after humidification of the stratosphere by the Hunga
668 Tonga Eruption, Science, 382, eadg2551, <https://doi.org/10.1126/science.adg2551>, 2023.

669 Ilyinskaya, E., Schmidt, A., Mather, T. A., Pope, F. D., Witham, C., Baxter, P., Jóhannsson, T.,
670 Pfeffer, M., Barsotti, S., Singh, A., Sanderson, P., Bergsson, B., McCormick Kilbride, B.,
671 Donovan, A., Peters, N., Oppenheimer, C., and Edmonds, M.: Understanding the
672 environmental impacts of large fissure eruptions: Aerosol and gas emissions from the
673 2014–2015 Holuhraun eruption (Iceland), Earth Planet. Sc. Lett., 472, 309–322,
674 <https://doi.org/10.1016/j.epsl.2017.05.025>, 2017.

675 Jenkins, S., Smith, C., Allen, M., and Grainger, R.: Tonga eruption increases chance of
676 temporary surface temperature anomaly above 1.5 °C, Nat. Clim. Change, 13, 127–129,
677 <https://doi.org/10.1038/s41558-022-01568-2>, 2023.

678 Khaykin, S., et al.: Global perturbation of stratospheric water and aerosol burden by Hunga
679 eruption, *Commun. Earth Environ.*, 3, 1–15, 2022.

680 Kovilakam, M., Thomason, L., and Knepp, T.: SAGE III/ISS aerosol/cloud categorization and its
681 impact on GloSSAC, *Atmos. Meas. Tech.*, 16, 2709–2731, <https://doi.org/10.5194/amt-16-2709-2023>, 2023.

682 Legras, B., Duchamp, C., Sellitto, P., Podglajen, A., Carboni, E., Siddans, R., Grooß, J.-U.,
683 Khaykin, S., and Ploeger, F.: The evolution and dynamics of the Hunga Tonga–Hunga
684 Ha'apai sulfate aerosol plume in the stratosphere, *Atmos. Chem. Phys.*, 22, 14957–14970,
685 <https://doi.org/10.5194/acp-22-14957-2022>, 2022.

686 Millán, L., et al.: The Hunga Tonga–Hunga Ha'apai hydration of the stratosphere, *Geophys. Res.*
687 Lett.

688, 49, e2022GL099381, <https://doi.org/10.1029/2022GL099381>, 2022.

689 Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.: The composition of Standard
690 Seawater and the definition of the Reference-Composition Salinity Scale, *Deep Sea Res.*
691 Pt. I, 55, 50–72, <https://doi.org/10.1016/j.dsr.2007.10.001>, 2008.

692 Murphy, D. M., Froyd, K. D., Bian, H., Brock, C., Dibb, J., DiGangi, J., Diskin, G., Dollner, M.,
693 Kupc, A., Scheuer, E., Schill, G., Weinzierl, B., Williamson, C., and Yu, P.: The
694 distribution of sea-salt aerosol in the global troposphere, *Atmos. Chem. Phys. Discuss.*,
695 1–27, <https://doi.org/10.5194/acp-2018-1013>, 2018.

696 Nozaki, Y.: Elemental composition of seawater, in: *Treatise on Geochemistry*, 2nd Edn., edited
697 by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 2010.

698 Parker, D., Wilson, H., Jones, P. D., Christy, J. R., and Folland, C. K.: The impact of Mount
699 Pinatubo World-Wide Temperatures, *Int. J. Climatol.*, 16, 487–497, 1996.

700 Proud, S. R., Prata, A. J., and Schmauss, S.: The January 2022 eruption of Hunga Tonga–Hunga
701 Ha'apai volcano reached the mesosphere, *Earth Space Sci. Open Arch.*,
702 <https://doi.org/10.1002/essoar.10511092.1>, 2022.

703 Robock, A.: Volcanic eruptions and climate, *Rev. Geophys.*, 38, 191–219,
704 <https://doi.org/10.1029/1998RG000054>, 2000.

705 Savarino, J., Bekki, S., Cole-Dai, J., and Thiemens, M. H.: Evidence from sulfate mass
706 independent oxygen isotopic compositions of dramatic changes in atmospheric oxidation
707 following massive volcanic eruptions, *J. Geophys. Res.-Atmos.*, 108, 4671,
708 <https://doi.org/10.1029/2003JD003673>, 2003.

709 Sellitto, P., Podglajen, A., Belhadji, R., et al.: The unexpected radiative impact of the Hunga
710 Tonga eruption of 15 January 2022, *Commun. Earth Environ.*, 3, 288,
711 <https://doi.org/10.1038/s43247-022-00618-z>, 2022.

712 Schoeberl, M. R., Wang, Y., Ueyama, R., Dessler, A., Taha, G., and Yu, W.: The Estimated
713 Climate Impact of the Hunga Tonga-Hunga Ha'apai Eruption Plume, *Geophys. Res. Lett.*,
714 50, e2023GL104634, <https://doi.org/10.1029/2023GL104634>, 2023.

715 Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K., and
716 Ramachandran, S.: Arctic Oscillation response to the 1991 Mount Pinatubo eruption:
717 Effects of volcanic aerosols and ozone depletion, *J. Geophys. Res.*, 107, 4803,
718 <https://doi.org/10.1029/2001JD001255>, 2002.

719 Stumm, W. and Morgan, J. J.: *Aquatic Chemistry: Chemical Equilibria and Rates in Natural
720 Waters*, 3rd Edn., John Wiley & Sons, 2012.

721 Sun, W. Y., Wang, B., Liu, J., Chen, D. L., Gao, C. C., Ning, L., and Chen, L.: How northern
722 high-latitude volcanic eruptions in different seasons affect ENSO, *J. Climate*, 32, 3245–
723 3262, 2019.

724 Taha, G., Loughman, R., Colarco, P. R., Zhu, T., Thomason, L. W., and Jaross, G.: Tracking the
725 2022 Hunga Tonga–Hunga Ha'apai aerosol cloud in the upper and middle stratosphere
726 using space-based observations, *Geophys. Res. Lett.*, 49, e2022GL10009,
727 <https://doi.org/10.1029/2022GL10009>, 2022.

728 Thomason, L. W., Rieger, L. A., and Millán, L. F.: Global satellite observations of stratospheric
729 aerosols: A review, *Rev. Geophys.*, 56, 692–726, <https://doi.org/10.1029/2017RG000579>,
730 2018.

731 Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J., Garnier, A.,
732 Hauchecorne, A., Trepte, C., Degenstein, D., and Vargas, F.: Major influence of tropical
733 volcanic eruptions on the stratospheric aerosol layer during the last decade, *Atmos.
734 Chem. Phys.*, 15, 3525–3542, <https://doi.org/10.5194/acp-15-3525-2015>, 2015.

735 Zhao, Y., Zhao, C., and Leinen, M.: Depletion of atmospheric nitrate and chloride as a
736 consequence of the Toba volcanic eruption, *Geophys. Res. Lett.*, 23, 2513–2516,
737 <https://doi.org/10.1029/96GL02201>, 1996.

738 Zhu, Y., Bardeen, C. G., Tilmes, S., et al.: Perturbations in stratospheric aerosol evolution due to
739 the water-rich plume of the 2022 Hunga-Tonga eruption, *Commun. Earth Environ.*, 3,
740 248, <https://doi.org/10.1038/s43247-022-00575-7>, 2022.

741 Zuo, M., et al.: Volcanoes and climate: Sizing up the impact of the recent Hunga Tonga-Hunga
742 Ha'apai volcanic eruption from a historical perspective, *Adv. Atmos. Sci.*, 39, 1986–
743 1993, 2022.

744

745