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Abstract. Methane (CH4) is the second most important greenhouse gas, and accurate quantification of its
15 emissions is critical for mitigating climate change. In this study, we thoroughly evaluated the performance of an
in situ CHa sensor (Axetris) for quantifying anthropogenic CH4 emissions when deployed on an unmanned aerial
vehicle (UAV). Sensor stability was assessed through laboratory tests under controlled and varying temperature
conditions. Under stable conditions, the sensor achieved a precision of 63 ppb at 2 Hz. Furthermore, the tests
revealed the necessity of temperature control and provided a water vapour correction term to ensure accurate
20  measurements. Additionally, the sensor was used to quantify whole-farm CHa emissions, yielding a mean flux of
4.1 = 1.6 gCH4/s averaged over four flights. This mean flux was comparable to the value of 4.2 + 1.1 gCHa/s
obtained from the established AirCore technique. Finally, an uncertainty analysis based on the Ornstein-
Uhlenbeck method was used to determine the influence of various sources of uncertainty. This analysis revealed
that both wind-related uncertainties and background determination can significantly increase the overall
25 uncertainty when not properly constrained. Furthermore, instrumental errors play a dominant role for smaller
fluxes, while meteorological uncertainties remain significant even with repeated flights. Nevertheless, careful
flight planning, e.g., ensuring extensive sampling outside of the plume and comprehensive wind monitoring, can
reduce these uncertainties. Overall, our results demonstrate that a cost-effective sensor can provide reliable CHa4

flux estimates with uncertainties comparable to those of established UAV-based systems.

30 1 Introduction

Methane (CHa) is the second most important anthropogenic greenhouse gas (GHG) and has received increasing
attention due to its relatively short atmospheric lifetime and strong global warming potential (GWP) compared to
CO:s. The global average dry air mole fraction of CHareached 1942 ppb in 2024 and is expected to increase in the
coming years (WMO, 2025). Approximately 60% of the global CHa emissions are linked to human activities,
35 primarily from agriculture, fossil fuel production and use, and waste disposal (Saunois et al., 2020). The observed

rise in global CH4 mole fraction is driven not only by anthropogenic sources but also by changes in natural CHa
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fluxes, influenced by ongoing climate change (Ciais et al., 2013). Reducing CHs emissions is essential for climate
mitigation and represents a key strategy for limiting global warming to below 2 °C (UNEP & CCAC, 2021). To
evaluate the effectiveness of mitigation efforts, monitoring CHs emissions and identifying their sources are

40 critical.

Despite recent efforts, uncertainties of 20-35% remain in estimates of global annual anthropogenic CH4 emissions
(Saunois et al., 2020). These uncertainties arise from limitations in available data as well as underreporting and
misreporting in national inventories. Current CH4 emission inventories suffer from inconsistencies due to scarce

45 observational data and methodological disparities. Given limitations in existing monitoring systems, approaches
focusing on additional measurements and regional studies can help reduce uncertainties in top-down estimates
(Saunois et al., 2020; Bousquet et al., 2018; Bruhwiler et al., 2017). Additionally, specific emission sources, such
as manure and landfills, exhibit complex emission patterns with substantial diurnal and seasonal variability,
making more frequent and reliable measurements necessary.

50
To address these gaps and uncertainties, cost-effective, scalable, and easily maintainable sensor technologies,
coupled with robust monitoring methodologies for quantifying anthropogenic CHa emissions, are needed. These
technologies can be used in more regional studies to evaluate the efficacy of mitigation strategies and monitor
emission reductions at finer spatial resolutions (Saunois et al., 2020). International frameworks such as the United

55  Nations Framework Convention on Climate Change (UNFCCC) support the implementation of unified
methodologies to improve the accuracy of national inventories. Regular and systematic monitoring is vital for
verifying mitigation outcomes and can help detect more fugitive emissions, which are often underrepresented in

inventories (Erland et al., 2022).

60  Unmanned aerial vehicles (UAVs) have emerged as valuable tools for addressing data gaps in GHG emission
monitoring. Recent advances in sensor technologies have enabled the integration of more lightweight instruments
with UAV platforms. These systems offer advantages over alternative approaches (e.g., ground-based or satellite-
based observations) by facilitating targeted emission sampling at finer spatial resolutions and bridging the
observational gap between ground level and altitudes up to 120 meters (though UAVs are capable of flying much

65 higher, regulations typically limit their max altitude). Furthermore, UAVs are versatile, easy to deploy and

maintain, and have a relatively low implementation cost (Villa et al., 2016; Shaw et al., 2021).

Recent UAV-based GHG studies have employed three main sensor deployment strategies: (1) tethered systems
connecting an UAV to a ground-based analyser (Shah et al., 2020); (2) semi-continuous sampling equipment (e.g.,
70 Active AirCore), mounted directly on UAVs for post-flight ground analysis (Andersen et al., 2018; Vinkovi¢ et
al., 2022; Leitner et al., 2023, Han et al., 2024); (3) real-time in situ sensors fully integrated into UAV platforms
(Kunz et al. 2018; Allen et al., 2019; Tuszon et al., 2020; Scheutz et al., 2024). Although these techniques differ
operationally, they all rely on the mass balance approach (MBA; Nathan et al., 2015; Vinkovi¢ et al., 2022) or the
inverse Gaussian approach (IGA; Andersen et al., 2021) for flux quantification. This study focuses on the MBA

75 because it can directly convert atmospheric concentration measurements into fluxes.
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While all flux quantification techniques introduce inherent uncertainties, wind conditions and spatial distribution
of the flight track design consistently emerge as the most influential factors. In general, uncertainties in airborne
flux estimates range from 20% to 75%. Still, they can exceed 100% under challenging conditions such as low

80  wind speeds (<2 m/s), high wind direction variability (e.g. >30°), or non-uniform sampling (Vinkovi¢ et al., 2022;
Morales et al., 2021; Scheutz et al., 2024; Liu et al., 2024; Mohammadloo et al., 2025).

Instrumental or sensor precision is generally considered a minor factor compared to the factors mentioned above,
underscoring the importance of investing in accurate wind measurements and thoughtful flight planning rather
85 than prioritising high-precision sensors. Nonetheless, recent research has focused on developing increasingly
lightweight and high-precision sensors (Tuszon et al., 2020; Kunz et al., 2018; Allen et al., 2019). While these
advancements are valuable, their presumed high cost and maintenance demands limit their widespread
deployment. Evidence suggests that low-cost, medium-precision sensors, when combined with accurate wind
measurements and optimised flight planning, can achieve flux estimates with uncertainties comparable to those

90 obtained using high-precision sensors.

In this study, we present and evaluate the performance of a low-cost, medium-precision CHa in situ sensor that
meets key operational criteria. First, the sensor was characterised in the laboratory to optimise system performance
and minimise drift. Following extensive testing, the sensor was deployed during a field campaign alongside the
95 Active AirCore to quantify CH4 emissions from a Dutch dairy farm, a site previously surveyed by Vinkovi¢ et al.
(2022). This enabled a direct comparison between flux estimates derived from our medium-precision sensor and
those from the established Active AirCore technique, providing new insights into the role of measurement
uncertainty in flux quantification. Finally, a statistical model was used to further investigate the influence of

common sources of uncertainty.

100 2 Laboratory characterisation

Sensor characterisation is essential for improving sensor useability, as laboratory experiments provide insight into
its behaviour under varying conditions. In this study, the standard operation of an in situ CH4 sensor was
characterised under stable laboratory conditions. A linearity test was performed to determine the sensor's response
over a wide range of concentrations by comparing it to a high-precision reference analyser whose response is
105 known to be linear. An Allan variance analysis provided information on the sensor's precision under baseline
conditions (e.g., stable temperature, stable pressure, and no external vibrations), enabling direct comparison across
various use cases and setups. The follow-up experiments focused on isolating the effect of different environmental
factors on the sensor's output. Water vapour experiments were performed to determine the effect of water vapour
on sensor readings. Additional Allan variance analyses were performed to compare the sensor’s performance

110 under various conditions, e.g., active temperature control, laboratory and in-flight conditions.
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2.1 The Axetris in situ methane sensor package

We developed a UAV-mounted sensor package incorporating a commercially available in situ CH4 sensor (LGD-
compact A CHa; Axetris AG, Kaegiswil, Switzerland), hereafter referred to as the Axetris. The sensor is capable
115 of real-time monitoring at a 2 Hz sampling frequency using a tuneable diode laser spectroscopy (TDLS) technique,

which specifically targets the CHa absorption wavelength at ~1652 nm.

We integrated the Axetris onto a self-built printed circuit board (PCB) designed around an ESP32 microprocessor,
enabling logging of data from the Axetris and ancillary sensors. The Axetris reports CH4 mole fractions, the
120  temperatures of the measurement cell and the interface PCB. Furthermore, the complete package includes a
pressure sensor (AMSYS GmbH model 5915-1200-B) with a precision of £0.36 hPa and a measuring range of
800-1200 hPa. A 1200 mAh, 7.4 V Li-ion battery pack powers the whole system. Ambient air was drawn through
a filter (Rezist 30/ 5.0 PTFE-s; Whatman, Freiburg, Germany) into and through the sampling system using a
micropump (NMP09; KNF, Freiburg, Germany) at a flow rate of 650 standard cubic centimetre per minute (sccm),
125 ensuring rapid transfer of the sample to and through the measurement cell. With a sampling line volume of ~7 mL
and an ambient-pressure cell volume of 19 mL, this configuration yields a time delay of less than 1 second for the

sample to reach the measurement cell and a system response time constant of ~1.7 seconds (~4.2 seconds too).

The complete system was housed in a 20x20x10 cm polyethylene (PE) foam enclosure, yielding a relatively
130 lightweight package (1.2 kg). The foam casing acted as a thermal insulator, helping to maintain a stable operating
temperature for the analyser. The system had a wireless connection, which provided the ground time with real-

time measurements and enabled remote control of critical functions.

To improve measurement quality, 1.1 m of low-power heating wire (Nc I 20; ThermoCoax, Suresnes, France) was
135 coiled around the sensor head. This coil was used to maintain the measurement cell's temperature at a

predetermined value (typically approximately 10 K above ambient), improving the system's thermal stability and

mitigating erratic sensor behaviour caused by ambient temperature fluctuations. A PID controller controlled the

duty cycle of the heating element, which used the measurement cell temperature (1 mK resolution, 2 Hz) as input.

This setup regulated the temperature to within +£0.005 K from the set-point under lab conditions, and within 0.05
140 K during flight (Appendix A). Figure 1a presents a schematic of the complete Axetris package.
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Figure 1: a) schematic overview of the Axetris package for UAV applications. The blue arrows show the airflow through the
145 system during measurements. Components in the dotted and dashed lines enclosed area are integrated onto the PCB and
enclosed in the PE foam. The datalogger communicates with the Axetris sensor and provides active control of the heating
element, including setting and maintaining the desired temperature. b) Experimental overview for linearity test setup. First,
the flask is filled with the reference gas, which has a high CH; concentration (indicated by the green arrow). Then, both systems
start to sample the air from the flask, while ambient air was drawn in to mix with the high concentration (blue arrows), slowly

150 decreasing the concentration in the flask.

2.2 LI-7810 trace gas analyser

The LI-7810 trace gas analyser (LI-COR Biosciences, Lincoln, USA) is a high-precision multi-gas analyser that
provides continuous measurements of CH4, CO2, and H20O in a durable, portable design. The LI-7810 uses optical
155 feedback cavity enhanced absorption spectroscopy (OF-CEAS). It contains a 6.41 cm® optical cavity operating at
standard conditions of 40 kPa (i.e., V,zr=~ 2.5 cm?®) and 55 °C, and a flow rate of 250 sccm. For this study, the
LI-7810 was equipped with a "low flow kit", which lowered the flow rate to ~70 sccm and changed the system's

response time constant to approximately 2.3 seconds (~5.5s t9).

160 The precision, accuracy, and linearity of the LI-7810 analyser under standard operating conditions were evaluated
in an extensive report executed by ICOS (ICOS, 2020). From our laboratory tests, we found a 1-second precision
of 0.1 ppb for CHa and 0.2 ppm for COz, respectively. The short-term drift over 24 hours was < 0.7 ppb for CH4
and < 3 ppm for COz, respectively. The 1-second precision of the system operating at reduced flow was the same
as under standard operating conditions.

165
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2.3 Linearity of the Axetris

System linearity was verified by connecting both systems to a flask filled with a high CHa concentration (~81
ppm). The concentration inside the flask was then gradually reduced by allowing ambient air to enter, while the
Axetris and the LI-7810 sampled it (see Figure 1b for experimental setup). The LI-7810 system linearity was
170 confirmed by extensive laboratory tests (ICOS, 2020). These tests enabled direct comparison of the systems'

response across a wide range of concentrations. Figure 1b shows an overview of the experimental setup.

The linearity test revealed strong agreement between the Axetris and LI-7810, with a correlation coefficient of
0.996. The linear equation between the two systems is as follows:
175
CHy 4 = —142+ 1.001CH, ;)¢

The slope confirms linearity between the two systems, while the intercept indicates the bias between them. This
bias (142 ppb) can be easily dealt with through calibration. The results confirm the reliability of the Axetris under
180  controlled conditions and its ability to measure high CH4 concentrations with strong linearity to the LI-7810

(Appendix B; Figure B1).

2.4 Water vapour corrections

Water vapour can significantly affect gas sensor readings in two ways: (1) by dilution of trace gas concentrations
185 and (2) through more complex spectroscopic effects. The influence varies depending on the sensor type and the
correction algorithms implemented by the sensor manufacturer (Butenhoff & Khalil, 2002). To characterise the
effect of water vapour on the Axetris response and derive an empirical correction, we conducted a controlled

water-droplet test.

190  While performing the water droplet test, the Axetris and the LI-7810 sampled air from a gas cylinder containing
a high concentration of CH4 (~81 ppm). A Swagelok compartment containing a wet paper towel was placed
between the sampling lines to introduce water vapour into the otherwise dry gas stream (Appendix C; Figure C1
for experimental set-up). The compartment was gradually heated using a hairdryer to increase humidity levels,
measured with the LI-7810. Water vapour concentrations ranged from 0.06 % to 1.4 %, corresponding to relative

195 humidity of 1.5% — 61 % at 25 °C.

The dry value of the reference gas was determined by sampling the cylinder air without the Swagelok
compartment. The LI-7810 reported a water vapour concentration of 0.004 % and a CHa concentration of 81.7
ppm. We quantified the influence of water vapour on CHs measurements using the method of Chen et al. (2010).
200 A linear relationship was established between: (1) the ratio of wet-air CHa concentration (Axetris) to dry-air CHa

concentrations (LI-7810) and (2) water vapour concentration, as follows:

CH4—Wet

=1+aH,0
CH4-dry 2
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205 with a =-0.013 = 0.00008%'. Figure C2 in the Appendix depicts the linear regression.

As mentioned, water vapour affects the measurements in two different ways (Chen et al., 2010). At 81.7 ppm CHa,
this relationship corrects mainly for the water vapour dilution effect, although other effects, including spectral
interference and H2O calibration, account for ~30% of the dilution effect. For field applications, we correct
210 ambient air sample measurements using the derived correction function to convert the measurements in humid air
to dry air mole fractions. In practice, water vapour concentrations were either measured directly or taken from
model simulations. With this, we assume that the non-dilution part of the water vapour correction remains the
same at ambient levels as at high concentrations. Although this approach may not capture the full variability of
water vapour, it is expected to adequately account for the most significant sources of water vapour related
215 variability in the measurements. Any residual error introduced by this simplification is considered negligible,

especially when compared to larger sources of uncertainty, such as wind variability.

2.5 System precision

The system's precision can be determined by operating it under stable conditions while sampling a reference gas
220 over a longer period. The obtained time series was further analysed using the Allan variance method. The method
is a commonly used statistical tool for assessing frequency stability and identifying noise characteristics in
measurement systems (Allan, 1966). It provides insight into the noise, stability, and drift of a sensor (e.g., the
Axetris), helping distinguish between random noise and systematic drift and informing the user about the optimal
calibration frequency. In addition to the stable laboratory test, the sensor was deployed underneath an UAV while
225 it sampled a reference gas from a calibration bag. These tests gave insight into the sensor's precision under more
turbulent conditions. The calibration bag used is a ~1 L multilayer gas sampling bag (Supelco Inc.) that was tested

and used by Hooghiem et al. (2018) for high-precision stratospheric measurements of CO2, CH4, and CO.

The laboratory test lasted for 16 hours, with an observed temperature of 25 + 0.1 °C and a pressure of 1.02 + 0.001
230  bar, while pushing gas through the Axetris at a flow rate of 70 sccm. The UAV's precision was determined over
three consecutive flights, each lasting 20 minutes and varying flight patterns. Results were processed in MATLAB
using the allanvar function (version R2019a), which yielded the Allan variance (¢(7)?) and the corresponding
averaging time (7). To aid with the interpretability of the resulting figures, we converted the Allan variance to the

Allan deviation (in ppb; Vo (1)?).

235 Figure 2 shows the Allan deviation results obtained under stable laboratory conditions (16-hour dataset) and
during in-flight operation. Figure 2a shows the recorded CH4 measurements during the 16-hour test and depicts a
slow drift in the initial hours of the observations. After being turned on, the system stabilises its cell temperature
during the warm-up period. However, the observed drift cannot be linked to this phase, as the system had been on

for several hours before the experiment.
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240  Figure 2d shows a precision of 63 ppb at 1-second averaging, improving to 4 ppb at 512-second averaging under
stable laboratory conditions. Beyond this duration, the sensor's precision becomes drift-dominated. To maintain
measurement precision below 10 ppb, calibration every hour is required. However, when operating the sensor
during UAV deployment, its precision decreases. Its performance under flight conditions may differ due to
additional pressure and temperature variations, as well as vibrations. In comparison, the Allan deviation analysis

245 of in-flight data (sampled from a calibration bag) shows the sensor's precision of 91 ppb at a 1-second interval,
reaching a minimum of 11 ppb after 128 seconds. These results demonstrate the sensor's performance without

additional temperature control and show that turbulent conditions reduce its precision.

(a) 16-hour laboratory observations
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Figure 2: Overview of sensor observations and Allan deviation results. (a) Axetris measurements over sixteen hours during
250 stable laboratory conditions. (b) Axetris measurements (purple) with active temperature control and corresponding cell
temperature (black). (c) Axetris measurements (green) without active temperature control and corresponding cell temperature
(black). Shaded areas indicate 30-minute periods inside the fridge. (d) Allan deviation plots of the stable laboratory
measurements (black), during flight conditions (purple), and with (green) and without (dashed green) temperature control.

2.6 Temperature dependency

255 Temperature variability is readily observed to affect sensor performance significantly. During routine use, this
may lead to biases whenever ambient conditions change, for instance, when moving the sensor from a car to an
UAV. To demonstrate this effect and the efficacy of a temperature control system, we conducted controlled
experiments. Here, the Axetris was exposed to sudden temperature changes while continuously sampling a

reference gas. The conditions encountered during UAV deployment were simulated by transferring the sensor
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260 from a room-temperature environment to a fridge (7.5°C). Airflow around the sensor package (i.e., all components
inside a foam casing) was mimicked by placing a small fan inside the fridge. In the experiment, we compared (1)
actively heating of the sensor to 28 °C using the heating wire to (2) not heating, and only relying on the dampening
effect of the foam casing to provide temperature stability. The Axetris' output was continuously monitored, and
the sensor was only transferred after readings had stabilised for ~10 minutes. Each configuration was tested in

265 three independent runs, with the sensor exposed to the cooler environment for 30 minutes per run.

Figure 2b and 2c show the time series of the temperature-dependence experiment, illustrating the necessity of
active cell temperature control for stable Axetris measurements under varying ambient conditions. During the
experiment, the fridge temperature was 7.6 + 0.5 °C and the laboratory temperature was 21.4 £ 0.5 °C. Figure 2b
270 depicts the Axetris observations with the cell temperature actively controlled at 28 °C. In contrast, Figure 2¢
presents the measurements without active temperature control, where irregular and non-linear behaviour is
observed. In both panels, the shaded areas indicate the 30-minute periods during which the sensor was placed

inside the fridge.

275 Figure 2d shows the Allan deviation plots for the periods when the Axetris was inside the fridge. As expected, the
three tests with active temperature control (green solid line) exhibit decreasing Allan deviations, reaching a
minimum of 6 ppb at T = 256 s, and stays below =18 ppb for the duration of the experiment. This is similar to
the behaviour observed during the laboratory condition test (black solid line). Without temperature control (green
dashed lines), the Allan deviation initially follows the same downward trend. However, it reaches its minimum of

280 13 ppb at T = 64 s. Longer averaging times causes the drift to rise sharply, rising to approximately +50 ppb.

Active temperature control improves sensor stability and extends the averaging time over which the lowest
precision is achieved. In addition, the heating element effectively suppresses the random oscillations observed
without temperature control. The random oscillations are detrimental to the system's performance and are too
285 complex to correct. Therefore, observations made when the sensor behaves in this way cannot be used for accurate
flux estimation. Finally, in the absence of temperature control, the sensor's stabilisation period after exposure to
the colder environment is substantially longer (~100 minutes; Figure 2¢), whereas with active temperature control,

the sensor is immediately ready for deployment, improving its practicality.

3 Field validation of the Axetris sensor
290 The laboratory characterisations improved the sensor's observation quality and optimised its performance for in-
field deployment. These improvements were then tested during a field validation of the Axetris sensor, comparing
its performance with that of the proven Active AirCore technique (Andersen et al. 2018; Morales et al., 2022;
Vinkovi¢ et al., 2022). Both instruments were deployed underneath a UAV during flights at a dairy farm in the
north of the Netherlands. These tests allowed for a direct comparison of the two systems for quantifying CHa

295 emissions from the whole farm.
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3.1 Field site
The dairy cow farm quantified during this study is located in the village of Grijpskerk, approximately 20 km
north-west of the city of Groningen. Pastures and cropland surround the farm, with clear upwind areas, making it
300 an ideal location for UAV-based quantification. The farm was previously quantified by Vinkovi¢ et al. (2022),
allowing for direct comparison of our results with theirs. During this study, three main CHa sources were
identified: a barn with all dairy cows (225 cows), a barn with other cattle (25 dry cows and 132 heifers) and three

manure cellars. These sources were also of interest during the study by Vinkovi¢ et al. (2022).

305 3.2 UAV system
The sensor package was mounted underneath a DJI Matrice 600 hexacopter UAV using two straps. The UAV has

a maximum payload capacity of 6 kg, well above the Axetris package's weight, and a wind speed resistance of 8
m/s. The typical flight duration decreased from 35 minutes (unloaded) to 20-25 minutes when carrying the Axetris
package and further decreased when the active AirCore was flown simultaneously. An anemometer (LI-550
310 TriSonica, LI-COR Biosciences, Lincoln, USA) was mounted on a 1 m tall carbon fibre rod extending from the

UAV to obtain in-flight wind speed and wind direction measurements.

3.3 Meteorological measurements
Meteorological data were obtained from both ground-based and drone-mounted sensors, including: (1) a 3D sonic
315 anemometer (WindMaster Pro; Gill Instruments, Hampshire, UK) placed near the farm, which recorded
continuous wind speed and direction at 10 Hz at an altitude of 3 meters, and (2) the UAV's onboard wind sensor,
i.e. the TriSonica, which provided complementary in-flight measurements. The WindMaster Pro observations

were used to anchor a logarithmic wind profile based on the theoretical formulation of Stull (1988).

: ln(%)
320 u(z) = uref@ ()]

Z0

Equation 1 assumes neutral atmospheric stability and a homogenous surface. A surface roughness length z, =
0.15 m was used, which is representative of conditions between low and tall agricultural crops (Wieringa, 1992).
The reference wind speed u,..r was derived as the average the WindMaster Pro observations during the duration
325 of each of the flights (Table 1), and z,.; denotes the height of these reference observations (z,.; = 3m), and z;

includes the considered heights. This logarithmic wind profile is used for calculation of fluxes.

To visually assess the appropriateness of the logarithmic profile, we plot it together with the TriSonica
measurements and observations from the two nearby Royal Netherlands Meteorological Institute (KNMI) stations
330 (Appendix D). Raw TriSonica measurements were converted to true wind speed and direction by accounting for
the UAV's motion and orientation. Overall, the TriSonica observations show a clear increase in wind speed with
altitude, resembling the cardinal feature of the logarithmic profile. The uncertainty bounds of the TriSonica data
overlap with the profile, indicating that our assumptions about the logarithmic profile are reasonable under the

flight conditions. In addition, observations (reported as u,,) from the KNMI stations at Eelde (~ 30 km SE from
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335 the farm) and Leeuwarden (~ 25 km W) were included in Appendix D. The TriSonica observations corroborate
the existence of a logarithmic profile, warranting its use over that of a single wind speed value over the full altitude

range.

3.4 Active AirCore
340 The active AirCore system provides semi-continuous sampling and analysis of various trace gases. In this study,
we measured CH4 mole fractions along flight trajectories using an upgraded version of the system described by
Andersen et al. (2018). The AirCore consists of a 95 m stainless steel coil (635 mL volume) that samples ambient
air at a controlled flow rate of ~ 23 sccm, allowing approximately 27 minutes of flight time. However, due to the
UAVs battery and the total payload, the maximum flight duration was only 15 minutes. After landing, the AirCore
345 was connected to the LI-7810 to measure the CHs mole fractions from the collected air samples. The samples
were pulled through the AirCore and into the analyser and followed by one of the two available gas mixtures from
cylinders. Alternating, per flight, between the two gas tanks enabled easy identification of the start and end points

of the analysis. In this manner, two flights per hour can be achieved.

350 A primary challenge of the active AirCore technique is assigning the CHa concentration readings from the gas
analyser (LI-7180) to the flight trajectory. In principle, simultaneous flights with the Axetris and the AirCore allow
for improved alignment, as in situ observations permit direct temporal and geospatial projection of AirCore
measurements. This method was indeed implemented here but did not appreciably improve the results of the
nominal mapping, shifting the assigned timestamps of the project AirCore data by less than 2 seconds (i.e., ~5

355 meters horizontal).

3.5 Flight strategy
The UAV equipped with both sensor packages was flown downwind of the dairy farm at a constant speed of 3 +
0.5 m/s while maintaining stable orientation and with the sampling inlet pointed into the wind. The UAV flight
360  track was oriented approximately perpendicular to the wind direction to achieve optimal cross-sectional sampling.
A wireless connection enabled the ground team to monitor CHa concentrations in real time and ensure sufficient
sampling outside the plume, which is essential for obtaining sufficient background data and properly constraining
the extent of the plume. Continuous sampling was conducted along transects at multiple altitudes, typically at 5
m vertical intervals. The maximum altitude ranged from 40 m to 70 m, depending on plume height.
365
A total of five UAV flights were performed on the 29" of July 2025, with flight duration ranging from 11 to 17
minutes, depending on battery capacity, meteorological conditions, and payload mass. Weather conditions were
cloudy, with occasional rain and temperatures ranging from 18 °C to 21 °C. Typical wind speed was 4 m/s
(maximum 8.5 m/s) at 3 m above ground level (Appendix D). Table 1 provides a complete overview of the flight

370 characteristics.

Table 1: Summary of the five downwind flights conducted on 29 July 2025.
29 July 2025
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Flight time [min] 13 16 11 16 17
Take off [hh:mm:ss] [UTC] 11:45:18 12:22:35 13:14:08 13:51:30 14:31:28
Landing [hh:mm:ss] [UTC] 11:58:52 12:38:28 13:25:05 14:07:32 14:48:26
Mean UAYV speed [m/s] 29 3.0 34 3.0 2.9
Mean wind speed [m/s] " 23+£0.5 3.9+0.8 45+0.8 40+1.0 25+£0.8
Mean wind direction [°] 290+ 14 309+9 319+ 10 302+ 14 277+ 17
Flux estimate Axetris [gCHa/s] 2.8 5.5 -0.17 5.4 2.8
Flux estimate AirCore [gCH4/s] 3.2 5.2 4.4% 5.0 3.0

* The wind direction and speed are obtained from the 3D sonic anemometer and observed at a height of 3 meters
T Temperature control failed during flight 3, this flight will be excluded from further analysis
375

3.6 Spatial interpolation
Spatial interpolation is crucial for estimating CHa mole fractions at unsampled locations, which are subsequently
used to calculate the total emission flux. In this study, observed CH4 enhancements were interpolated onto a grid
using a Gaussian weighting scheme with finite spatial influence. This approach produces smoother concentration
380 fields than alternative techniques such as inverse distance weighting (Di Piazza et al., 2011), because the Gaussian
kernel gradually reduces the influence of distant measurement points rather than abruptly discarding their

contributions. The weight assigned to each observation is computed as:

2
vy = exp ( [()(—) D )

where (x;, y;) are the coordinates of the observations, (x;,y;) are the location of the grid cell, and 7, riﬁf are

385

the influence radii in the vertical and horizontal direction, respectively. Furthermore, observations outside a
predefined cutoff radius are excluded from the interpolation, effectively spatially limiting the influence of each
observation. This limit is required because the Gaussian kernel gradually reduces in strength but never reaches

390 Zero.

The estimated CH4 mole fraction, c;, at each grid location is then computed as a weighted average using:

Ni iz
o= G @)
395
where z; is the observed value and JV; is the set of observations that fall within the cutoff radius of grid points i.
Grid cells with no contributing observations (i.e., beyond the cutoff radius of the nearest measurement) are

assigned missing values (NaN) and excluded from subsequent analysis.
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400 3.7 Mass balance
The spatially interpolated CH4 concentrations were used to estimate the farm's total CH4 emission rate by
implementing the results in the mass balance approach (MBA) similar to Nathan et al. (2015) and Vinkovi¢ et al.

(2022). The following equation gives the MBA:

M,
405 Qcpa = €05 (0) 2 Fyppy X%, B ) AXAZAC, jtyrop () )

Myor

where w,,,.o is the logarithmic wind profile (in m/s, as described in Eq. 1), 6 the angle between the mean wind
direction and the direction perpendicular to the flight track, Ax and Az represent the horizontal and vertical grid
size of the integration plane, the molar mass of methane is given by M.y, , Ac gives the CHs mole fraction
410 enhancement above the background in ppb, F,,;, is the unitless conversion factor from ppb to mole fraction and

M, gives the molar volume and is defined as:

M RT

vol = 50 ()

415 where R is the universal gas constant, T' is the ambient temperature in Kelvin, P is the ambient pressure in Pascal,
and H>O is the mole fraction of water vapour in the air. In this work, the ambient H2O mole fractions were obtained
using the LI-7810 analyser. If in-field observations of [H20] are not possible, a mean value may be approximated
from RH% observations from nearby meteorological stations. All other meteorological parameters were recorded
during flight and used to calculate the CHa flux Qy, through the integrated plane. The obtained flux is interpreted

420  to equal the emission at the farm. The resulting emission estimates are reported in grams per second (gs™).

As stated, Ac represents the CH4 mole fraction enhancement above background. For the AirCore, the background
concentration was determined as the 10" percentile of the observations, under the assumption that the UAV
sampled beyond the plume boundaries. The 10" percentile method is not suitable for the Axetris due to its higher
425 noise level. This method would result in an overestimated flux, as it selects only the lowest observations from the

Axetris.

Rather for the Axetris, the background was defined as the mean CHs mole fraction from the measurements
obtained outside the plume boundaries. To identify these regions, CH4 concentrations were plotted against the
430  horizontal distance travelled, and the area with the lowest values was selected based on visual inspection and all
observations in the area were averaged (Appendix E). Under ideal conditions, this plot reveals a distinct separation
between elevated CHa4 values (associated with plume observations) and lower, stable values representing the
background. By assuming that the lower CH4 observations correspond to the background and including a large
number of data points, the estimated background value is expected to closely approximate the true atmospheric

435  background and to have a low uncertainty.

The averaging background method is not ideal for the Active AirCore due to its intrinsic signal smoothing

(Morales et al., 2022). To use the same method, longer sampling outside of the plume should be part of the flight
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strategy (Appendix E), limiting the collection of plume samples. The AirCore and Axetris methods report different
440  backgrounds, since both instruments were only approximately calibrated during the field campaign. Flux

quantifications for each sensor are conducted with its respective technique and background concentration.

3.8 Comparison of results of Axetris and AirCore
An illustrative overview of the second of the five UAV flights is shown in Figure 3. The top panel (Figure 3a)

445 shows the raw Axetris observations (black), the smoothed Axetris (green) and the AirCore observations (purple).

All measurement series clearly show repeated detection of the CH4 plume.

The smoothed Axetris measurement series is plotted merely for illustrating the likeliness between the results of
the two instruments. It was obtained using locally weighted scatterplot smoothing (LOWESS) of the raw signal;
450 a window size of 50 samples gives an overall best resemblance to the AirCore data; the integral of raw and
smoothed Axetris data is identical. The projected AirCore measurements are well aligned with the in situ sensor
data, demonstrating the accuracy of the projection methodology. Moreover, regression between the smoothed
Axetris data (using the LOWESS), and the AirCore data yields a correlation coefficient of 0.92 (Appendix F),
with a mean difference of 89 + 39 ppb (1c) over all flights. This mean difference may be attributed to the improper
455 calibration of the sensors which is supported by the significantly reduced difference of 26 + 44 ppb (1o; over all
flights) between the CH4 enhancements (i.e., after removal of the background). The large standard deviation may
be attributed to (1) the differences in response time, as the LOWESS for the Axetris is only approximate to the
Taylor and molecular dispersion that appears in the AirCore and the additional smearing effect inside the
measurement cell of the LI-7810 (Andersen et al., 2018) and (2) A slight temporal shift between the two signals
460  that cannot be completed eliminated also contributes to the difference. We use the raw signal in subsequent

analysis.

Figure panels 3b and 3¢ show the spatially interpolated Axetris and Active AirCore data, respectively. The AirCore
method produces a wide and smooth plume compared to the narrow and more sharply enhanced plume derived

465 from the Axetris data (Figure 3b). The results of these interpolations were used with the MB equation (Eq. 4) and
the logarithmic wind profile (inferred from the WindMaster Pro data) to calculate the full farm emission flux,
reported in Table 1. The emissions estimates derived by the two methods (AirCore, Axetris) differed by less than
10%, both for individual flights as for the mean of flights.

470 The flights were conducted under light to moderate wind conditions (3.7 = 1.4 m/s, NW to WNW; Appendix D)
and consisted of 12 transects between 4 and 60 m above ground level at approximately 120 m downwind of the
farm (Appendix G). This variability in wind speed and direction can influence the flux estimate, leading to an
over- or underestimation of the emission (Mohammadloo et al., 2025). A change in wind direction can cause the
plume centre to shift, increasing the probability of sampling the full plume multiple times during flight or missing

475 it altogether. Performing multiple passes across different altitudes, these plume-displacements can be captured
and accounted for in the final flux estimate. Variability in the wind speed alters both the plume advection and
dispersion. Higher wind speeds tend to elongate the plume and dilute observed concentrations, whereas lower

wind speeds have the opposite effect (Stull, 1988).
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Figure 3: observations and the spatially interpolated data from the second flight conducted on 29 July 2025. The middle of
the barn is at Om horizontal distance, and the blue square shows the take-off location. (not in-plane). (a) shows the
measurement series of CHy enhancements of the AirCore (purple; projected onto the Axetris flight times), the raw Axetris data
(black), and smoothed Axetris data (green). (b) shows the spatial interpolation of the raw Axetris data. (c) shows the spatial
485 interpolation of the AirCore data.

The emission rates of the farm estimated from individual flights ranged from 3.5 to 5.2 gCHa/s for the AirCore
method and from 2.8 to 5.5 gCHa/s for the Axetris method (Appendix H). Flight 3 was excluded from the analysis
due to a failure in the active temperature control, causing the Axetris sensor to drift and rendering the observations

490 invalid. The subsequent analysis is based on four of the five flights. The average emission rate across all
quantifications using the active AirCore is 4.2 + 1.1 gCHa/s (1o; n=4). The Axetris yielded a similar value of 4.1
+ 1.6 gCH4/s (10; n=4), when using their respective background concentrations. When averaging all four flights,
the flux estimates and the standard deviation between them are similar, indicating that the Axetris can determine
flux comparably to a high-precision sensor. The correlation between the individual flight observations is strong:

495 whenever the Axetris observed high fluxes, so did the active AirCore (Table 1). This consistency indicates that
both instruments respond similarly to external stochastic influences (e.g. wind uncertainty and emission
variability), rather than measurement-concentration issues. This shows that the two independent systems are
capable to capture the same underlying atmospheric signal, strengthening the functionality of a cost-effective
sensor for emission flux quantification.

500
The reported uncertainty ranges represent the mean and standard deviation (1c) of the fluxes obtained from the

four flights. Consequently, the standard deviation presented depicts the variability among the nominal flux
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determinations rather than the underlying measurement uncertainties. However, each flux has its own uncertainty,
arising from variations in meteorological conditions, sensor performance and background determination.
505 Quantifying the exact uncertainty associated with these sources can be labour-intensive yet is essential for
accurately assessing the robustness of the results. To address the uncertainty associated with each source, a
statistical analysis was performed to assess the individual and combined effects of each source, as described in

following section.

510 The flux estimates obtained in this study were higher than those reported by Vinkovi¢ et al. (2022), who observed
values between 1.1 and 2.5 gCHa/s at the same farm. Although not directly relevant to our instrument development,
the discrepancy warrants brief discussion. A plausible explanation for this discrepancy can be the timing of our
flight measurements. Our campaign was conducted during the summer months, when higher ambient temperatures
coincided with enhanced animal activity and enhanced microbial activity in the manure (Vechi et al., 2023;

515 Vinkovi¢ et al., 2022). In addition, active emptying of the manure storage was taking place during the flights.
Such management activities can provoke short-term emission spikes, as agitation and pumping of liquid manure
can release trapped CH4 (Leytem et al., 2017; Vanderzaag et al., 2010), which may explain the higher flux. Finally,
unlike Vinkovi¢ et al. (2022), who assumed a constant wind speed for the MBA, our analysis used a logarithmic
wind profile that accounts for increasing wind speeds at higher altitudes (Appendix D). This leads to larger flux

520 estimates, since the concentration enhancements at higher altitudes are multiplied by wind speeds that exceed the

3-m reference value (3D-sonic).

4  Statistical analysis

4.1 Simulated plume sampling

525 To assess the robustness and uncertainty of our UAV-based emission quantification efforts, a statistical model was
developed broadly following the approach of Mohammadloo et al. (2025). The model is based on the Ornstein-
Uhlenbeck (OU; Uhlenbeck & Ornstein, 1930) process, which is well-suited for modelling events that fluctuate
around a long-term mean. It combines random walk tendency (i.e. Brownian motion) with a mean-reverting
process of which the restoring force is proportional to the deviation magnitude. Over time, this results in a

530  normally distributed variation around the mean. The incremental evolution of a variable () governed by the OU

process is given by:
dx. = 0(xo — x(©))dt + oxdW, ()

535 where y is the time-varying variable of interest, y, is its initial value, 6 is the mean-reverting term, oy is the

diffusion coefficient representing process noise and dWW; is an increment of the standard Wiener process.

We used the model to generate a time-varying CHa plume under dynamic atmospheric conditions, represented as
a two-dimensional Gaussian distribution on a two-dimensional plane, whose extent, vertical and horizontal
540  position and intensity oscillate around long-term means (Appendix I). This simulated plume may be sampled at

the locations and times of a simulated or actual drone flight. We subjectively tune the model parameters to yield

16
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results that closely resemble our real-world findings, after synthetic sampling and processing similar to section

3.6 and 3.7.

545 The OU approach allows for computationally efficient approximation of certain aspects of turbulent variability.
However, it clearly does not replicate the full spatial complexity of plume dynamics. In contrast, large eddy
simulation (LES; Dosio & de Arrelano, 2006; Raznjevic et al., 2022) provides the full 4D behaviour of plumes,
comprehensively including multiple turbulent features including filaments, large eddies and vertical mixing, albeit
at much greater computational expense.

550

4.2 Uncertainty analysis
Systematic and random uncertainties in UAV-based flux measurements are challenging to quantify directly in the
field. Monte Carlo (MC) simulations provide a practical means to approximate them. In this study, we used the
OU-based model to generate a three-hour artificial plume with a mean emission rate of 10 kgCHa hr! (i.e., 2.78
555 gCHa s). Realistic plume cross-sections samplings were simulated by using a typical flight trajectory from the
previous field campaign (specifically flight 1; Table 1). This trajectory was used to repeatedly (N=500) sample
synthetic plume data. Each run was made unique by randomly selecting a different start time within the three-
hour plume simulation. This setup formed the basis for evaluating five sources of uncertainties (Table 2). These
sources were examined individually, and in combination with each other, in defined scenarios. Within each
560  scenario, 500 synthetic plume samplings and flux estimations are performed to ensure statistical robustness while
remaining computationally feasible. The resulting flux estimate distributions were analysed to derive the mean
bias, standard deviation and 95% confidence intervals (CI; defined as the 5th and 95th percentiles of the

distribution of the 500 inferred individual fluxes) associated with each source of uncertainty.

565 Table 2: Overview of the scenarios considered during this study, the reason behind the interest in the scenario and the method
of evaluation.
Scenario Reason Method of evaluation
(€0) Flight Longer flights may more representatively sample the Mimic longer flights by repeating the
duration plume nominal flight path 1 — 6 times. (6x500
samplings)

(2) Background Uncertainty in the background concentration, e.g. Deviate background concentration with a
determination from bad initial assessment or gradual sensor drift, random variation of +0, £5, £10, +15, £20,

affects inferred flux +30, £40 and £ 50 ppb (8x500 samplings)

(3) Wind speed Flux estimates in the MBA scale linearly with wind Addition of uncertainty in wind speed
speed, any under- or overestimation of (average) determination from 0% to 50%, with steps of
wind speed directly leads to a bias in the calculated 5%, constrain wind speed = 0 m/s (11x500

flux samplings)

(4) Sensor noise  Higher noise levels reduce the detectability of small Vary instrumental noise during synthetic
enhancements sampling, with variations between 5 and 150

ppb (12x500 samplings)
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570

575

580

585

590

®) Combined Quantify expected uncertainty of one flight during Simultaneously include all individual

uncertainty field deployment uncertainty contributors, assuming: (1) a
background uncertainty of 10 ppb; (2) wind
speed variability of 20%; (3) a sensor noise
level of 62 ppb. (1x3000).

Table 2 lists the uncertainty contributors considered during this study, and the evaluation method in our OU-
model. This uncertainty analysis allowed for a systematic evaluation of how individual and combined uncertainty
sources propagate into UAV-based flux estimates, revealing the relative influence of each contributor. The setup

for scenario 5 is based on parameter estimates from field campaigns and observations.

4.2.1  Flight duration
Figure 4a shows how the standard deviation between the 500 modelled flights decreases with increasing duration
of each flight. As expected, the results indicate that uncertainty decreases with longer (or repeated) flights,
increasing the probability of representatively quantifying the full plume. With only a single flight (~12 minutes),
the mean flux is 10.3 kgCHa/hr [5.5-16.7 kgCHa/hr; 95% CI]. Increasing the flight duration lowers the CI bounds
and the standard deviation, with the standard deviation decreasing from 27% (1o) for one flight to 15% for three

flights [7.5-13.6 kgCHa/hr] and reaching its minimum of 11% for six flights [8.4—12.7 kgCHa/hr].

Increased flight duration decreases the CI of the flux estimates, as depicted in Figure 4a. One flight per source
increases the possibility of reporting an over- or under-representation of the total flux. With short flights (or a low
number of flight repeats), atmospheric stochasticity has a larger impact. Increasing the number of flight repeats
and averaging the resulting estimates offset this concern. With more flight repeats, flights are conducted across a

wide range of conditions, increasing the likelihood of representatively quantifying the plume.

4.2.2 Uncertainty effects of background errors
As mentioned in section 3.7, multiple techniques are available to determine the in-flight background
concentrations. However, the assumptions underlying these techniques, e.g. spatial and temporal uniformity of
the background, instrument precision and absence of drift or sufficient sampling outside the plume, may not
always hold (Edwards et al., 2025). This introduces an additional source of uncertainty into flux measurements.
Reliable background determination is essential for accurate flux quantification, as even minor discrepancies can

introduce systematic errors and consequently bias flux estimates (Allen et al., 2019; Cambaliza et al., 2014).
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Figure 4: The marker shows the mean error, and the error bars present the 95% confidence interval. (a) An overview of the
emission flux estimates and the variability from 500 repeat simulations with an increase in flight repeats. (b) An overview of

the uncertainties linked to the background determination.

600  Figure 4b shows the impact of the uncertainty in the background determination on the flux estimate. Each run
calculated the flux using the MBA with a varying background concentration. The figure shows that the estimated
emission error increases with increasing background uncertainty. A background uncertainty of 30 ppb results in
an estimated flux of 10.2 kgCHa/hr ([-3.6-23.9 kgCHa/hr; 95% CI]), and a standard deviation of 70% (1c). Based
on the standard error of the observed background in our flights, we expect to be able to determine background

605 concentrations with an uncertainty of £10 ppb. Assuming the uncertainty in the background to 0-10 ppb,
constrains the standard deviation to below 35% (1c). However, we infer a high sensitivity of the inferred flux to
errors in the assumed background. At +20 ppb uncertainty in the background the standard deviation exceeds 100%,

i.e., yielding a negative or double flux, underscoring the importance of accurate background concentration

determinations.
610
4.2.3  Wind speed uncertainty
Wind speed uncertainties are known to introduce significant errors into flux estimates (Allen et al., 2019; Morales
et al., 2022; Vinkovi¢ et al., 2022). Figure 5 shows an overview of the simulation results for varying wind speeds
(Figure 5a) and instrumental noise (Figure 5b).
615

Uncertainties in the wind speed profiles were generated by multiplying the expected logarithmic profile by its
respective uncertainty, yielding unique wind profiles for each Monte Carlo realization, thus representing the
situation where the true mean windspeed is different from what is assumed in subsequent calculations. Figure Sa
shows the outcome of this analysis and the contribution of wind speed uncertainties to the overall emission flux
620 errors. A low wind speed uncertainties (<10%) limits the standard deviation to 30% (1c), and results in a flux
estimate of 10.1 kgCHa/hr [5.0, 17.1 kgCHa/hr; 95% CI]. However, when the uncertainty increases, so does the
standard deviation and the flux estimate. With a wind speed uncertainty of 50%, the standard deviation of the

determined flux exceeds 60% (1c), and the flux estimate becomes 9.7 kgCHa/hr [0.6-23.7 kgCHa/hr; 95% CI].



https://doi.org/10.5194/egusphere-2025-6209
Preprint. Discussion started: 21 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

These findings highlight the importance of minimising the wind speed errors by obtaining reliable wind speed

625 measurements during flights.

The results, showing an increase in the flux uncertainty with greater wind speed uncertainty, was expected.
However, the finding contradicts Mohammadloo et al. (2025), who reported that flux estimates are unaffected by
wind-speed variations because measured concentrations scale proportionally with wind speed. In principle, this is
630 correct, since for a constant source strength, higher winds yield lower concentrations. Errors in assumed wind
speed may stem from to changing atmospheric conditions and can lead to the calculation of the emission flux

using an incorrect wind speed, whilst the concentrations remain the same.
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635 Figure 5: The marker shows the mean error, and the error bars present the 95% confidence interval. (a) An overview of the

emission flux estimates and the effect of the wind speed uncertainty (b) An overview of the uncertainties linked to the

instrumental noise.

4.2.4  Uncertainty effects of instrumental noise
High-frequency sensor noise makes it hard to accurate resolve brief spikes in CHa, for instance during high-speed
640 flights. To an extent this may be alleviated by reducing flight speed, at the expense of reducing plume coverage
(for a given UAV endurance). Low-noise sensors thus in principle allow for improved detection of smaller plumes
or improved spatial resolution the nominal plume. Here, we mimic the effect of noise in the Monte Carlo
simulation, applied by varying the noise levels added to the trace (time series) sampled from the simulated plume.
The sensor's noise (at 2 Hz) was varied from 5 to 150 ppb, generically representing high-, to low-precision sensors.
645 Figure 5b shows that increasing noise does not directly affect the estimated error, as random fluctuations largely

cancel during spatial interpolation.

The main impact of changing sensor noise is on background determinations. High-precision sensors usually allow
straightforward application of approaches such as the 10" percentile method, whereas higher-noise sensors require
650  additional processing with typically less certain results. Without this processing, applying the 10" percentile
method to noisier sensors will lead to an overestimation of the flux, since the enhancements will appear larger

than they actually are.

20
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4.2.5 Combined uncertainty
655 The individual uncertainty analyses provide valuable insights into the role of individual factors on the emission
estimate. During field campaigns, these factors (among others) are expected to affect the flux quantification
simultaneously. To assess their combined effect, all the above sources of uncertainty were analysed in a single

MC simulation. These uncertainty contributors were set to values (Table 2.) encountered during actual

deployment.

660
This simulation was used to estimate the overall combined uncertainty during our field campaign for a single
flight. With the above-mentioned setup, the obtained flux was 10.0 kgCHa/hr ([3.3—19.1 kgCHa/hr; 95% CI), with
a standard deviation of + 40% (1c). The uncertainties reported are consistent with those from previous studies
(Andersen et al., 2021; Karion et al., 2013; Morales et al., 2022; Nathan et al., 2015).

665

4.2.6 Summary
This statistical analysis covered a range of potential sources of uncertainty to elucidate their expected contribution

to the emission flux estimates. Table 3 provides an overview of the uncertainty sources discussed and their effects
on the standard deviation, from the nominal scenario to the most considerable impact. Table 3 highlights that the
670  background uncertainty and the wind speed uncertainty have the highest impact on the uncertainty of the estimate
of the flux. Sensor noise is determined to not be a meaningful factor, especially when other uncertainties are more

substantial (depicted in Table 3).

Table 3: Summary of the influence of various sources of uncertainty

Scenario Uncertainty ranges considered Effect on (10)
Flight duration 1 — 6 repeats 27% — 11%
Noise 0 ppb — 150 ppb 27% — 28%
Background 0 ppb — 50 ppb 27% — 100%
Wind speed 0% — 50% 27% — 62%
Combined uncertainty Everything 0 — Set uncertainties 27% — 40%

675

4.3 Applicability to various source strengths

During the uncertainty analysis, the influence of individual sources was evaluated for a reference emission rate of
10 kgCHa/hr. In practice, emission rates can vary widely depending on source type and environmental conditions,
and the relative importance of different uncertainty sources depends strongly on the source strength. Most
680 importantly, the background uncertainty and sensors noise may become too large to derive a meaningful flux. To
assess this relationship, we repeated the analysis in 4.2.5 for source strengths ranging from 1 to 20 kgCHa/hr and

performing 1-6 flight repeats using 500 MC realizations each. The results are summarized in Figure 6.

21
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Figure 6: Relative uncertainty in flux estimates for emission rates of 1-20 kgCH/hr across a range of flight repeats.
685
Figure 6 shows that multiple flight repeats reduce relative uncertainty. At lower emission rates, flux estimates are
more susceptible to instrumental errors, where noise and background uncertainties are dominant factors. These
random errors are effectively averaged out through repeated sampling. In contrast, estimates of larger emission
rates are less influenced by sensor performance and are instead dominated by meteorological errors. As these
690 errors are not reducible through averaging, multiple flight repeats result in a persistent uncertainty of

approximately 20% (1o).

5 Discussion
This study evaluated the performance of a cost-effective CHa sensor and demonstrated that it can provide emission
flux estimates comparable to those obtained with a higher-precision UAV-based instrument (i.e. Active AirCore).
695 Field validation showed that the cost-effective sensor produced flux estimates that differed <10% from those
obtained by the Active AirCore method. Results from the Active AirCore technique have a standard deviation of
26% (1o), while that of the Axetris exceeds 39% (1c). This uncertainty is a combination of systematic errors,

random errors in wind-related uncertainties, background uncertainties and variability in the actual flux.

700 The results indicate that, for the assessed farm flux of ~4 gCHa/s, total uncertainty associated with our UAV-based
flux estimates is influenced more by uncertainties in wind variability and plume sampling methods than by the
precision of the employed mid-cost sensor. With active temperature control, the Axetris sensors uncertainties are
similar to those found during prior UAV-based studies (Andersen et al., 2021; Karion et al., 2013; Morales et al.,

2022; Nathan et al., 2015) using higher precision and accuracy sensors.

22



https://doi.org/10.5194/egusphere-2025-6209
Preprint. Discussion started: 21 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

705
The necessity or low drift is well illustrated by Flight 3, which showed the impact on Axetris CH4 readings of
(strong) cell temperature drift. The drift occurred as a result of faulty PID control: the sensor accidentally warmed
prior to flight, and thus cooled during flight, see Figure A2. This clear drift of the measurement baseline, and an
apparent oscillation around that (see data at 13:14) hinders the assessment of the background CHs and thus to infer

710 a meaningful flux.

This study highlights that improving post-flight data processing and obtaining accurate in situ meteorological
observations are most important for reducing UAV-based uncertainties. These findings are consistent with
previous studies that identify wind speed and direction as dominant sources of uncertainty in UAV-based CHs flux
715 estimation (Morales et al., 2022; Yong et al., 2024; Mohammadloo et al., 2025; Wietzel et al., 2025). Wind-related
errors are difficult to mitigate and can propagate non-linearly through the MB calculation, as a combination of
wind direction and wind speed uncertainties. Background concentration uncertainty can typically be reduced
through sufficient downwind sampling. Especially, small source strengths are influenced by background
uncertainty, since the enhancements are usually small. Yong et al. (2024) noted that background variation
720 accounted for only 6% of the total uncertainty, with a strong source. The uncertainty found in this study, showed
a larger uncertainty with smaller sources, indicating that sources with considerable enhancements are less

influenced by a 10 ppb change in background concentrations.

This study did not include the effects of spatial sampling density, which can also affect the accuracy of the
725 emission flux measurements. Significant data gaps negatively affect the MBA, leading to systematic
underestimation of the emission flux. This limitation has been addressed in detail by Mohammadloo et al. (2025).
Higher-frequency observations in the horizontal and vertical directions decrease the estimated emission rate error.
Based on their findings and our own flight track featuring relatively dense horizontal and vertical coverage, we
expect to have only an additional 5-10% error. Future work should combine optimised flight-path design with

730  real-time plume detection to further minimise spatial sampling bias.

Our flight strategy provided abundant sampling with multiple transects at varying altitudes, creating favourable
conditions for both IGA and MBA. Andersen et al. (2021) studied fluxes from coal-ventilation shafts using both
methods and showed higher uncertainties for the MBA (26-51%), compared to the IGA (8-16%). In their research,
735 the MBA uncertainty is dominated by wind speed. The IGA uncertainty reflects the standard error derived from
1000 optimisation iterations. Kim et al. (2023) also mention that the IGA is less sensitive to undersampling of

plumes and upwind background levels, but the method can be considerably influenced by atmospheric stability.

Wind direction during the flights was variable, leading to a horizontally stochastic plume observations, making
740 appropriate the use if a method that does not rely on Gaussian plume assumptions. The analysis from Andersen et
al. (2021) underscores the importance of multiple transects at different altitudes, and that the IGA performed best
when the vertical spacing and the distance were smaller than 2.5 times the vertical distribution (c2) of the plume.

Given that our sampling was abundant but accompanied by temporally varying winds, we employed only the
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MBA, as it remains valid without requiring a stable Gaussian plume structure and provides a transparent, wind-

745 driven uncertainty estimate.

Opverall, the findings highlights that the implementation of cost-effective sensors offers a promising way to expand
the spatial and temporal coverage of regional CHs monitoring. This scalability can improve emission
quantification across a variety of sources, such as landfills, farms and wastewater treatment plants. The study
750  reiterates that to maximise effectiveness, standardised flight procedures are required, together with precise

background assessment and accurate meteorological observations during flight.

6 Conclusion
This study demonstrates the possibility of using a cost-effective, medium-precision, in situ CH4 sensor on UAVs
for rapid emission assessment. Laboratory characterisation indicates that temperature fluctuations stongly affect
755  this sensor's measurement stability, rendering it unreliable for this work unless appropriate mitigative measures
are taken. We improved the sensor's performance by properly insulating the sensor and applying active thermal
regulation to maintain a constant cell temperature (+0.05 °C). Adding active temperature control removes the
unwanted measurement oscillations, maintaining the long-term accuracy of the Axetris even when bigger
environmental temperature changes are present. Allan variation analysis confirmed that under stable laboratory
760 conditions, the sensor achieves a precision of 63 ppb at 2 Hz and remains stable to within £10 ppb over a 20-
minute time scale. Insights gained from lab characterisation supported the preparation of the sensor for UAV-
based field tests. With active temperature control, and observing large temperature differences, the sensor remains

stable within £20 ppb over a 20-minute time scale.

765 Field experiments at a dairy farm confirmed that the Axetris can deliver reliable CHa flux estimates, comparable
to those obtained using the established Active AirCore technique. Across four flights, the mean flux derived from
the Axetris measurements was 4.1 + 1.6 gCHa/s, while the AirCore measurements yielded a flux of 4.2 + 1.1
gCHa/s. The close agreement between the techniques validates the use of the Axetris sensor for robust flux
quantification.

770
An uncertainty analysis using the Ornstein-Uhlenbeck approach to identify the dominant sources of uncertainty
in UAV-based flux measurements shows the noise of this sensor does not significantly impact the total uncertainty,
particularly when emission sources are sufficiently large and plume coverage is sufficient in space and time. In
contrast, realistic uncertainties in wind speed estimates (common at low wind speeds) can introduce errors in the

775 flux exceeding 60%. An accurate determination of background concentration is also important, since errors in
background estimation can account for more than 100% of the total uncertainty for a flux of 10 kgCHa/hr, with
even greater sensitivity when CHs enhancements are low. Overall, weaker emission sources are more affected by
instrumental errors compared to stronger sources. Multiple flight repeats help to reduce the uncertainty in the
background determination and average the effects of variable wind speeds and direction, while systematic errors

780 in the wind speed (e.g., the assumed profile) remain persistent.
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This study underscores that careful laboratory testing and compensation for environmental temperature variability,
can significantly improve the performance of medium-precision sensors for flux estimation. This supports the
potential for deploying these cost-effective sensors on UAV systems for GHG monitoring, thereby helping to close

785 data gaps in national inventories.
Data availability: The data and code used in this study will be provided by the authors upon request.
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7 Appendix

7.1 Temperature control during flight (A)
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Figure Al: Temperature stability during the flight one and two. The actively controlled temperature recorded by the Axetris
sensor is shown in purple (left axis, set to 28°) The shaded regions indicate the flight periods. The solid green line denotes the

ambient air temperature, while the dashed green line shows the temperature of the PBD inside the foam enclosure (right axis).
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925 Figure A2: Temperature stability during the flight three, four and five. The actively controlled temperature recorded by the

Axetris sensor is shown in purple (left axis; set to 28°) The shaded regions indicate the flight periods. The solid green line
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935

EGUsphere®

denotes the ambient air temperature, while the dashed green line shows the temperature of the PBD inside the foam enclosure

(right axis). Prior to this measurement series, the Axetris was accidently heated to 36°C. The rapid cooling during flight,

severely affected Axetris readings.

7.2 Linearity test (B)

LI-7180 vs. Axetris linearity
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Figure BI: Linear regression plot showing the linearity between LI-7180 and Axetris data. The outliers are due to differences

in response time.

7.3 Experimental setup of the water vapour test (C)
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Figure C1: Overview of the water droplet test setup. A wet paper towel is placed in an enclosed Swagelok compartment, and
940 the reference gas used had a high CHy concentration (81 ppm). The compartment can be heated, thereby increasing the water

vapour concentration relative to the reference gas.
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Figure C2: Regression model used to determine the water vapour correction as described in section 2.4. The linear relationship

between the wet and dry fractions can be used to correct for water vapour during field experiments. The R’ value is 0.86, and

945 the RMSE is 0.0016.

7.4 Meteorological data (D)
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Figure D1: Wind rose of 3D sonic observations during the campaign day at 29-07-2025.
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Wind speed comparison Flight 1
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Figure D2: compilation of wind speed information during Grijpskerk flight 1. Shown are a theoretical, exponential wind speed
profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light
gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed
955 by the TriSonica was 4.2 m/s £ 1.2 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and

Leeuwarden (blue).

Wind speed comparison Flight 2
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Figure D3: compilation of wind speed information during Grijpskerk flight 2. Shown are a theoretical, exponential wind speed
960 profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light
gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed
by the TriSonica was 6.1 m/s + 1.9 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and

Leeuwarden (blue).
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Figure D4: compilation of wind speed information during Grijpskerk flight 3. Shown are a theoretical, exponential wind speed

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed

by the TriSonica was 6.4 m/s £ 1.7 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and

970 Leeuwarden (blue).
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Figure D5: compilation of wind speed information during Grijpskerk flight 4. Shown are a theoretical, exponential wind speed

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed

975 by the TriSonica was 5.7 m/s + 1.3 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and

Leeuwarden (blue).
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Wind speed comparison Flight 5
Trisonica windspeed: 5.2 +- 2.3m/s
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Figure D6: compilation of wind speed information during Grijpskerk flight 5. Shown are a theoretical, exponential wind speed

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light

980

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed

by the TriSonica was 5.2 m/s + 2.3 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and

Leeuwarden (blue).

7.5 Background determination (E)
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Figure E1: Method to determine the plume boundaries and background concentration of the Axetris observations (purple) and

the AirCore observations (black) of flight 1. The enclosed area is thought to contain the background of the Axetris, and the

average value is determined by isolating the specific observations
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7.6 Correlation Axetris vs. AirCore observations (F)
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Figure F1: Linear correlation plot of the smoothed Axetris observations compared to the activeAirCore observations. All flight
observations (with the exception of flight 3) are considered in this plot. The linear correlation coefficient is R?=0.936 and an
RMSE of 37.9 is found.
995 7.7 Curtain orientation (G)

Geoplot of flight track and wind direction
Theta = 6.53°

53°17'N

Latitude

53°16'55"N

6°18'E 6°18'10"E
Longitude

Figure G1: Top-down view of the flight track and CH, observations of the Axetris during flight 1. Figure used to determine the
angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction
1000 (blue). The blue star represents the position of the WindMaster Pro.
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Figure G2: Top-down view of the flight track and CH, observations of the Axetris during flight 1. Figure used to determine the
angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction
1005 (blue). The blue star represents the position of the WindMaster Pro.
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Figure G3: Top-down view of the flight track and CH, observations of the Axetris during flight 3. Figure used to determine the
angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction

(blue). The blue star represents the position of the WindMaster Pro.
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Geoplot of flight track and wind direction
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Figure G4: Top-down view of the flight track and CH, observations of the Axetris during flight 4. Figure used to determine the

angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction

(blue). The blue star represents the position of the WindMaster Pro.
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1015 Figure G5: Top-down view of the flight track and CH, observations of the Axetris during flight 5. Figure used to determine the
angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction

(blue). The blue star represents the position of the WindMaster Pro.
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7.8 All flight profiles (H)
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Figure HI: Overview of the observed CH; enhancements and spatial interpolation of flight 1. Estimated flux of Axetris 2.8
gCHy/s (B); AirCore 3.5 gCH /s (C)
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1025 Figure H2: Overview of the observed CH4 enhancements and spatial interpolation of flight 3. During the flight, the temperature
control malfunctioned. This flight was left entirely out of the analysis
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g (a) Time series of CH A enhancement during flight
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Figure H3: Overview of the observed CHy enhancements and spatial interpolation of flight 4. Estimated flux of Axetris 5.4
gCHy/s (B); AirCore 5.0 gCHy/s (C)
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Figure H4: Overview of the observed CHy enhancements and spatial interpolation of flight 5. Estimated flux of Axetris 2.8

gCHy/s (B); AirCore 3.0 gCHy/s (C)
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1035 7.9 Plume simulation results (I)

Omstein-Uhlenbeck modeling of a 10 kgCH /h plume

Variation is in x, y, intesity, width and height of the plume
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Figure I1: Stochastic plume simulation using the Ornstein-Uhlenbeck model to simulate a plume of 10 kgCHy/hr. The top three
figures (a-f) depict the time series fluctuations of the plumes horizontal and vertical position and plume intensity and spread
are presented, together with the probability distribution of these parameters; (g) The simulated trajectory of the plume around

1040 the centerline motion, (h) the spatial interpolation of the 3 hour averaged plume; (i) example of instantaneous plume snapshots



