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Abstract.

In 2019, Brazil experienced an intensive fire season, despite the absence of major climate anomalies to enhance fire activity.

Existing carbon monoxide (CO) emission estimates from state-of-the-art fire emission inventories differ by a factor two for the

period and region. We provide a top-down estimate on CO emissions from these fires using the new CarbonTracker Europe

– Long/Short Window (CTE-LW/SW) inverse modelling framework driven by column-averaged dry air CO mole fractions5

(XCO) from the MOPITT and TROPOMI satellite instruments.

Our analysis indicates that the 2019 fires in Brazil released approximately 47 TgCO. Although structural atmospheric-

chemistry related uncertainties remain (±15 TgCO), the inversions converged strongly to a common posterior (46–48 TgCO)

independent of the prior emission inventory (GFED5.1, GFAS v1.2) or assimilated dataset (TROPOMI, MOPITT).

Posterior fire emissions closely resemble the newly released GFED5.1, supporting recent advances in bottom-up fire mod-10

elling. Nonetheless, at the biome level, our results reveal a systematic underestimation—by roughly a factor of two—in the

Cerrado and Caatinga savannas relative to both fire emission priors. While more targeted uncertainty assessments are required,

we speculate that this emission gap unlikely stems from inversion choices alone and may indicate an underestimation of fuel

loads or emission factors.

Overall, we demonstrate CTE-LW/SW effectively leverages XCO to complement existing fire emission monitoring capacities15

at increasingly fine spatial resolution—a capability that is especially valuable in Brazil, where different fire regimes occur in

close proximity and fire activity has intensified in recent years.
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1 Introduction

In recent years, the Amazon region was subject to intense recurrent fires. These fires have far-reaching consequences for

air quality, human health, biodiversity, and the regional carbon balance (e.g. Barlow et al., 2016; Nawaz and Henze, 2020;20

Friedlingstein et al., 2025). Fire disturbances further pressure the Amazon region to act as net sink, a capacity that growing

evidence indicates is weakening (Gatti et al., 2021, 2023; Gloor et al., 2012; Brienen et al., 2015; Phillips et al., 2017; Hubau

et al., 2020).

Unlike the adjacent fire-adapted and fire-dependent Cerrado savannas, Amazonian rainforests are not naturally shaped by

fire (e.g. Cochrane, 2003; Pivello, 2011). Ignitions predominantly stem from human-driven land-use activities—primarily25

land clearing through slash-and-burn practices during which forest biomass is felled, dried, and then ignited (e.g. Uhl and

Buschbacher, 1985; Morton et al., 2006, 2008). These intentional burns usually produce long-lasting, smouldering fires. Fre-

quently, these escape into adjacent forests and persist as understory fires (e.g. Alencar et al., 2004, 2006; Morton et al., 2013),

which contribute to forest degradation (Lapola et al., 2023). Both the deforestation fires themselves and the degradation that fol-

lows release large amounts of carbon into the atmosphere, impacting carbon cycling on immediate to multi-decadal timescales30

(e.g. van der Werf et al., 2017; Lapola et al., 2023; Qin et al., 2021; Bourgoin et al., 2024).

On top of anthropogenic pressures, environmental conditions, such as droughts, increase the susceptibility of the fire-

sensitive Amazonian forests to burning (e.g. Brando et al., 2014). Dry seasons in Amazonia are becoming longer and more

intense (Marengo et al., 2018; Wainwright et al., 2022). The forests increasingly experience drought–heatwave events that

are more frequent, longer lasting, more extensive, and compounded by low soil moisture/high vapour-pressure deficit condi-35

tions (Ferreira et al., 2025). Climate projections from CMIP6 models indicate continued declines in rainfall, particularly in

the southeastern Amazon, alongside hotter and longer droughts (Parsons, 2020; Ukkola et al., 2020). Fire-conducive weather

conditions are becoming more frequent and extreme (Jolly et al., 2015; Jones et al., 2022), and projections indicate further

increases—especially for extreme events (Jones et al., 2022). Even if the rate of deforestation declines, reductions in fire

frequency (Le Page et al., 2017) and related carbon emissions (Aragão et al., 2018) are unlikely.40

After more than a decade of declining deforestation rates, and in the absence of abnormal drought conditions, Amazonian

fire activity rose sharply again in 2019. The fires drew the attention of the global media and scientists due to their scale and

visibility (e.g. Silveira et al., 2020; Lizundia-Loiola et al., 2020; Brando et al., 2020a; Cardil et al., 2020; Kelley et al., 2021;

Andela et al., 2022; Barlow et al., 2020; Escobar, 2019; Arruda et al., 2019), and rekindled concerns about increasing risks

of large-scale forest dieback (Lovejoy and Nobre, 2019; Brando et al., 2020b). Fire emission estimates for this period were45

made, among others, by bottom-up fire emission models like the Global Fire Emissions Database (GFED van der Werf et al.,

2017, 2025) and Global Fire Assimilation System (GFAS Kaiser et al., 2012), relying on burned area data coupled with a

vegetation model or fire radiative power (FRP) data, respectively.

These fire emission models have advanced our understanding of fire dynamics and the emissions they produce. While

significant progress has been made, important questions remain regarding their accuracy to estimate emission magnitudes,50

especially under challenging observational conditions (e.g. persistent cloud cover, below-canopy fires). A proper uncertainty
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quantification therefore remains challenging. Through its co-release with carbon dioxide (CO2) during incomplete combustion,

carbon monoxide (CO) serves as tracer of fire activity. Fire-induced CO enhancements stand out against a relatively low

background, making atmospheric CO observations a valuable proxy for total carbon emissions. Atmospheric modelling of

CO provides an independent means to evaluate bottom-up fire inventories. When taken a step further through satellite driven55

inverse modelling, it can offer a powerful, complementary constraint on fire emissions.

Early atmospheric CO inversion studies relied on sparse surface measurements, which rarely captured fire plumes and thus

placed little emphasis on optimizing fire emissions (Bergamaschi et al., 2000; Kasibhatla et al., 2002; Pétron et al., 2002; Pison

et al., 2009; Hooghiemstra et al., 2011; Palmer et al., 2003), with the exception of a surface-based CO inversion by van der Werf

et al. (2004), which despite its simplicity, proved effective in informing on continental scale fire emission anomalies and aided60

to improve the first global fire emissions data base (GFED) inventory estimates. The arrival of space-based CO retrievals—most

notably from the Measurements of Pollution In The Troposphere (MOPITT), Tropospheric Emission Spectrometer (TES), and

Infrared Atmospheric Sounding Interferometer (IASI) instruments—facilitated more systematic observations of fire plumes

and brought fire emissions more to the forefront of inversion analyses. They especially helped to better understand the timing

and magnitude of fire emissions (Heald et al., 2004; Pétron et al., 2004; Pfister et al., 2005; Arellano et al., 2006; Chevallier65

et al., 2009; Jones et al., 2009; Gonzi et al., 2011; Krol et al., 2013; Bloom et al., 2015; Yin et al., 2016; Nechita-Banda et al.,

2018; Jiang et al., 2017; Zheng et al., 2018; Naus et al., 2022; Peiro et al., 2022; Zheng et al., 2023).

Advances in satellite retrieval algorithms and the introduction of new instruments such as the TROPOspheric Monitoring

Instrument aboard ESA’s Copernicus Sentinel-5 Precursor satellite (S5P-TROPOMI), constantly improve our capability to

infer atmospheric CO abundances from space. These developments provide new opportunities to investigate fire emissions and70

their dynamics at increasingly higher spatial and temporal resolutions, as already demonstrated by for example van der Velde

et al. (2021b, a); Byrne et al. (2021, 2024); Goudar et al. (2023); Nüß et al. (2025); Griffin et al. (2024); Forkel et al. (2025);

Voshtani et al. (2025); Nguyen et al. (2023).

Despite these advances, few atmospheric CO inversion studies have focused specifically on South American fires (van der

Laan-Luijkx et al., 2015; Bowman et al., 2017; Hooghiemstra et al., 2012; Naus et al., 2022), and none have studied the75

added value of TROPOMI observations for this region using a formal inversion. In this study, we provide fire CO emission

estimates for the 2019 fires in Brazil using constraints from satellite column average CO mole fraction (XCO) data using a novel

inversion system. Our objectives are to (i) quantify the spatial and temporal distribution of CO fire emissions across different

biome types, (ii) assess the consistency of TROPOMI constraints w.r.t. MOPITT, and (iii) evaluate fire emission modelling

efforts for Brazilian fires with the inversion results. This work contributes to improve our understanding of the carbon impact80

of (extreme) fire events in the Amazon region to support future mitigation and monitoring strategies.

In the following sections, we first describe the new data assimilation framework and datasets used (Sect. 2). Subsequently,

we demonstrate the performance of our system for the 2019 fire season, as an example of an intense fire year, by comparing

our results with independent datasets (Sect. 3.1). We present the spatial and temporal overview of 2019 fire emissions (Sect.

3.2-3.3). We conclude with a discussion of our results and their implications for future fire emission quantification.85
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2 Methods and data description

2.1 The CTE-LW/SW inversion system for CO

To optimise South American fire emissions using satellite retrievals, we apply a two-step inversion framework consisting of

a long-window (LW) and a short-window (SW) inversion. The LW inversion resolves monthly to inter-annual variability in

the global CO budget, while the SW inversion targets daily variability in fire emissions. Decoupling the system in this way90

allows each step to use a set of observations that target spatio-temporal scales for source/sink processes of interest through the

design of a statevector. We implement this approach in the CarbonTracker Data Assimilation Shell (CTDAS; van der Laan-

Luijkx et al., 2017), building on the CarbonTracker Europe (CTE) ensemble Kalman smoother around the TM5 transport model

(Peters et al., 2005).

The long-window inversion approach was recently developed for CO2 and related tracers (van der Woude, 2024). Here, we95

present the first application that expands this LW system to CO. Subsequently, we designed and performed a short-window

inversion for CO and refer to the combined system as CTE-LW/SW. We model atmospheric CO using the following the mass

balance equation:

dCO(x,y,z,t)

dt
=

short-window︷︸︸︷
λfire

r,t ·Efire
(x,y,t) +

long-window︷ ︸︸ ︷︷ ︸︸ ︷
λNMVOC

r,t ·P NMVOC
(x,y,z,t) +

︷︸︸︷
λCH4

r,t ·P CH4
(x,y,z,t) +

︷︸︸︷
λant

r,t ·Eant
(x,y,t)−LCO+OH

(x,y,z,t)−Ddry
(x,y,t)

(1)

where Efire, Eant represent emissions from fires and anthropogenic activities. P NMVOC, and P CH4 stand for the chemical100

CO production through the oxidation of methane (CH4) and non-methane volatile organic compounds (NMVOCs). Chemical

loss of CO by the hydroxyl radical (OH; LCO+OH) and dry deposition (Ddry) are calculated online in the atmospheric transport

model that acts as observation operator (details in Sect. 2.3). The λ’s represent a set of linear scaling factors for each source

term for a given set of statevector elements (r) that are optimised in the indicated assimilation step (Table 1).

First, we optimise λNMVOC
r,t , λCH4

r,t , and λant
r,t in the global-scale long-window inversion using flask observations from the105

National Oceanic and Atmospheric Administration Global Monitoring Laboratory (NOAA-GML) GLOBALVIEWplus v4.0

ObsPack (Schuldt et al., 2024). This step focuses on the capturing the monthly to inter-annual variation in the CO budget

components (excluding fire emissions) using the background flask network. The long-window inversion then provides a set of

optimised fluxes that serve as the prior for the second step: the short-window inversion. The short-window inversion optimises

3-daily scaling factors for fast varying fire emissions with satellite XCO data that contain clear fire plume-like structures, while110

the other budget terms from the long-window optimisation are imposed.

A more detailed overview of the long-window inversion can be found in Appendix A1. The next sections further describe

the short-window inversion configuration.
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Table 1. Overview with the configuration of the CarbonTracker Europe Long-Window/Short-Window (CTE-LW/SW) inversions.

Component Long-window Short-window

Purpose Optimise CO background Optimise fire emissions

Assimilated observations Flask samples from NOAA

co_GLOBALVIEWplus_v4.0_2024-02-1

(Schuldt et al., 2024)

TROPOMI (Veefkind et al., 2012) or MO-

PITT (Drummond and Mand, 1996)

Statevector λCH4 , λNMVOC, λant λfire

Time step / cycle length 1 month 3 days

n ensemble members 150 150

n lags None 2

r statevector elements 6840 total, 95 per time step 2046

d.o.f. 115 77-1081

Inversion period 2014-2020 22 July - 30 Nov (2019)

Transport resolution 6°×4°×25 levels 1°×1°×34 levels

1 d.o.f. varies per short-window inversion cycle due to our emission-dependent covariance pre-masking (Sect. 2.4)

2.2 Prior fire emissions from GFED5.1 and GFAS v1.2

We start our inversions from two distinct fire emission inventories: GFED5.1 (van der Werf et al., 2017, 2025) and the GFAS115

v1.2 (Kaiser et al., 2012). Burned area-based inventories, such as GFED (van der Werf et al., 2017), calculate emissions by

combining satellite-based burned area with biogeochemical model outputs and emission factors. The new GFED5.1 inventory

has improved detection of small fires by including higher-resolution burned area inputs from Chen et al. (2023) based on

corrections derived mostly from Sentinel-2 and Landsat. Globally, this nearly doubled burned area estimates relative to MODIS

alone. For Brazil this resulted in a 61% increase for 2019, particularly during the late dry season (July-Oct).120

GFAS uses satellite-derived FRP observed by MODIS (both Terra and Aqua), to calculate fire emissions. Biome-level scaling

factors based on GFED3 are used to convert fire radiative energy (FRE) to total dry matter burned (Heil et al., 2010), which

are then combined with emissions factors that vary between biomes, mostly from Andreae and Merlet (2001), to calculate fire

emissions.

All inventories use emission factors to convert total dry matter burned to trace gas emissions. Traditionally, these factors125

have been static biome averages while in reality they depend on fuel type, fuel moisture content, and meteorological conditions

(van Leeuwen et al., 2013). Recently, Vernooij et al. (2023) combined a large set of savanna fire emission factor measurements

across the world with geospatial proxies for these conditions (e.g. tree cover fraction, soil moisture, vapour pressure deficit) and

a machine learning algorithm to derive dynamic savanna fire emission factors. GFED5.1 is the first inventory to operationally
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introduce spatio-temporal dynamic emission factors for savanna fires that allow a more realistic representation of temporal and130

regional variability.

GFED5.1 and GFAS v1.2 yield considerably different emission estimates for the 2019 fire season in Brazil of 41 TgCO and

25 TgCO, respectively. Expressed as total carbon, this difference translates to a factor of roughly 1.5. At the biome scale, the

contrasts become even more pronounced. In the Amazon biome, for example, the two inventories differ by up to a factor of

two in both their CO and total carbon emissions. Beyond underscoring the need for observations, these differences provide a135

means to assess the robustness of our inversions by examining how the optimised emissions respond to each prior.

2.3 Atmospheric transport and chemistry

We use the Transport Model 5 Massive-Parallel (TM5-MP; Krol et al., 2005; Williams et al., 2017) model to transport the CO

emissions and production fields, from which vertical profiles of CO mole fractions and pressure are sampled. These profiles,

combined with averaging kernels, are subsequently used in CTDAS to derive XCO.140

The short-window TM5 simulations were performed globally at a horizontal resolution of 1°×1°, with 34 vertical levels,

driven by three-hourly meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

analysis v5 (ERA5; Hersbach et al., 2020). Dry deposition is computed online. CO chemistry is linearised by prescribing

three-hourly OH fields from the Copernicus Atmosphere Monitoring Service (CAMS) ECMWF Atmospheric Composition

Reanalysis 4 (EAC4) dataset (Copernicus Atmosphere Monitoring Service, 2020; Inness et al., 2019), as well as the CO145

production from CH4 and NMVOC oxidation optimised by the long-window. Fire emissions are distributed vertically using

injection heights from the IS4FIRES dataset (Sofiev et al., 2012, 2013).

2.4 Statevector, covariance structure, and state propagation of the short-window system

Each statevector element (r) in λfire
r,t from equation (1) represents a 1°x1° grid box over land in South America between 22.5°S,

9.5°N, 79.5°W, and 34.5°W, resulting in a total of 1023 spatial unknowns (Fig. 1). At the start of each 3-day cycle, λfire
r are150

set to 1.0. We run the SW system with a 3-days assimilation window and 2 lags (i.e. 3-days lag). The scaling factors are

optimised with a square root ensemble Kalman Smoother (Whitaker and Hamill, 2002; Peters et al., 2005). In each cycle, a

total of (2× 1023) optimised scaling factors are thus calculated in the SW inversion. The optimised mean state of each cycle

is propagated to inform the next cycle’s mean state. This mean state is determined as the average between the current cycle’s

optimised state and a state filled with λ values of 1.0 (which represent the prior fluxes that are calculated by the long-window155

system). This procedure ensures that the scaling factors quickly revert back to the unscaled prior value of 1.0 when no CO

observations are present.
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Figure 1. Region of interest for the short-window inversion. The grid lines represent the spatial definition of the short-window statevector. The

background colours represent the biogeographical biome types, from Dinerstein et al. (2017), that we use in structuring the prior covariance

matrix. The figure also outlines the biome definitions from the TerraBrasilis platform (TerraBrasilis, 2025) that we later use to analyse the

fire emissions. The thick, semi-transparent, black line indicates the position of the arc of deforestation.

The degree of uncertainty on each scaling factor and their spatial correlations are described by the prior covariance structure.

This covariance structure reflects our assumption that the errors in emission inventories are related to emissions factors and

fuel characteristics or conditions, which often have some biome-dependency. We impose correlations within biogeographical160

biomes on using an e-folding distance correlation of 300 km (see also Fig. 1).

Given that only a subset of the gridded fire emission state contains non-zero values within a 3-day cycle, we restrict the

state-space to these active grid cells. This targeted state reduction mitigates the impact of zero-signal elements, which can

otherwise dilute the ensemble covariance estimate.

Fire emissions are inherently non-negative and represent a bounded quantity. However, in practice, the optimisation algo-165

rithm may generate negative λ values that correspond to physically impossible negative emissions. We apply a semi-exponential

transformation (eq. 2), similar to Bergamaschi et al. (2009), to the optimized scaling factors where λ < 1.0. We acknowledge

that this transformation introduces non-linearity in the relationship between the statevector deviations and XCO deviations (x′

andH(x′) respectively, see Peters et al. (2005)), yet we consider the use of the transformation to be more physically consistent,

as it ensures the exclusion of unrealistic negative emissions. Besides, because we run a lagged system, subsequent lags can170

compensate for any non-linear effects introduced by this transformation.

λ = e(λ−1) forλ < 1 (2)
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2.5 Observations for assimilation or validation

2.5.1 S5P-TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI) is a push-broom imaging spectrometer that measures backscattered175

solar radiances in the near-infrared (675–775 nm; NIR) and shortwave–infrared (2305–2385 nm; SWIR) (Veefkind et al., 2012).

CO columns are retrieved using the shortwave infrared CO retrieval algorithm (SICOR Landgraf et al., 2016). The instrument

is mounted on the Sentinel 5 Precursor (S5P) satellite. S5P was launched on October 13th 2017 and flies in a sun-synchronous

polar orbit at 824 km, crossing the equator at 13:30h LST. Due to its wide swath (2600 km across track), TROPOMI XCO data

covers Amazonia daily. At nadir, the columns have a footprint of 7×7 km2 (before) or 5.5×7 km2 (after) Aug. 6th 2019.180

TROPOMI XCO has extensively been validated against TCCON ground-based measurements and shown to meet the mission

requirements of 10% precision and 15% accuracy (Borsdorff et al., 2018; Sha et al., 2021). Borsdorff et al. (2018) reported that,

for clear-sky retrievals over land, biases are 6±4 ppb, while Sha et al. (2021) found that, with recommended quality filtering,

XCO biases average 9±3% across most TCCON stations. In addition, Martínez-Alonso et al. (2022) compared TROPOMI with

the MOPITT archive and demonstrated close agreement, particularly over land, with a mean difference of –3±11% relative to185

the MOPITT TIR product.

We use the L2 RPRO v2 product, downloaded from the Non Time Critical (NTC) stream in the Copernicus data space.

We only include retrievals with a quality control flag of flag > 0.5 as recommended by Apituley et al. (2024). To allow for a

"fair" comparison between the high-resolution TROPOMI retrievals and our coarser 1°×1° transport resolution, we generate

0.5°×0.5° superobservations following Rijsdijk et al. (2025).190

2.5.2 Terra-MOPITT

The Measurement of Pollution in the Troposphere (MOPITT) instrument is a gas-correlation radiometer onboard the NASA

Terra satellite (Drummond and Mand, 1996). Terra flies a sun-synchronous orbit at 705 km. At nadir, MOPITT has a spatial

resolution of about 22 km2 and overpasses at approximately 10:30 AM and PM local time. Launched already in 1999 (18

December), MOPITT remained active until recently (9 April 2025), delivering a long valuable data record (Canadian Space195

Agency, 2025). We use the L2 version 9 thermal-infrared (TIR; 4.7 µm band) retrieval product (Deeter et al., 2003, 2022)

and exclusively assimilate daytime overpasses. The vertical sensitivity of the MOPITT TIR product (mid-troposphere) is dif-

ferent and complementary to TROPOMI (sensitivity almost uniform throughout the troposphere). The reliability of MOPITT

retrievals has been well documented (e.g. Worden et al., 2010; Deeter et al., 2022), with retrieval biases for the version 9

TIR-only data stream estimated to be approximately 5%. The recent implementation of an enhanced cloud detection algorithm200

in the version 9 product has improved both the coverage and sampling frequency compared to version 8 (Deeter et al., 2022).

This particularly benefits regions like the Amazon.

Note that the MOPITT record has a data gap between June 26th and August 24th in 2019 resulting from instrument failure

and subsequent decontamination and hot calibration procedures (NCAR, 2024). This period covers substantial CO emissions
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according to the bottom-up emissions, which consequently remain unchanged in our inversion when assimilating XCO from205

MOPITT.

Naus et al. (2022) demonstrated that the TIR product places strong constraints on fire emissions in the Amazon. Alongside

the TIR product, MOPITT provides a near-infrared and thermal-infrared (NIR+TIR) product. The NIR product is limited to

daytime data and is more sensitive to CO mole fractions in the lower troposphere compared to the TIR product (Deeter et al.,

2022). Past CO inversion studies have employed both products, though not simultaneously (e.g. Nechita-Banda et al., 2018;210

Naus et al., 2022; Peiro et al., 2022).

2.5.3 Ground-based and aircraft observations

The simulations are evaluated against independent in-situ CO measurements from the Atmospheric Tall Tower Observatory

(ATTO) site in central Amazonia (Lavric and Walter, 2019). We calculated hourly averages from the 2019 record on the

80 m walk-up tower (2.14°S, 59.00°W). The samples were measured with a Picarro G1302 (CKADS-18) cavity ring-down215

spectrometer. We converted the data from the WMO X2004 to the WMO X2014A calibration scale. These tower data are used

only for evaluation, not assimilation.

We also use aircraft vertical profile measurements from the Obspack collection obspack_multi-species_1_manaus_profiles-

_v2.0_2023-09-26 (Miller et al., 2023). The profiles sample the troposphere approximately 80 km north-east of Manaus. In

total, nine flights were taken during our study period (22 July - 30 Nov 2019) with descending vertical extents between 5850220

m to 250 m (above sea level). The profiles were measured using a Picarro G2401-m (Miller et al., 2023).

We sample TM5 at the location of each individual sample in the tower and aircraft data series using three-dimensional

interpolation and hourly averages centred around the measurement time.

2.5.4 Model data mismatch and data selection

The observation error in the cost function usually consists of the actual instrument error (or retrieval/super-observation error)225

and a representativeness-error estimate of the transport model (i.e. model–data-mismatch error). We determine the latter error

contribution following Basu et al. (2018) in which the representativeness error is proportional to the simulated column gradient

at a given location with its neighbouring grid boxes. The total model–data mismatch is then taken as the quadratic sum of

the instrument and representativeness-error components. To assess whether our assumed error statistics are consistent with the

actual model–observation differences, we use the innovation χ2, defined as:230

χ2
ino =

(y−H(x))2

(HP b
t HT + R)

(3)

where y is the observation,H(x) the model equivalent of the observation, P b
t the prior error covariance and R the observation

error covariance or model-data-mismatch. A χ2
ino close to one indicates that the actual residuals are in balance with the expected

uncertainties.
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The total errors associated with TROPOMI super-observations are generally smaller than the uncertainties that charac-235

terise individual MOPITT XCO retrievals (∼3 ppb vs. ∼7 ppb on average for all XCO). To ensure that the innovations are

neither systematically over- nor under-weighted in the cost function—we increased the model–data-mismatch error by dou-

bling the transport-error component and adding a fixed 4 ppb term. This adjustment reflects our expectation that TM5 has

greater difficulty with boundary-layer transport (where TROPOMI is more sensitive than MOPITT) than to free-tropospheric

transport (where MOPITT’s sensitivity peaks). It also compensates for a likely underestimation of systematic errors in the240

super-observations and any unaccounted-for error correlations between individual retrievals. After inflation, the mean χ2
ino

approached one, indicating a well-balanced and statistically consistent error characterisation.

As our statevector only contains scaling factors for fire emissions, we preselected observations for assimilation. The inversion

only considers cases where either the observed or simulated (prior) XCO was recently influenced by fires. We achieve this by

applying a condition where either for the observed or modelled XCO ≥ 125 ppb. We verified that this selection for higher XCO245

did not result in strong CO accumulation in simulated XCO < 125 ppm (Appendix A2) and therefore not bias our fire emission

estimates.

Finally, XCO samples with residuals exceeding three times the model–data mismatch (indicative of poor transport model

performance in capturing observed fire impacts) are rejected for assimilation. We also exclude XCO samples with reported

surface pressure below 900 hPa, as such conditions (e.g. the Andes) are challenging for TM5 to model.250

2.6 Inversion procedure

We conducted a series of inversion experiments to quantify Brazilian fire emissions and to assess the robustness of the estimates.

These experiments test the sensitivity of the inversion results to the choice of prior fire emission inventory and the assimilated

satellite instrument. The different configurations are summarised in Table 2.

In addition to testing the sensitivity to different priors and observational constraints, we quantified how uncertainties in OH255

chemistry and in CO production from NMVOC oxidation influence the inferred fire emissions. Rather than performing a new

suite of inversions, we base this on a set of sensitivity experiments that was targeted to do this for the same region and for four

fire seasons, by Naus et al. (2022) (see their Fig. S2). Naus et al. (2022) ran their inversions with two sets of OH fields, and

two sets of chemical production fields. For each season that Naus et al. (2022) ran the experiments, we calculate the ensemble

standard deviation across their sensitivity experiments and then average these values over all four years. This approach yields an260

estimated structural uncertainty of 15 Tg CO per season in the posterior fire emissions. We consider this estimate conservative

for two reasons: (1) their inversion domain extends beyond Brazil, whereas our reported emissions are limited to the Brazilian

portion of the domain, and (2) our system includes an intermediate long-window inversion step.
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Table 2. Inversion experiments overview.

Experiment_ID Fire prior Assimilated XCO

GFED5.1_TROPOMI GFED5 .1 TROPOMI

GFASv1.2_TROPOMI GFAS v1.2 TROPOMI

GFED5.1_MOPITT GFED5.1 MOPITT
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3 Results

3.1 Comparison against observations265

In this section, we demonstrate the performance of our inversions by comparing against observations. We start with a compari-

son to satellite-based XCO and compare to surface observations (in-situ and aircraft). We focus these comparisons on our "base

inversion" which started from GFED5.1 and assimilated TROPOMI superobservations.

3.1.1 TROPOMI and MOPITT

The short-window posterior consistently improves agreement with observations compared to the prior. When compared to270

assimilated TROPOMI data, the simulated and observed XCO compare well, as expected (Fig. 2a - 2f, and Table 3). This

improvement is most pronounced for elevated XCO (>125 ppb), where the mean absolute error is reduced by 42–55%, with the

strongest error reduction (∼17 ppb) for large XCO (> 225 ppb) that are most representative of fire plumes.

Importantly, this improvement is not limited to assimilated data: validation against independent MOPITT observations also

confirm closer alignment between simulated and observed CO (Table 3). The overall improvement in model–data agreement275

demonstrates that the short-window inversion effectively extracts information from the satellite retrievals.

In terms of spatial structure, the prior residuals are dominated by plume-shaped patterns associated with fire signals (Fig.

2b). The short-window inversion system effectively corrects most biases through adjustments to fire emissions (Fig. 2c). In

an exemplary three-day cycle, TROPOMI observations show a plume stretching from north to south on the western flank of

the basin (Fig. 2a) that is overestimated or displaced in the prior (Fig. 2b). Furthermore, plume structures south-east of the280

arc of deforestation are visible, which are strongly underestimated in the prior (Fig. 2b). The inversion corrects much of both

discrepancies and substantially reduces biases in plume-dominated regions. Some mismatches remain — for example, the

larger than 20 ppb underestimation in the southeastern Cerrado requires emission increases that introduce positive biases at

more local scales in the northeastern Cerrado — but overall, the posterior provides the statistically best fit achievable within

observational constraints and prior uncertainties.285

The inversion also improves the temporal evolution of XCO as confirmed by the Hovmöller diagrams with daily TROPOMI

XCO (Fig. 2d-2f). The prior already reproduces broad seasonal variability, but negative biases emerge during the burning

season: over the southwestern Cerrado-box (B3), where CO is strongly underestimated from mid-August to October, while

the southeastern Amazon-box (B4) shows more rapid variations in the XCO residuals. Note that for both boxes the negative

residuals often are synchronous with increases in TROPOMI XCO, indicative of fire episodes. The posterior reduces these290

residuals throughout most fire episodes.

Table 3 and Figures 2b, 2c, 2e, and 2f (boxes B3, B4) show that in the background-dominated air masses, XCO barely changes

and does not deteriorate after the inversion. This shows that our data selection threshold and scaling factor transformation

choices did not lead to strong CO accumulation in the background. Together, these outcomes suggest that the short-window

prior residual structure is mostly related to fires that the short-window inversion effectively targets by optimising to GFED5.1295

bottom-up emissions.
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Table 3. Mean absolute error (or residual) and the standard deviation of the residuals per observed XCO bin for the GFED5.1_TROPOMI

base inversion.

MAE ± σ [ppb]

Range [ppb] n Prior Posterior

TROPOMI (assimilated)

0-125 16 613 10 ±12 9 ±7

125-150 46 357 12 ±14 6 ±8

150-225 24 465 19 ±22 10 ±14

>225 1 095 39 ±31 22 ±27

MOPITT (independent)

0-125 398 150 8 ±10 8 ±10

125-150 37 809 15 ±16 11 ±16

150-225 25 323 24 ±26 18 ±26

>225 1 139 49 ±41 35 ±47
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(a) (b) (c)

(d)

(e)

(f)

Figure 2. Evaluation of the GFED5.1_TROPOMI base inversion with S5P-TROPOMI superobservations. Spatial maps (a–c) and regional

time series (d–f) of XCO and model–observation residuals. (a) TROPOMI XCO averaged to a 0.5°× 0.5°grid for an example 3-day period

(14–17 Sep 2019), and corresponding (b) prior and (c) posterior residuals for the same period. (d) Hovmöller diagram of 3-day mean XCO

over the subregions indicated in (a): oceanic background (B1, B2), Cerrado (B3), and Amazon (B4); and (e,f) related prior and posterior

residuals. Colour bars are shared between (a,d) and (b,c,e,f).

3.1.2 Comparison to in-situ and aircraft observations

While the ATTO measurements do not sample intense fire plumes, they provide valuable independent information to vali-

date background and moderate pollution levels inside the Amazon. Comparison against ATTO CO mole fractions (Fig. 3)
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demonstrates that the short-window posterior generally reproduces observed CO mole fractions well, with a mean absolute300

percentage error of 12% over the 2019 fire season. This level of agreement with independent data provides confidence in the

inversions. Note that the difference between the long-window and short-window posteriors reflects the combined changes of

increased transport model resolution and fire emission optimisation. The narrow ensemble spread (shading around the lines;

nearly invisible), represents the limited sensitivity in both the long- and short-window inversions at this site.

We also evaluate the inversions against independent aircraft CO profiles collected near Manaus (Appendix A3). Compared305

to the long-window, the short-window inversion provides a clear improvement near the surface in the lower troposphere. The

short-window posterior yields a mean absolute percentage error of 19% relative to the observations. Although the short-window

tends to better represent the profiles than the long-window inversion, much variability remains across individual profiles. Above

4 km, however, we keep a large positive residual (usually >20 ppb) for all simulations, which we discuss in more detail in

Appendix A3.310

Figure 3. Comparison of measured and simulated CO mole fractions at ATTO at 79 m measurement height (m.a.g.l.). The lines represent the

long-window prior (red), long-window posterior (yellow), short-window posterior (blue). Shading around the mean ensemble member show

the one standard deviation of the ensemble. The short-window posterior is based on the GFED5.1_TROPOMI inversion.

3.2 Brazilian fire CO emissions during the 2019 fire season

Figure 4. Prior and posterior CO fire emissions [TgCO] for the 2019 Brazilian fire season. Coloured stacked bars represent contributions

from different biomes. Emissions in the Amazon biome have been disaggregated to dominant fire types based on Andela et al. (2022).
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According to the GFAS v1.2 and GFED5.1 inventories, total CO emissions from fires in Brazil during the 2019 fire season

(22 July–30 November) were 25 TgCO and 41 TgCO, respectively, as indicated in Figure 4. Our inversions suggest that fire

emissions are 4748
46 TgCO (meanmax

min ). The posterior emissions deviate by less than 20% from the GFED5.1 prior. For GFAS

v1.2 however, the inversions imply that an 81% increase of emissions is needed. This prior-posterior increase is substantially315

higher than the average 50% increase that Naus et al. (2022) found for the 2003-2018 fire seasons and will be discussed in

more detail (Sect. 4).

Despite starting from substantially different prior fire-emission totals, the inversions converge to nearly the same posterior

fire-emission integral over the season (46.0 TgCO and 47.7 TgCO). Likewise, inversions that assimilate either TROPOMI or

MOPITT data end up with similar fire season totals (47.7 TgCO and 48.2 TgCO), underscoring the robustness of the posterior320

estimates to both the choice of prior and the choice of satellite instrument.

On more local scales (bar-stacks in Fig. 4) or shorter time intervals, the posterior emission spread becomes larger in a relative

sense but still demonstrates strong convergence from multiple priors and instruments down to 3-day intervals for most periods

analysed (Fig. 5).

3.3 Biome-level fire emissions and their temporal variation325

Figure 5. Daily evolution of CO fire emissions by biome. The filled areas and thick lines show the posterior mean of the three inver-

sions (GFED5.1_TROPOMI, GFED5.1_MOPITT, and GFASv1.2_TROPOMI), while the dashed lines indicate the corresponding priors (–.-

GFED5.1, ... GFAS v1.2). The posterior spread can be found in Fig. A4.

To better understand the origin and dynamics of posterior–prior differences, we analyse CO emissions at the biome level and

their temporal evolution. Given the contrasting fire dynamics and the shifting position of the arc of deforestation relative to

biome boundaries, we further subdivided the Amazon emissions into the season’s dominant fire types following Andela and

Jones (2024). As shown in Figures 4 and 5, savanna fires make a substantial contribution within the Amazon biome (21-32%),

and their temporal evolution aligns more closely with Cerrado fires than with deforestation events, supporting this subdivision.330
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The temporal evolution of fire CO emissions during the 2019 dry season is characterised by a clear succession of different

fire regimes (Fig. 5). Both prior and posterior estimates reproduce this phasing, but the posterior estimates highlight important

discrepancies in the magnitude of emissions for several biomes—most notably the Caatinga and Cerrado, where optimised

emissions differ by a factor of 2–3 from their priors. Figure 5 illustrates this evolution, which we divide into three phases:

early-season (mid-August), mid-season (mid-September), and a widespread late-season tail (October-November).335

Early season (mid-August)

The early 2019 fire season was dominated by fires in the Amazon biome, with emissions primarily from deforestation

and forest fires linked with coarse woody fuels that burn mostly in the smouldering phase. This peak was abnormally early

compared to the 15-year preceding GFAS v1.2 and GFED5.1 means (not shown). In this period, priors disagree most: GFAS

v1.2 estimates are sometimes up to three times lower than GFED5.1 during the period until late August, adding up to 6.1 TgCO340

vs. 11.4 TgCO respectively. Meanwhile, the posterior mean estimate falls in between (8.8 TgCO). We note that this period

also shows the largest spread in posterior estimates (Fig. A4; adding up to a range of 20.9-25.5 TgCO over the full season).

This spread is driven by the absence of observational constraints from MOPITT during most of August (Sect. 2.5.1), while

TROPOMI inversions lean towards GFAS v1.2. Furthermore, TROPOMI inversions suggest a minor shift in CO emissions

from deforestation to savanna-type fires in the Amazon and Cerrado regions. The mid-august peak in both priors remains345

preserved, however there seems to be a timing shift of 1-2 days, which may be related to our use of 3-daily (and not daily)

scaling factors.

Mid-season (mid-September)

During September, fire activity shifts decisively toward the Cerrado. These fires are characterised mostly by fast-burning,

flaming combustion with low CO emission factors (61 gCO/kgDM in GFAS v1.2 and Fig. A5 for GFED5.1). In contrast to350

the deforestation fires in the early season, the priors are in much closer agreement here. Regardless, the posteriors consistently

indicate that an upward adjustment, of often more than two times the prior, is required to agree with MOPITT and TROPOMI

observations, reflecting the strongest emission modifications in the inversions. This could suggest that prior inventories under-

estimate Cerrado fire emissions at the first seasonal peak (∼5 TgCO between mid-August and late September).

Late season (October–November) The late fire season is characterised by a more heterogeneous mix of fire types across355

multiple biomes. Savanna fires in both the Amazon and Cerrado continue to contribute substantially, accounting for 45% of

Brazil’s total CO emissions in the prior and increases to roughly 65% in the posterior between October and December. These

savanna fires also persist well into late November. From late October onward, some residual burning remains in the Amazon

biome, and additional activity emerges in the Pantanal wetlands, which typically requires prolonged dry conditions before they

can sustain fire.360

During October and November, the posterior mean estimate for Brazil (13.3 Tg CO) indicates that emissions remain consid-

erably higher than suggested by the prior inventories (6.4 Tg CO in GFAS v1.2 and 10.9 Tg CO in GFED5.1), with the most

notable increases in the Caatinga and Cerrado regions.
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4 Discussion

Our study provides a satellite-constrained estimate of CO fire emissions for the 2019 Brazilian fire season. The convergence365

of our inversions based on independent XCO from TROPOMI or MOPITT and fire inventories on a total of 46–48 TgCO

underscores the robustness of the top-down estimates and highlights the value of satellite instruments to constrain the magnitude

of Brazilian fire emissions. This estimate comes with an uncertainty estimate of∼15 TgCO that represents structural knowledge

gaps concerning CO production from the oxidation of NMVOCs and loss by OH. Our study also serves as a cross-validation

of the two satellite datasets, and the convergence of posteriors shows potential for combined use of the instruments to explore370

their constraints on the vertical distribution of CO in future research.

4.1 Comparison with prior fire emission inventories

When comparing our inversion results with existing bottom-up inventories, we find encouraging progress in fire emission

modelling. This is demonstrated by the good agreement with the new GFED5.1 dataset (posterior within <20% of GFED5.1),

as opposed to the older GFAS v1.2 product (posterior deviates >80%). The agreement with GFED5.1 suggests that recent375

updates, such as the inclusion of the new small-fire burned area dataset, help to better capture regional fire regimes.

When analysed at biome level, the inversion suggests large fire emission changes for fires in the Amazon, ranging between

3-9 TgCO, with a reduction and increment compared to GFED5.1 and GFAS v1.2 respectively. However, the posterior mean

(23.5 TgCO) ends up well within the large prior range of 14.3-26.8 TgCO as inventories in tropical forest regions remain

uncertain. Detection of emissions from understory fires remains inherently challenging due to persistent cloud cover and dense380

canopies (Morton et al., 2013). It should be acknowledged that our posterior spread remains relatively large for this region

(20.9-25.5 TgCO) in part due to limited observational constraints from MOPITT during the peak of the fire season here and

that our system has limited capacity to account for a lack of emissions due to missed detections, as will be discussed later.

In contrast, we find systematic emission increments for the Cerrado and the Caatinga biomes. The inversion adjusts the

prior by a factor two, resulting in a 7-8 TgCO prior-posterior gap. This result is unexpected, as fire dynamics in these savanna-385

dominated ecosystems are typically considered relatively well captured and constrained by global inventories due to availability

of ground measurements and relatively straightforward fire dynamics. Our findings however, are in line with previous work

by Naus et al. (2022), who also reported a systematic underestimation of savanna and shrubland fire emissions by GFAS

v1.2. In their work the median difference between the prior and posterior emissions also approached a factor of two, while

using a different inversion algorithm (4D-var v. EnKF), meteorological driver data (ERA-Interim v. ERA5), and different390

CO source/sink datasets. The remainder of this discussion will investigate the potential drivers of this large and systematic

discrepancy between our inverse results and the fire inventories..

4.2 Potential drivers of the Cerrado/Caatinga emission gap

To understand the source of the discrepancy between the prior and posterior Cerrado/Caatinga emissions, we first assess

potential errors in our inversion framework before discussing the prior inventories.395
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First, transport modelling errors can play a role. The comparison of TM5 simulated vertical profiles of CO against observed

CO from aircraft flights near Manaus suggest that convective mixing of surface signals aloft is too strong in TM5 (Fig. A2). At

the same time, major errors in vertical transport seem unlikely given the strong consistency between TROPOMI- and MOPITT-

based inversions despite their different vertical sensitivities and overpass times. Nonetheless, transport modelling errors remain

a source of uncertainty in atmospheric inversions. These uncertainties are challenging to quantify and would benefit from for400

instance an inter-comparison study with different transport models over South America, which is beyond the scope of this

work.

Second, Lichtig et al. (2024) showed that African fires contribute up to 25% of tropospheric CO mass over eastern Brazil.

The good agreement between TROPOMI observations and TM5 simulated fields over the main inflow regions (Sect. 3.1.1, Fig.

2d) suggest however that long-range transport biases are small. Moreover, the good agreement negates the hypothesis that the405

high emissions are a compensation for a lack of CO inflow from distant fire emissions or CO production from CH4 oxidation

in the background atmosphere.

Third, localised chemical sources or sinks – such as CO production from NMVOC oxidation or loss through OH – remain

an alternative explanation for the differences over the Cerrado and Caatinga. However, the magnitude of the sub-regional

changes required makes this unlikely. To close the emission gap, NMVOC-derived CO production in these regions would need410

to increase two- to fourfold. Besides, this assumes a 1:1 compensation between NMVOC-CO and fire-CO, but as Naus et al.

(2022) demonstrated, the relationship is closer to 2:1, implying an even larger and less plausible adjustment would be needed.

Furthermore, such a large, localised change in the NMVOC source would require compensating biases elsewhere and degrade

the current good agreement with independent CO budget estimates (Zheng et al., 2019; Naus et al., 2022).

Following the same reasoning, we think that large OH biases in the Cerrado/Caatinga are improbable. Moreover, the CAMS415

state-of-the-art chemical data assimilation system has constraints on species important for OH-chemistry through extensive

assimilation of satellite observations, making such systematic biases in our imposed OH fields unlikely. Also, a recent inter-

comparison by Jones et al. (2025) shows that CAMS EAC4 surface ozone (a key OH precursor) lies at the low end of current

reanalyses, suggesting that EAC4 could more likely underestimate than overestimate OH. More OH in our inversion would, if

anything, increase inferred fire emissions, further stretching the prior-posterior Cerrado/Caatinga emission gap.420

While structural uncertainties in the representation of the chemical sources and sinks are substantial,±15 TgCO (see Section

2.6), we argue that the current chemical source and sink terms cannot fully account for the Cerrado/Caatinga posterior estimates

without degrading agreement with observations in downwind regions (e.g. Section 3.1.1). Therefore, the adjustment in the

Cerrado/Caatinga seems to be plausible not only because it is independent of the data assimilated in our inversions, but also

because it is consistent with other top-down studies that found larger CO and CO2 emissions in the Cerrado and Caatinga425

biomes (Naus et al., 2022; Botía et al., 2025).

4.2.1 Global fire emission inventory perspective

In previous research, underestimation of fire emissions has often been linked to missing small fires (Ramo et al., 2021; Roteta

et al., 2019; Randerson et al., 2012). These are, however, now accounted for in GFED5.1 (Chen et al., 2023; van der Werf

20

https://doi.org/10.5194/egusphere-2025-6213
Preprint. Discussion started: 5 February 2026
c© Author(s) 2026. CC BY 4.0 License.



et al., 2025). Compared to the Amazon, the savannas of the Cerrado and Caatinga usually have less cloud cover and lower430

canopy density, which facilitates more reliable satellite-based fire detections. For these reasons, we expect undetected fires to

contribute only marginally to the remaining prior-posterior discrepancy.

Second, uncertainties in CO emission factors (EFs) could contribute to the emission gap, but it is unlikely that they can

explain the mismatch between bottom-up inventories and our top-down study entirely. Literature reported uncertainties in CO

EFs for savanna fires are 28-30% (Andreae and Merlet, 2001; Andreae, 2019) and the Cerrado/Caatinga average CO EFs in435

GFAS v1.2 and GFED5.1 are substantially different, with 65 g CO/kg dry matter in GFAS v1.2 (Kaiser et al., 2012; Andreae

and Merlet, 2001), while GFED5.1 approaches a region weighted average of 55 g CO/kg dry matter when the majority of

dry matter is combusted (Fig. A5). Taking this into consideration, a 20% uncertainty in the prior EF appears reasonable.

However, applying a 20% increase to the prior emissions would only account for about 20% of the ∼8 TgCO prior-posterior

Cerrado/Caatinga emission gap. To close the gap entirely, the average EF for these savanna fires would need to exceed that of440

tropical forest fires (101-109 g CO/kg dry matter (Andreae and Merlet, 2001; Andreae, 2019)), which is unrealistically high

for savanna fires. Therefore, while EF uncertainties may be a contributing factor, they alone cannot resolve the factor-of-two

discrepancy between our posterior estimates and the prior inventories.

A third possible source of underestimation lies in how the two inventories calculate total matter burned. Although GFAS v1.2

and GFED5.1 report similar total CO emissions for the Cerrado/Caatinga (7.2 and 7.8 TgCO, respectively), their substantially445

different CO EFs imply that their underlying total dry matter burned estimates are not in agreement. For GFAS v1.2, Eames

et al. (2025) also found (total carbon) emissions to be on the low end for a savanna region in Africa and listed three potential

reasons related to underestimated total matter burned that are relevant for the Cerrado/Caatinga region too: A) GFAS is tuned

to the older GFED (version 3) version that did not account for small fires, B) use of a globally unified conversion factor from

FRE to mass DM burned (kgDM MJ−1) that may not be representative for all savanna types, and C) weakening of the FRE450

signal by tree canopies in woody savannas.

Recent studies also support the hypothesis of underestimated fuel loads in GFED5.1. Forkel et al. (2025) demonstrated that

the woody debris and litter estimates in GFED500m (Van Wees et al., 2022) are low for the Cerrado when compared to both

field measurements and a GEDI LiDAR-based fuel map from Leite et al. (2022). This is particularly important because litter

and coarse woody debris constitute over 90% of the fuel in savanna fires within the Amazon and Cerrado biomes according to455

Forkel et al. (2025), underscoring the need for accurate characterisation of these fuel pools. Even minor shifts in fuel quantity

can be significant if they coincide with shifts towards fuel types associated with higher CO EFs.

Accurate modelling of these fuel pools at a global scale remains a major challenge. As both Van Wees et al. (2022) and

Eames et al. (2025) discuss, surface and below-canopy fuels are difficult to observe with satellites. Consequently, models often

rely on empirical tuning. For instance, the GFED model’s carbon pool turnover rates are tuned using data from field campaigns460

(Van Wees et al., 2022), which may not capture the full heterogeneity of the vast and diverse Cerrado/Caatinga region.

Finally, fire dynamics over the regions have been changing and it is unclear if global inventories represent this well. Our

inversion indicates the largest emission adjustments in the northeastern Cerrado (MATOPIBA: Maranhão, Tocantins, Piauí,

and Bahia) region, an area where most native vegetation remains, which are under strong pressure from human activities (Silva
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et al., 2021; Alencar et al., 2020). Over the past three decades, nearly half of the Cerrado’s native vegetation has been converted465

to other land uses (Alencar et al., 2020), which could imply fundamental alterations in fire characteristics such as fuel type,

load, and consumption, and consequently, emission factors that may not be adequately included in global inventories. While

the years pre- and post land use conversion show increased fire activity, negative trends in burned area emerge as the converted

lands age (Ribeiro et al., 2024). Human activities fragment the landscape, which can disrupt the natural cycle of frequent,

low-intensity fires, leading to woody encroachment (Stevens et al., 2017; Rosan et al., 2019). This build-up of fuel increases470

the risk of larger and more intense fires (Fidelis et al., 2018). More woody fuels in turn usually are characterised by higher EFs.

For example, provided that emission factors in inventories often are (at least in part) based on field measurements before the

2000’s and static in time (e.g. Kaiser et al., 2012; Andreae and Merlet, 2001), such dynamics may not be represented through

emissions factors.

4.3 Outlook and Future Directions475

This study and our new modelling framework open the path for future research. For example, we want to highlight the potential

of leveraging CO to improve fire detection and quantification, particularly for small and cloud-obscured fires that traditional

bottom-up methods may still under-represent. Although our current framework effectively constrains regional emissions, it

has only limited capability to assign emissions locations where the priors have no or low emissions because the errors we

assign to each location depends on the magnitude of the local fire emission itself. Future studies could build on our work480

by implementing more flexible prior error structures. For example, adopting approaches that allow the inversion to allocate

emissions more freely, such as in Yin et al. (2015), could allow a more complete exploitation of downwind CO observations

and refine emission estimates for low-intensity fire regimes.

Furthermore, our data selection strategy focused on fresh fire plumes by using a 125 ppb threshold, which proved effective

in constraining peak fire emissions without introducing strong biases in CO background mole fractions. Future work should485

explore more dynamic data selection methods or consider assimilation of background XCO in the long-window inversion step.

Such advancements would allow for the assimilation of all available observations, which could help to capture more diffuse,

widespread fire emissions that lead to lower yet detectable XCO increases.

Ultimately, our goal is to accurately quantify total carbon release. We convert the CO emissions to total carbon using pre-

determined CO
CO2

ratios, as done in previous studies (e.g. Gatti et al., 2010; van der Laan-Luijkx et al., 2015; Peiro et al., 2022;490

Basso et al., 2023; Bowman et al., 2017; Byrne et al., 2024; van der Velde et al., 2021b; Koren, 2020; Botía et al., 2025).

Assuming the prior CO
CO2

ratios, our posterior CO estimates translate to fire carbon emissions of 270–278 TgC for the 2019

Brazilian fires, compared to 141-205 TgC according GFAS v1.2 and GFED5.1 respectively. This is roughly 100 TgC larger

than previous estimates (Andela et al., 2022). Roughly 50–70% of this prior-to-posterior increase stems from the Cerrado and

Caatinga. This not only highlights the importance of savanna fire carbon emissions but also the critical uncertainty in CO
CO2

495

emission ratios. Future work would benefit from further investigation of the CO
CO2

emission factor ratios, and potential con-

straints thereon. For instance, joint CO/CO2 inversions would allow the co-optimisation of the emission ratios using alternative

combustion efficiency proxies like ∆XNO2
∆XCO

from (van der Velde et al., 2021a).
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5 Conclusions

We introduced the new CTE-LW/SW atmospheric inversion framework for CO to provide complementary satellite-based con-500

straints on fire emission inventories and applied it to the 2019 Brazilian fire season. By assimilating XCO data from both

TROPOMI and MOPITT, we derive a top-down estimate of 46-48 TgCO for this period. A limitation is that we made this

estimate using a single representation of non-fire CO sources and sinks. Uncertainty in these terms, presumably driven by CO

production from NMVOC oxidation and loss via OH oxidation, could systematically bias inferred fire emissions; sensitivity

tests indicate a structural uncertainty of ∼15 Tg CO. The strong convergence between inversions using different satellite in-505

struments and prior inventories (GFED5.1, GFAS v1.2) nonetheless demonstrates robustness and simultaneously functions as

independent cross-validation of these key satellite datasets over a complex, fire-dominated region.

At the national scale, our posterior emissions agree within <20% with the new GFED5.1 inventory, which signals progress

in bottom-up fire emission modelling. Nonetheless, at the biome-level, we surprisingly find that emissions from the Cerrado

and Caatinga biomes are nearly twice as large as the inventories. This systematic underestimation in savanna and shrubland510

ecosystems, consistent with previous studies, points to unresolved challenges in top-down and/or bottom-up emission mod-

elling. Understanding this mismatch is important for carbon budgeting, because relatively low CO
CO2

emission factor ratios, on

which the use of CO as a proxy for total carbon usually relies, implies that these fires, would have relatively strong implications

for total carbon emissions.

Our findings underscore the value of XCO-based atmospheric inversions for monitoring fire emissions and evaluating emis-515

sion inventories in fire-prone regions. More broadly, this work helps to advance our understanding of the carbon impacts of

(extreme) fire events in Brazil and provides a framework to support improved mitigation, monitoring, and policy-relevant

assessments of fire-driven carbon fluxes.
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Code and data availability. The CTDAS and TM5-MP living codebases are openly accessible at https://git.wur.nl/ctdas and https://ci.tno.

nl/gitlab/tm5/tm5-mp, respectively. The posterior daily gridded CO fire emissions from this study along with the CTDAS inversion and520

TM5-MP transport model code versions used to generate these posterior emissions, are archived at https://doi.org/10.5281/zenodo.17881656

(van den Berg, 2025)
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A1 Long-window CO inversion

We performed a six-year (2014–2020) long-window atmospheric CO inversion to obtain a CO budget that is consistent with

observed CO concentrations. This optimised atmospheric state and budget then serve as the initial conditions for the short-525

window inversion. An overview of the CO long-window configuration is provided in Table A1. In this configuration, fire

emissions are prescribed. To minimise the aliasing of fire signals onto other sources, we assimilate only observations with no

or very weak fire influence and apply coarse, tightly constrained scaling factors to the budget components.

For details on the design philosophy of the long-window/short-window inversion framework, as well as a demonstration of

the system for CO2, we refer to van der Woude (2024).530

Prior chemical CO production fields from NMVOC and CH4 oxidation for the long-window inversion are taken from a TM5-

MP chemistry run with extended hydrocarbon chemistry for 2018, following Myriokefalitakis et al. (2020). In this dataset OH

was reported to be too high, which led to overcompensation in the chemical CO production terms. To avoid a strongly biased

start-conditions, we pre-scaled the NMVOC and CH4 fields. Additionally, to represent known inter-annual variability in the

CH4, we scaled the CH4 oxidation fields to the CH4 atmospheric growth rate from NOAA (Lan et al., 2022).535

Figure A1. Long-window inversion CO budget overview. Note that the zoom region in Naus et al. (2022) spans from 75 to 39°W and from

28°S to 8°N.
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Table A1. Long-window CO inversion configuration.

Statevector λNMVOC
r,t λCH4

r,t λantr,t

Spatial structure (r) 5° latitude bands 5° latitude bands TRANSCOM regions

Update frequency (t) monthly monthly monthly

Correlation length1
[km] 1000 1000 None

[months] 3 3 4

Inter-yearly correlation1
[T/F] T T T

[years] 3 3 3

Prior uncertainty [%] 7% 7% 5.5%

Prior dataset 0.55×TM5 full chemistry

fields (Myriokefalitakis

et al., 2020)

0.80×TM5 full chemistry

fields (Myriokefalitakis

et al., 2020)

CAMS GLOB ANT v6.2

(Granier et al., 2019;

Soulie et al., 2024)

Other

Assimilated observations Flask samples from obspack_co_1_GLOBALVIEWplus_v4.0_2024-02-13

with no assimilation concerns (Schuldt et al., 2024)

Model data mismatch 5.5 ppb

Initial CO concentrations CAMS EAC4 (Copernicus Atmosphere Monitoring Service, 2020; Inness et al., 2019)

Tropospheric OH CAMS EAC4 (Copernicus Atmosphere Monitoring Service, 2020; Inness et al., 2019)

Stratospheric OH Climatology (Brühl and Crutzen, 1993)

1 This represents the correlation distance or time after which the correlation strength decays by a factor of e.

A2 Data selection and scaling factor transformation

We applied a condition (observed XCO >= 125 ppb | simulated (cycle prior) XCO >= 125 ppb) for selecting XCO to assimilate

and a scaling factor transformation to avoid negative posterior emissions. By including the "or simulated XCO" criteria, we

make sure that the inversion has freedom to scale down a fire when it is modelled in the short-window prior but not observed.

In Table A2, as well as the independent MOPITT XCO < 125 ppb in Table A2, provide evidence that these decisions did not540

or not strongly degrade the simulated columns for the lowest bin. It shows that the simulated "background" retrievals did not

result in systematically overestimated "background" columns.
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Table A2. Mean absolute error (or residual) and the standard deviation of the residuals per observed XCO bin. Extension of Table 3 with

the subset of TROPOMI XCO that was rejected for assimilation by the (observed XCO > 125 ppb | simulated (cycle prior) XCO > 125 ppb)

criteria.

MAE ± σ [ppb]

Range [ppb] n Prior Posterior

TROPOMI (not-selected for assimilation)

0-125 497 780 6 ±8 7 ±7

A3 Comparison against vertical profiles near Manaus

The TM5 simulations reproduce the observed vertical CO profiles over Manaus reasonably well (Fig. A2). Across the nine

flights, the short-window posterior yields a mean absolute percentage error of 19%, consistent with the the ATTO tower evalu-545

ation (Fig. 3). In the lower troposphere, the short-window posterior (blue) generally aligns more closely with the observations

than the long-window posterior (orange). This improvement is driven primarily by the higher transport resolution (6°×4°

versus 1°×1°) and, to a lesser extent, by sensitivity to fire emissions within 3 days of the profile measurements.

In a few cases (28 July, 11 August, and 5 November), we detect limited (lower-)profile sensitivity to prior fire emissions

in the short-window inversion (not shown). For these dates, the differences between the long- and short-window posteriors in550

the lower half of the profiles are consistent with reductions in upwind tropical forest fire emissions around that period (see,

e.g., Fig. 5). However, because the aircraft did not sample intense, freshly lofted smoke plumes, this comparison remains

inconclusive for evaluating short-window performance. To fairly evaluate the short-window performance, targeted in-plume

measurements would be critical.

Fig. A2 also demonstrates that even when observed profiles suggest substantial fire contributions (e.g. 11 Aug), an improved555

model–observation match is not guaranteed. We attribute this partly to the spatial error correlations imposed in the inversion,

which distribute emission adjustments across a broader upwind region rather than allowing independent changes at the grid-

cell level. Additionally, emissions are optimised over 3-day windows rather than daily, limiting the system’s ability to capture

highly localised plume peaks. These results only underscore a fundamental characteristic, namely that atmospheric inversions

such as ours are not designed to constrain super-local, day-specific plumes.560

The Manaus profile comparison show that the long-window inversion exerts only a minor influence on CO levels over the

Amazon (typically <10 ppb). Because we did not assimilate local flask observations, the long-window inversion is effectively

insensitive to the sub-regional variability captured in the lower half of the aircraft profiles. In addition, the current long-window

configuration was intentionally configured to adjust only large-scale, slowly varying components of the global CO budget which

restricts the inversion’s freedom to constrain such local fluxes in central Amazonia. As a result of these choices, we find the565

long-window prior ensemble spread is narrow and the posterior remains close to the prior in the Manaus profiles.

A persistent positive residual that averages around 20 ppb remains in the free troposphere of the simulated profiles. The

bias reflects, at least in part, large-scale transport or flux errors. This is demonstrated by Fig. A3, which shows long-window
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posterior residuals of similar magnitude at Farol de Mae Luiza (NAT)—and at times also at Ascension Island (ASC)—during

July–December 2019. These locations frequently influence free tropospheric air masses near Manaus during this period of the570

year. Nonetheless, NAT and ASC remain surface sites and may therefore not capture potential unresolved biases in CO fluxes

that originate from the African mainland to their full extent. As a consequence, we cannot conclusively determine how much

potential large-scale transport or flux errors contribute to the free-tropospheric residuals observed over Manaus.

Alternatively, the residual could reflect local-scale flux errors and/or in vertical mixing/boundary-layer venting. Previous

studies have identified TM5 as fast-mixing compared to other chemistry transport models (Krol et al., 2018; Jin et al., 2025;575

Remaud et al., 2023). The frequent lack of steepness in the simulated profile vertical gradients are indeed indicative of too

much (deep convective) vertical mixing. However, we consider major vertical mixing biases for our full domain and study

period unlikely for two reasons: (1) excessive upward mixing would also require low CO in the boundary layer—especially

in the unoptimised long-window prior—which is not (systematically) evident from the Manaus profile comparison; and (2)

substantial vertical mixing errors would be expected to produce inconsistent short-window results between the MOPITT and580

TROPOMI driven inversions, given their different averaging-kernel structures. Instead, we find highly consistent solutions.

Although this does not necessarily confirm that TM5 does not have any vertical-mixing issues, it does demonstrate that it

unlikely presents itself as dominant driver of the free-tropospheric residual.
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Figure A2. Comparison of measured and simulated carbon monoxide (CO) vertical profiles from nine research aircraft flights near Manaus

(2.595°S, 60.209°W), each containing approximately 50 individual measurements (total = 455). Coloured lines show the ensemble mean

of the simulated profiles (150 ensemble members for both inversions), and shaded regions indicate the ensemble standard deviation. The

short-window posterior results are derived from the GFED5.1_TROPOMI inversion. Black points represent observed profiles with each

point representing a time interval average (median length of 42-seconds and 42 samples per interval); error bars denote the corresponding

standard deviation.
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(a)

(b)

Figure A3. Comparison of observed (black/gray) and simulated CO mole fractions at ASC and NAT from the long-window inversion. Prior

simulations are shown in red and posterior simulations in yellow. Shaded areas represent one standard deviation away from the ensemble

mean together with the model–data mismatch. Top panels show CO mole fractions, bottom panels show residuals (model – observation),

both with corresponding distributions on the right. The grey shaded box indicates the short-window simulation period.
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A4 Posterior spread in fire emissions

Figure A4. Same as Fig. 5 in the main text, but with the shaded area showing the full posterior range (minimum to maximum) instead of the

posterior mean.

The posterior spread is generally is small and tends to fall outside the prior-range for Cerrado, Caatinga and Amazon-biome-585

savanna fires. The only notable exception is early on in the season for deforestation fires. While the TROPOMI inversions

there tend to scale towards the GFAS v1.2 emissions, the GFED5.1_MOPITT inversions lacks constraints due to the 1-month

instrument outage (Section 2.5.1). This presumably is resulting in the large posterior spread, while later on in September with

active MOPITT constraints the posterior spread reduced rapidly even though the prior spread was very large there.

A5 Emission factors590

Figure A5 illustrates the general behaviour of CO emission factors (EFs) for savanna fires in the Cerrado/Caatinga savannas,

as represented in GFED5.1 . The figure shows that the daily, dry-matter-weighted CO EF (blue line) is dynamic, fluctuating

throughout the year. Early in the season, during more humid conditions, the EFs are higher. During the peak fire season

(August-October), when fuels are dry, the vast majority of dry matter is combusted (green area) and average EF decreases to

approximately 55-58 g CO/kg dry matter. This is substantially lower than the static EF of 63 g CO/kg dry matter used in the595

previous GFED 4 inventory (red line). Later in the season the EF increases again; Vernooij et al. (2023) hypothesise that this

reflects an increased contribution from woody fuels that become dry enough to burn.
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Figure A5. Seasonality of the savanna CO emission factors (EF; blue; left axis) averaged over the region indicated in the inset panel from

GFED5.1 (the EFs are weighted by dry matter). The green shaded area shows the region total kg dry matter (DM; right axis). The red line

indicated the fixed emission factor that was previously used in GFED 4.
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