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Abstract. We extend the Dynamic Global Vegetation Model LPJmL to version 6.0 by explicitly representing methane

(CH4) dynamics within the coupled carbon–nitrogen–water system. The implementation (i) prognoses water-table

depth and wetland extent using a CTI–TOPMODEL framework, (ii) solves sub-daily, vertically explicit mass bal-

ances for CH4 and O2 including diffusion, ebullition, and plant-mediated transport, (iii) represents methanogenesis

and methanotrophy with temperature- and moisture-dependent kinetics, and (iv) integrates land-use and rice man-5

agement effects alongside inundation-tolerant plant functional types. This architecture enables consistent simulation

of CH4, carbon dioxide (CO2) and nitrous oxide (N2) emissions from natural wetlands and managed systems to-

gether with the soil CH4 sink. Extensive benchmarking against global datasets shows that LPJmL6 reproduces the

magnitude and regional–temporal variability of CH4 flux pathways while maintaining strong skill in the simulated

terrestrial carbon, nitrogen, and water budgets. The model thus provides a coherent, process-based framework to10

quantify CH4 within the coupled carbon–nitrogen–water system, elucidate interactions with vegetation and soils,

and assess how land-use, wetland conservation and restoration, and rice management options affect methane and

overall greenhouse–gas budgets in support of climate-mitigation strategies.

1 Introduction

Wetlands, including ponds, lakes, rivers, and marshes are responsible for approximately 30% of global methane15

(CH4) emissions (Saunois et al., 2020). These unique ecosystems are characterized by water-saturated conditions

that create anoxic environments promoting methanogenic processes. However, wetland dynamics, such as changes

in its water balance and vegetation, can significantly impact CH4 emissions (Yang et al., 2022).

The variability in wetland CH4 emissions is governed by several environmental factors, including water table

depth, temperature, vegetation type, nutrient availability, and air pressure (Whalen and Reeburgh, 1991; Bartlett20

and Harriss, 1992; Moore et al., 2011; Turetsky et al., 2014; Bloom et al., 2017b). These factors regulate the balance

between oxic and anoxic decomposition, which determine CH4 production and release under anoxic conditions

and carbon dioxide production and release under oxic conditions. Water table depth, controlled by precipitation,

evapotranspiration, and soil conditions, is a key driver of anoxic conditions necessary for methanogenesis. A high
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water table limits O2 diffusion, promoting CH4 production, while a low water table fosters oxic decomposition and25

CH4 oxidation (Turetsky et al., 2014; Whalen and Reeburgh, 1991). Temperature also influences CH4 emissions by

affecting microbial activity, with soil temperature driving methanogenesis rates and water temperature influencing

gas solubility and diffusion (Moore et al., 2011). Vegetation impacts CH4 fluxes by transporting CH4 via aerenchyma

tissues and contributing organic substrates that fuel microbial processes (Bartlett and Harriss, 1992). Nutrient

availability further shapes microbial activity, influencing the balance between CH4 production and oxidation (Bloom30

et al., 2017a). Atmospheric pressure and vapor pressure deficit (VPD) indirectly affect emissions by influencing gas

diffusion and soil moisture dynamics (Moore et al., 2011).

These interrelated factors underscore the complexity of CH4 emissions from wetlands and their role in global

greenhouse gas budgets. While the emission sources are diverse (including fossil fuel and waste (Saunois et al., 2020)),

this paper focuses on the specific issue of CH4 emissions from land use (excluding direct livestock emissions, which are35

governed by feed quantity, quality and livestock stocking densities (Heinke et al., 2023)) and from natural peatlands.

Understanding and quantifying these emissions is vital for developing effective climate mitigation strategies and

improving insights into the carbon cycle and its role in global climate systems.

We have implemented the main processes controlling CH4 dynamics in an updated version of the Dynamic Global

Vegetation Model, LPJmL (Lund-Potsam-Jena managed land; Schaphoff et al., 2018; von Bloh et al., 2018). This40

enhanced model simulates the intricate dynamics of natural and anthropogenic CH4 emissions within the terrestrial

biosphere, integrating wetland and permafrost dynamics as part of the coupled global carbon and water cycles.

In this work, we extend the LPJmL model from version 5.10 (von Bloh et al., 2018; Lutz et al., 2019; Wirth

et al., 2024) to version 6.0 by incorporating processes that represent CH4 dynamics. Specifically, we introduce a

dynamic representation of the water table to determine the surface area influenced by the unconfined aquifer. This,45

combined with simulated O2 and CH4 concentrations in soil layers, enables the estimation of wetland distribution

and anaerobic soil conditions. Consequently, the model now simulates CH4 generation, concentrations in soil layers,

and fluxes to the atmosphere, fully integrated with the hydrological and biogeochemical processes of LPJmL.

Following the documentation of this new implementation, we provide a global evaluation of key processes related

to wetland and CH4 dynamics, along with other relevant processes, to assess the overall performance of LPJmL6.50

2 Module description

This module description focuses on the newly developed part of the model. A general description of the LPJmL

model can be found in Schaphoff et al. (2018) and in subsequent descriptions and evaluations of further model

extensions, i.e. von Bloh et al. (2018); Lutz et al. (2019); Wirth et al. (2024). Additional changes are documented in

the Supplement and together constitute LPJmL5.10.2. Wetlands are the primary natural sources of CH4 production,55

while agricultural land is a major source of human-caused CH4 emissions. In LPJmL6, we consider both natural and
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anthropogenic sources of CH4 emissions. Given the large computational cost of the simulation of CH4 soil processes,

this can be turned off for simulations with LPJmL6 that are not aiming at studying CH4 dynamics (see Supplement).

Each grid cell is divided into several sub-regions, called stands, which represent different land-cover and land-use

types. We distinguish a natural wetland stand, natural upland stand, several agricultural stands, pasture stands60

and setaside stands. Managed land-cover types are further distinguished into rainfed and irrigated stands. The

introduction of the natural wetland stand makes the conversion of different land-use types more complex in LPJmL6

compared to earlier versions (see section 2.5).

2.1 Wetland representation

We compute the water–saturated area in each 0.5° grid cell from the compound topographic index (CTI), which65

describes the propensity of a location to accumulate water (Beven and Kirkby, 1979) and is defined as

CTIi = ln
(

αi

tan(βi)

)
, (1)

where αi is the upslope contributing area and βi the local surface slope at point i. In our implementation, CTI and

slope statistics at 0.5° resolution are taken from the topographic datasets described in the section 4.1. Within each

grid cell, CTI values are used to represent subgrid-scale variations in wetness and to derive the saturated fraction70

following a TOPMODEL–type approach (Beven and Kirkby, 1979; Sivapalan et al., 1987; Kleinen et al., 2012).

To relate CTIi to water-table depth we follow the TOPMODEL framework Beven and Kirkby (1979):

z∆i = z̄∆ +
1
f
· (CTIi−CTI), (2)

where z∆i is the local stand specific water table depth at point i (measured relative to the soil surface, with

z∆i
= 0 at the surface), z̄∆ the grid cell mean water table depth, CTI is the grid cell mean CTI, and f (m−1) is a75

soil-dependent parameter describing the exponential decline of transmissivity with depth (see Table 1). Areas are

considered saturated when the water table reaches the soil surface, i.e. when z∆i
= 0. The corresponding threshold

CTI value for saturation CTIsat follows from Eq. 2:

0 = z̄∆ +
1
f
· (CTIsat−CTI) (3)

Rearranging Eq. 3 yields:80

CTIsat = CTI− f · z̄∆. (4)

Within each grid cell we assume that CTIi follows a gamma distribution (Sivapalan et al., 1987; Kleinen et al.,

2012). The parameters of this distribution are estimated from the mean, standard deviation and skewness of CTIi
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Table 1. Soil–type specific parameters for calculation of the saturation area and of the water table depth

Soil type f in m−1 Ψmin in mm Bmin

clay 2.0 -467.7 11.4

silty clay 1.9 -323.6 10.4

sandy clay 1.6 -97.7 10.4

clay loam 1.5 -263.0 8.52

silty clay loam 1.6 -616.6 7.75

sandy clay loam 1.3 -134.9 7.12

loam 1.2 -354.8 5.39

silt loam 1.3 -758.6 5.3

sandy loam 1.2 -141.3 4.9

silt 1.5 -758.6 5.3

loamy sand 1.0 -36.3 4.38

sand 0.8 -69.2 4.05

f describes the decline of transmissivity with depth,

Ψmin is the saturated soil matric potential for mineral soil,

Bmin is the Clapp – Hornberger exponent (Lawrence and Slater, 2008).

(see section 4.1). The saturated fraction of the grid cell is then given by the probability that CTIi ≥ CTIsat, i.e. by

the upper tail of the gamma distribution computed from its cumulative distribution function. This fraction defines85

the inundated area of the grid cell.

The calculation is repeated annually using the annual mean of z̄∆; temporal changes in z̄∆ therefore translate into

changes in wetland extent. The computation of z̄∆ is described in section 2.2.

2.2 Soil water balance

Soil water dynamics are represented by a multi-layer model with layer thicknesses of 200, 300, 500, 1000, and 100090

mm. Vertical soil moisture transport in this model is governed by infiltration and percolation. Water is lost from

the soil column through transpiration, soil evaporation, surface and lateral runoff, and sub-surface drainage, which

in LPJmL6 is influenced by interactions with groundwater (see below).

2.2.1 Infiltration

The processes of vertical water movement in the soil column have remained unchanged since their initial description95

by Schaphoff et al. (2018) and Lutz et al. (2019). However, infiltration of daily rainfall and applied irrigation

amounts (P ; in mm) is now influenced by topography and is modified by accounting for a contribution to surface

runoff (βHAG), which depends on the mean slope gradient of the stand (β):
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infil = P · (1−βHAG + α ·βHAG), (5)

where α is the factor representing the dependence on soil water conditions as described in Schaphoff et al. (2018):100

α =
(

1 − Wliq(1) + Wice(1)

(θsat(1)−wpwp(1)) · z(1)

) 1
Φinf

, (6)

based on the first layer’s relative volumetric soil water content at saturation (θsat(1)), the relative soil water content

at the wilting point (wpwp(1)), and its actual soil water content (Wliq(1)
in mm) and the actual ice content (Wice(1)

in mm) of the first layer. z(1) is the layer thickness (in mm). The factor α is scaled with Φinf , to account for the

actual above-ground litter layer cover fraction as described in (Lutz et al., 2019). P is routed through the soil column105

partitioned into packets of maximum 4 mm at a time. The newly added Haggard function relates the slope gradient

(β) to the fraction of non-infiltrating water contributing to surface runoff (Haggard et al., 2005):

βHAG =
0.06 · ln(β + 0.1) +0.22

0.43
. (7)

Infiltrated water is routed through the soil column depending on the hydraulic conductivity of the soil layer and

the soil moisture of the layer below (Schaphoff et al., 2018; Lutz et al., 2019) down to the layer of the water table.110

The percolation of the last unsaturated layer recharges the ground water, and thus the model is able to simulate

the temporal variation of the water stored in the unconfined aquifer (Wa). Lateral runoff is determined by the

groundwater–soil water interactions which is adopted from the CLM4.5 model (Riley et al., 2011; Niu and Yang,

2006; Niu et al., 2005).

2.2.2 Drainage115

Subsurface drainage (i.e. groundwater discharge) (qdrain) is distinguished between completely and partially frozen

and completely unfrozen conditions of the layers below the groundwater table. In the unfrozen state:

qdrain = qdrain,max · exp(−fdrain · z∆), (8)

where fdrain = 2.0 m−1 is a decay factor describing the exponential decrease of drainage with increasing mean water

table depth (z∆). The local maximum subsurface drainage rate (qdrain,max at z∆ = 0) depends on the stand-specific120

topographic slope β:

qdrain,max = maxdrain · tan2(β). (9)
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The reference parameter maxdrain is set to 50 mm day−1 following Christen et al. (2006) and increased to

100 mm day−1 for agricultural land to mimic enhanced field drainage. The subsurface drainage rate for the at

least partially frozen state is:125

qperched = Θice ·maxperch · ks · (zfrost− z∆). (10)

Lateral drainage above the frozen soil column depends on the saturated hydraulic conductivity (ks), and the

maximum rate maxperch, equivalent to maxdrain for sub-soil dynamics, is assumed to be 50 mmday−1, but is strongly

limited by Θice that gives the ice impedance factor (Swenson et al., 2012a). zfrost is the depth at which the soil is

frozen. Drainage only occur when zfrost > z∆. Θice is calculated from the ice content of the layer that is partly frozen.130

It describes the increased tortuosity of the water flow when parts of the pore space are filled with ice:

Θice = 10−Ω·icefrac (11)

and

icefrac =

soildepth∫

0

Fice(z)/soildepthdz, (12)

where Fice = θice
θsat

is the frozen part of the water filled pore space relating θsat, the relative water content at saturation135

(m3 water pro m3 soil), to the ice content relative to the soil porosity. If the soil is saturated and all water is frozen

Fice is at unity. Ω is a parameter set to 6 following Swenson et al. (2012b), to meet the impedance of frozen ground.

2.2.3 Water table depth calculation

This section describes how the water table depth (and therefore the groundwater level) changes depending on

the exchange of water between the saturated zone (below the water table) and the unsaturated zone (above it).140

The equilibrium matric potential and corresponding water content follow the hydrostatic formulation of Zeng and

Decker (2009), as implemented in the Community Land Model-CLM4.5 (Oleson et al., 2013) , and used for dynamic

groundwater–soil coupling and recharge calculation following Swenson and Lawrence (2014). The recharge rate

qrecharge of the water table depth can be determined by applying Darcy’s law to z∆:

qrecharge =−kaq ·
Ψ∆−Ψ(lwt)

z∆− z(lwt)
, (13)145

where Ψ∆ and Ψ(lwt) are the soil matric potential at z∆ and of the layer above z∆, where lwt is the index of this

layer. kaq is the hydraulic conductivity of the layer which contains the water table and is calculated as follows:
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kaq = Θice,(lwt+1) · ks ·
(

θ(lwt+1)

θsat,(lwt+1)

)2·B(lwt+1)+3

. (14)

Ψ(lwt) is not simply a constant, it depends on how the soil would behave under hydrostatic equilibrium at the

current water–table depth (z∆). Ψ(lwt) represents the equilibrium potential at the interface between saturated and150

unsaturated zones and is described by the saturated soil matric potential of the different soil types (Ψsat), the relation

of the volumetric water content above the water table (θ(lwt) in m3 water pro m3 soil) and θsat:

Ψ(lwt) = Ψsat,(lwt) ·


 θ(lwt)

θsat,(lwt)



−B(lwt)

. (15)

The Clapp – Hornberger exponent (B(lwt)) is an empirical parameter that controls the steepness of the soil water

retention curve (Clapp and Hornberger, 1978), describing how rapidly soil suction increases as the soil dries. When155

the soil is saturated (θ = θsat), the matric potential is close to zero and the soil water is under little or no tension.

As the soil dries, the matric potential becomes increasingly negative, reflecting stronger capillary and adsorptive

forces that hold water within smaller pores. Following the approach from Lawrence and Slater (2008), both B(lwt)

and Ψsat,(lwt) are adjusted based on the soil’s fraction of organic material using a weighted combination approach:

B(lwt) = (1− fsc,(lwt)) ·Bmin + fsc,(lwt) ·Bsc (16)160

and

Ψsat,(lwt) = (1− fsc,(lwt)) ·Ψmin + fsc,(lwt) ·Ψsc, (17)

where fsc,(lwt) is the fraction of organic material in this layer and Bmin is the Clapp – Hornberger exponent for

mineral soils (Table 1) and Bsc = 2.7 for organic soils respectively Ψmin the saturated matric potential for mineral

soils and Ψsc = 10.3 for organic soils (parameters for mineral soils are given in Table 1).165

Within the soil bucket, the equilibrium state between the water table and the layers above is reached when the

water entering the soil layer equals the water leaving it. The adjustment of the water table reflects the balance of

water fluxes between the saturated zone and the unsaturated zone.

qrecharge determines from the hydraulic properties (Eq.˙?? if the water table rises or falls. z∆ is initially set to the

maximum soil depth and gradually reaches equilibrium during the spin-up simulation. This adjustment is based on170

changes in saturated zone storage. From the balance of the recharge rate (qrecharge) and drainage (qdrain or qperched

for partly frozen soils) the water table can be adjusted using the following equation:

∆z∆ =
qrecharge− qdrain

Sy
, (18)
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where Sy is the specific yield ranging between 0 an 1. It depends on the water table location and saturated soil

properties:175

Sy = θsat,(lwt)

(
1−

(
1 +

z∆

Ψsat,(lwt)

) −1
B(lwt)

)
. (19)

The stand-specific aquifer (Wa in mm) represents a vertically and spatially constrained water pool that is associated

with individual stands within a grid cell. Its volume is limited to a maximum of 5000 l and is updated by the balance

of qrecharge and qdrain if the water table is below the calculated soil column Wa:

Wa = qrecharge− qdrain. (20)180

The Wa is stand specific and becomes hydraulically active and declines only when the water table falls below the

maximum soil depth or the maximum storage is not reached, allowing the compartment to store additional water

or release it through drainage. For the ground water dynamics an additional pool is introduced as described in

section 2.2.4

2.2.4 Groundwater Pool Representation and Baseflow Recession Approach185

A spatially explicit groundwater storage compartment was implemented for each grid cell to account for subsurface

water dynamics. The groundwater pool is recharged by two components: (i) the percolation flux, defined as the

downward drainage from the bottom soil layer, and (ii) the lateral runoff generated in the lowest saturated soil layer,

representing subsurface flow contributing to groundwater recharge.

To simulate the temporal evolution of groundwater discharge, we apply a baseflow-recession approach (Beck et al.,190

2013). The dimensionless baseflow recession coefficient (kbf ∈ [0,1]) characterises the rate at which baseflow declines

(Fig. A1). The specific formulation used here was developed in the ERMITAGE project (ERMITAGE project report

(2013)) and is defined separately for each grid cell to account for spatial heterogeneity in hydrogeological properties

such as aquifer transmissivity, soil texture and topographic gradient. High values of kbf denote fast-draining soils

or shallow aquifers, leading to rapid groundwater release, whereas low values represent deep or low-conductivity195

aquifers with slow recession and more sustained baseflow contributions. The release of groundwater to streamflow

(baseflow) is described by a first-order linear recession function:

Qbf(t) = kbf ·GW (t), (21)

where Qbf(t) denotes the baseflow at time t, GW (t) is the current groundwater storage.

The residual groundwater storage after baseflow release is retained in the groundwater compartment and con-200

tributes to subsequent discharge events, thereby introducing a memory effect in the hydrological system. This pa-
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rameterization ensures both spatial differentiation and temporal delay in the subsurface runoff component, improving

the realism of long-term streamflow simulations.

In cells with irrigated agriculture the groundwater storage pool also serves as an additional source for irrigation

that is accessed only when surface water availability is insufficient to meet irrigation demand.205

2.2.5 Stand-specific slope calculation

As the slope has an enormous importance for the infiltration and the runoff formation, but there is no information

about the exact location of different stands within the grid cell, we distinguish only the mean slope for the wetland

(βwet) and for the upland area (βup), respectively. To derive stand-specific slopes for wetlands and uplands, we

therefore make a simple statistical assumption about the subgrid distribution of slope. Within each grid cell, the210

subgrid slope m is treated as a random variable which is assumed to follow a negative exponential probability

distribution with cumulative distribution function (CDF)

F (m) = 1− exp(−λm). (22)

The rate parameter λ is chosen such that the mean of this distribution equals the DEM-derived grid-cell mean slope

(βmean)215

E[m] =
1
λ

= βmean . (23)

where E[m] denotes the expectation (statistical mean) of m. After computing the wetland area fraction (Awet) of the

grid cell (see section 2.1), we determine a threshold slope mw,max such that F (mw,max) = Awet, assuming that the

fraction of the cell with m≤ mw,max is equal to the wetland area fraction. Using the inverse CDF of the exponential

distribution this yields220

mw,max =− 1
λ

ln(1−Awet), (24)

which is then constrained to the range [mmin,mmax] of the grid cell. Slopes between mmin and mw,max are assigned

to the wetland stand, and slopes between mup,min and mmax to the upland (natural or agricultural) stand. The mean

slope of the wetland part is obtained from the truncated exponential distribution over [mmin,mw,max] as

βwet =

mw,max∫

mmin

mλe−λm dm

mw,max∫

mmin

λe−λm dm

, (25)225
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and is additionally constrained not to exceed βmean. In the code these integrals are evaluated analytically using the

antiderivative −exp(−λm)(m+1/λ). Analogously, the upland mean slope βup is computed as the conditional mean

of the same exponential distribution over [mw,max,mmax] (see Fig. 1). The DEM-derived minimum and maximum

slopes of the cell are denoted mmin and mmax. All non-rice agricultural stands are assigned the upland mean slope,

whereas rice paddies are assumed to be levelled fields and therefore receive a slope of exactly zero.230

Figure 1. Determination of the slope values of wetland and upland stands depending on the fraction of the wetland area

within a grid cell

2.3 Methane cycle

CH4 dynamics within the terrestrial biosphere arise from both natural biogeochemical cycles and anthropogenic

influences. Natural CH4 emissions are predominantly driven by anaerobic microbial methanogenesis in O2-deprived

environments such as wetlands, peatlands, and rice paddies, where the decomposition of organic matter under anoxic

conditions facilitates CH4 production. Anthropogenic processes—such as those associated with intensive livestock235

farming, rice cultivation, fossil fuel extraction, and land-use modifications—contribute additional CH4 through altered

substrate availability and ecosystem disruption. Within LPJmL 6.0, soil CH4 dynamics are resolved at sub-daily time

steps that simulate the CH4 pool by accounting for concurrent production and oxidation (see Fig. 2). An adaptive sub-

stepping scheme refines the time step when local CH4–O2 concentration gradients become steep, ensuring numerical

stability and mass conservation. The CH4 flux to the atmosphere is computed as the sum of ebullition, molecular240

diffusion, and plant-mediated transport. The magnitude of each pathway responds to soil moisture (saturation and

air-filled porosity), substrate availability (labile carbon), and the soil redox state (oxygen availability), which together

regulate both production and oxidation rates.
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Figure 2. Newly added or modified soil processes in the LPJmL6 model. CO2 diffusion is assumed to be instantaneous as in

earlier versions of LPJmL (Schaphoff et al., 2018) and there is no interaction of CO2 with the soil during the diffusion process,

whereas the diffusion processes of oxygen and CH4 are explicitly modeled because the time and position in the soil column is

important for the CH4 dynamics.

2.3.1 Balance of Methane and Oxygen Concentrations in Soils

The evolution of the CH4 concentration in the soil is characterized by the diffusive transport of CH4 through the245

soil column (first part of the equation) and the production of CH4 (methanogenesis (Rprod)) and losses through CH4

oxidation above the water saturated layer if enough oxygen is available (Roxic), the de-gassing through forming of

bubbles in water filled pores (ebullition (Qebull)), and the plant mediated transport (Qplant,CH4) by vascular plants

through their aerenchyma:

ϵCH4

∂CCH4(z, t)
∂t

=
∂

∂z

[
DCH4(z)

∂CCH4(z, t)
∂z

]

−Qout
ebull(z, t) +Qin

ebull(z, t)−Qplant,CH4(z, t)

+ Rprod(z, t)−Roxic(z, t).

(26)250

The O2 concentration is calculated analogously to the CH4 concentration equation including the O2 consuming

processes of oxic decomposition of soil organic matter (RCO2),the plant mediated transport (Qplant,O2), nitrification

of NH+
4 to NO−3 (RNO−3

), and aerobic root respiration (Rroot):

ϵO2(z)
∂CO2(z, t)

∂t
=

∂

∂z

[
DO2(z)

∂CO2(z, t)
∂z

]
−Qplant,O2(z, t)

− WO2

WC
RCO2(z, t)− 2

WO2

WCH4

Roxic(z, t)

− 2
WO2

WN
RNO−3

(z, t)− WO2

WC
Rroot(z, t).

(27)
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where ϵO2 resp. ϵCH4 are the O2 and CH4 porosities, that convert concentration per soil volume to the gas concen-255

tration per air volume and are calculated as

ϵO2 = v + ϕ · θsat ·BO2 , ϵCH4 = v + ϕ · θsat ·BCH4 , (28)

where ϕ is the volumetric soil water content expressed per unit pore volume (mm3 of water / mm−3 of soil porous

volume; here θsat is used as an equivalent measure of the pore-volume fraction), and v is the soil air content (m3

air per m3 soil). WC, WO2 , and WCH4 are the molar masses of Carbon (12 gmol−1), O2 (32 gmol−1), and CH4260

(16 gmol−1), respectively. The Bunsen coefficients of O2 (BO2) and CH4 (BCH4) describe the solubility of these

gases in water as a function of temperature. Due to the decreasing capacity of water to dissolve gases with rising

temperature, this dependence is commonly expressed using exponential decay functions. Following Yamamoto et al.

(1976) and Wiesenburg and Guinasso Jr (1979), we apply the following empirical relationships:

BO2 = 0.0647 · e−0.0257·Tsoil , BCH4 = 0.0523 · e−0.0236·Tsoil . (29)265

The net CH4 flux to the atmosphere, Fatm, represents the total upward CH4 transfer from the soil to the atmosphere.

It is considered positive when the soil acts as a net CH4 source and negative when it acts as a net sink. This flux is

composed of three contributing terms

Fatm(t) =
(
−DCH4(z)

∂CCH4(z, t)
∂z

)

z=0

+ Qout
ebull(0, t) + Fplant(t), (30)

where the diffusive flux at the soil-atmosphere interface, −DCH4(z)∂CCH4 (z,t)

∂z , and the ebullition flux, Qout
ebull(z = 0, t),270

escape directly to the atmosphere. Note that ebullition contributes directly to the atmospheric flux only from the

surface layer (z = 0), as ebullition from deeper layers is transferred to the layer above instead of escaping directly

(see section 2.3.5). The third term, Fplant(t), represents the flux of CH4 transported through plant tissues (see

section 2.3.6) , particularly aerenchyma structures, which provide a low-resistance conduit for CH4 transfer from

anaerobic soil layers directly to the atmosphere, bypassing diffusion and ebullition pathways.275

2.3.2 Soil organic matter decomposition into CO2 and CH4

Oxic decomposition of organic carbon follows the principles described by Schaphoff et al. (2018). The anoxic decom-

position model is adapted from Khvorostyanov et al. (2008). Aerobic conditions promote the generation of CO2 in all

soil carbon pools and anaerobic conditions lead to CH4 production. The soil carbon pools consist of an intermediate

and a slow pool with turnover rates for the oxic decomposition of 0.03 and 0.001 respectively at 10°C and a fast so-280

called active pool with a turnover rate of 0.3 (Schaphoff et al., 2018). For realistic decomposition dynamics, Schaphoff
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et al. (2013) introduced a vertical soil distribution (Jobbagy and Jackson, 2000) which improved the simulation of

the carbon, which can be released by permafrost thawing (see also Schaphoff et al. (2013)). Decomposition follows

first order kinetics:

∂C(z, t)
∂t

= RCO2(z, t)−Rprod(z, t), (31)285

where oxic (RCO2) and anoxic decomposition(Rprod) is reciprocally exclusive.

Soil respiration – oxic decomposition

Oxic decomposition is computed as

RCO2(z, t) = min
[
k1(z, t) ·C(z, t),

∂Cmax(z, t)
∂t

]
(32)

where C is the carbon pool size at time t and soil depth z, k1 is the daily oxic decomposition rate, and ∂Cmax is the290

mass of carbon corresponding to O2 which is available for oxic decomposition:

∂Cmax(z, t)
∂t

= O2(z, t) · WC

WO2

(33)

O2(z) is the mass of molecular soil O2 at depth z. The oxic decomposition rate is expressed as:

k1(z, t) = k · g(Tsoil(z, t)) · f (ϕ(z)) . (34)

k1 incorporates the rate constant (k) that represents the reciprocal of the mean residence time τ for the litter295

components, as described by Schaphoff et al. (2018) for the litter components. Additionally, k1 is influenced by the

temperature dependency function g (Tsoil(z, t)), and the soil moisture function f(ϕz) as outlined in Schaphoff et al.

(2018) related to the non–frozen water. The temperature dependence function is based on an Arrhenius relationship

as described in Schaphoff et al. (2018)

g (Tsoil(z, t)) = exp
[
308.56 ·

( 1
56.02

− 1
Tsoil(z, t) + 46.02

)]
, (35)300

where Tsoil is the soil temperature in degree Celsius. The soil moisture function has its maximum around field

capacity of the soil and is given by

f(ϕ(z)) = 0.0402− 5.005 ·ϕ(z)3 + 4.269 ·ϕ(z)2 + 0.719 ·ϕ(z).
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Methanogenesis – anoxic decomposition

The anoxic decomposition (Rprod) is calculated as follows:305

Rprod(z, t) = k2(z, t) ·C(z, t). (36)

The methanogenesis rate (k2) is expressed as

k2(z, t) = k · rk · exp
(−CO2(z, t)

O∗2

)
· g(Tsoil(z, t)). (37)

CO2(z,t) is the O2 concentration at depth z, while O2
* represents a threshold O2 concentration of 10 g m−3. As demon-

strated by Duval and Goodwin (2000) methanogenesis is significantly suppressed by higher O2 concentrations. rk is310

an empirical parameter reflecting the reduced methanogenesis rate under anoxic conditions, which is considerably

slower than oxic decomposition and is set to 0.1 for the fast soil carbon pool and 0.5 for the fast decomposing litter

pool. Components of the carbon pool, such as lignin, degrade much more slowly in anoxic environments due to their

recalcitrant structure and resistance to microbial breakdown, further limiting methanogenesis. The decomposition

rate under anoxic conditions is 4–10 times lower than under oxic conditions, with reported rates ranging from 0.02315

to 1.44 mg CH4 g−1 over 500 days (Lee et al., 2012). This corresponds to a decomposition rate between 1.46 × 10−5

and 0.00105. Methanogenesis rate k2 has the same temperature dependence g (Tsoil(z, t)) and rate constant (k) as

the oxic decomposition.

2.3.3 Methane oxidation (Roxic)

The representation of the CH4 oxidation (Roxic) follows the approach by Walter and Heimann (2000). Roxic occurs320

above the saturated soil layer, where enough O2 is available.

Roxic(z, t) = min

[
Vmax ·WCH4 ·CCH4(z, t)
Km ·WCH4 + CCH4(z, t)

· g (Tsoil(z, t)) ,CO2(z, t) · WCH4

2WO2

·O2,frac

]
, (38)

where Km and Vmax are the Michaelis-Menten coefficients. These are defined in the model for Km = 5µM and Vmax =

20 µM h−1(Walter and Heimann, 2000). CCH4 is the CH4 concentration at time t and depth z in g m−3. g(Tsoil)is the325

temperature response function given in Eq. 35. Vmax and Km need to be multiplied by the molecular mass of CH4.

O2 consumption is limited by O2,frac = 0.95, accounting for O2 use for oxidation of reduced compounds, where 5% is

assumed (Conrad, 1996; Xu et al., 2010; Saunois et al., 2020). O2 consumption from aerobic microbial respiration,

plant root respiration. nitrification and CH4 oxidation is taken into account by reducing the O2 content of the

respective layer.330
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For the temperature dependency of CH4 oxidation a Q10 relationship is used

g (Tsoil(z, t)) = Q
Tsoil(z,t)−Tsoil,mean(z)

10
10 (39)

where Tsoil,mean is the annual mean soil temperature and the Q10 is set to 1.8.

2.3.4 Diffusion of Methane from soil (Fdiff)

CH4 diffusion, which describes the movement of gas from higher to lower concentrations between layers and the air,335

is governed by Fick’s law:

Fdiff(z, t) = DCH4(z) · ∂CCH4

∂x
(z, t), (40)

where DCH4(z) is the diffusivity at depth z and CCH4(z, t) is the CH4 concentration at time t and depth z. DCH4 is

calculated depending on soil water conditions:

DCH4 = (DairCH4
· v + DwaterCH4

·w · θsat ·BCH4) · η (41)340

where DairCH4
is the diffusivity of air (1.82e-5 m2s−1 ) and DwaterCH4

the diffusivity of water (1.6e-9 m2s−1

Khvorostyanov et al. (2008)). BCH4 is the Bunsen coefficient for CH4 (see Eq. 29) and η = 2/3 denotes the soil

tortuosity. O2 diffusion is calculated analogous to Eqs. 40 and 41. Initial conditions of all soil layers are:

CCH4 = 1.207 g m−3,

CO2 = 266 g m−3345

The lower boundary for both CH4 and O2 conditions are:

∂CCH4(z = soildepth)
∂z

=
∂O2(z = soildepth)

∂z
= 0 (42)

and the upper boundary conditions are:

C(z = 0) =
ps

R ·Tair
·ACgas ·W, (43)

where ps is the atmospheric surface pressure (101000 Pa), Tair is the air temperature (in K) , ACgas is the atmospheric350

content (0.209 for O2, transient over time for CH4), W is the molar mass of O2 and CH4, respectively and R is the

universal gas constant (8.314 Jmol−1 K−1).
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Numerical solutions to the CH4 and O2 diffusion problems are obtained using the finite difference method for the

heat diffusion problem described by Alexiades and Solomon (1993, Sec. 4.1). For time stepping the forward Euler,

Crank-Nicolson and backward Euler methods were tested. The backward Euler scheme was the only method that355

provided sufficient stability to enable long enough time steps required under the given computational constraints

and has therefore been adopted as the default time-integration scheme in LPJmL6.

2.3.5 Methane ebullition (Qebull)

CH4 ebullition is the process by which CH4 gas produced in anaerobic soil environments escapes into the atmosphere

through gas bubbles. This occurs when the concentration of dissolved CH4 in soil porewater exceeds its solubility360

threshold, causing bubble nucleation and release. The process is modulated by factors such as CH4 concentration,

soil moisture, and vegetation cover, which influence both the formation and migration of gas bubbles. The change in

CH4 concentration in a soil layer over time due to ebullition is governed by a balance between CH4 loss via ebullition

and CH4 flux received from the layer below.

Ebullition is active only when the local CH4 concentration exceeds a critical threshold required for bubble formation365

(Walter and Heimann, 2000), and the outgoing ebullition flux is then calculated as

Qout
ebull(z, t) = ke ·max((CCH4(z, t)−Cthresh),0), (44)

where ke is the ebullition efficiency constant controlling the rate of CH4 release, which typically ranges between 0.1

to 1 per day, and Cthresh is the threshold CH4 concentration for bubble formation. In this study we set ke = 1. The

functional form of the threshold concentration is given by370

Cthresh = Cmin ·


1 +1−

nPFT∑

pft=1

(αe
pft ·FPCpft)


 , (45)

Experimental studies have shown that the presence of vegetation can substantially suppress CH4 ebullition due to

competition with plant-mediated transport and structural alterations to sediment or soil (Deshmukh et al., 2020).

Therefore, to represent the vegetation-dependent reduction in ebullition flux, we introduce plant functional type

(PFT)-specific suppression (αe) factors in the model (see Tables 2 and 3 for parameter values). These account for the375

observed differences in ebullition across vegetated and non-vegetated systems, as supported by field measurements.

FPC is the fractional plant cover of the PFT, which influences bubble formation by altering gas exchange dynamics.

Cmin is the minimum CH4 concentration required for bubble formation under standard conditions and has been

observed to range between 500 and 1000 ·10−6M (Khvorostyanov et al., 2008) which corresponds to 0.008 to 0.016

g m−3. We use 0.012 g m−3 in LPJmL6. Eq. 44 ensures that ebullition only occurs when the gas pressure exceeds380

the critical pressure threshold.

16

https://doi.org/10.5194/egusphere-2025-6210
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



The outgoing ebullition flux is transferred upwards and is added to the incoming ebullition flux Qin
ebull(z, t) in a

layer above in case of z < 0, or to the atmosphere in case of z = 0. At the shallowest soil depth, there is no overlying

material to impede the upward migration of gas bubbles. Therefore, the ebullition flux originating from this depth

contributes directly to the CH4 flux emitted to the atmosphere.385

At deeper soil depths, the fate of CH4 released via ebullition depends on the moisture content of the overlying soil

column. If the overlying layer is not saturated (θ < 0.9), the bubbles are trapped and remain in the overlying layer,

preventing direct transfer. However, if the overlying layer is water-saturated (soil moisture > 0.9), bubbles migrate

further upward and are transferred to the next layer above.

This recursive upward propagation continues through the saturated soil profile until an unsaturated soil layer390

is found or the surface is reached. This mechanism determines whether CH4 from deeper soil zones contributes to

atmospheric emissions or remains retained within the subsurface environment.

2.3.6 Plant-Mediated Transport (Qplant)

Certain vascular plants possess aerenchyma, a specialized tissue forming interconnected air-filled channels within

their stems, leaves, and roots. This tissue facilitates the movement of O2 and CH4 between the plant and its395

environment, playing a crucial role in gas exchange, particularly in waterlogged or anaerobic soils. O2 is transported

from the atmosphere through the stems and leaves into the roots, supporting root respiration. Conversely, CH4

produced in anaerobic soils can diffuse into the aerenchyma through the roots and be transported upward through

the plant, being released into the atmosphere, bypassing the oxidizing zones in the soil. We hypothesize that this gas

exchange via aerenchyma is more prominent in grasses compared to trees, as aerenchyma is predominantly observed400

in herbaceous plants and is largely absent in woody species (Takahashi et al., 2014; Colmer, 2003). To quantify these

processes, we adopt the approach outlined by Wania et al. (2010) which shows that gas diffusion through aerenchyma

(Fplant) depends on both the cross-sectional area of plant tillers available for gas transport (Atiller, in m2) and the

volumetric soil liquid water content (θliq, in m3):

Fplant(t) =

soilsurface∫

rootingdepth

Qplant (z, t) · dz, (46)405

where

Qplant(z, t) = (Cgas(z, t)−Cgasair) · exp
(−kgas ·Atiller

θliq(z,t)

)
. (47)

This equation is applied to both O2 and CH4 in the model, reflecting the bidirectional transport of these gases.

Atiller is defined as:

Atiller = max
(
0.001,π · r2

tiller ·Ntiller ·ϕtiller
)
, (48)410
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where rtiller is the radius of an individual plant tiller defined to be rtiller = 0.0345 m (Nascimento et al., 2021). The

variable ϕtiller is the porosity of the tiller structure, expressed as a dimensionless fraction (ϕtiller = 0.7). The use of

the max function ensures that Atiller maintains a minimum value of 0.001m2, preventing numerical instability when

the calculated tiller area becomes very small. Ntiller represents the tiller fraction, which depends on plant biomass

and root distribution within the soil layer:415

Ntiller = Cleaf · (γ/Wtiller) ·Froot(l), (49)

where Cleaf is the leaf carbon per square meter for PFTs that are able to form aerenchyma and γ is the phenology

status of the PFT. Wtiller = 0.22 g (Wania et al., 2010) is the weight of the tillers and Froot(l) is the fraction of the

root in the respective layer.

The gas exchange coefficient, (kgas in md−1), represents the piston velocity between the water and the atmosphere.420

Following Wania et al. (2010), (kgas) is obtained by scaling a reference transfer velocity for a Schmidt number (Sc)

of 600, (k600 = 2.07md−1) with the actual Schmidt number of the respective gas:

kgas = k600 ·
(

Scgas

600

)np

, (50)

where np is the Schmidt-number exponent, here set to −0.5. Sc can be calculated specifically for O2 and CH4:

ScCH4 = 1898− 110.1 ·Tair + 2.834 ·Tair
2− 0.02791 ·Tair

3 (51)425

and

ScO2 = 1800.6− 120.1 ·Tair + 3.7818 ·Tair
2− 0.047608 ·Tair

3 (52)

In summary, CH4 and O2 fluxes are based on concentration gradients, gas transfer velocities, and tiller geometry,

while accounting for soil moisture, porosity, and air content. These fluxes reflect the dynamic movement of gases

between the soil and atmosphere, influenced by soil properties, plant structure, and environmental conditions.430

2.3.7 Oxygen consumption by nitrification and root respiration

Dissolved oxygen in each soil layer is consumed by nitrification of ammonium and aerobic root respiration. Nitrifi-

cation is represented by the overall reaction

NH+
4 + 2O2 →NO−3 + 2H+ + H2O,

i.e. one mole of N nitrified requires two moles of O2. For the nitrification rate RNO−3
(z, t) (g N m−3 s−1), the435

associated O2 consumption is
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Snitr
O2

(z, t) = 2
WO2

WN
RNO−3

(z, t), (53)

where WN is the molar mass of N (14 g mol−1). In the numerical implementation RNO3(z, t) corresponds to the

depth-dependent analogue of the nitrification flux FNO−3
limited by O2, NH+

4 availability, soil moisture, temperature

and pH (see von Bloh et al. (2018)).440

Aerobic root respiration represents the metabolic consumption of O2 by living roots to sustain maintenance and

growth. The model provides a depth-dependent root respiration rate Rroot(z, t) (g C m−3 s−1), which is distributed

over the soil profile according to the vertical root density. Because the O2 balance is formulated in units of O2 mass,

this carbon–based respiration flux is converted into an equivalent O2 sink Sroot
O2

using a constant mass-conversion

factor, yielding445

Sroot
O2

(z, t) =
WO2

WC
Rroot(z, t). (54)

2.4 Inundation feedback on vegetation

Inundation harms trees, grasses and crops that are not tolerant of water-saturated soils. These damages can cause

(potentially lethal) productivity losses. The most important factor determining plant survival is the duration of

inundation (Parolin and Wittmann, 2010). To account for the effect of inundation on vegetation we have introduced450

a feedback of inundation on gross primary production (GPP) and added three new PFTs which are tolerant to

inundation: a tropical broadleaved evergreen flood-tolerant tree, a C3 graminoid herbaceous plant and sphagnum

moss. The last two were already implemented in the LPJWhy model by Wania et al. (2009). The tropical tree is

parameterized similarly to the default tropical broadleaved evergreen tree in previous LPJmL versions but with a

parameterization tolerant of inundations.455

Inundation areas are often not flooded constantly. To account for inundation stress we have introduced two new

parameters as suggested by Wania et al. (2009). The inundation stress height (istm) defines at which water table

depth a PFT experiences inundation stress and the inundation duration (idtd) defines how long a PFT can endure

inundation. The inundation-tolerant PFTs have a higher inundation stress height and endure longer inundation

periods (Table 2). The stress factor (Sinun) is applied to GPP whenever the water table exceeds istm (GPP =460

GPP · (1−Sinun)):

Sinun = min
(

1, max
(

0,

[
1

1 + exp(−k · (Ninun− idtd))
− 0.5

]
× 2
))

, (55)

where Ninun counts the number of days with inundation stress. Table 2 gives the parameter values of idtd for the

different PFTs, representing their tolerable inundation duration. Values from Wania et al. (2009) were adjusted, i.a.
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Table 2. Parameters describing inundation stress of PFTs, negative values indicate inundation stress starting at water table

heights istm below the surface. idtd defines after how many days inundation stress occur. αe gives the ebullition suppression

factor. Abbreviation see TableA1

istm in m idtd in days αe

TrBrEv -0.1 20 0.7

TrBrEv∗ 0.5 80 0.7

TrBrDe -0.3 20 0.7

TeNeEv -0.25 15 0.7

TeBrEv -0.25 15 0.7

TeBrDe -0.2 30 0.5

BoNeEv -0.3 15 0.4

BoBrDe -0.25 20 0.6

BoNeDe -0.2 20 0.4

TrHe -0.1 20 0.3

TeHe -0.1 25 0.3

PoHe -0.1 15 0.3

C3gr∗ 0.2 55 0.3

Moss∗ 0.5 35 0.3

∗ flood-tolerant PFT.

because PFTs TrBrEv and PoHe are not present in the implementation of Wania et al. (2009). The parameters for465

crop functional types (CFTs) in Table 3 take into account that the different CFTs suffer differently from inundation

(Kaur et al., 2020). The parameter k (0.2 in day−1) controls how rapidly stress increases once the inundation duration

exceeds the threshold, with larger values producing a steeper rise. When the inundation threshold (istm) is no longer

exceeded, the duration counter decreases in accelerated daily steps (five per day), representing a faster recovery of

the plants relative to the length of the preceding inundation period.470

Additionally, inundation stress increases tree mortality, contributing an additional mortality component (mortinun)

that increases the overall tree mortality rate. This contribution is capped at a maximum increase (inunmax) of 10%

relative to the potential mortality rate (mortmax):

mortinun = mortmax · (1− inunSinun
max ), (56)

where mortmax represents the PFT-specific baseline mortality rate as described in Schaphoff et al. (2018).475
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Table 3. Parameters describing inundation stress of CFTs, negative values indicate inundation stress starting at water table

heights istm below the surface. idtd defines after how many days inundation stress occur. αe gives the ebullition suppression

factor. Abbreviation see TableA1

istm in m idtd in days αe

TeCe -0.2 20 0.7

Rice∗ 1.0 200 0.5

Maize -0.2 20 0.7

TrCe -0.2 25 0.7

Pulses -0.3 15 0.7

TeRo -0.2 15 0.7

TrRo -0.2 15 0.7

Sunfl -0.2 15 0.7

Soy -0.1 20 0.7

GrNu -0.3 10 0.7

Rape -0.3 20 0.7

SuCa -0.1 30 0.7

∗ flood-tolerant CFT

2.5 Land-use change and rice cultivation

To account for the actual land cover, the model had to be extended for land-use change on wetlands. Previous

versions of LPJmL distinguish a rainfed and an irrigated stand on which rainfed and irrigated crop cultivation as

well as the off season is simulated, respectively. Here we assume that rice cultivation takes place on wetland areas

if natural wetlands are present in the respective grid cell. Therefore, a new wetland setaside stand is introduced480

from which cropland is sourced for rice cultivation upon sowing/transplanting. If not enough upland (dry) natural

land is available in the cell to satisfy land use demand, wetland area can also be converted to managed grasslands

and, as a last resort, to cropland for crops other than rice. Soil water on rice fields is filled up above field capacity

through irrigation to simulate permanent inundation. There is no explicit simulation of drainage systems for non-rice

cultivation on wetland areas. A land use overview scheme is given in the Supplement Fig. S1.485

3 Modelling protocol

To demonstrate the performance of LPJmL6 to model the newly implemented process dynamics, it was initialized

with a spin-up period of 4000 years, using repeated climatic data from 1901 to 1930 to simulate pre-industrial

conditions and achieve dynamic equilibrium in vegetation structure and composition as well as in carbon and

nitrogen pools, representing a hypothetical stable pre-industrial state. To account for historical land-use dynamics,490
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an additional 420 years of spin-up simulation were performed between the initial spin-up and the transient historical

simulation, ensuring accurate representation of land-use history and its effects on biogeochemical pools and cycles.

Following this, a transient simulation was conducted, covering the period 1901 to 2019.

4 Data used

4.1 Input data495

LPJmL6 was here driven by GSWP3-W5E5 climate data (Lange et al., 2023). This dataset combines W5E5 v2.0

(Cucchi et al., 2020; Lange et al., 2021) for the period 1979–2019 with GSWP3 v1.09 (Kim, 2017) for the period 1901–

1978. GSWP3 data have been bias-adjusted towards W5E5 to reduce discontinuities at the 1978/1979 transition

(Mengel et al., 2021). Annual atmospheric CO2 concentrations are taken from the TRENDY project (Friedlingstein

et al., 2023). Annual atmospheric CH4 concentrations are taken from the NOAA Global Monitoring Laboratory500

(NOAA Global Monitoring Laboratory, 2025). Land-use data are generated with the LandInG toolbox (Ostberg

et al., 2023). LandInG integrates and harmonises a number of gridded source datasets such as cropland and pasture

extent from HYDE v3.2.1 (Klein Goldewijk et al., 2017a), multiple-cropping suitability from GAEZ v3 (IIASA/FAO,

2012), and crop-specific harvested areas for the year 2000 (Monfreda et al., 2008), with census data at national

scale from FAOSTAT (FAO, 2020b), AQUASTAT (FAO, 2020a) and MIRCA2000 (Portmann et al., 2010a, b) to505

derive gridded time series of crop-specific growing patterns (with a distinction of rain-fed and irrigated areas) and

pasture areas. As fallow land is currently not supported as a separate land-use category by LPJmL, fallow land

from LandInG is assigned to the "others" crop category in LPJmL. LandInG also integrates crop-specific fertilizer

application patterns for the year 2000 (Mueller et al., 2012; Mueller, 2012) with national-scale fertilizer application

trends (Hurtt et al., 2020) to derive gridded time series of crop-specific nitrogen fertilizer application rates. Manure510

application rates are based on Zhang et al. (2017); Zhang et al. (2017). Crop-specific growing periods are based

on the GGCMI phase 3 crop calendar (Jägermeyr et al., 2021). Grazing management is simulated on prescribed

pasture areas (see above), with livestock densities based on Heinke (2025). Soil texture and soil acidity (pH) inputs

are based on HWSD v1.21 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), which has been aggregated from the source

resolution by selecting parameters representative of the most prevalent soil type in each LPJmL grid cell (Ostberg515

et al., 2023). River network topology is based on STN-30 (Vörösmarty et al., 2000). Prescribed lake surface areas

are based on GLWD (Lehner and Döll, 2004). Dam and reservoir characteristics are based on GRanD (Lehner et al.,

2011; Biemans et al., 2011). Water use for households, industry and livestock in each grid cell is taken from Flörke

et al. (2013) (prioritized over irrigation; accounting for 201 km3 in the year 2000). We use the ISLSCP II HYDRO1k

elevation-derived products at 0.5°spatial resolution (Verdin et al., 2011), which provide, for each grid cell, statistics520

of the compound topographic index (CTI) including its mean, standard deviation and skewness; these moments are

used to parameterise the gamma distribution of CTI in our wetland scheme (section 2.1). The ISLSCP II product

is derived from the original 1–km HYDRO1k database (U.S. Geological Survey, 2007b). The slope values are taken
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directly from the USGS fine-resolution 30-arc-second GTOPO30 slope product (U.S. Geological Survey, 2007a),

from which we derive the mean, maximum and minimum slope of each 0.5°cell for the slope–dependent wetland525

parameterisation.

4.2 Validation data

A combination of geographically detailed data is used to evaluate the LPJmL6 model’s ability to simulate wetland

extent. Kaplan (2007) provides a global wetland map at 0.5 degree resolution, combining regional and global invento-

ries, geomorphic and hydrological data, and satellite observations. It broadly defines wetlands, including permanently530

and seasonally inundated areas, and waterlogged soils. The Global Lakes and Wetlands Database (GLWD) by Lehner

and Döll (2004) offers high-resolution (1 km) data on lakes, reservoirs, and wetlands, classifying water bodies by

size, hydrology, and ecological features. While we use the GLWD lake area as an input to the model (section 4.1)

we use the GLWD wetland extent for validating the simulated global dynamics of wetland extent. Gumbricht et al.

(2017) present the SWAMP dataset, a high-resolution (231 m) map of tropical and subtropical wetlands, integrating535

geomorphic classification, hydrological modeling, and satellite imagery. Zhang et al. (2021) developed WAD2M, a

dataset on monthly wetland extent for 2000—2018 at 25 km resolution (using the mean annual extent), focused on

permanently vegetated wetlands by excluding permanent water bodies, coastal wetlands, and rice paddies.

Estimates of CH4 emissions from rice cultivation were derived from a combination of empirical field data, synthe-

sis studies, and global-scale inverse modeling frameworks, as follows. The resulting CH4 emission values represent540

cumulative seasonal emissions (in gCH4 m−2) from flooded rice systems, calculated by multiplying observed or re-

ported mean daily CH4 emission rates (gCH4 m−2 day−1) with region-specific growing season lengths. This approach

allows for spatially explicit interregional comparison of seasonal CH4 release, facilitating benchmarking of biogeo-

chemical models and identifying emission hotspots. A comprehensive synthesis by Wang et al. (2018) compiled over

600 site-years of CH4 flux data collected from 1990 to 2014, encompassing diverse rice-growing environments and545

management regimes. Their dataset provided country-level mean emission rates and associated 95% confidence in-

tervals, reflecting spatial heterogeneity across sites. These values were further stratified by continent and climate

zone to support global upscaling. Complementing this synthesis, Zhu and Li (2024) incorporated more recent CH4

flux observations from East Asia, including multi-cropping systems and long-term experimental sites. Their dataset

included some of the highest recorded emissions, particularly in southern China, and expanded the representative-550

ness of regional variability. In South Asia, Gupta et al. (2021) reported empirical data on daily CH4 fluxes from

irrigated rice paddies in northern India under varying water and residue management practices, highlighting the

mitigation potential of alternate wetting and drying regimes. Earlier field-based estimates provided by Wassmann

et al. (2000) focused on major rice ecosystems in Southeast Asia, using controlled experiments and standardized

chamber measurements under the IRRI-GTZ collaboration. Their regional emission ranges from the 1990s remain555

influential for emission factor development and baseline scenario assessment.
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While these sources generally provide spatial uncertainty bounds, they do not fully capture interannual variability,

which may be significant under shifting climate and agronomic conditions. To contextualize and constrain bottom-up

estimates, we integrated global atmospheric inversion data from the CarbonTracker-CH4 framework (NOAA Global

Monitoring Laboratory, NOAA Global Monitoring Laboratory (n.d.); Bruhwiler et al. (2014)). This system assimi-560

lates atmospheric CH4 concentrations from NOAA’s global flask and in situ measurement network (NOAA Global

Monitoring Laboratory, 2025) to infer regional and global emission patterns. Wetland and rice cultivation emissions

were treated as distinct sectors, enabling partial attribution of seasonal CH4 enhancements to rice-growing regions

in Asia. Additional global source data and attribution uncertainty ranges were taken from the Global Methane Bud-

get reports by Saunois et al. (2020, 2025), which combine bottom-up inventories, top-down atmospheric inversions,565

and process-based models. To analyze how CH4 emissions vary with latitude across different datasets, the LPJmL6

model is compared with the WetCHARTs v1.0 dataset provided by Bloom et al. (2017a). WetCHARTs (Wetland

and Climate CH4 Intercomparison of Models) offers a global dataset of wetland CH4 emissions at a 0.5◦resolution,

along with associated uncertainties. This dataset integrates multiple emission models, remote sensing data, and

atmospheric observations to provide a comprehensive and harmonized view of CH4 emissions from wetlands.570

Monthly river discharge observations were used to evaluate monthly simulated river discharge at the basin scale.

The observational compilation comprises 285 gauging stations with reported upstream drainage areas exceeding

10,000 km2. The dataset was assembled by combining (i) pan-Arctic discharge records from R-ArcticNET (v4.0)

(Lammers et al., 2001, 2016) and (ii) global monthly discharge records from the RivDIS database (v1.1) distributed

by the ORNL DAAC (NASA Earthdata) (Vörösmarty et al., 1998), where the latter was restricted to stations575

belonging to the dataset’s major basins.

We used eddy-covariance flux tower data to benchmark simulated fluxes of net ecosystem exchange (NEE) and

evapotranspiration (ET),providing direct and continuous measurements of ecosystem–atmosphere exchanges of car-

bon dioxide and water vapor at the ecosystem scale. In this study, tower-derived NEE and ET were compared against

the corresponding model outputs. While the evaluation allows for a direct assessment of the model’s ability to repro-580

duce observed flux dynamics, it is subject to several limitations. These include differences in spatial scale between

the grid-based simulations and the footprint of the flux towers, potential mismatches in vegetation composition due

to the model’s dynamic PFT representation, and the use of large-scale meteorological forcing instead of site-specific

weather observations.

To assess vegetation structure, we contrasted LPJmL6 PFT distributions with the ESA CCI–derived product of585

Harper et al. (2023), a 29-year (1992–2020) 300 m dataset that harmonizes land cover into fractional PFTs, enabling

scale-aware, spatially explicit comparisons with model output (Harper et al., 2023).

For system-level context, we drew on the Global Carbon Budget (GCP, Friedlingstein et al., 2023), which synthe-

sizes atmospheric CO2 growth, ocean uptake, and land-sink estimates together with fossil and land-use emissions

and reports an annual budget imbalance as an integrated constraint. We also applied the International Land Model590

Benchmarking framework (ILAMB), detailed at https://www.ilamb.org/, to place our results in a standardized
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multi-metric context (bias, RMSE, seasonal phase/amplitude, spatial distribution) and to summarize performance

with an overall score (see Collier et al., 2018 and ILAMB documentation).

5 Model evaluation

5.1 ILAMB comparison595

As part of our evaluation process, we conducted an extensive benchmarking analysis using the ILAMB framework,

[full report is available at Zenodo: https://doi.org/10.5281/zenodo.17877397]. The ILAMB project provides a stan-

dardized system for assessing the performance of land surface models against a variety of observational datasets.

This framework is widely recognized for its ability to objectively evaluate model fidelity across multiple environmen-

tal and ecological variables, including carbon, water, and energy fluxes. For our analysis, we applied the ILAMB600

methodology to the LPJmL6 model in comparison to LPJmL5.10 shown for separate simulations with actual land

use and for potential natural vegetation, producing comprehensive benchmarking outputs to compare its perfor-

mance against observational data. This approach ensures a rigorous and transparent evaluation, highlighting both

strengths and areas for improvement in LPJmL6’s ability to simulate terrestrial ecosystem processes. The results of

this benchmarking exercise serve as a valuable reference point for future model development and intercomparison605

efforts, contributing to the broader goal of improving Land Surface Model performance.

5.2 Wetland area and distribution

Wetland distribution simulated by LPJmL6 depend on the CTI of the cell and the simulated water table depth as

described in section 2.1. In the comparison of simulated and observed wetland area we do not exclude grid cells

with rice cultivation. Because rice is typically established on wet or formerly wet soils, an expansion of rice area can610

therefore appear as an increase in wetland area in our evaluation against simulations for natural vegetation (LPJmL6-

PNV), even though these sites often represent wetlands that have been converted to cropland. The simulated wetland

area is overall comparable to other independent estimates (Table 4), but systematic discrepancies between datasets

are evident. SWAMP includes only the wetland area south of 39°N, which explains the absence of high-latitude

wetlands in this dataset and its focus on tropical regions, particularly the Amazon (Gumbricht et al., 2017). In615

contrast, GLWD indicates by far the greatest extent north of 60°N, reflecting its strong emphasis on boreal and

permafrost wetlands (Lehner and Döll, 2004). LPJmL6 produces a much lower extent in these regions, closer to the

estimates by (Zhang et al., 2021), yet this underestimation of boreal wetlands compared to GLWD indicates that

LPJmL6 does not translate permafrost-induced flooding into wetlands. Conversely, LPJmL6 is able to reproduce

the strong tropical maximum in the Amazon region that dominates the SWAMP dataset.620

The latitudinal distribution (Fig. 3) highlights these contrasting signals: GLWD exhibits a pronounced peak in

the high northern latitudes, SWAMP primarily represents tropical wetlands, and LPJmL6 shows a more balanced
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Table 4. Wetland area (in 106 km2) according to different data products, compared to simulations with LPJmL6 (with land-

use change) and LPJmL6-PNV (potential natural vegetation only).

GLWD SWAMP Kaplan (2007) Zhang et al. (2021) LPJmL6 LPJmL6-PNV

Global 11.4 6.0 5.7 3.6 5.6 5.6

>60°N 2.3 1.1 0.1 0.2 0.2

>30°N - 60°N 4.8 0.7∗ 1.9 1.2 1.2 1.5

<30°N 4.3 5.3 2.7 2.3 4.2 3.9

∗ area only partly represented

distribution with clear tropical hotspots and additional mid-latitude wetlands in Eurasia. These differences also have

direct implications for global methane budgets, as both tropical floodplains and high-latitude permafrost wetlands

are recognized as key but highly uncertain contributors to natural CH4 emissions (Saunois et al., 2020; Hugelius625

et al., 2020). The strong disagreement in global totals across models and observational datasets (ranging from 3.6 to

11.4 × 106 km2) underlines the need for improved observational constraints and harmonized definitions of wetlands.
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Figure 3. Latitudinal distribution of zonal wetland area from different data products and from LPJmL6 (with land-use change)

and LPJmL6–PNV (potential natural vegetation). Wetland area is integrated along longitude for each half degree latitude

band (km2).
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5.3 Methane budget

In this section, we confront the land CH4 budget simulated by LPJmL6 with independent constraints on the global

CH4 budget. The global budget is determined by the balance between all surface sources and atmospheric sinks630

of CH4 and is constrained by the observed atmospheric CH4 burden, its temporal growth and estimates of the

atmospheric CH4 lifetime (Stevenson et al., 2020; Saunois et al., 2020; He et al., 2021; Saunois et al., 2025). These

constraints define a range of total CH4 emissions and, by subtraction of quantified source categories, a residual range

attributable to net land sources.

LPJmL6 represents a subset of the global CH4 cycle, namely emissions from natural wetlands, rice cultivation,635

wildfires and other agricultural soils, as well as aerobic soil CH4 uptake. We refer to the sum of these components

(emissions minus soil uptake) as the LPJmL6 land CH4 budget. To relate this modelled land budget to the global

CH4 budget, we combine LPJmL6 fluxes with independent estimates of other anthropogenic and natural sources that

are not simulated by LPJmL6 (enteric fermentation and manure management, landfills and waste, fossil fuel–related

emissions, biomass and biofuel burning, and additional natural sources). This allows a consistent comparison of640

LPJmL6 with bottom-up (BU) and top-down (TD) global estimates and with the lifetime-based constraints on total

emissions.

5.3.1 Methane emissions

The global constraints on CH4 sources and sinks outlined above allow a more detailed comparison of LPJmL6-

simulated emissions with other global estimates. LPJmL6 simulates CH4 emissions from wetlands, rice fields, and645

wildfires, and can distinguish between emissions from agricultural land and natural land. Furthermore, LPJmL6

explicitly represents soil CH4 uptake via diffusion from the atmosphere into the soil. To derive the possible range

of CH4 emissions compatible with observations, source categories that are not explicitly calculated by LPJmL6

have to be added. These include anthropogenic emissions from enteric fermentation and manure management, and

from landfills and waste (about 170–205 TgCH4 a−1), as well as fossil fuel–related emissions (about 145 TgCH4 a−1)650

(NOAA Global Monitoring Laboratory, 2025) and biomass combustion (about 28 TgCH4 a−1). Together, these

account for 462–481 TgCH4 a−1 (Saunois et al., 2025, 2020; Li et al., 2021; Stanley et al., 2016). Additional natural

sources not represented in LPJmL6, such as emissions from freshwater systems, geological sources, termites and the

ocean, account for a further 64–259 TgCH4 a−1, , with particularly large uncertainty for freshwater emissions. For

the illustrative period 2010–2019, the atmospheric CH4 sink is estimated to be between 523 and 649 TgCH4 a−1.655

Depending on the estimated CH4 lifetime in the atmosphere given by Stevenson et al. (2020), between 31 and

242 TgCH4 a−1 remain attributable to land net sources, for which LPJmL6 simulates about 142.1 TgCH4 a−1 (wet-

lands, fire, rice cultivation, and other agricultural soil emissions and the explicitly simulated soil sink; mean over the

years 2000 to 2019; see Table 6). If, however, we enforce global budget consistency by combining the lower (upper)

estimates of the atmospheric sink with the lower (upper) estimates of CH4 sources not simulated by LPJmL6, the660
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Figure 4. Global methane budget calculated from the atmospheric methane concentration and estimated lifetime of methane

and the atmospheric growth resulting in the estimated overall methane sink that gives the range of the assumed methane

emissions. Methane sources are anthropogenic (enteric fermentation& manure, landfills & waste, biomass & biofuel burning)

and natural (incl. freshwater, geological, wildfires, termites, oceanic) (Saunois et al., 2025) and the range of the atmospheric

methane lifetime is given by Stevenson et al. (2020). The two blue lines (labelled lifetime = 8 yr and lifetime = 10 yr) and the

blue shaded area between them represent the atmospheric constraint, indicating the range of total global methane emissions,

i.e. the region in which the sum of all sources and the soil sink should lie for a closed global methane budget. Bottom-up (BU)

and top-down (TD) estimates, given as decadal means for 2000–2009 and 2010–2019, are converted to continuous annual

values by linear interpolation between these two means; the resulting BU and TD time series are added to the simulated

LPJmL6 methane sources and define the range shown by the orange and dark red lines. LPJmL6 simulated net methane

sources include emissions from wetlands, rice cultivation, and wildfires and the soil sink.

residual range attributable to land net sources narrows to 116–157 TgCH4 a−1, which still encompasses the LPJmL6

estimate (see Fig. 4).

When all emissions simulated by LPJmL6 are combined with estimates for the remaining anthropogenic and

natural sources, the resulting overall CH4 budget matches well with the observationally constrained overall emissions

Fig. 4. We construct two such combined estimates: one using bottom-up (BU) values for the non-LPJmL sources665

and one using top-down (TD) values. Adding the same LPJmL6 land emissions to these two source data sets shifts

both curves upwards by the modelled land flux; in our set-up this makes the BU-based combination systematically
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higher and the TD-based combination lower. Consequently, the BU+LPJmL6 series forms the upper envelope and

the TD+LPJmL6 series the lower envelope of the total-budget range shown by the red and orange lines in Fig. 4,

respectively.670

Table 5 summarizes CH4 emissions from wetlands as estimated by the Global Methane Budget project (Kirschke

et al., 2013; Saunois et al., 2016, 2020, 2025). For the period 2000–2009, BU estimates range between 147 and

175 TgCH4 a−1, whereas TD estimates range from 180 to 217 TgCH4 a−1. The discrepancy between these method-

ologies is evident across all decades examined. Notably, the differences are largest in the 1980s and 1990s, exceeding

50 TgCH4 a−1. MOre recent estimates show reduced discrepancies, with TD estimates decreasing significantly while675

BU estimates remain relatively stable. LPJmL6 aligns closely with BU estimates, reflecting its process-based method-

ology and explicit integration of wetland hydrology.

Table 5. Global methane emissions in TgCH4 a−1 from natural wetlands across four decades, presenting values separately

for bottom-up (BU) and top-down (TD) methods. The variation reflects the methodological differences and uncertainties in

emission processes.

References 1980-1989 1990-1999 2000-2009 2003-2012 2010-2019

BU TD BU TD BU TD BU TD BU TD

Kirschke et al. (2013) 167+64
−52 225+41

−42 150+10
−6 206+59

−37 175+33
−33 217+67

−40

Saunois et al. (2016) 166+38
−41 183+39

−32 167+35
−40 185+112

−32

Saunois et al. (2020) 147+32
−45 180+16

−27

Saunois et al. (2025) 153+36
−37 158+14

−13 159+44
−40 165+20

−49

This study∗ 126 134 155 164 180

∗ here we report data from the simulation with actual vegetation, but exclude emissions from rice fields for consistency with the reference

data

Figure 5 illustrates the latitudinal distribution of CH4 emissions from wetlands simulated by LPJmL6 and LPJmL6–PNV

in comparison with the WetCHARTs ensemble (Bloom et al., 2017b). All data sets show a pronounced maximum

in the tropics, confirming the dominance of tropical wetlands in the global CH4 budget. In these latitudes, LPJmL6680

and especially LPJmL6–PNV exhibit higher peak emissions than the WetCHARTs ensemble median, while remain-

ing largely within the ensemble spread. Outside the tropics, LPJmL6 and LPJmL6–PNV emissions generally fall

within the WetCHARTs ensemble spread, with broadly comparable magnitudes in temperate and boreal latitudes

and slightly enhanced values for LPJmL6–PNV at northern high latitudes.

5.3.2 Methane emissions from the different flux components685

Quantifying the exact global contribution of each pathway is challenging because of spatial and temporal variability

in wetland extent, hydrology and vegetation, as well as differences in wetland types and environmental conditions.
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Figure 5. Latitudinal profiles of methane emissions from LPJmL6 in comparison with the WetCHARTs ensemble (Bloom

et al., 2017b). Ensemble spread is shown as a shaded band and the ensemble median as a solid line.

Table 6 therefore summarises the LPJmL6 global methane budget separated into atmospheric flux pathways (dif-

fusion, plant-mediated transport, ebullition and fire emissions) and source categories (natural wetlands, rice fields,

grasslands and other cropland), together with soil oxidation and the resulting net methane sink.690

The atmospheric flux partitioning shows that diffusion remains by far the dominant CH4 emission pathway, with

global emissions increasing from 117.6 to 157.5 Tg CH4 a−1 between the 1980s and 2010–2019. Plant-mediated trans-

port roughly doubles from 19.5 to 40.6 Tg CH4 a−1 over the same period, whereas ebullition remains comparatively

small (about 2 Tg CH4 a−1) and exhibits no clear trend, in line with the minor contribution of ebullition reported by

Bieniada et al. (2021). Fire emissions are simulated at around 10 Tg CH4 a−1, consistent with independent estimates695

of global wildfire CH4 emissions of approximately 10 Tg CH4 a−1 and contributing about 5% of the total natural

source (Saunois et al., 2025).

The soil methane sink in LPJmL6 can be compared with independent constraints. Murguia-Flores et al. (2018)

estimated a global soil CH4 sink of 33.5 Tg CH4 a−1 for 1990–2009, whereas LPJmL6 simulates a stronger net uptake

of about 52 Tg CH4 a−1 over the same period (Table 6). A key difference is that LPJmL6 does not explicitly represent700
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Table 6. LPJmL6 estimates of global methane balance differentiated for different components in TgCH4 a−1.

1980-1989 1990-1999 2000-2009 2010-2019

diffusion 117.6 125.1 141.9 157.5

plant mediated transport 19.5 21.3 28.2 40.6

ebullition 1.8 2.3 2.2 2.7

fire emissions 9.9 10.3 9.8 9.8

total emissions 148.8 159.0 182.1 210.5

net methane sink -47.0 -51.6 -53.3 55.1

emission on the remaining natural wetlands 117.1 123.6 141.9 166.0

emission from rice fields 13.3 14.9 17.5 20.9

emission from grasslands 6.7 7.5 8.6 9.4

emission from the remaining cropland 2.0 2.7 4.2 4.5

oxidation through the soil 137.0 145.5 148.3 147.6

the atmospheric CH4 sink associated with methanotrophic activity in well-aerated soils; instead, CH4 oxidation is

treated as part of the soil CH4 balance. The gross soil oxidation flux in LPJmL6 is close to 150 Tg CH4 a−1, reflecting

the substantial fraction of CH4 that is oxidized while diffusing through the unsaturated zone. Despite these structural

differences, the simulated net soil sink lies within, albeit towards the upper end of, the range of 9–51 Tg CH4 a−1

reported by atmospheric inversions and bottom-up estimates (Saunois et al., 2025).705

Because LPJmL6 explicitly represents both natural and managed ecosystems, including land use and land-use

change, it can attribute global CH4 emissions to distinct source categories. In our simulations, emissions from natural

wetlands increase from 117 to 166 Tg CH4 a−1 between the 1980s and 2010–2019, while emissions from rice fields

rise from 13.3 to 20.9 Tg CH4 a−1. This corresponds to an increase of about 57% in rice-field emissions compared to

only about 13% growth in harvested rice area. Emissions from other agricultural land (excluding rice and grasslands)710

grow from 2.0 to 4.5 Tg CH4 a−1, and grassland emissions from 6.7 to 9.4 Tg CH4 a−1. For comparison, EPA (2012)

estimated that other agricultural CH4 sources contribute roughly 20 Tg CH4 a−1 for 2005–2020, which is higher than

the LPJmL6 estimate but broadly consistent when considering that the EPA category also includes savanna and

residue burning. Overall, all simulated source categories exhibit increasing CH4 emissions over recent decades, likely

reflecting the combined effects of climate change and evolving land management; however, the relative contributions715

of these drivers warrant further investigation.

Another important aspect of LPJmL6 is the explicit representation of both natural and managed ecosystems,

including land-use and land-use change dynamics. This structure allows us to attribute simulated changes in global

CH4 emissions to distinct source categories and regions across the terrestrial surface and to link emerging trends

to underlying drivers. Such source-resolved information is essential for understanding, and ultimately mitigating,720

the role of wetlands and agricultural systems in global greenhouse gas budgets. The LPJmL6 model allows us to

separately quantify global CH4 emissions from natural wetlands, rice fields, grasslands and other agricultural land.
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In the simulations, emissions from natural wetlands increase from 117 Tg CH4 a−1 in the 1980s to 166 Tg CH4 a−1

in 2010–2019. Emissions from rice fields rise from 13.3 to 20.9 Tg CH4 a−1 over the same period, corresponding

to an increase of about 57%, whereas harvested rice area increases by only about 13%. Emissions from other725

agricultural land (excluding rice and grasslands) grow from 2.0 to 4.5 Tg CH4 a−1, and grassland emissions from

6.7 to 9.4 Tg CH4 a−1. Over the same period, simulated global grassland area increases by only about 5%, implying

that the roughly 40% rise in grassland CH4 emissions is driven primarily by changing environmental conditions and

management rather than by areal expansion alone. For comparison,EPA (2012) estimated that other agricultural

CH4 sources contribute roughly 20 Tg CH4 a−1 for 2005–2020, which is higher than the LPJmL6 estimate but730

broadly consistent when considering that the EPA category also includes savanna and residue burning. Overall,

all simulated source categories exhibit increasing CH4 emissions over recent decades, consistent with the combined

effects of changing climate conditions and evolving agricultural practices; however, the relative contributions of these

drivers require further investigation.

5.3.3 Emission from rice cultivation, grasslands and other agricultural land735

Table 7 summarizes literature estimates of global CH4 emissions from rice cultivation, aggregated over the growing

seasons, together with the corresponding LPJmL6 simulations. Most literature values are multi-year means for the

period indicated in the table (rather than single-year snapshots). They are based on a range of methodological

approaches, including emission-factor inventories, statistical upscaling from field measurements, and FAOSTAT-

based accounting, and span roughly 18.3 to 38.8 TgCH4 a−1. LPJmL6 simulates an increase from a global mean of740

13.0 TgCH4 a−1 in the 1980s to 20.4 TgCH4 a−1 during 2010–2019, which places our results toward the lower end

of the published range (Table 7). A likely explanation is that the current representation of rice production systems

assumes one cropping season per grid cell, whereas multi-cropping (double or even triple rice) is widespread in parts

of South and Southeast Asia and eastern China (Waha et al., 2025, 2020). In such regions, annual emissions exceed

the values simulated by LPJmL6 because emissions from multiple growing seasons within a calendar year are not745

explicitly represented. In annual sums of LPJmL6 simulated emissions, we combine planted rice area with those

from wetland-setaside emissions on these fields, which captures major biogeochemical controls but may still under-

represent management effects such as straw incorporation, organic amendments, and deliberate drainage. In the

LPJmL6 simulations, the unproductive (non-growing) period contributes about 4 TgCH4 a−1. While the emission

estimates obtained with other methodologies are strongly influenced by how the contributing days are defined, the750

very wide range of 8 – 78 Tg CH4 a−1 simulated by by the process-based model CH4MOD (Hu et al., 2024) is mainly

driven by differing assumptions about management.

Across rice-growing regions, methane emissions from rice fields exhibit strong spatial and temporal variabil-

ity. LPJmL6 simulates country-mean cumulative growing-season emissions that range from a few to more than

100 gCH4 m−2 a−1, with local grid-cell values reaching up to 328 gCH4 m−2 a−1 in the most strongly emitting areas755

(Table 8). The observed values compiled in Table 9 span a comparable order of magnitude, with maximum values
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Table 7. Global CH4 emissions from rice cultivation during the growing season

Source
Global Emissions

(TgCH4 a−1) years Methodology

Yan et al. (2009) 18.3 – 38.8 2000 IPCC Tier 2, based on global EF database

Hu et al. (2024) 8 – 78 2008 – 2017 Process-Based Model (CH4MOD) under different management

Pazhanivelan et al. (2024) 19.9 2017 – 2018 Tier 2/Remote Sensing

FAO (2020c) 24.4 2010 – 2019 Modeled emissions based on FAOSTAT data

EPA (2012) 18.4 2015 IPCC-based bottom-up modeling

Wang et al. (2023a) 27± 6 2008 – 2017 IPCC Inventory Guidelines (Tier 2/3)

Saunois et al. (2025) 25 – 37 2010 – 2019 Integrated from national inventories

This study 20.9 2010 – 2019 simulated by LPJmL6

Table 8. Country-level cumulative CH4 emissions from rice fields during the growing season simulated by LPJmL6 (1990–2014

mean, gCH4 m−2 a−1). For each country, the table reports the mean, minimum, and maximum emissions within the national

rice area.

Country Mean Min Max

Bangladesh 13.62 3.46 39.24

Brazil 75.84 4.21 222.90

China 17.62 0.77 52.91

India 11.18 0.94 34.08

Indonesia 33.58 0.35 238.21

Italy 19.52 0.06 104.86

Japan 7.83 0.01 48.53

Philippines 3.45 0.58 9.42

South Korea 10.15 0.09 29.94

Spain 10.99 0.22 38.08

Uruguay 110.20 3.10 328.15

Vietnam 21.18 1.04 46.90

extending from about 13 up to 347.5 gCH4 m−2 a−1, indicating pronounced sub-national heterogeneity within the

sampled regions. Independent field studies further highlight the very strong variability of rice CH4 emissions. Wang

et al. (2022) report substantial year-to-year differences in growing-season emissions from Chinese rice fields, with

high emissions of 36.8 gCH4 m−2 a−1 in 2018 and low emissions of 5.3 gCH4 m−2 a−1 in 2019, while Qian et al.760

(2023) document even higher plot-scale values approaching 580 gCH4 m−2 a−1 under specific conditions, illustrating

the potential for extreme fluxes in certain regions or management settings. It is important to note that LPJmL6

always provides spatially complete coverage of each national rice area, whereas most literature values in Table 9 are
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derived from individual sites or sub-regions and therefore cannot be interpreted as true national means, even in the

comparatively extensive dataset of Wang et al. (2018). This mismatch in spatial representativeness, together with765

differences in local management practices, environmental conditions and measurement protocols, explains part of the

discrepancies between simulated and observed ranges, while the overall overlap in magnitude supports the ability of

LPJmL6 to capture first-order patterns of rice CH4 emissions.

Table 9: Observed cumulative CH4 emissions from rice fields during the rice-growing season (gCH4 m−2 a−1), com-

piled from field studies and grouped by region. Reported minimum and maximum values denote the lowest and

highest growing-season emissions observed across the years covered in each study.

Region Country Mean Min Max Reference

East Asia China – 0.3 127.4 Wang et al. (2018)

East Asia China 19.9 1.0 97.0 Zhu and Li (2024)

East Asia Japan – 0.6 86.2 Wang et al. (2018)

East Asia South Korea – 9.7 214.5 Wang et al. (2018)

South Asia India – 0.8 347.5 Wang et al. (2018)

South Asia India – 3.0 15.0 Gupta et al. (2021)

South Asia India 7.7 0.4 19.0 Bhatia (2013)

South Asia Bangladesh – 11.6 13.2 Wang et al. (2018)

Southeast Asia Philippines – 0.3 95.6 Wang et al. (2018)

Southeast Asia Philippines – 2.00 55.0 Wassmann et al. (2000)

Southeast Asia Vietnam – 3.1 35.3 Wang et al. (2018)

Southeast Asia Indonesia – 2.6 72.2 Wang et al. (2018)

South America Brazil – 4.6 51.7 Wang et al. (2018)

South America Uruguay – 9.33 24.9 Wang et al. (2018)

Europe Spain – 6.9 97.2 Wang et al. (2018)

Europe Italy – 0.8 81.9 Wang et al. (2018)

Globally, grasslands exhibit simulated CH4 emissions that are half those from rice paddies, as indicated in Table 6.

This important source of CH4 emissions arises from two primary factors. First, the vast spatial extent of grasslands770

worldwide provides a substantial area for CH4 production and emission, despite the generally lower CH4 fluxes per

unit area compared to rice paddies. Second, many grassland regions, particularly those converted from historical

peatlands, are characterized by drained organic soils. The drainage of these former peatlands for agricultural use

not only alters the hydrological regime but also influences the soil carbon dynamics, creating conditions conducive

to CH4 emissions (van den Pol-van Dasselaar, 1998). Residual croplands constitute a small but non-zero CH4 source775

that is highly sensitive to field-scale hydrology. Even in nominally aerated systems, shallow or perched water tables,
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episodic waterlogging after irrigation or storms, and poorly drained depressions can create anoxic microsites where

methanogenesis occurs. The resulting emissions are intermittent and heterogeneous, governed primarily by water-

table depth and inundation frequency. Although flux magnitudes are typically far lower than those from wetlands,

such emissions can be regionally relevant in poorly drained landscapes and in wet seasons, and they carry high780

spatial and interannual variability.

5.4 Carbon pools and fluxes

The implementation of the anoxic decomposition also influences the organic carbon pools and the CO2 fluxes into the

atmosphere. Therefore the LPJmL6 model needs to be benchmarked for the other important carbon cycle variables

as well.785

5.4.1 Net biome production

The release of soil carbon is decelerated due to the representation of wetlands in the LPJmL6 models. The anoxic

decomposition is about 10 times slower and thus carbon is sequestered in soils for a much longer time. Thus the

model can well reproduce the magnitude of the global carbon sink – including land-use change (LUC) emissions

– within the estimate range of the Global Carbon Budget (GCB) 2023 (Friedlingstein et al., 2023) from Dynamic790

Global Vegetation Models (DGVM) and from the bookkeeping approach (DGVM-LU-BK) (see Table 10 and Fig. 6).

Table 10 shows that LPJmL6 reproduces decadal terrestrial sink magnitudes within the GCB 2023 DGVM and

DGVM-LU-BK uncertainty ranges and exhibits the expected strengthening from the 1990s to the 2010s; across

the two GCB methods, residual differences can be traced to land-use-change treatment—bookkeeping versus implicit

DGVM dynamics—and no systematic decadal bias is evident; this also holds for LPJmL6, indicating robust, method-795

invariant trends in the net land carbon sink. In Fig. 6, the simulated terrestrial sink follows the independently

constrained apparent sink and the atmospheric CO2 growth rate with comparable interannual variability, indicating

that LPJmL6 captures the major climate-driven fluctuations and the multi-decadal increase in sink strength without

long-term divergence from independent estimates.

5.4.2 Net ecosystem exchange800

We used eddy-covariance flux tower data to benchmark simulated NEE (Fig. 7; full data description in section 4.2).

As noted there, comparisons are constrained by scale mismatches between grid cells and tower footprints, possible

vegetation (PFT) mismatches, and the use of large-scale meteorological forcing rather than site-specific observations,

which limits the ability to capture site-specific variability in carbon fluxes.

Nevertheless, the comparison demonstrates that correlations between simulated and observed fluxes are generally805

high across many sites, indicating that the model captures the overall temporal dynamics of NEE reasonably well.

However, the centered root mean square difference (CRMSD) and the normalized standard deviation reveal larger
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Table 10. Net biome production-Terrestrial land sink including land use change emissions estimated by Global Carbon Budget

2023 and simulated by LPJmL6

GCB 2023 LPJmL6

DGVM (net) DGVM-LU-BK

1990s 0.7 ±0.5 0.9 ±0.9 1.1

2000s 1.1 ±0.4 1.4 ±1.0 1.3

2010s 1.6 ±0.6 2.0 ±1.0 2.0
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Figure 6. Terrestrial sink estimated by LPJmL6 and Global Carbon Budget 2023 (Friedlingstein et al., 2023).

discrepancies, suggesting that while the timing of seasonal and interannual variability is reproduced, the magnitude

of fluxes is often either over- or underestimated.

5.4.3 GPP810

The ILAMB comparison demonstrates that the model successfully reproduces gross primary production (GPP)

within the same order of magnitude as reported by Jung et al. (2011) (global mean 119 ±6 PgC a−1 for 1982–2008

vs. 126 PgC a−1 simulated by LPJmL6). This agreement is also in line with later FLUXCOM syntheses that place
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Figure 7. Taylor diagram showing the comparison of simulated net ecosystem exchange (NEE) against eddy-covariance

flux tower measurements. Observational data are derived from the FLUXNET network, which provides standardized eddy-

covariance measurements of ecosystem–atmosphere carbon and water fluxes (Pastorello et al., 2020)

global GPP roughly in the 106–130 PgC a−1 range, depending on predictors and machine-learning methods used

(Jung et al., 2020).815

5.4.4 Aboveground biomass (AGB)

Across the ILAMB benchmark, reference biomass products differ in scope (forest AGB vs. all vegetation; above- vs.

below-ground components), spatial/temporal coverage, and retrieval/inversion methodology, yielding a wide spread
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in implied global stocks. LPJmL6 estimates global woody biomass to be 422 PgC (mean 2000–2019). Among reference

datasets, products that resolve high biomass in humid tropical and high-latitude forests report totals comparable820

to LPJmL6, for example, GEOCARBON ∼408 PgC (GEO, 2014); the Xu–Saatchi synthesis 381 ± 2 PgC for

2000–2019 (Xu et al., 2021). By contrast, ESA CCI Biomass provides forest AGB of ∼300 PgC (above-ground forest

only) (GEO, 2014; Santoro et al., 2021), and NBCD2000 is regional (conterminous U.S., sim∼2000 baseline), serving

primarily for spatial pattern evaluation rather than global sums (Kellndorfer et al., 2012). These definitional and

methodological contrasts account for the spread in ILAMB intercomparisons and explain why LPJmL6 aligns more825

closely with datasets emphasizing woody stocks across humid tropical and boreal forests, whereas ESA CCI implies

lower global totals.

From the reference data sets used in ILAMB, only the Xu–Saatchi (Xu et al., 2021) product (381 PgC) aligns

closely with the LPJmL6 simulation result of 422 PgC, whereas most other datasets imply substantially higher global

biomass totals ranging from 300 to 408 PgC.830

5.5 Water fluxes

We assess the large-scale terrestrial water cycle to ensure that the CH4 implementation operates within a physically

consistent land-surface framework. The analysis combines global budgets with spatial diagnostics (renewable water

resources and groundwater recharge) and skill metrics for multi-decadal river discharge and evapotranspiration (ET)

simulations.835

5.5.1 Global water fluxes

Table 11 synthesizes ranges of data-driven and model-based estimates for the principal terrestrial water fluxes –

evapotranspiration (ET), transpiration (T), total runoff from land, groundwater recharge, and irrigation withdrawals.

ET (62×103 km3 a−1) and T (39×103 km3 a−1) fall within published model ranges and are near the lower bounds

of data-driven syntheses, indicating a conservative global partitioning of ET. Total runoff and river discharge (47840

and 40×103 km3 a−1) lie near the centers of reported ranges, consistent with independent constraints. Groundwater

recharge (31×103 km3 a−1) exceeds data-driven and modeled estimates; this difference reflects varying definitions

(diffuse vs. focused recharge and return flows), considered land areas, and averaging periods, also examined spatially

in section 5.5.2, with discharge and ET evaluations provided in sections 5.5.3 and 5.5.4. Nevertheless, the LPJmL6

estimate is near the upper end of published values and coincides with greater groundwater storage in the simulations845

than reported Müller Schmied et al. (2021) (Fig. 8).

5.5.2 Groundwater recharge and renewable storage

Fig. 8 compares long-term mean groundwater storage (GWS) and groundwater recharge for 1981–2010 from Water-

GAP 2.2 (Müller Schmied et al., 2021) and LPJmL6. Recharge is highest in humid tropics and monsoon regions
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Table 11. Simulated global terrestrial water fluxes, and ranges of data-driven and modeled estimates (in 103 km3 a−1). Evap-

otranspiration and transpiration represent long-term land averages (1982–2011); runoff and discharge are multi-decadal cli-

matologies (1982–2011 land means); infiltration denotes diffuse groundwater recharge; irrigation withdrawals (around 2010)

include both surface and groundwater abstraction.

Flux Data-driven Modelled LPJmL6

(103 km3 a−1) (103 km3 a−1) (103 km3 a−1)

Evapotranspiration (ET)1,2 64–69 50–70 62

Transpiration (T)3,4 55 ± 12 39–52 39

Total runoff (land)5,6,7 41–46 40–50 47

Groundwater recharge9,10 12–13 ∼11–30 31∗

Irrigation withdrawals (blue water)11–14 2.4–2.9 2.3–3.3 2.2

References: 1 Pan et al. (2020); 2 Wild et al. (2015); 3 Jasechko et al. (2013); 4 Good et al. (2015);
5 Schneider et al. (2017); 6 Godoy et al. (2021); 7 Döll et al. (2016); 8 Mohan et al. (2018); 9 Döll

and Fiedler (2008); 10 FAO (2020a); 11 Wada and Bierkens (2014a); 12 Wada and Bierkens (2014b);
13 Huang et al. (2018); 14 FAO (2014);
∗including return flows from irrigation

(Amazon, Congo, SE Asia, eastern India), and is moderate in temperate wet zones, and near zero across arid belts850

(Sahara, Arabian Peninsula, central Australia); orographic bands (Andes, Himalaya) are evident. Storage broadly

tracks persistently wet lowlands and large sedimentary basins, with minima in deserts and high-latitude regions.

LPJmL6 tends to display sharper spatial gradients and stronger orographic signals, while WaterGap is smoother

and often more conservative in semi-arid interiors.

5.5.3 Discharge for large river basins855

The comparison of discharge data shows that LPJmL6 is able to reproduce the seasonal hydrographs (see Fig. 9

and in the Supplement Fig. S8, especially in the southern latitudes. There are small improvements compared to

LPJmL5.10. The far northern discharge levels are also reproduced quite well, with the largest discrepancy in the

mid-latitudes. In some regions with low R2 , errors are dominated by timing mismatch: the model typically leads

the observed cycle (peaks occur earlier), while amplitudes are reasonably captured (see Supplement Fig. S8).860

5.5.4 Evapotranspiration fluxes

Simulated ET was compared against eddy-covariance flux tower measurements. While towers provide high-frequency

and highly localized ET estimates, the coarse spatial resolution of the simulations introduces a scale mismatch similar

to that encountered for NEE.

Model-data agreement of ET is even higher than for NEE, in terms of both correlation coefficients (the model865

reproduces the temporal variability of ET with greater accuracy) and the CRMSD and the normalized standard
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Figure 8. Comparison of WaterGAP 2.2 (Müller Schmied et al., 2021) and LPJmL6 maps of (a,b) renewable groundwater

storage (GWS; multi-year mean, 1981–2010) and (c,d) groundwater recharge (mean annual, 1981–2010). Colors show discrete

classes for storage in mm; for recharge the units are mma−1.

deviation (the magnitude of ET fluxes is represented more consistently across sites). This likely reflects the fact

that ET is primarily controlled by atmospheric demand and canopy conductance, processes that are more directly

constrained by meteorological forcing and vegetation structure in the model, whereas NEE additionally depends on

complex carbon turnover processes and ecosystem-specific dynamics.870

5.6 Vegetation distribution

A comparison of LPJmL6-simulated actual land cover (natural vegetation plus managed cropland and grassland)

witj ESA CCI LC4 land-cover product (Harper et al., 2023) reveals a generally good match in spatial patterns
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Figure 10. Taylor diagram showing the comparison of simulated evapotranspiration fluxes against eddy-covariance flux tower

measurements. Observational data are derived from the FLUXNET network, which provides standardized eddy-covariance

measurements of ecosystem–atmosphere carbon and water fluxes (Pastorello et al., 2020)

for PFTs (Fig. 11). However, in the temperate and southern boreal zone, ESA CCI LC4 data predominantly show

broadleaved summergreen trees, while LPJmL6 simulates a substantially lower abundance of this PFT. Part of this875

divergence likely stems from the LC-to-PFT reclassification applied to ESA CCI LC4, which can inflate broadleaved

summergreen fractions in mosaic and open-forest landscapes and has been shown to introduce spatially structured

errors, including overestimation near the taiga–tundra ecotone (Wang et al., 2023b). In the inner tropics, LPJmL6

dominantly simulates broadleaved evergreen trees in line with the observed data, yet it also produces a minor
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Figure 11. Vegetation distribution of LPJmL6 compared to ESACCI-LC-L4 data (Harper et al., 2023)

fraction of broadleaved deciduous cover, consistent with the common deciduous–evergreen coexistence in tropical880

forests (Muehleisen et al., 2024), reflecting the influence of rainfall variability. Mora et al. (2014) suggest that remote

sensing data, such as the ESA CCI LC4 dataset, may overestimate the extent of broadleaved evergreen trees in these

regions due to challenges in distinguishing between evergreen and deciduous species under dense canopies and during

certain seasons. Factors contributing to this misclassification include mixed pixel composition, seasonal variations in

leaf phenology, and limitations in sensor resolution. For instance, the complexity of tropical forest structures and the885

similarity in spectral signatures between different tree species can lead to inaccuracies in classification (Zhong et al.,

2024). Finally, while the model effectively simulates the presence of needleleaved deciduous trees in appropriate areas,
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aligning well with ESA observations, LPJmL6 tends to over-represent their overall abundance in the high-latitude

boreal forests of Eurasia and North America.

Uncertainties also arise from the representation of land use, both in observational products and in the prescribed890

land-use forcing used to drive LPJmL6. Reconstructions and scenarios of cropland and pasture area differ substan-

tially among datasets, particularly in regions with smallholder or mosaic agriculture, leading to divergent estimates

of the area available for natural and managed PFTs (e.g. Prestele et al., 2016; Hurtt et al., 2020; Klein Goldewijk

et al., 2017b). These discrepancies propagate into both the LC-to-PFT reclassification of ESA CCI LC4 and the

land-use trajectories imposed on LPJmL6, so part of the mismatch between simulated and observed PFT patterns895

likely reflects uncertainties in land-use data rather than Vegetation dynamics alone.

6 Conclusions

We present LPJmL version 6, including a newly developed process-consistent CH4 module that links hydrological,

vegetation dynamical and biogeochemical processes to atmospheric CH4 exchange. A new wetland scheme combines

a dynamic water table with a CTI-based inundation fraction that is recalculated from the grid-cell CTI distribution,900

enabling the simulation of spatially and temporally varying anoxic areas within each cell.

Evaluation demonstrates (i) agreement in global wetland area with several inventories, while highlighting a per-

sistent, first-order observational divergence (3.6–11.4 million km2) that translates into different emission potentials;

LPJmL6 captures the tropical signal and part of the mid-latitude peak but remains conservative in boreal zones

relative to GLWD. (ii) global CH4 emissions that are consistent with atmospheric measurement constraints when905

combined with non-modeled sectors that bring the modeled net flux into the 506–630 Tg CH4 a-1 corridor for

2008–2017. (iii) mechanistic attribution showing diffusion as a leading pathway and ebullition as small, with fires

contributing 5% of natural sources. LPJmL6 successfully simulates the interactions between environmental factors

such as temperature, soil moisture, and vegetation, which govern CH4 production, oxidation, and transport. Its

ability to capture regional and temporal emission trends aligns well with observational datasets and other global910

estimates, particularly in high-emission regions like tropical wetlands and rice cultivation areas. However, the model

also highlights uncertainties in CH4 emissions from agricultural land and high-latitude regions, emphasizing the need

for improved data on wetland dynamics and small-scale CH4 sources. Uncertainties are dominated by (a) wetland

extent in high latitudes and (b) agricultural sources, including rice-area dynamics and management, which LPJmL6

now resolves but for which observational constraints remain unequivocal. The model aligns with bottom-up wet-915

land emission estimates across decades, while top-down estimates have converged downward, reducing the historical

BU–TD gap and supporting the process-based approach.

The implementation of CH4 dynamics in LPJmL6 represents a significant advancement in the modeling of ter-

restrial land surface dynamics and, in particular, CH4 emissions. By integrating CH4 processes within the broader

framework of the global carbon, nitrogen, and water cycles, the model allows for detailed assessments of emissions920
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from different land-use groups, here reported separately for natural wetlands, rice paddies, grasslands, and the re-

maining cropland. The dynamic representation of wetlands and permafrost processes, combined with hydrological

modeling, enhances the understanding of CH4 flux variability across diverse ecosystems.

CH4 emissions from land use and wetlands are a significant contributor to climate change. Forested wetlands,

wetland dynamics, permafrost, and various anthropogenic and natural sources contribute all to the global CH4925

budget. By understanding the complex dynamics of CH4 emissions and their environmental regulation, effective

strategies for mitigating climate change can be developed. Continued research and monitoring of CH4 emissions are

essential for improving our understanding of this potent greenhouse gas and its impact on the planet.

LPJmL6 is a robust tool for understanding the complexities of CH4 dynamics under current and future climate

conditions. These advances allow for more accurate projections of CH4 emissions, critical for formulating effective930

climate-mitigation policies. Continued refinement of CH4-related processes, such as improved parameterization of

wetland extents and anthropogenic emission factors, will further increase the realism of LPJmL6-derived surface

fluxes. When these fluxes are used in, or coupled to, atmospheric transport and chemistry modules within Earth

system modelling frameworks, they can help to better constrain the global CH4 budget and attribution of observed

concentration trends, thereby supporting more robust climate-impact assessments. In addition to enhancing CH4935

representation, the improvements made to the soil water status significantly advance the model’s ability to capture

land surface dynamics. This enhancement is particularly impactful for simulating water stress in natural vegetation

and crops, leading to more accurate representation of plant-water interactions. Notably, this advancement represents

a co-benefit of the CH4-focused implementation, offering improvements beyond CH4 simulations by strengthening

the model’s capacity to simulate hydrological processes and their influence on terrestrial ecosystems.940

Code and data availability. The LPJmL6 model version further developed and used in this study is archived on Zenodo:

https://zenodo.org/records/17911633 (Schaphoff et al., 2025b) and is also available from GitHub (https://github.com/PIK-

LPJmL/LPJmL). The evaluation and analysis scripts, including all ILAMB validation scripts and configuration files re-

quired to reproduce the diagnostics, are likewise archived on Zenodo: https://doi.org/10.5281/zenodo.17877397 (Schaphoff

et al., 2025a). The LPJmL6 model output used for the evaluation in this paper is provided in NetCDF format via Zen-945

odo: https://doi.org/10.5281/zenodo.17877397 (Schaphoff et al., 2025a). Together, these repositories contain all model code,

scripts, and simulation data necessary to reproduce the results presented here, apart from the external observational and

benchmark data sets, which are available from the original providers cited in the main text.

All observational, remote-sensing, and synthesis products used for model evaluation are third-party datasets and are not

redistributed with this manuscript; users must obtain them directly from the original providers under their respective li-950

censes/usage policies. Wetland extent evaluation used: the Global Lakes and Wetlands Database (GLWD; https://www.

worldwildlife.org/pages/global-lakes-and-wetlands-database, accessed 2018-08-15; the Kaplan wetland map (https://doi.org/

10.5281/zenodo.18274983); the SWAMP “Tropical and Subtropical Wetlands Distribution” dataset (https://doi.org/10.17528/

CIFOR/DATA.00058, accessed 2024-11-24); and WAD2M wetland dynamics (https://zenodo.org/records/5553187, accessed
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2024-09-03). Latitudinal CH4 emission benchmarking used WetCHARTs v1.0 (https://doi.org/10.3334/ORNLDAAC/1502,955

accessed 2017-06-01). Atmospheric constraints used CarbonTracker-CH4 (https://gml.noaa.gov/ccgg/carbontracker-ch4/, ac-

cessed 2024-02-28) and NOAA CH4 trend products (https://gml.noaa.gov/ccgg/trends_ch4/, accessed 2024-02-28). Eddy-

covariance NEE and ET were taken from FLUXNET2015 (https://fluxnet.org/data/fluxnet2015-dataset/, accessed 2017-04-

17). Vegetation structure evaluation used ESA CCI Land Cover “Global Plant Functional Types (PFT) Dataset” (http://maps.

elie.ucl.ac.be/CCI/viewer/download.php, accessed 2022-08-19). System-level synthesis constraints used the Global Carbon960

Budget data (https://doi.org/10.18160/GCP-2023, accessed 2024-03-15) and the Global Methane Budget data portal (https:

//www.globalcarbonproject.org/methanebudget/ and data page https://www.globalcarbonproject.org/methanebudget/24/

data.htm, accessed 2024-03-18). R-ArcticNET v4.0 station attributes and monthly discharge tables are available from the

project download at https://www.r-arcticnet.sr.unh.edu/v4.0/AllData/index.html, accessed 2012-05-15 (R-ArcticNET Project).

RivDIS v1.1 can be accessed via https://doi.org/10.3334/ORNLDAAC/199, accessed 2015-03-14 (Vörösmarty et al., 1998).965

Multi-metric benchmarking used ILAMB software and its reference dataset collection (https://www.ilamb.org/; datasets:

https://www.ilamb.org/datasets.html).

Figure A1. Base-flow recession coefficient determining the outflow rate from groundwater stores as a fraction of the store

(ERMITAGE project report (2013), ).
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Table A1. Abbreviation of PFTs and CFTs.

Tropical broadleaved evergreen tree TrBrEv

Tropical broadleaved raingreen tree TrBrDe

Temperate needleleaved evergreen tree TeNeEv

Temperate broadleaved evergreen tree TeBrEv

Temperate broadleaved summergreen tree TeBrDe

Boreal needleleaved evergreen tree BoNeEv

Boreal broadleaved summergreen tree BoBrDe

Boreal needleleaved summergreen tree BoNeDe

Tropical herbaceous TrHe

Temperate herbaceous TeHe

Polar herbaceous PoHe

C3 flood tolerant grasses C3gr

Temperate cereals TeCe

Tropical cereals TrCe

Temperate roots TeRo

Tropical roots TrRo

Sunflower SunFl

Soy-bean Soy

Groundnut GrNu

Rapeseed Rape

Sugar-cane SuCa
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Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.: Domestic and industrial water uses of the past1045

60 years as a mirror of socio-economic development: A global simulation study, Global Environmental Change, 23, 144–156,

https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.

50

https://doi.org/10.5194/egusphere-2025-6210
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschützer, P., Le Quéré,
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