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Abstract.  Methane (CH4) is the second most important greenhouse gas, and accurate quantification of its 

emissions is critical for mitigating climate change. In this study, we thoroughly evaluated the performance of an 15 

in situ CH4 sensor (Axetris) for quantifying anthropogenic CH4 emissions when deployed on an unmanned aerial 

vehicle (UAV). Sensor stability was assessed through laboratory tests under controlled and varying temperature 

conditions. Under stable conditions, the sensor achieved a precision of 63 ppb at 2 Hz. Furthermore, the tests 

revealed the necessity of temperature control and provided a water vapour correction term to ensure accurate 

measurements. Additionally, the sensor was used to quantify whole-farm CH4 emissions, yielding a mean flux of 20 

4.1 ± 1.6 gCH4/s averaged over four flights. This mean flux was comparable to the value of 4.2 ± 1.1 gCH4/s 

obtained from the established AirCore technique. Finally, an uncertainty analysis based on the Ornstein-

Uhlenbeck method was used to determine the influence of various sources of uncertainty. This analysis revealed 

that both wind-related uncertainties and background determination can significantly increase the overall 

uncertainty when not properly constrained. Furthermore, instrumental errors play a dominant role for smaller 25 

fluxes, while meteorological uncertainties remain significant even with repeated flights. Nevertheless, careful 

flight planning, e.g., ensuring extensive sampling outside of the plume and comprehensive wind monitoring, can 

reduce these uncertainties. Overall, our results demonstrate that a cost-effective sensor can provide reliable CH4 

flux estimates with uncertainties comparable to those of established UAV-based systems. 

1 Introduction  30 

Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) and has received increasing 

attention due to its relatively short atmospheric lifetime and strong global warming potential (GWP) compared to 

CO2. The global average dry air mole fraction of CH4 reached 1942 ppb in 2024 and is expected to increase in the 

coming years (WMO, 2025). Approximately 60% of the global CH4 emissions are linked to human activities, 

primarily from agriculture, fossil fuel production and use, and waste disposal (Saunois et al., 2020). The observed 35 

rise in global CH4 mole fraction is driven not only by anthropogenic sources but also by changes in natural CH4 
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fluxes, influenced by ongoing climate change (Ciais et al., 2013). Reducing CH4 emissions is essential for climate 

mitigation and represents a key strategy for limiting global warming to below 2 °C (UNEP & CCAC, 2021). To 

evaluate the effectiveness of mitigation efforts, monitoring CH4 emissions and identifying their sources are 

critical. 40 

 

Despite recent efforts, uncertainties of 20-35% remain in estimates of global annual anthropogenic CH4 emissions 

(Saunois et al., 2020). These uncertainties arise from limitations in available data as well as underreporting and 

misreporting in national inventories. Current CH4 emission inventories suffer from inconsistencies due to scarce 

observational data and methodological disparities. Given limitations in existing monitoring systems, approaches 45 

focusing on additional measurements and regional studies can help reduce uncertainties in top-down estimates 

(Saunois et al., 2020; Bousquet et al., 2018; Bruhwiler et al., 2017). Additionally, specific emission sources, such 

as manure and landfills, exhibit complex emission patterns with substantial diurnal and seasonal variability, 

making more frequent and reliable measurements necessary.  

 50 

To address these gaps and uncertainties, cost-effective, scalable, and easily maintainable sensor technologies, 

coupled with robust monitoring methodologies for quantifying anthropogenic CH4 emissions, are needed. These 

technologies can be used in more regional studies to evaluate the efficacy of mitigation strategies and monitor 

emission reductions at finer spatial resolutions (Saunois et al., 2020). International frameworks such as the United 

Nations Framework Convention on Climate Change (UNFCCC) support the implementation of unified 55 

methodologies to improve the accuracy of national inventories. Regular and systematic monitoring is vital for 

verifying mitigation outcomes and can help detect more fugitive emissions, which are often underrepresented in 

inventories (Erland et al., 2022).   

 

Unmanned aerial vehicles (UAVs) have emerged as valuable tools for addressing data gaps in GHG emission 60 

monitoring. Recent advances in sensor technologies have enabled the integration of more lightweight instruments 

with UAV platforms. These systems offer advantages over alternative approaches (e.g., ground-based or satellite-

based observations) by facilitating targeted emission sampling at finer spatial resolutions and bridging the 

observational gap between ground level and altitudes up to 120 meters (though UAVs are capable of flying much 

higher, regulations typically limit their max altitude). Furthermore, UAVs are versatile, easy to deploy and 65 

maintain, and have a relatively low implementation cost (Villa et al., 2016; Shaw et al., 2021).  

 

Recent UAV-based GHG studies have employed three main sensor deployment strategies: (1) tethered systems 

connecting an UAV to a ground-based analyser (Shah et al., 2020); (2) semi-continuous sampling equipment (e.g., 

Active AirCore), mounted directly on UAVs for post-flight ground analysis (Andersen et al., 2018; Vinković et 70 

al., 2022; Leitner et al., 2023, Han et al., 2024); (3) real-time in situ sensors fully integrated into UAV platforms 

(Kunz et al. 2018; Allen et al., 2019; Tuszon et al., 2020; Scheutz et al., 2024). Although these techniques differ 

operationally, they all rely on the mass balance approach (MBA; Nathan et al., 2015; Vinković et al., 2022) or the 

inverse Gaussian approach (IGA; Andersen et al., 2021) for flux quantification. This study focuses on the MBA 

because it can directly convert atmospheric concentration measurements into fluxes.  75 
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While all flux quantification techniques introduce inherent uncertainties, wind conditions and spatial distribution 

of the flight track design consistently emerge as the most influential factors. In general, uncertainties in airborne 

flux estimates range from 20% to 75%. Still, they can exceed 100% under challenging conditions such as low 

wind speeds (<2 m/s), high wind direction variability (e.g. >30°), or non-uniform sampling (Vinković et al., 2022; 80 

Morales et al., 2021; Scheutz et al., 2024; Liu et al., 2024; Mohammadloo et al., 2025).  

 

Instrumental or sensor precision is generally considered a minor factor compared to the factors mentioned above, 

underscoring the importance of investing in accurate wind measurements and thoughtful flight planning rather 

than prioritising high-precision sensors. Nonetheless, recent research has focused on developing increasingly 85 

lightweight and high-precision sensors (Tuszon et al., 2020; Kunz et al., 2018; Allen et al., 2019). While these 

advancements are valuable, their presumed high cost and maintenance demands limit their widespread 

deployment. Evidence suggests that low-cost, medium-precision sensors, when combined with accurate wind 

measurements and optimised flight planning, can achieve flux estimates with uncertainties comparable to those 

obtained using high-precision sensors.  90 

 

In this study, we present and evaluate the performance of a low-cost, medium-precision CH4 in situ sensor that 

meets key operational criteria. First, the sensor was characterised in the laboratory to optimise system performance 

and minimise drift. Following extensive testing, the sensor was deployed during a field campaign alongside the 

Active AirCore to quantify CH4 emissions from a Dutch dairy farm, a site previously surveyed by Vinković et al. 95 

(2022). This enabled a direct comparison between flux estimates derived from our medium-precision sensor and 

those from the established Active AirCore technique, providing new insights into the role of measurement 

uncertainty in flux quantification. Finally, a statistical model was used to further investigate the influence of 

common sources of uncertainty. 

2 Laboratory characterisation  100 

Sensor characterisation is essential for improving sensor useability, as laboratory experiments provide insight into 

its behaviour under varying conditions. In this study, the standard operation of an in situ CH4 sensor was 

characterised under stable laboratory conditions. A linearity test was performed to determine the sensor's response 

over a wide range of concentrations by comparing it to a high-precision reference analyser whose response is 

known to be linear. An Allan variance analysis provided information on the sensor's precision under baseline 105 

conditions (e.g., stable temperature, stable pressure, and no external vibrations), enabling direct comparison across 

various use cases and setups. The follow-up experiments focused on isolating the effect of different environmental 

factors on the sensor's output. Water vapour experiments were performed to determine the effect of water vapour 

on sensor readings. Additional Allan variance analyses were performed to compare the sensor’s performance 

under various conditions, e.g., active temperature control, laboratory and in-flight conditions.  110 
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2.1 The Axetris in situ methane sensor package  

We developed a UAV-mounted sensor package incorporating a commercially available in situ CH4 sensor (LGD-

compact A CH4; Axetris AG, Kaegiswil, Switzerland), hereafter referred to as the Axetris. The sensor is capable 

of real-time monitoring at a 2 Hz sampling frequency using a tuneable diode laser spectroscopy (TDLS) technique, 115 

which specifically targets the CH4 absorption wavelength at ~1652 nm.  

 

We integrated the Axetris onto a self-built printed circuit board (PCB) designed around an ESP32 microprocessor, 

enabling logging of data from the Axetris and ancillary sensors. The Axetris reports CH4 mole fractions, the 

temperatures of the measurement cell and the interface PCB. Furthermore, the complete package includes a 120 

pressure sensor (AMSYS GmbH model 5915-1200-B) with a precision of ±0.36 hPa and a measuring range of 

800-1200 hPa. A 1200 mAh, 7.4 V Li-ion battery pack powers the whole system. Ambient air was drawn through 

a filter (Rezist 30/ 5.0 PTFE-s; Whatman, Freiburg, Germany) into and through the sampling system using a 

micropump (NMP09; KNF, Freiburg, Germany) at a flow rate of 650 standard cubic centimetre per minute (sccm), 

ensuring rapid transfer of the sample to and through the measurement cell. With a sampling line volume of ~7 mL 125 

and an ambient-pressure cell volume of 19 mL, this configuration yields a time delay of less than 1 second for the 

sample to reach the measurement cell and a system response time constant of ~1.7 seconds (~4.2 seconds t90).   

 

The complete system was housed in a 20x20x10 cm polyethylene (PE) foam enclosure, yielding a relatively 

lightweight package (1.2 kg). The foam casing acted as a thermal insulator, helping to maintain a stable operating 130 

temperature for the analyser. The system had a wireless connection, which provided the ground time with real-

time measurements and enabled remote control of critical functions. 

 

To improve measurement quality, 1.1 m of low-power heating wire (Nc I 20; ThermoCoax, Suresnes, France) was 

coiled around the sensor head. This coil was used to maintain the measurement cell's temperature at a 135 

predetermined value (typically approximately 10 K above ambient), improving the system's thermal stability and 

mitigating erratic sensor behaviour caused by ambient temperature fluctuations. A PID controller controlled the 

duty cycle of the heating element, which used the measurement cell temperature (1 mK resolution, 2 Hz) as input. 

This setup regulated the temperature to within ±0.005 K from the set-point under lab conditions, and within 0.05 

K during flight (Appendix A). Figure 1a presents a schematic of the complete Axetris package. 140 
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Figure 1: a) schematic overview of the Axetris package for UAV applications. The blue arrows show the airflow through the 

system during measurements. Components in the dotted and dashed lines enclosed area are integrated onto the PCB and 145 
enclosed in the PE foam. The datalogger communicates with the Axetris sensor and provides active control of the heating 

element, including setting and maintaining the desired temperature. b) Experimental overview for linearity test setup. First, 

the flask is filled with the reference gas, which has a high CH4 concentration (indicated by the green arrow). Then, both systems 

start to sample the air from the flask, while ambient air was drawn in to mix with the high concentration (blue arrows), slowly 

decreasing the concentration in the flask.  150 
 

2.2 LI-7810 trace gas analyser 

The LI-7810 trace gas analyser (LI-COR Biosciences, Lincoln, USA) is a high-precision multi-gas analyser that 

provides continuous measurements of CH4, CO2, and H2O in a durable, portable design. The LI-7810 uses optical 

feedback cavity enhanced absorption spectroscopy (OF-CEAS). It contains a 6.41 cm3 optical cavity operating at 155 

standard conditions of 40 kPa (i.e., 𝑉!""= ~ 2.5 cm3) and 55 °C, and a flow rate of 250 sccm. For this study, the 

LI-7810 was equipped with a "low flow kit", which lowered the flow rate to ~70 sccm and changed the system's 

response time constant to approximately 2.3 seconds (~5.5s t90). 

  

The precision, accuracy, and linearity of the LI-7810 analyser under standard operating conditions were evaluated 160 

in an extensive report executed by ICOS (ICOS, 2020). From our laboratory tests, we found a 1-second precision 

of 0.1 ppb for CH4 and 0.2 ppm for CO2, respectively. The short-term drift over 24 hours was < 0.7 ppb for CH4 

and < 3 ppm for CO2, respectively. The 1-second precision of the system operating at reduced flow was the same 

as under standard operating conditions.  

 165 
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2.3 Linearity of the Axetris 

System linearity was verified by connecting both systems to a flask filled with a high CH4 concentration (~81 

ppm). The concentration inside the flask was then gradually reduced by allowing ambient air to enter, while the 

Axetris and the LI-7810 sampled it (see Figure 1b for experimental setup). The LI-7810 system linearity was 

confirmed by extensive laboratory tests (ICOS, 2020). These tests enabled direct comparison of the systems' 170 

response across a wide range of concentrations. Figure 1b shows an overview of the experimental setup. 

 

The linearity test revealed strong agreement between the Axetris and LI-7810, with a correlation coefficient of 

0.996. The linear equation between the two systems is as follows: 

 175 

𝐶𝐻#_%& = −142 + 1.001𝐶𝐻#_'() 

 

The slope confirms linearity between the two systems, while the intercept indicates the bias between them. This 

bias (142 ppb) can be easily dealt with through calibration. The results confirm the reliability of the Axetris under 

controlled conditions and its ability to measure high CH4 concentrations with strong linearity to the LI-7810 180 

(Appendix B; Figure B1).   

 

2.4 Water vapour corrections  

Water vapour can significantly affect gas sensor readings in two ways: (1) by dilution of trace gas concentrations 

and (2) through more complex spectroscopic effects. The influence varies depending on the sensor type and the 185 

correction algorithms implemented by the sensor manufacturer (Butenhoff & Khalil, 2002). To characterise the 

effect of water vapour on the Axetris response and derive an empirical correction, we conducted a controlled 

water-droplet test.  

 

While performing the water droplet test, the Axetris and the LI-7810 sampled air from a gas cylinder containing 190 

a high concentration of CH4 (~81 ppm). A Swagelok compartment containing a wet paper towel was placed 

between the sampling lines to introduce water vapour into the otherwise dry gas stream (Appendix C; Figure C1 

for experimental set-up).  The compartment was gradually heated using a hairdryer to increase humidity levels, 

measured with the LI-7810. Water vapour concentrations ranged from 0.06 % to 1.4 %, corresponding to relative 

humidity of 1.5% – 61 % at 25 ºC. 195 

 

The dry value of the reference gas was determined by sampling the cylinder air without the Swagelok 

compartment. The LI-7810 reported a water vapour concentration of 0.004 % and a CH4 concentration of 81.7 

ppm. We quantified the influence of water vapour on CH4 measurements using the method of Chen et al. (2010). 

A linear relationship was established between: (1) the ratio of wet-air CH4 concentration (Axetris) to dry-air CH4 200 

concentrations (LI-7810) and (2) water vapour concentration, as follows:  

 
𝐶𝐻#*!+
𝐶𝐻#,-.

= 1 + 𝑎𝐻/𝑂 
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with a = –0.013 ± 0.00008%-1. Figure C2 in the Appendix depicts the linear regression.  205 

 

As mentioned, water vapour affects the measurements in two different ways (Chen et al., 2010). At 81.7 ppm CH4, 

this relationship corrects mainly for the water vapour dilution effect, although other effects, including spectral 

interference and H2O calibration, account for ~30% of the dilution effect. For field applications, we correct 

ambient air sample measurements using the derived correction function to convert the measurements in humid air 210 

to dry air mole fractions. In practice, water vapour concentrations were either measured directly or taken from 

model simulations. With this, we assume that the non-dilution part of the water vapour correction remains the 

same at ambient levels as at high concentrations. Although this approach may not capture the full variability of 

water vapour, it is expected to adequately account for the most significant sources of water vapour related 

variability in the measurements. Any residual error introduced by this simplification is considered negligible, 215 

especially when compared to larger sources of uncertainty, such as wind variability.  

 

2.5 System precision  

The system's precision can be determined by operating it under stable conditions while sampling a reference gas 

over a longer period. The obtained time series was further analysed using the Allan variance method. The method 220 

is a commonly used statistical tool for assessing frequency stability and identifying noise characteristics in 

measurement systems (Allan, 1966). It provides insight into the noise, stability, and drift of a sensor (e.g., the 

Axetris), helping distinguish between random noise and systematic drift and informing the user about the optimal 

calibration frequency. In addition to the stable laboratory test, the sensor was deployed underneath an UAV while 

it sampled a reference gas from a calibration bag. These tests gave insight into the sensor's precision under more 225 

turbulent conditions. The calibration bag used is a ~1 L multilayer gas sampling bag (Supelco Inc.) that was tested 

and used by Hooghiem et al. (2018) for high-precision stratospheric measurements of CO2, CH4, and CO.  

 

The laboratory test lasted for 16 hours, with an observed temperature of 25 ± 0.1 °C and a pressure of 1.02 ± 0.001 

bar, while pushing gas through the Axetris at a flow rate of 70 sccm. The UAV's precision was determined over 230 

three consecutive flights, each lasting 20 minutes and varying flight patterns. Results were processed in MATLAB 

using the allanvar function (version R2019a), which yielded the Allan variance (𝜎(𝜏)/) and the corresponding 

averaging time (𝜏). To aid with the interpretability of the resulting figures, we converted the Allan variance to the 

Allan deviation (in ppb; √𝜎(𝜏)/	). 

Figure 2 shows the Allan deviation results obtained under stable laboratory conditions (16-hour dataset) and 235 

during in-flight operation. Figure 2a shows the recorded CH4 measurements during the 16-hour test and depicts a 

slow drift in the initial hours of the observations. After being turned on, the system stabilises its cell temperature 

during the warm-up period. However, the observed drift cannot be linked to this phase, as the system had been on 

for several hours before the experiment.  
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Figure 2d shows a precision of 63 ppb at 1-second averaging, improving to 4 ppb at 512-second averaging under 240 

stable laboratory conditions. Beyond this duration, the sensor's precision becomes drift-dominated. To maintain 

measurement precision below 10 ppb, calibration every hour is required. However, when operating the sensor 

during UAV deployment, its precision decreases. Its performance under flight conditions may differ due to 

additional pressure and temperature variations, as well as vibrations. In comparison, the Allan deviation analysis 

of in-flight data (sampled from a calibration bag) shows the sensor's precision of 91 ppb at a 1-second interval, 245 

reaching a minimum of 11 ppb after 128 seconds. These results demonstrate the sensor's performance without 

additional temperature control and show that turbulent conditions reduce its precision.  

Figure 2: Overview of sensor observations and Allan deviation results. (a) Axetris measurements over sixteen hours during 

stable laboratory conditions. (b) Axetris measurements (purple) with active temperature control and corresponding cell 250 
temperature (black). (c) Axetris measurements (green) without active temperature control and corresponding cell temperature 

(black). Shaded areas indicate 30-minute periods inside the fridge. (d) Allan deviation plots of the stable laboratory 

measurements (black), during flight conditions (purple), and with (green) and without (dashed green) temperature control.  

2.6 Temperature dependency  

Temperature variability is readily observed to affect sensor performance significantly. During routine use, this 255 

may lead to biases whenever ambient conditions change, for instance, when moving the sensor from a car to an 

UAV. To demonstrate this effect and the efficacy of a temperature control system, we conducted controlled 

experiments. Here, the Axetris was exposed to sudden temperature changes while continuously sampling a 

reference gas. The conditions encountered during UAV deployment were simulated by transferring the sensor 
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from a room-temperature environment to a fridge (7.5ºC). Airflow around the sensor package (i.e., all components 260 

inside a foam casing) was mimicked by placing a small fan inside the fridge. In the experiment, we compared (1) 

actively heating of the sensor to 28 °C using the heating wire to (2) not heating, and only relying on the dampening 

effect of the foam casing to provide temperature stability. The Axetris' output was continuously monitored, and 

the sensor was only transferred after readings had stabilised for ~10 minutes. Each configuration was tested in 

three independent runs, with the sensor exposed to the cooler environment for 30 minutes per run.  265 

 

Figure 2b and 2c show the time series of the temperature-dependence experiment, illustrating the necessity of 

active cell temperature control for stable Axetris measurements under varying ambient conditions. During the 

experiment, the fridge temperature was 7.6 ± 0.5 °C and the laboratory temperature was 21.4 ± 0.5 °C. Figure 2b 

depicts the Axetris observations with the cell temperature actively controlled at 28 °C. In contrast, Figure 2c 270 

presents the measurements without active temperature control, where irregular and non-linear behaviour is 

observed. In both panels, the shaded areas indicate the 30-minute periods during which the sensor was placed 

inside the fridge. 

 

Figure 2d shows the Allan deviation plots for the periods when the Axetris was inside the fridge. As expected, the 275 

three tests with active temperature control (green solid line) exhibit decreasing Allan deviations, reaching a 

minimum of 6 ppb at 𝜏 = 256	𝑠, and stays below ±18 ppb for the duration of the experiment. This is similar to 

the behaviour observed during the laboratory condition test (black solid line). Without temperature control (green 

dashed lines), the Allan deviation initially follows the same downward trend. However, it reaches its minimum of 

13 ppb at 𝜏 = 64	𝑠. Longer averaging times causes the drift to rise sharply, rising to approximately ±50 ppb.  280 

 

Active temperature control improves sensor stability and extends the averaging time over which the lowest 

precision is achieved. In addition, the heating element effectively suppresses the random oscillations observed 

without temperature control. The random oscillations are detrimental to the system's performance and are too 

complex to correct. Therefore, observations made when the sensor behaves in this way cannot be used for accurate 285 

flux estimation. Finally, in the absence of temperature control, the sensor's stabilisation period after exposure to 

the colder environment is substantially longer (~100 minutes; Figure 2c), whereas with active temperature control, 

the sensor is immediately ready for deployment, improving its practicality. 

3 Field validation of the Axetris sensor 
The laboratory characterisations improved the sensor's observation quality and optimised its performance for in-290 

field deployment. These improvements were then tested during a field validation of the Axetris sensor, comparing 

its performance with that of the proven Active AirCore technique (Andersen et al. 2018; Morales et al., 2022; 

Vinković et al., 2022). Both instruments were deployed underneath a UAV during flights at a dairy farm in the 

north of the Netherlands. These tests allowed for a direct comparison of the two systems for quantifying CH4 

emissions from the whole farm. 295 
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3.1 Field site 
The dairy cow farm quantified during this study is located in the village of Grijpskerk, approximately 20 km 

north-west of the city of Groningen. Pastures and cropland surround the farm, with clear upwind areas, making it 

an ideal location for UAV-based quantification. The farm was previously quantified by Vinković et al. (2022), 300 

allowing for direct comparison of our results with theirs. During this study, three main CH4 sources were 

identified: a barn with all dairy cows (225 cows), a barn with other cattle (25 dry cows and 132 heifers) and three 

manure cellars. These sources were also of interest during the study by Vinković et al. (2022). 

 

3.2 UAV system 305 
The sensor package was mounted underneath a DJI Matrice 600 hexacopter UAV using two straps. The UAV has 

a maximum payload capacity of 6 kg, well above the Axetris package's weight, and a wind speed resistance of 8 

m/s. The typical flight duration decreased from 35 minutes (unloaded) to 20-25 minutes when carrying the Axetris 

package and further decreased when the active AirCore was flown simultaneously. An anemometer (LI-550 

TriSonica, LI-COR Biosciences, Lincoln, USA) was mounted on a 1 m tall carbon fibre rod extending from the 310 

UAV to obtain in-flight wind speed and wind direction measurements.  

 

3.3 Meteorological measurements 
Meteorological data were obtained from both ground-based and drone-mounted sensors, including: (1) a 3D sonic 

anemometer (WindMaster Pro; Gill Instruments, Hampshire, UK) placed near the farm, which recorded 315 

continuous wind speed and direction at 10 Hz at an altitude of 3 meters, and (2) the UAV's onboard wind sensor, 

i.e. the TriSonica, which provided complementary in-flight measurements. The WindMaster Pro observations 

were used to anchor a logarithmic wind profile based on the theoretical formulation of Stull (1988).  

 

𝑢(𝑧0) = 𝑢-!"
123

!"
!#
4

123
!$%&
!#

4
          (1) 320 

 

Equation 1 assumes neutral atmospheric stability and a homogenous surface. A surface roughness length 𝑧5 =

0.15	𝑚 was used, which is representative of conditions between low and tall agricultural crops (Wieringa, 1992). 

The reference wind speed 𝑢-!" was derived as the average the WindMaster Pro observations during the duration 

of each of the flights (Table 1), and 𝑧-!" denotes the height of these reference observations (𝑧-!" = 3𝑚), and 𝑧0 325 

includes the considered heights. This logarithmic wind profile is used for calculation of fluxes. 

 

To visually assess the appropriateness of the logarithmic profile, we plot it together with the TriSonica 

measurements and observations from the two nearby Royal Netherlands Meteorological Institute (KNMI) stations 

(Appendix D). Raw TriSonica measurements were converted to true wind speed and direction by accounting for 330 

the UAV's motion and orientation. Overall, the TriSonica observations show a clear increase in wind speed with 

altitude, resembling the cardinal feature of the logarithmic profile. The uncertainty bounds of the TriSonica data 

overlap with the profile, indicating that our assumptions about the logarithmic profile are reasonable under the 

flight conditions. In addition, observations (reported as 𝑢65) from the KNMI stations at Eelde (~ 30 km SE from 
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the farm) and Leeuwarden (~ 25 km W) were included in Appendix D. The TriSonica observations corroborate 335 

the existence of a logarithmic profile, warranting its use over that of a single wind speed value over the full altitude 

range.  

 

3.4 Active AirCore 
The active AirCore system provides semi-continuous sampling and analysis of various trace gases. In this study, 340 

we measured CH4 mole fractions along flight trajectories using an upgraded version of the system described by 

Andersen et al. (2018). The AirCore consists of a 95 m stainless steel coil (635 mL volume) that samples ambient 

air at a controlled flow rate of ~ 23 sccm, allowing approximately 27 minutes of flight time. However, due to the 

UAVs battery and the total payload, the maximum flight duration was only 15 minutes. After landing, the AirCore 

was connected to the LI-7810 to measure the CH4 mole fractions from the collected air samples. The samples 345 

were pulled through the AirCore and into the analyser and followed by one of the two available gas mixtures from 

cylinders. Alternating, per flight, between the two gas tanks enabled easy identification of the start and end points 

of the analysis. In this manner, two flights per hour can be achieved. 

 

A primary challenge of the active AirCore technique is assigning the CH4 concentration readings from the gas 350 

analyser (LI-7180) to the flight trajectory. In principle, simultaneous flights with the Axetris and the AirCore allow 

for improved alignment, as in situ observations permit direct temporal and geospatial projection of AirCore 

measurements. This method was indeed implemented here but did not appreciably improve the results of the 

nominal mapping, shifting the assigned timestamps of the project AirCore data by less than 2 seconds (i.e., ~5 

meters horizontal).  355 

 

3.5 Flight strategy 
The UAV equipped with both sensor packages was flown downwind of the dairy farm at a constant speed of 3 ± 

0.5 m/s while maintaining stable orientation and with the sampling inlet pointed into the wind. The UAV flight 

track was oriented approximately perpendicular to the wind direction to achieve optimal cross-sectional sampling. 360 

A wireless connection enabled the ground team to monitor CH4 concentrations in real time and ensure sufficient 

sampling outside the plume, which is essential for obtaining sufficient background data and properly constraining 

the extent of the plume. Continuous sampling was conducted along transects at multiple altitudes, typically at 5 

m vertical intervals. The maximum altitude ranged from 40 m to 70 m, depending on plume height. 

 365 

A total of five UAV flights were performed on the 29th of July 2025, with flight duration ranging from 11 to 17 

minutes, depending on battery capacity, meteorological conditions, and payload mass. Weather conditions were 

cloudy, with occasional rain and temperatures ranging from 18 °C to 21 °C. Typical wind speed was 4 m/s 

(maximum 8.5 m/s) at 3 m above ground level (Appendix D). Table 1 provides a complete overview of the flight 

characteristics. 370 

 
Table 1: Summary of the five downwind flights conducted on 29 July 2025.  

 29 July 2025 
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Flight time [min] 13 16 11 16 17 

Take off [hh:mm:ss] [UTC] 11:45:18 12:22:35 13:14:08 13:51:30 14:31:28 

Landing [hh:mm:ss] [UTC] 11:58:52 12:38:28 13:25:05 14:07:32 14:48:26 

Mean UAV speed [m/s] 2.9 3.0 3.4 3.0 2.9 

Mean wind speed [m/s] * 2.3 ± 0.5 3.9 ± 0.8 4.5 ± 0.8 4.0 ± 1.0 2.5 ± 0.8 

Mean wind direction [°]* 290 ± 14 309 ± 9 319 ± 10 302 ± 14 277 ± 17 

Flux estimate Axetris [gCH4/s] 2.8 5.5 -0.1† 5.4 2.8 

Flux estimate AirCore [gCH4/s] 3.2 5.2 4.4† 5.0 3.0 
* The wind direction and speed are obtained from the 3D sonic anemometer and observed at a height of 3 meters 
† Temperature control failed during flight 3, this flight will be excluded from further analysis 

 375 

3.6 Spatial interpolation 
Spatial interpolation is crucial for estimating CH4 mole fractions at unsampled locations, which are subsequently 

used to calculate the total emission flux. In this study, observed CH4 enhancements were interpolated onto a grid 

using a Gaussian weighting scheme with finite spatial influence. This approach produces smoother concentration 

fields than alternative techniques such as inverse distance weighting (Di Piazza et al., 2011), because the Gaussian 380 

kernel gradually reduces the influence of distant measurement points rather than abruptly discarding their 

contributions. The weight assigned to each observation is computed as: 
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 385 

where (𝑥7 , 𝑦7) are the coordinates of the observations, (𝑥0 , 𝑦0) are the location of the grid cell, and 𝑟09"& , 𝑟09"
.  are 

the influence radii in the vertical and horizontal direction, respectively. Furthermore, observations outside a 

predefined cutoff radius are excluded from the interpolation, effectively spatially limiting the influence of each 

observation. This limit is required because the Gaussian kernel gradually reduces in strength but never reaches 

zero.   390 

 

The estimated CH4 mole fraction, 𝑐0, at each grid location is then computed as a weighted average using: 

 

𝑐0 =	
∑ ;'<'
𝒩"
',-

∑ ;'
𝒩"
',-

           (3) 

 395 

where 𝑧7 is the observed value and 𝒩0 is the set of observations that fall within the cutoff radius of grid points 𝑖. 

Grid cells with no contributing observations (i.e., beyond the cutoff radius of the nearest measurement) are 

assigned missing values (NaN) and excluded from subsequent analysis.  
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3.7 Mass balance  400 
The spatially interpolated CH4 concentrations were used to estimate the farm's total CH4 emission rate by 

implementing the results in the mass balance approach (MBA) similar to Nathan et al. (2015) and Vinković et al. 

(2022). The following equation gives the MBA: 

 

𝑄)=#	 = cos	(𝜃)?./0
?123

𝐹@@A ∑ ∑ ∆𝑥∆𝑧Δ𝑐0,7𝑢@-C"(𝑧0)
D)
7E6

D!
0E6 	      (4) 405 

 

where 𝑢@-C" is the logarithmic wind profile (in m/s, as described in Eq. 1), 𝜃 the angle between the mean wind 

direction and the direction perpendicular to the flight track, ∆𝑥 and ∆𝑧 represent the horizontal and vertical grid 

size of the integration plane, the molar mass of methane is given by 𝑀)=# , Δ𝑐 gives the CH4 mole fraction 

enhancement above the background in ppb, 𝐹@@A is the unitless conversion factor from ppb to mole fraction and 410 

𝑀FCG gives the molar volume and is defined as: 

 

𝑀FCG =
HI

J(68=4L)
          (5) 

 

where 𝑅 is the universal gas constant, 𝑇 is the ambient temperature in Kelvin, 𝑃 is the ambient pressure in Pascal, 415 

and H2O is the mole fraction of water vapour in the air. In this work, the ambient H2O mole fractions were obtained 

using the LI-7810 analyser. If in-field observations of [H2O] are not possible, a mean value may be approximated 

from RH% observations from nearby meteorological stations. All other meteorological parameters were recorded 

during flight and used to calculate the CH4 flux 𝑄)=# through the integrated plane. The obtained flux is interpreted 

to equal the emission at the farm. The resulting emission estimates are reported in grams per second (g s⁻¹).   420 

 

As stated, Δ𝑐 represents the CH4 mole fraction enhancement above background. For the AirCore, the background 

concentration was determined as the 10th percentile of the observations, under the assumption that the UAV 

sampled beyond the plume boundaries. The 10th percentile method is not suitable for the Axetris due to its higher 

noise level. This method would result in an overestimated flux, as it selects only the lowest observations from the 425 

Axetris. 

 

Rather for the Axetris, the background was defined as the mean CH4 mole fraction from the measurements 

obtained outside the plume boundaries. To identify these regions, CH4 concentrations were plotted against the 

horizontal distance travelled, and the area with the lowest values was selected based on visual inspection and all 430 

observations in the area were averaged (Appendix E). Under ideal conditions, this plot reveals a distinct separation 

between elevated CH4 values (associated with plume observations) and lower, stable values representing the 

background. By assuming that the lower CH4 observations correspond to the background and including a large 

number of data points, the estimated background value is expected to closely approximate the true atmospheric 

background and to have a low uncertainty. 435 

 

The averaging background method is not ideal for the Active AirCore due to its intrinsic signal smoothing 

(Morales et al., 2022). To use the same method, longer sampling outside of the plume should be part of the flight 
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strategy (Appendix E), limiting the collection of plume samples. The AirCore and Axetris methods report different 

backgrounds, since both instruments were only approximately calibrated during the field campaign. Flux 440 

quantifications for each sensor are conducted with its respective technique and background concentration.  

 

3.8 Comparison of results of Axetris and AirCore 
An illustrative overview of the second of the five UAV flights is shown in Figure 3. The top panel (Figure 3a) 

shows the raw Axetris observations (black), the smoothed Axetris (green) and the AirCore observations (purple). 445 

All measurement series clearly show repeated detection of the CH4 plume.  

 

The smoothed Axetris measurement series is plotted merely for illustrating the likeliness between the results of 

the two instruments. It was obtained using locally weighted scatterplot smoothing (LOWESS) of the raw signal; 

a window size of 50 samples gives an overall best resemblance to the AirCore data; the integral of raw and 450 

smoothed Axetris data is identical.  The projected AirCore measurements are well aligned with the in situ sensor 

data, demonstrating the accuracy of the projection methodology. Moreover, regression between the smoothed 

Axetris data (using the LOWESS), and the AirCore data yields a correlation coefficient of 0.92 (Appendix F), 

with a mean difference of 89 ± 39 ppb (1s) over all flights. This mean difference may be attributed to the improper 

calibration of the sensors which is supported by the significantly reduced difference of 26 ± 44 ppb (1s; over all 455 

flights) between the CH4 enhancements (i.e., after removal of the background). The large standard deviation may 

be attributed to (1) the differences in response time, as the LOWESS for the Axetris is only approximate to the 

Taylor and molecular dispersion that appears in the AirCore and the additional smearing effect inside the 

measurement cell of the LI-7810 (Andersen et al., 2018) and (2) A slight temporal shift between the two signals 

that cannot be completed eliminated also contributes to the difference. We use the raw signal in subsequent 460 

analysis.  

 

Figure panels 3b and 3c show the spatially interpolated Axetris and Active AirCore data, respectively. The AirCore 

method produces a wide and smooth plume compared to the narrow and more sharply enhanced plume derived 

from the Axetris data (Figure 3b). The results of these interpolations were used with the MB equation (Eq. 4) and 465 

the logarithmic wind profile (inferred from the WindMaster Pro data) to calculate the full farm emission flux, 

reported in Table 1. The emissions estimates derived by the two methods (AirCore, Axetris) differed by less than 

10%, both for individual flights as for the mean of flights.   

 

The flights were conducted under light to moderate wind conditions (3.7 ± 1.4 m/s, NW to WNW; Appendix D) 470 

and consisted of 12 transects between 4 and 60 m above ground level at approximately 120 m downwind of the 

farm (Appendix G). This variability in wind speed and direction can influence the flux estimate, leading to an 

over- or underestimation of the emission (Mohammadloo et al., 2025). A change in wind direction can cause the 

plume centre to shift, increasing the probability of sampling the full plume multiple times during flight or missing 

it altogether. Performing multiple passes across different altitudes, these plume-displacements can be captured 475 

and accounted for in the final flux estimate. Variability in the wind speed alters both the plume advection and 

dispersion. Higher wind speeds tend to elongate the plume and dilute observed concentrations, whereas lower 

wind speeds have the opposite effect (Stull, 1988).  
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 480 
Figure 3: observations and the spatially interpolated data from the second flight conducted on 29 July 2025. The middle of 

the barn is at 0m horizontal distance, and the blue square shows the take-off location. (not in-plane). (a) shows the 

measurement series of CH4 enhancements of the AirCore (purple; projected onto the Axetris flight times), the raw Axetris data 

(black), and smoothed Axetris data (green). (b) shows the spatial interpolation of the raw Axetris data. (c) shows the spatial 

interpolation of the AirCore data.  485 
 

The emission rates of the farm estimated from individual flights ranged from 3.5 to 5.2 gCH4/s for the AirCore 

method and from 2.8 to 5.5 gCH4/s for the Axetris method (Appendix H). Flight 3 was excluded from the analysis 

due to a failure in the active temperature control, causing the Axetris sensor to drift and rendering the observations 

invalid. The subsequent analysis is based on four of the five flights. The average emission rate across all 490 

quantifications using the active AirCore is 4.2 ± 1.1 gCH4/s (1s; n=4). The Axetris yielded a similar value of 4.1 

± 1.6 gCH4/s (1s; n=4), when using their respective background concentrations. When averaging all four flights, 

the flux estimates and the standard deviation between them are similar, indicating that the Axetris can determine 

flux comparably to a high-precision sensor. The correlation between the individual flight observations is strong: 

whenever the Axetris observed high fluxes, so did the active AirCore (Table 1). This consistency indicates that 495 

both instruments respond similarly to external stochastic influences (e.g. wind uncertainty and emission 

variability), rather than measurement-concentration issues. This shows that the two independent systems are 

capable to capture the same underlying atmospheric signal, strengthening the functionality of a cost-effective 

sensor for emission flux quantification.  

 500 

The reported uncertainty ranges represent the mean and standard deviation (1s) of the fluxes obtained from the 

four flights. Consequently, the standard deviation presented depicts the variability among the nominal flux 
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determinations rather than the underlying measurement uncertainties. However, each flux has its own uncertainty, 

arising from variations in meteorological conditions, sensor performance and background determination. 

Quantifying the exact uncertainty associated with these sources can be labour-intensive yet is essential for 505 

accurately assessing the robustness of the results. To address the uncertainty associated with each source, a 

statistical analysis was performed to assess the individual and combined effects of each source, as described in 

following section. 

 

The flux estimates obtained in this study were higher than those reported by Vinković et al. (2022), who observed 510 

values between 1.1 and 2.5 gCH4/s at the same farm. Although not directly relevant to our instrument development, 

the discrepancy warrants brief discussion. A plausible explanation for this discrepancy can be the timing of our 

flight measurements. Our campaign was conducted during the summer months, when higher ambient temperatures 

coincided with enhanced animal activity and enhanced microbial activity in the manure (Vechi et al., 2023; 

Vinković et al., 2022). In addition, active emptying of the manure storage was taking place during the flights. 515 

Such management activities can provoke short-term emission spikes, as agitation and pumping of liquid manure 

can release trapped CH4 (Leytem et al., 2017; Vanderzaag et al., 2010), which may explain the higher flux. Finally, 

unlike Vinković et al. (2022), who assumed a constant wind speed for the MBA, our analysis used a logarithmic 

wind profile that accounts for increasing wind speeds at higher altitudes (Appendix D). This leads to larger flux 

estimates, since the concentration enhancements at higher altitudes are multiplied by wind speeds that exceed the 520 

3-m reference value (3D-sonic). 

4 Statistical analysis 
 

4.1  Simulated plume sampling  
To assess the robustness and uncertainty of our UAV-based emission quantification efforts, a statistical model was 525 

developed broadly following the approach of Mohammadloo et al. (2025). The model is based on the Ornstein-

Uhlenbeck (OU; Uhlenbeck & Ornstein, 1930) process, which is well-suited for modelling events that fluctuate 

around a long-term mean. It combines random walk tendency (i.e. Brownian motion) with a mean-reverting 

process of which the restoring force is proportional to the deviation magnitude. Over time, this results in a 

normally distributed variation around the mean. The incremental evolution of a variable (𝜒) governed by the OU 530 

process is given by: 

 

𝑑𝜒+ = 𝜃]𝜒5 − 𝜒(𝑡)_𝑑𝑡 + 𝜎𝜒𝑑𝑊+         (6) 

 

where 𝜒 is the time-varying variable of interest, 𝜒5 is its initial value, 𝜃 is the mean-reverting term,	𝜎𝜒	is the 535 

diffusion coefficient representing process noise and 𝑑𝑊+ is an increment of the standard Wiener process. 

 

We used the model to generate a time-varying CH4 plume under dynamic atmospheric conditions, represented as 

a two-dimensional Gaussian distribution on a two-dimensional plane, whose extent, vertical and horizontal 

position and intensity oscillate around long-term means (Appendix I). This simulated plume may be sampled at 540 

the locations and times of a simulated or actual drone flight. We subjectively tune the model parameters to yield 
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results that closely resemble our real-world findings, after synthetic sampling and processing similar to section 

3.6 and 3.7.  

 

The OU approach allows for computationally efficient approximation of certain aspects of turbulent variability. 545 

However, it clearly does not replicate the full spatial complexity of plume dynamics. In contrast, large eddy 

simulation (LES; Dosio & de Arrelano, 2006; Ražnjević et al., 2022) provides the full 4D behaviour of plumes, 

comprehensively including multiple turbulent features including filaments, large eddies and vertical mixing, albeit 

at much greater computational expense.  

 550 

4.2 Uncertainty analysis  
Systematic and random uncertainties in UAV-based flux measurements are challenging to quantify directly in the 

field. Monte Carlo (MC) simulations provide a practical means to approximate them. In this study, we used the 

OU-based model to generate a three-hour artificial plume with a mean emission rate of 10 kgCH₄ hr⁻¹ (i.e., 2.78 

gCH4 s-1). Realistic plume cross-sections samplings were simulated by using a typical flight trajectory from the 555 

previous field campaign (specifically flight 1; Table 1). This trajectory was used to repeatedly (N=500) sample 

synthetic plume data. Each run was made unique by randomly selecting a different start time within the three-

hour plume simulation. This setup formed the basis for evaluating five sources of uncertainties (Table 2). These 

sources were examined individually, and in combination with each other, in defined scenarios. Within each 

scenario, 500 synthetic plume samplings and flux estimations are performed to ensure statistical robustness while 560 

remaining computationally feasible. The resulting flux estimate distributions were analysed to derive the mean 

bias, standard deviation and 95% confidence intervals (CI; defined as the 5th and 95th percentiles of the 

distribution of the 500 inferred individual fluxes) associated with each source of uncertainty. 

 
Table 2: Overview of the scenarios considered during this study, the reason behind the interest in the scenario and the method 565 
of evaluation.  

Scenario  Reason Method of evaluation  

(1) Flight 

duration 

Longer flights may more representatively sample the 

plume 

Mimic longer flights by repeating the 

nominal flight path 1 – 6 times. (6x500 

samplings) 

(2) Background 

determination 

Uncertainty in the background concentration, e.g. 

from bad initial assessment or gradual sensor drift, 

affects inferred flux 

Deviate background concentration with a 

random variation of ±0, ±5, ±10, ±15, ±20, 

±30, ±40 and ± 50 ppb (8x500 samplings) 

(3) Wind speed Flux estimates in the MBA scale linearly with wind 

speed, any under- or overestimation of (average) 

wind speed directly leads to a bias in the calculated 

flux 

Addition of uncertainty in wind speed 

determination from 0% to 50%, with steps of 

5%; constrain wind speed ≥ 0 m/s (11x500 

samplings) 

(4) Sensor noise Higher noise levels reduce the detectability of small 

enhancements 

Vary instrumental noise during synthetic 

sampling, with variations between 5 and 150 

ppb (12x500 samplings) 
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(5) Combined 

uncertainty 

Quantify expected uncertainty of one flight during 

field deployment 

Simultaneously include all individual 

uncertainty contributors, assuming: (1) a 

background uncertainty of 10 ppb; (2) wind 

speed variability of 20%; (3) a sensor noise 

level of 62 ppb. (1x3000).  

 

Table 2 lists the uncertainty contributors considered during this study, and the evaluation method in our OU-

model. This uncertainty analysis allowed for a systematic evaluation of how individual and combined uncertainty 

sources propagate into UAV-based flux estimates, revealing the relative influence of each contributor. The setup 570 

for scenario 5 is based on parameter estimates from field campaigns and observations.  

 

4.2.1 Flight duration  
Figure 4a shows how the standard deviation between the 500 modelled flights decreases with increasing duration 

of each flight. As expected, the results indicate that uncertainty decreases with longer (or repeated) flights, 575 

increasing the probability of representatively quantifying the full plume. With only a single flight (~12 minutes), 

the mean flux is 10.3 kgCH4/hr [5.5–16.7 kgCH4/hr; 95% CI]. Increasing the flight duration lowers the CI bounds 

and the standard deviation, with the standard deviation decreasing from 27% (1s) for one flight to 15% for three 

flights [7.5–13.6 kgCH4/hr] and reaching its minimum of 11% for six flights [8.4–12.7 kgCH4/hr]. 

 580 

Increased flight duration decreases the CI of the flux estimates, as depicted in Figure 4a. One flight per source 

increases the possibility of reporting an over- or under-representation of the total flux. With short flights (or a low 

number of flight repeats), atmospheric stochasticity has a larger impact. Increasing the number of flight repeats 

and averaging the resulting estimates offset this concern. With more flight repeats, flights are conducted across a 

wide range of conditions, increasing the likelihood of representatively quantifying the plume.  585 

 

4.2.2  Uncertainty effects of background errors 
As mentioned in section 3.7, multiple techniques are available to determine the in-flight background 

concentrations. However, the assumptions underlying these techniques, e.g. spatial and temporal uniformity of 

the background, instrument precision and absence of drift or sufficient sampling outside the plume, may not 590 

always hold (Edwards et al., 2025). This introduces an additional source of uncertainty into flux measurements. 

Reliable background determination is essential for accurate flux quantification, as even minor discrepancies can 

introduce systematic errors and consequently bias flux estimates (Allen et al., 2019; Cambaliza et al., 2014).  

 

https://doi.org/10.5194/egusphere-2025-6209
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 19 

 595 
Figure 4: The marker shows the mean error, and the error bars present the 95% confidence interval. (a) An overview of the 

emission flux estimates and the variability from 500 repeat simulations with an increase in flight repeats. (b) An overview of 

the uncertainties linked to the background determination.  

 

Figure 4b shows the impact of the uncertainty in the background determination on the flux estimate. Each run 600 

calculated the flux using the MBA with a varying background concentration. The figure shows that the estimated 

emission error increases with increasing background uncertainty. A background uncertainty of 30 ppb results in 

an estimated flux of 10.2 kgCH4/hr ([-3.6–23.9 kgCH4/hr; 95% CI]), and a standard deviation of 70% (1s). Based 

on the standard error of the observed background in our flights, we expect to be able to determine background 

concentrations with an uncertainty of ±10 ppb. Assuming the uncertainty in the background to 0–10 ppb, 605 

constrains the standard deviation to below 35% (1s). However, we infer a high sensitivity of the inferred flux to 

errors in the assumed background. At ±20 ppb uncertainty in the background the standard deviation exceeds 100%, 

i.e., yielding a negative or double flux, underscoring the importance of accurate background concentration 

determinations.  

 610 

4.2.3 Wind speed uncertainty 
Wind speed uncertainties are known to introduce significant errors into flux estimates (Allen et al., 2019; Morales 

et al., 2022; Vinković et al., 2022). Figure 5 shows an overview of the simulation results for varying wind speeds 

(Figure 5a) and instrumental noise (Figure 5b).  

 615 

Uncertainties in the wind speed profiles were generated by multiplying the expected logarithmic profile by its 

respective uncertainty, yielding unique wind profiles for each Monte Carlo realization, thus representing the 

situation where the true mean windspeed is different from what is assumed in subsequent calculations. Figure 5a 

shows the outcome of this analysis and the contribution of wind speed uncertainties to the overall emission flux 

errors. A low wind speed uncertainties (<10%) limits the standard deviation to 30% (1s), and results in a flux 620 

estimate of 10.1 kgCH4/hr [5.0, 17.1 kgCH4/hr; 95% CI]. However, when the uncertainty increases, so does the 

standard deviation and the flux estimate. With a wind speed uncertainty of 50%, the standard deviation of the 

determined flux exceeds 60% (1s), and the flux estimate becomes 9.7 kgCH4/hr [0.6–23.7 kgCH4/hr; 95% CI]. 

(b)(a)
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These findings highlight the importance of minimising the wind speed errors by obtaining reliable wind speed 

measurements during flights. 625 

 

The results, showing an increase in the flux uncertainty with greater wind speed uncertainty, was expected. 

However, the finding contradicts Mohammadloo et al. (2025), who reported that flux estimates are unaffected by 

wind-speed variations because measured concentrations scale proportionally with wind speed. In principle, this is 

correct, since for a constant source strength, higher winds yield lower concentrations. Errors in assumed wind 630 

speed may stem from to changing atmospheric conditions and can lead to the calculation of the emission flux 

using an incorrect wind speed, whilst the concentrations remain the same.  

 

 
Figure 5: The marker shows the mean error, and the error bars present the 95% confidence interval. (a) An overview of the 635 
emission flux estimates and the effect of the wind speed uncertainty (b) An overview of the uncertainties linked to the 

instrumental noise.  

4.2.4 Uncertainty effects of instrumental noise  
High-frequency sensor noise makes it hard to accurate resolve brief spikes in CH4, for instance during high-speed 

flights. To an extent this may be alleviated by reducing flight speed, at the expense of reducing plume coverage 640 

(for a given UAV endurance). Low-noise sensors thus in principle allow for improved detection of smaller plumes 

or improved spatial resolution the nominal plume. Here, we mimic the effect of noise in the Monte Carlo 

simulation, applied by varying the noise levels added to the trace (time series) sampled from the simulated plume.  

The sensor's noise (at 2 Hz) was varied from 5 to 150 ppb, generically representing high-, to low-precision sensors. 

Figure 5b shows that increasing noise does not directly affect the estimated error, as random fluctuations largely 645 

cancel during spatial interpolation. 

 

The main impact of changing sensor noise is on background determinations. High-precision sensors usually allow 

straightforward application of approaches such as the 10th percentile method, whereas higher-noise sensors require 

additional processing with typically less certain results. Without this processing, applying the 10th percentile 650 

method to noisier sensors will lead to an overestimation of the flux, since the enhancements will appear larger 

than they actually are. 

 

0 5 10 15 20 30 50 70 90 110 130 150
Sensors noise variation [ppb]

-60

-40

-20

0

20

40

60

80

Es
tim

at
ed

 e
m

is
si

on
 ra

te
 e

rro
r [

%
]

0 10 20 30 40 50
Wind speed uncertainty [%]

-100

-50

0

50

100

150

200

Es
tim

at
ed

 e
m

is
si

on
 ra

te
 e

rro
r [

%
]

(a) (b)

https://doi.org/10.5194/egusphere-2025-6209
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 21 

4.2.5 Combined uncertainty 
The individual uncertainty analyses provide valuable insights into the role of individual factors on the emission 655 

estimate. During field campaigns, these factors (among others) are expected to affect the flux quantification 

simultaneously. To assess their combined effect, all the above sources of uncertainty were analysed in a single 

MC simulation. These uncertainty contributors were set to values (Table 2.) encountered during actual 

deployment.  

 660 

This simulation was used to estimate the overall combined uncertainty during our field campaign for a single 

flight. With the above-mentioned setup, the obtained flux was 10.0 kgCH4/hr ([3.3–19.1 kgCH4/hr; 95% CI), with 

a standard deviation of ± 40% (1s). The uncertainties reported are consistent with those from previous studies 

(Andersen et al., 2021; Karion et al., 2013; Morales et al., 2022; Nathan et al., 2015). 

 665 

4.2.6 Summary  
This statistical analysis covered a range of potential sources of uncertainty to elucidate their expected contribution 

to the emission flux estimates. Table 3 provides an overview of the uncertainty sources discussed and their effects 

on the standard deviation, from the nominal scenario to the most considerable impact. Table 3 highlights that the 

background uncertainty and the wind speed uncertainty have the highest impact on the uncertainty of the estimate 670 

of the flux. Sensor noise is determined to not be a meaningful factor, especially when other uncertainties are more 

substantial (depicted in Table 3). 

 
Table 3: Summary of the influence of various sources of uncertainty  

Scenario Uncertainty ranges considered Effect on (1s) 

Flight duration 1 ® 6 repeats 27% ® 11% 

Noise 0 ppb ® 150 ppb 27% ® 28% 

Background 0 ppb ® 50 ppb 27% ® 100% 

Wind speed 0% ® 50% 27% ® 62% 

Combined uncertainty Everything 0 ® Set uncertainties  27% ® 40% 

 675 

4.3 Applicability to various source strengths 
During the uncertainty analysis, the influence of individual sources was evaluated for a reference emission rate of 

10 kgCH4/hr. In practice, emission rates can vary widely depending on source type and environmental conditions, 

and the relative importance of different uncertainty sources depends strongly on the source strength. Most 

importantly, the background uncertainty and sensors noise may become too large to derive a meaningful flux. To 680 

assess this relationship, we repeated the analysis in 4.2.5 for source strengths ranging from 1 to 20 kgCH4/hr and 

performing 1-6 flight repeats using 500 MC realizations each. The results are summarized in Figure 6. 
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Figure 6: Relative uncertainty in flux estimates for emission rates of 1-20 kgCH4/hr across a range of flight repeats. 

 685 

Figure 6 shows that multiple flight repeats reduce relative uncertainty. At lower emission rates, flux estimates are 

more susceptible to instrumental errors, where noise and background uncertainties are dominant factors. These 

random errors are effectively averaged out through repeated sampling. In contrast, estimates of larger emission 

rates are less influenced by sensor performance and are instead dominated by meteorological errors. As these 

errors are not reducible through averaging, multiple flight repeats result in a persistent uncertainty of 690 

approximately 20% (1s).   

5 Discussion 
This study evaluated the performance of a cost-effective CH4 sensor and demonstrated that it can provide emission 

flux estimates comparable to those obtained with a higher-precision UAV-based instrument (i.e. Active AirCore). 

Field validation showed that the cost-effective sensor produced flux estimates that differed <10% from those 695 

obtained by the Active AirCore method. Results from the Active AirCore technique have a standard deviation of 

26% (1s), while that of the Axetris exceeds 39% (1s). This uncertainty is a combination of systematic errors, 

random errors in wind-related uncertainties, background uncertainties and variability in the actual flux. 

 

The results indicate that, for the assessed farm flux of ~4 gCH4/s, total uncertainty associated with our UAV-based 700 

flux estimates is influenced more by uncertainties in wind variability and plume sampling methods than by the 

precision of the employed mid-cost sensor. With active temperature control, the Axetris sensors uncertainties are 

similar to those found during prior UAV-based studies (Andersen et al., 2021; Karion et al., 2013; Morales et al., 

2022; Nathan et al., 2015) using higher precision and accuracy sensors.  
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 705 

The necessity or low drift is well illustrated by Flight 3, which showed the impact on Axetris CH4 readings of 

(strong) cell temperature drift. The drift occurred as a result of faulty PID control: the sensor accidentally warmed 

prior to flight, and thus cooled during flight, see Figure A2. This clear drift of the measurement baseline, and an 

apparent oscillation around that (see data at 13:14) hinders the assessment of the background CH4 and thus to infer 

a meaningful flux. 710 

 

This study highlights that improving post-flight data processing and obtaining accurate in situ meteorological 

observations are most important for reducing UAV-based uncertainties. These findings are consistent with 

previous studies that identify wind speed and direction as dominant sources of uncertainty in UAV-based CH4 flux 

estimation (Morales et al., 2022; Yong et al., 2024; Mohammadloo et al., 2025; Wietzel et al., 2025). Wind-related 715 

errors are difficult to mitigate and can propagate non-linearly through the MB calculation, as a combination of 

wind direction and wind speed uncertainties. Background concentration uncertainty can typically be reduced 

through sufficient downwind sampling. Especially, small source strengths are influenced by background 

uncertainty, since the enhancements are usually small. Yong et al. (2024) noted that background variation 

accounted for only 6% of the total uncertainty, with a strong source. The uncertainty found in this study, showed 720 

a larger uncertainty with smaller sources, indicating that sources with considerable enhancements are less 

influenced by a 10 ppb change in background concentrations.  

 

This study did not include the effects of spatial sampling density, which can also affect the accuracy of the 

emission flux measurements. Significant data gaps negatively affect the MBA, leading to systematic 725 

underestimation of the emission flux. This limitation has been addressed in detail by Mohammadloo et al. (2025). 

Higher-frequency observations in the horizontal and vertical directions decrease the estimated emission rate error. 

Based on their findings and our own flight track featuring relatively dense horizontal and vertical coverage, we 

expect to have only an additional 5-10% error. Future work should combine optimised flight-path design with 

real-time plume detection to further minimise spatial sampling bias.  730 

 

Our flight strategy provided abundant sampling with multiple transects at varying altitudes, creating favourable 

conditions for both IGA and MBA. Andersen et al. (2021) studied fluxes from coal-ventilation shafts using both 

methods and showed higher uncertainties for the MBA (26-51%), compared to the IGA (8-16%). In their research, 

the MBA uncertainty is dominated by wind speed. The IGA uncertainty reflects the standard error derived from 735 

1000 optimisation iterations. Kim et al. (2023) also mention that the IGA is less sensitive to undersampling of 

plumes and upwind background levels, but the method can be considerably influenced by atmospheric stability. 

 

Wind direction during the flights was variable, leading to a horizontally stochastic plume observations, making 

appropriate the use if a method that does not rely on Gaussian plume assumptions. The analysis from Andersen et 740 

al. (2021) underscores the importance of multiple transects at different altitudes, and that the IGA performed best 

when the vertical spacing and the distance were smaller than 2.5 times the vertical distribution (sz) of the plume. 

Given that our sampling was abundant but accompanied by temporally varying winds, we employed only the 

https://doi.org/10.5194/egusphere-2025-6209
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 24 

MBA, as it remains valid without requiring a stable Gaussian plume structure and provides a transparent, wind-

driven uncertainty estimate. 745 

 

Overall, the findings highlights that the implementation of cost-effective sensors offers a promising way to expand 

the spatial and temporal coverage of regional CH4 monitoring. This scalability can improve emission 

quantification across a variety of sources, such as landfills, farms and wastewater treatment plants. The study 

reiterates that to maximise effectiveness, standardised flight procedures are required, together with precise 750 

background assessment and accurate meteorological observations during flight.  

6 Conclusion  
This study demonstrates the possibility of using a cost-effective, medium-precision, in situ CH4 sensor on UAVs 

for rapid emission assessment. Laboratory characterisation indicates that temperature fluctuations stongly affect 

this sensor's measurement stability, rendering it unreliable for this work unless appropriate mitigative measures 755 

are taken. We improved the sensor's performance by properly insulating the sensor and applying active thermal 

regulation to maintain a constant cell temperature (±0.05 °C). Adding active temperature control removes the 

unwanted measurement oscillations, maintaining the long-term accuracy of the Axetris even when bigger 

environmental temperature changes are present. Allan variation analysis confirmed that under stable laboratory 

conditions, the sensor achieves a precision of 63 ppb at 2 Hz and remains stable to within ±10 ppb over a 20-760 

minute time scale. Insights gained from lab characterisation supported the preparation of the sensor for UAV-

based field tests. With active temperature control, and observing large temperature differences, the sensor remains 

stable within ±20 ppb over a 20-minute time scale.   

  

Field experiments at a dairy farm confirmed that the Axetris can deliver reliable CH4 flux estimates, comparable 765 

to those obtained using the established Active AirCore technique. Across four flights, the mean flux derived from 

the Axetris measurements was 4.1 ± 1.6 gCH4/s, while the AirCore measurements yielded a flux of 4.2 ± 1.1 

gCH4/s. The close agreement between the techniques validates the use of the Axetris sensor for robust flux 

quantification.  

 770 

An uncertainty analysis using the Ornstein-Uhlenbeck approach to identify the dominant sources of uncertainty 

in UAV-based flux measurements shows the noise of this sensor does not significantly impact the total uncertainty, 

particularly when emission sources are sufficiently large and plume coverage is sufficient in space and time. In 

contrast, realistic uncertainties in wind speed estimates (common at low wind speeds) can introduce errors in the 

flux exceeding 60%. An accurate determination of background concentration is also important, since errors in 775 

background estimation can account for more than 100% of the total uncertainty for a flux of 10 kgCH4/hr, with 

even greater sensitivity when CH4 enhancements are low. Overall, weaker emission sources are more affected by 

instrumental errors compared to stronger sources. Multiple flight repeats help to reduce the uncertainty in the 

background determination and average the effects of variable wind speeds and direction, while systematic errors 

in the wind speed (e.g., the assumed profile) remain persistent.  780 
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This study underscores that careful laboratory testing and compensation for environmental temperature variability, 

can significantly improve the performance of medium-precision sensors for flux estimation. This supports the 

potential for deploying these cost-effective sensors on UAV systems for GHG monitoring, thereby helping to close 

data gaps in national inventories.  785 

 

Data availability: The data and code used in this study will be provided by the authors upon request.  
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7 Appendix  
 

7.1 Temperature control during flight (A) 

 920 
Figure A1: Temperature stability during the flight one and two. The actively controlled temperature recorded by the Axetris 

sensor is shown in purple (left axis; set to 28°) The shaded regions indicate the flight periods. The solid green line denotes the 

ambient air temperature, while the dashed green line shows the temperature of the PBD inside the foam enclosure (right axis). 

 
Figure A2: Temperature stability during the flight three, four and five. The actively controlled temperature recorded by the 925 
Axetris sensor is shown in purple (left axis; set to 28°) The shaded regions indicate the flight periods. The solid green line 
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denotes the ambient air temperature, while the dashed green line shows the temperature of the PBD inside the foam enclosure 

(right axis). Prior to this measurement series, the Axetris was accidently heated to 36°C. The rapid cooling during flight, 

severely affected Axetris readings.  

 930 

7.2 Linearity test (B) 

 
Figure B1: Linear regression plot showing the linearity between LI-7180 and Axetris data. The outliers are due to differences 

in response time.  

 935 

7.3 Experimental setup of the water vapour test (C) 
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Figure C1: Overview of the water droplet test setup. A wet paper towel is placed in an enclosed Swagelok compartment, and 

the reference gas used had a high CH4 concentration (±81 ppm). The compartment can be heated, thereby increasing the water 940 
vapour concentration relative to the reference gas. 

 
Figure C2: Regression model used to determine the water vapour correction as described in section 2.4. The linear relationship 

between the wet and dry fractions can be used to correct for water vapour during field experiments. The R2 value is 0.86, and 

the RMSE is 0.0016. 945 
 

7.4 Meteorological data (D) 

 
Figure D1: Wind rose of 3D sonic observations during the campaign day at 29-07-2025. 
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Figure D2: compilation of wind speed information during Grijpskerk flight 1. Shown are a theoretical, exponential wind speed 

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light 

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed 

by the TriSonica was 4.2 m/s ± 1.2 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and 955 
Leeuwarden (blue). 

 

 
Figure D3: compilation of wind speed information during Grijpskerk flight 2. Shown are a theoretical, exponential wind speed 

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light 960 
gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed 

by the TriSonica was 6.1 m/s ± 1.9 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and 

Leeuwarden (blue). 
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 965 
Figure D4: compilation of wind speed information during Grijpskerk flight 3. Shown are a theoretical, exponential wind speed 

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light 

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed 

by the TriSonica was 6.4 m/s ± 1.7 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and 

Leeuwarden (blue). 970 

 
Figure D5: compilation of wind speed information during Grijpskerk flight 4. Shown are a theoretical, exponential wind speed 

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light 

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed 

by the TriSonica was 5.7 m/s ± 1.3 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and 975 
Leeuwarden (blue). 
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Figure D6: compilation of wind speed information during Grijpskerk flight 5. Shown are a theoretical, exponential wind speed 

profile (purple line) anchored by measured data from the 3D sonic at 3 m altitude (purple marker) and the individual (light 

gray) and bin-averaged (black) TriSonica wind speed data collected by the drone. The mean wind speed during flight observed 980 
by the TriSonica was 5.2 m/s ± 2.3 m/s. Additional markers show KNMI observations from nearby stations Eelde (green) and 

Leeuwarden (blue).  

7.5 Background determination (E) 

 
Figure E1: Method to determine the plume boundaries and background concentration of the Axetris observations (purple) and 985 
the AirCore observations (black) of flight 1. The enclosed area is thought to contain the background of the Axetris, and the 

average value is determined by isolating the specific observations 
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7.6 Correlation Axetris vs. AirCore observations (F) 

 990 
Figure F1: Linear correlation plot of the smoothed Axetris observations compared to the activeAirCore observations. All flight 

observations (with the exception of flight 3) are considered in this plot. The linear correlation coefficient is R2=0.936 and an 

RMSE of 37.9 is found.  

 

7.7 Curtain orientation (G) 995 
 

 
Figure G1: Top-down view of the flight track and CH4 observations of the Axetris during flight 1. Figure used to determine the 

angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction 

(blue). The blue star represents the position of the WindMaster Pro.  1000 
 

1800 2000 2200 2400 2600
AirCore observations [ppb]

1800

2000

2200

2400

2600

2800
Ax

et
ris

 o
bs

er
va

tio
ns

 [p
pb

]
Linear correlation Axetris and Aircore observations

Data
Fit

https://doi.org/10.5194/egusphere-2025-6209
Preprint. Discussion started: 21 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 36 

 
Figure G2: Top-down view of the flight track and CH4 observations of the Axetris during flight 1. Figure used to determine the 

angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction 

(blue). The blue star represents the position of the WindMaster Pro. 1005 

 
Figure G3: Top-down view of the flight track and CH4 observations of the Axetris during flight 3. Figure used to determine the 

angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction 

(blue). The blue star represents the position of the WindMaster Pro. 
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 1010 
Figure G4: Top-down view of the flight track and CH4 observations of the Axetris during flight 4. Figure used to determine the 

angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction 

(blue). The blue star represents the position of the WindMaster Pro. 

 
Figure G5: Top-down view of the flight track and CH4 observations of the Axetris during flight 5. Figure used to determine the 1015 
angular deviation between the perpendicular line (orange line) of the mean flight track (pink line) and the wind direction 

(blue). The blue star represents the position of the WindMaster Pro. 
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7.8 All flight profiles (H) 

  1020 
Figure H1: Overview of the observed CH4 enhancements and spatial interpolation of flight 1. Estimated flux of Axetris 2.8 

gCH4/s (B); AirCore 3.5 gCH4/s (C)  

 

 
Figure H2: Overview of the observed CH4 enhancements and spatial interpolation of flight 3. During the flight, the temperature 1025 
control malfunctioned. This flight was left entirely out of the analysis 
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Figure H3: Overview of the observed CH4 enhancements and spatial interpolation of flight 4. Estimated flux of Axetris 5.4 

gCH4/s (B); AirCore 5.0 gCH4/s (C)  

 1030 
Figure H4: Overview of the observed CH4 enhancements and spatial interpolation of flight 5. Estimated flux of Axetris 2.8 

gCH4/s (B); AirCore 3.0 gCH4/s (C)  
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7.9 Plume simulation results (I) 1035 

 
Figure I1: Stochastic plume simulation using the Ornstein-Uhlenbeck model to simulate a plume of 10 kgCH4/hr. The top three 

figures (a-f) depict the time series fluctuations of the plumes horizontal and vertical position and plume intensity and spread 

are presented, together with the probability distribution of these parameters; (g) The simulated trajectory of the plume around 

the centerline motion; (h) the spatial interpolation of the 3 hour averaged plume; (i) example of instantaneous plume snapshots 1040 
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