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Abstract. Accurate particulate matter (PMa.s) monitoring using low-cost sensors requires careful consideration of
meteorological influences and calibration against reference instruments. This study evaluates the performance of a low-cost
optical sensor through an outdoor co-location experiment with a Beta Attenuation Monitor (BAM 1022). Raw measurements
showed strong temporal agreement but substantial overestimation, particularly under high relative humidity, which induced
hygroscopic particle growth and amplified light-scattering responses. Correlation and regression analyses confirmed
humidity as the dominant environmental factor affecting low-cost sensor bias, while temperature exhibited only minor
influence. To address these limitations, multiple calibration models (including Linear Regression, Random Forest, Gradient
Boosting, Support Vector Regression, and an Adaptive-blend ensemble) were developed and assessed. Nonlinear and
ensemble-based models significantly improved accuracy, reducing MAE from 17.40 pg/m? (uncalibrated) to 5.85 ug/m?® after
calibration. These findings demonstrate the necessity of environmental compensation and model-based correction for reliable

low-cost PM:2.s monitoring and support their integration into high-resolution air quality networks.

Keywords—Particulate Matter (PM); Air Temperature; Relative Humidity; Meteorological Factors; Statistical Analysis; Air Quality
Monitoring

I. INTORDUCTION

Air pollution has emerged as one of the most pressing environmental and public health challenges of the 21st century,
driven by rapid urbanization, industrial expansion, and the escalating impacts of climate change (Edwards et al., 2025;
Schneider et al., 2020). Among various air pollutants, fine particulate matter, particularly PM..s and PM.o, poses the most
severe risk to human health and environmental sustainability (Chacdén-mateos et al., 2025; Orellano et al., 2020). These
microscopic particles originate from both natural sources, such as dust and biomass bumning, and anthropogenic activities,
including vehicular emissions, industrial combustion, and construction processes (Orellano et al., 2020). Due to their small
aerodynamic diameter, particulate matter can penetrate deep into the respiratory system and even enter the bloodstream,
leading to a range of adverse health effects such as respiratory infections, cardiovascular diseases, and increased premature

mortality (Pouri et al., 2024). Beyond human health, clevated concentrations of particulate matter also contribute to
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atmospheric visibility degradation, alter radiative balance, and influence local and regional climate dynamics, thereby
underscoring the urgent need for continuous monitoring and comprehensive understanding of PM behavior under varying

environmental conditions (Orellano et al., 2020; Pouri et al., 2024).

However, air pollution extends far beyond its health implications; it also exerts profound environmental and ecological
impacts. Elevated levels of atmospheric pollutants contribute to phenomena such as acid rain, reduced visibility, ecosystem
degradation, and climate alteration through the modification of radiative and cloud-forming processes (Bolan et al., 2024).
Although these broader environmental consequences are not the primary focus of this study, they reinforce the necessity of
understanding the mechanisms governing particulate matter dynamics. In particular, environmental parameters such as
ambient air temperature and relative humidity play a critical role in influencing the formation, transformation, and dispersion
of PM..s and PMo particles (Jayaratne et al., 2018; J. Wang & Ogawa, 2015; Zender-Swiercz et al., 2024). Investigating how
these meteorological factors affect particulate matter concentrations is essential for developing more accurate air quality
models, improving sensor calibration, and formulating effective strategies to safeguard public health and environmental
quality (Mahajan & Helbing, 2025; Venkata et al., 2024).

In addition to its health and environmental implications, air pollution imposes substantial economic burdens on society. It
contributes to decreased agricultural productivity, accelerates the deterioration of infrastructure, and increases public health
expenditures due to pollution-related illnesses (Lanzi et al., 2020). These combined effects translate into significant financial
losses at both local and national levels, underscoring the broad socio-economic relevance of air quality management.
Consequently, investigating the influence of meteorological factors on air pollutant behavior is not only of scientific interest
but also of practical importance. A deeper understanding of how temperature and humidity affect particulate matter
concentrations can support more effective urban planning, environmental policy development, and adaptive response

strategies to mitigate air pollution in cities and regions worldwide (Galiszewska et al., 2024).

Numerous studies worldwide have examined the influence of meteorological parameters such as particularly air
temperature, wind speed, and relative humidity, on the concentration of particulate matter (PM2.s and PMio) (Mahajan &
Helbing, 2025; P. Wang et al., 2021; Zender-Swiercz et al., 2024). These studies consistently highlight that humidity and
temperature play a critical role in shaping the physical behavior of airborne particles, affecting their size distribution,
hygroscopic growth, and atmospheric residence time. As summarized in Table 1, relative humidity often leads to
overestimation in optical sensors due to light scattering by water-absorbing particles, while temperature influences both
particle dispersion and sensor response. Although extensive research has been conducted to characterize these meteorological
effects, most previous works have focused on ambient PM variability rather than on how these factors specifically influence

measurement accuracy across different sensor technologies.

The key research gap lies in understanding how temperature and humidity differentially affect low-cost optical particle

sensors compared with reference-grade instruments such as the Beta Attenuation Monitor (BAM). Low-cost sensors are
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widely adopted for dense air quality monitoring networks due to their affordability and portability, yet their performance

under varying environmental conditions remains inconsistent. Differences in sensor design, optical principles, and lack of

environmental compensation models often lead to deviations from reference measurements, particularly under high humidity

or temperature fluctuations. Therefore, this study aims to systematically analyze and quantify the influence of ambient

temperature and relative humidity on particulate matter readings obtained from low-cost sensors relative to BAM reference

instruments. The outcome of this analysis will provide insights necessary for developing more robust calibration and

environmental compensation frameworks, ultimately improving the reliability of low-cost sensor data for air quality

assessment and public health applications.
Tabel 1. Summary of the existing literature on the impact of meteorological parameters and air pollution by particulate matter.
Reference Focus Meteorological Findings Impact

Parameters
Evaluation and Calibration of a Low- Sensor calibration Temperature, ML models (e.g., RF, ANN) Demonstrated need for
Cost Particle Sensor in Ambient using machine Relative Humidity | significantly improved PM2.5 environmental compensation
Condition Using ML (2020) (Si et al., learning under estimates by including RH and T; in low-cost sensors.
2020) varying T and RH humidity strongly affects scattering

response.

Improved PM2.5 Concentration Categorical Relative Humidity | Separate calibration models by RH Introduced RH-based
Estimates from Low-Cost Sensors calibration model by improved accuracy; PM2.5 segmentation as an effective
Using Calibration Models Categorized | RH levels overestimation at high RH compensation strategy.
by RH (2021) (Hua et al., 2021) confirmed.
The Effect of Temperature and Correlation study Temperature, Temperature negatively correlated Revealed nonlinear RH
Humidity of Air on the Concentration between Humidity with PM concentration, humidity influence; emphasized local
of Particulate Matter (2024) (Zender- meteorological showed positive correlation climatic variability.
Swiercz et al., 2024) variables and PM especially at RH > 70%.
The Influence of Humidity on the Humidity influence Relative Humidity | Sensor readings increase Quantified humidity artifacts;
Performance of a Low-Cost Air on sensor readings exponentially with RH; signal supports RH correction
Particle Mass Sensor (2018) (Jayaratne distortion due to hygroscopic necessity.
et al., 2018) particle growth.
Determining the Correlation Between Statistical analysis of | Temperature, Negative correlation with wind Validated classical
PM10 and Meteorological Factors PM10a€“weather Humidity, Wind speed and temperature; positive meteorological influence
(2022) (Kiresova & Guzan, 2022) relationships Speed, correlation with RH; rainfall reduces | patterns on PM.

Precipitation, PM10.

Pressure
Diurnal and Daily Variation of PM2.5 | Wavelet-based Temperature, Strong coherence between PM2.5 Showed complex, scale-

and Its Multiple Wavelet Coherence
with Meteorological Variables (2024)
(Cholianawati et al., 2024)

temporal analysis of
PM2.5 vs
meteorological

Humidity, Wind
Speed, Pressure

and RH at multi-day scales;
temperature influence varies by
season.

dependent meteorological
influence using wavelet
methods.

factors
Effect of an Aerosol Dryer on Mitigating humidity Relative Humidity | Dryer reduces RH-related Demonstrated practical
Ambient PM Measurement with effects using aerosol overestimation; calibrated readings mitigation strategy for RH
SDS011 Low-Cost Sensor (2023) dryer align with reference monitors. interference.
(Nothhelfer et al., 2023)
Effect of Relative Humidity on the Comparative RH Relative Humidity | All sensors show overresponse Established inter-sensor
Performance of Five Cost-Effective sensitivity of above 70% RH; degree varies by variability and the need for
PM Sensors (2021) (P. Wang et al., multiple sensors sensor type. RH-dependent correction.
2021)
Effects of Meteorological Conditions Long-term Temperature, Wind speed and precipitation reduce | Highlighted regional and
on PM2.5 Concentrations in Nagasaki, | observation of Humidity, Wind PM2.5; RH and temperature show seasonal dependence of
Japan (2015) (J. Wang & Ogawa, PM2.5 and Speed, Pressure complex seasonal patterns. meteorological effects.
2015) meteorology
Impact Analysis of Temperature and Impact of T and RH Temperature, Temperature and RH significantly Validated environmental
Humidity Condition on on gas and PM Humidity alter baseline and sensitivity; correction across multiple
Electrochemical Sensor Response in Sensors compensation models improve sensor types.

Ambient Air (2018) (Wei et al., 2018)

stability.
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II. MATERIAL AND METHODS
2.1 Sensor Particulate Matter Low-Cost vs Reference BAM

In this study, two types of particulate matter (PM) measurement instruments were utilized: the low-cost optical sensor
Winsen ZHO3A and the reference-grade Beta Attenuation Monitor (BAM 1022, Met One Instruments Inc.). The Winsen
ZHO3A operates based on the principle of laser light scattering, where airborne particles passing through a laser beam cause
scattering proportional to their size and concentration (Dong et al., 2025). This compact sensor is widely used in low-cost air
quality monitoring networks due to its affordability (approximately USD 16), portability, and digital output compatibility with
microcontrollers. It measures particles as small as 0.3 um within a concentration range of 0—1000 ug m3, operates at 5 V DC
with less than 120 mA current draw, and performs reliably within ambient conditions of —10 °C to +50 °C and 0-85 % relative
humidity (Hapidin et al., 2019). However, because it relies on optical scattering, its readings are highly sensitive to
environmental factors such as humidity, which can cause hygroscopic growth of particles and lead to signal overestimation

under high RH conditions (Mahajan & Helbing, 2025; Zender-Swiercz et al., 2024).

In contrast, the BAM 1022 functions as a federal equivalent method (FEM) instrument that measures particulate
concentration using the beta-ray attenuation principle, providing traceable and reference-grade data (Shukla & Aggarwal,
2022). The device draws a continuous airflow through a filter tape, where particles are collected and subsequently irradiated
by a beta source. The degree of beta-particle attenuation is proportional to the mass of particles on the filter, yielding precise
and humidity-compensated PM measurements. The BAM 1022 can measure particulate concentrations over a broad range (-
15 to 10 000 pg m™ for PMa.s), with integrated temperature control to mitigate moisture effects and maintain stability in
diverse environmental conditions. Unlike low-cost sensors, BAM instruments require regular maintenance and calibration but

provide high-accuracy, regulatory-compliant data for air quality assessments.

Figure 1 presents a side-by-side comparison between the reference-grade particulate matter sampler BAM 1022 and the
Low-Cost Sensor (LCS) AQMS used in this study. The comparison highlights differences in physical design, airflow

mechanisms, and environmental shielding for temperature and humidity measurements.

The BAM 1022 (Figure 1(a)) is a U.S. EPA-approved Federal Equivalent Method (FEM) instrument for continuous PM, 5
and PM,; ymonitoring. It operates based on the beta attenuation principle, in which air is drawn through a filter tape and the
particle mass is quantified by measuring the attenuation of beta radiation. The BAM unit has a vertical configuration with a
total height of approximately 139.7 cm, a footprint width of 55.9 cm, and a depth of 45.1 cm. The core components include
the PM inlet head, virtual impactor/size-selective cyclone (VSCC), condensation jar, nozzle block, beta source, and the
automatic filter tape transport mechanism. Figure 1(b) illustrates the internal airflow mechanism of BAM. Ambient air enters
through the PM inlet, passes through size-selective separation (e.g., VSCC for PM, 5), and is then drawn across the filter tape
by an internal pump. After measurement, the processed air exits through an outlet pathway. This controlled, isokinetic airflow

ensures accurate mass concentration measurement under varying environmental conditions. The BAM uses an external multi-
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plate radiation shield (Figure 1(c)) to house the temperature and relative humidity sensors. The shield minimizes solar heating

effects, ensuring that the environmental parameters used for RH correction and QC checks remain accurate.

The LCS AQMS system (Figure 1(d)) is a compact, solar-powered air quality monitoring unit integrating low-cost
particulate matter sensors. This system is designed for high-density networks with significantly lower deployment costs than
reference instruments. The LCS enclosure has a height of 45 cm, a width of 29 cm, and a depth of 27 cm, making it
considerably more compact than the BAM. The system includes a microcontroller, PM sensor module, gas sensors, lithium
battery, and charge controller. A solar panel is mounted externally for autonomous outdoor operation. Figure 1(e) shows the
airflow pathway inside the LCS. Ambient air enters through a dedicated air inlet channel, passes across the optical particulate
matter sensor and exits via a designated outlet. The airflow relies on natural convection or a micro-fan, depending on the
design, allowing continuous sensing with minimal power consumption. As with BAM, the LCS includes a radiation shield
(Figure 1(f)) to protect temperature and humidity sensors from direct solar radiation. The shield consists of stacked plates that
allow adequate airflow while minimizing thermal bias, ensuring accurate compensation of LCS PM signals for environmental

effects.

Table 2 summarizes the technical specifications of the low-cost PM..s sensors used in this study (GP2Y, ZHO03, and
SDSO011) and compares them with the U.S. EPA Federal Equivalent Method (FEM) reference instrument BAM 1022. The
comparison highlights key differences in detection principles, measurement capability, operational limits, and practical
considerations relevant to field deployment and calibration. The three LCS devices rely on optical light-scattering, either using
IR-LED (GP2Y) or laser diodes (ZH03 and SDS011). Laser-based sensors generally provide higher sensitivity and lower
minimum detectable particle size (~0.3 pm). In contrast, the BAM 1022 utilizes beta attenuation, a reference-grade
gravimetric surrogate method that measures the mass collected on a filter tape by detecting attenuation of beta radiation.

Unlike optical sensors, the BAM does not specify a minimum optical particle size threshold because it directly measures mass.

The concentration range and detection capability of low-cost PM sensors (LCSs) are notably limited compared to reference
instruments, with ZHO3 operating between 0—1,000 ug m and SDS011 between 0.0-999.9 ug m3, while the GP2Y does not
output concentration values and provides only proportional analog signals. In contrast, the BAM 1022 offers a substantially
wider dynamic range (—15 to 10,000 ug m™3), enabling accurate mass quantification under both clean-air and high-pollution
conditions. From an electrical and operational standpoint, LCS devices function at low voltage (5 = 0.1 V) and low current,
making them compatible with battery-powered and IoT-based monitoring systems, whereas the BAM requires a higher AC
power supply (100-240 VAC), limiting its use to stationary installations. Their environmental operating limits also differ, as
LCSs support broader temperature ranges (—10 to 50°C) with humidity tolerance up to 70—85%, while the BAM operates
within 30 to 50°C but accommodates higher humidity up to 90% RH under non-condensing conditions within its regulated
measurement chamber. In terms of signal output, the GP2Y relies solely on analog voltage, whereas ZH03 and SDSO011 use
digital communication for improved stability; the BAM provides optically isolated analog outputs (0-1, 0-2.5, 0-5 VDC)

coupled with high-resolution internal logging. Physical size, lifetime, and cost further differentiate these devices: LCSs are

5
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compact (46—71 mm wide and 17—73 mm high), with lifetimes ranging from ~3 years (ZH03) to ~8,000 hours for SDS011,

while the BAM is a large cabinet-style instrument (559 x 457 x 1397 mm) with filter-tape—dependent operational lifetimes

exceeding 2.6 years at low sampling frequency. Cost differences are substantial, with LCSs priced between ~$8 and ~$25.9,

compared to the BAM’s cost of approximately $5,500, underscoring the practicality of LCS units for dense monitoring

networks and community-scale deployments, while the BAM remains reserved for regulatory-grade air quality monitoring.
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Figure 1: Comparison (a) reference sensor BAM 1022 device with (b) inlet and outlet air mechanism in BAM, and (c) radiation
shield temperature and humidity measurement of BAM, vs (d) Low-Cost Sensor (LCS) AQMS with (e) inlet and outlet air
mechanism in LCS AQMS, and (f) radiation shield temperature and humidity of LCS AQMS.

Tabel 2. Low-cost sensor PM2.5 vs reference sensor BAM 1022 specification

Abbreviation GP2Y ZHO03 (Winsen, | SDSO BAM (Instruments, 2018)
2016)

Model Sharp GP2Y1010-AUOF | Winsen ZHO3A | Novafitmess SDS | Met One Instruments BAM 1022

Light source IR-LED Laser Laser Beta attenuation (beta-ray attenuation across
filter tape)

Minimum particle size (um) N/A 0.3 0.3 not typically specified as optical threshold for
BAM

Concentration range (ugm=2) N/A 0 to 1000 0-999.9 -15 to 10.000

Rated voltage (V) 5405 5+0.1 4.7-5.3 100-240 VAC 50/60 Hz universal input; 12
VDC, 8.5A.

Rated current (mA) <20 <120 70+ 10 -

Dimension WxHxD (mm?) 46x30x 17.6 50x324x21 71x70x 23 559 x 457 x 1397

Operating temperature (°C) -10 to +65 -10to +50 -20 to +50 -30 to +50

Operating humidity (%) N/A 0 to 85 0-70 0 to 90, non-condensing.

Output signal Analog Digital Digital Analog output: Two channels; optically
isolated; 0-1, 0-2.5, 0-5 VDC.

Lifetime N/A 3 years 8000 hours NA (Data logger memory 2.6 years @ 1
record/hr.; 15.6 days @ 1 record/min)

Cost (USD) ~$8 ~$16 ~$25.90 ~$ 5.500 (online platform) (not publicly

disclosed)
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2.2 Architecture System LCS AQMS vs BAM AQMS

The low-cost air quality monitoring unit developed in this study, referred to as the AQUHIs system (Prayoga et al., 2025),
was designed to provide autonomous and reliable measurement of particulate matter (PMa2.s) alongside meteorological
parameters such as temperature and relative humidity. Figure 2 compares the overall system architectures of the Low-Cost
Sensor Air Quality Monitoring System (LCS AQMS) and the reference-grade BAM 1022. The diagrams illustrate the
differences in power supply, sensing modules, air-handling mechanisms, signal acquisition, and data-processing pathways

between the two types of monitoring systems.

Figure 2(a) shows a compact and energy-efficient architecture built around an ESP32 microcontroller, which integrates
wireless communication modules (Wi-Fi, GPRS, LoRaWAN) and interfaces with multiple sensors through ADC, I>C, SPI,
and TWI communication buses. The system draws power from a 10 W photovoltaic panel, regulated through MPPT and BMS
circuits, and stored in a rechargeable lithium battery, enabling autonomous operation in outdoor environments. The particulate
matter sensor (Winsen ZHO03) samples air via a simple inlet and micro-pump pathway, while temperature and humidity are
measured using an SHT31 waterproof sensor housed in a radiation shield. A voltage regulation module ensures stable power
delivery to the sensors and microcontrollers. The data acquisition pathway is digital, enabling real-time storage (MicroSD),
processing, and wireless transmission. Electrical supply, data flow, and air flow pathways are highlighted to show the tightly

integrated, low-power design suitable for distributed sensor networks.

Figure 2(b) depicts the more complex architecture of the BAM 1022, which relies on precision hardware components and
regulated environmental control to achieve reference-grade measurements. The system is powered by an external 100-230
VAC power supply unit, reflecting its stationary installation requirements. Air is drawn through a mass-flow—controlled inlet,
passing through a size-selective PMa.s/PMio cyclone and then through a glass-fiber filter tape that advances hourly. A vacuum
pump and flow controller maintain strict volumetric flow conditions, while an inlet heater and in-situ temperature control
minimize humidity-induced measurement errors. Core measurement is achieved through a beta attenuation subsystem, where a
Carbon-14 beta source irradiates the filter tape, and a beta detector quantifies particle mass accumulation using continuous
attenuation readings. Environmental parameters are monitored by integrated temperature, humidity, and pressure sensors. A
high-resolution MCU controller with multi-channel ADC (16-24 bit) processes beta pulses, regulates the tape stepper motor,
and stores data locally on SD/flash memory. Communication interfaces include UART, USB, and wireless modems (Wi-

Fi/4G/LoRaWAN/NB-IoT).

Figure 3 illustrates the end-to-end data processing pipelines for the Low-Cost Sensor Air Quality Monitoring System
(LCS AQMS) and the reference BAM 1022. The comparison highlights fundamental differences in data acquisition,
preprocessing, validation, communication pathways, and backend integration between low-cost optical sensing systems and

regulatory-grade beta attenuation monitors.
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Figure 3(a) shows that the LCS AQMS begins its data pipeline at the air sampling stage, where PM..s/PMio, temperature,
and humidity are recorded by the sensing layer. Raw optical scattering signals are converted into particulate matter values,
followed by onboard preprocessing such as smoothing, averaging, and timestamping. The processed data are then assembled
into compact transmission packets (< 250 bytes) and subjected to reliability checks including RSSI, SNR, and survival rate
evaluation.

The system dynamically selects a communication pathway depending on network availability. If a GPRS network is
accessible, the device transmits data through a GPRS module to the gateway server; otherwise, the system switches to
LoRaWAN transmission (SF10, BW125 kHz, 14 dBm) through the nearest LoRa gateway. Regardless of the chosen
network, data are ultimately delivered to a cloud server database and API, where they are archived, visualized, and analyzed
on dashboards or analytics platforms. This lightweight, adaptive data flow is optimized for intermittent connectivity, low-
power operation, and integration into distributed sensing networks.

Figure 3(b) illustrates the more complex and controlled data pipeline of the BAM 1022. Air is drawn through the inlet
and deposited onto a filter tape, where mass accumulation is quantified via the beta attenuation measurement process.
Signals from the beta detector are converted into raw PM mass readings and then undergo the same preprocessing steps
smoothing, averaging, and timestamping as seen in the LCS pipeline. The BAM continuously validates its measurements by
performing internal diagnostic checks; if anomalies or errors are detected, data are flagged and maintenance alerts are logged

and transmitted.
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Figure 2. The overall architecture of the system (a) LCS AQMS vs (b) Reference BAM 1022

After data validation, measurements are formatted into structured outputs (JSON, CSV, Modbus), followed by application of
security and protection protocols such as TLS encryption or token-based authentication. The BAM supports multiple

communication interfaces, including Wi-Fi, 3G/4G/NB-IoT, and other LPWA options, enabling transmission to backend
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servers. If network outages occur, the BAM stores data locally with ACK & retry mechanisms to ensure no data are lost.

Telemetry and maintenance logs are also transmitted to support long-term reliability and regulatory compliance.
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Figure 3. Data flow of (a) LCS AQMS vs (b) Reference BAM

protection

medium

2.3 Co-location Setup and Data Collection

The overall co-location and data collection method shown in Figure 4. The overall workflow for the co-location
experiment and data collection process was used to evaluate the performance of the LCS AQMS against the reference Beta
Attenuation Mass (BAM) monitor. The methodology consists of three main stages: (1) system deployment and network
registration, (2) co-location with a regulatory-grade reference instrument, and (3) acquisition, preprocessing, and statistical

analysis of the sensor data.

In the first stage (Figure 4, Step 1), the LCS AQMS device is designed, assembled, and installed at the monitoring site.
Each LCS unit is registered on the communication network either LoORaWAN or GPRS, depending on signal availability.
Once active, the device transmits measurement packets (including PM..s, temperature, humidity, VOC, and battery voltage) at
intervals of 15-20 minutes. The packets travel through nearby LoRa/GPRS gateways and are forwarded to the IoT platform.

Raw sensor data are then stored in the AQMS cloud database, forming the primary dataset for preprocessing.

Figure 4, Step 2 illustrates the co-location setup in which the LCS AQMS is placed in close proximity to a BAM reference
station to ensure that both systems measure the same ambient air conditions. This side-by-side configuration enables direct
comparison and calibration between the LCS and the reference instrument. The LCS transmits data every few minutes, while
the BAM generates validated measurements on an hourly cycle, based on beta attenuation across the filter tape. Both data

streams are stored in their respective databases and periodically synchronized to ensure temporal alignment during analysis.
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In the final stage (Figure 4, Step 3), data from both the LCS and BAM databases undergo a unified data preprocessing
pipeline. This includes timestamp matching, averaging, smoothing, outlier removal, and integrity checks. After preprocessing,
paired datasets from both systems are used in the statistical analysis module, where variables such as PM..s concentration,
temperature, humidity are compared. Time-series plots and statistical metrics (e.g., RMSE, bias, correlation) are generated to

quantify differences and evaluate sensor performance under real environmental conditions.

The LCS AQMS instruments positioned approximately 2 meters above ground level to ensure they sampled the same
ambient air and shared identical meteorological exposure. The AQUHIs unit was mounted on a rigid aluminum frame, and all
measurements were synchronized using timestamps from its integrated Real-Time Clock (RTC). Prior to analysis, the datasets
were preprocessed through unit conversion, timestamp alignment, outlier removal, and temporal averaging to match the
BAM'’s hourly measurement resolution, enabling direct comparison between the two systems. The co-location campaign
spanned multiple days and captured a wide range of temperature and humidity conditions that could influence sensor
responses, and the resulting harmonized dataset provided the basis for statistical and regression analyses aimed at quantifying

environmental effects and evaluating the agreement between the low-cost sensor and the reference BAM measurements.
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2.4 Data Preprocessing and calibration models

Figure 5 illustrates the workflow used to develop, train, and evaluate calibration functions for improving the accuracy of
the low-cost particulate matter sensor. The process comprises three main stages: data preprocessing, regression modeling, and

independent validation using subsequent co-location datasets.

In the first stage, the raw data collected from both the AQUHIs system and the BAM 1022 reference instrument underwent
a structured preprocessing workflow prior to statistical analysis. All measurements transmitted from the AQUHISs units via the
GPRS/LoRaWAN network were first aggregated and archived within the AQMS database. The dataset was then inspected to
identify and remove incomplete or corrupted records arising from packet loss, sensor start-up instability, or power

interruptions.

Following this initial screening, outliers were identified and removed to ensure consistency between the two monitoring
systems. Outlier detection employed a Z-score—based approach (DeVore, 2017) in which both independent and dependent

variables were standardised according to Eq. (1):

z="k (1)

where X is the measured value, pis the mean, and ois the standard deviation. Data points exceeding | Z |> 3 were classified as
potential outliers and excluded from subsequent modelling. Although the raw dataset did not contain severe anomalies such as
negative readings or flatlines, several isolated concentration spikes were observed. While these may reflect true short-term
pollution events, their rarity can bias regression estimates; therefore, they were flagged and removed during the cleaning
process. For variables with different physical units (e.g., temperature, humidity, particulate concentration), Z-score

normalisation was applied to ensure a standardised scale for model fitting.

To enable direct comparison with the BAM 1022 reference instrument, AQUHIs data, originally transmitted at 15-20
minute intervals were resampled to hourly averages. Time alignment between the two datasets was achieved through
timestamp matching using each device’s Real-Time Clock (RTC), ensuring that paired observations reflected identical
atmospheric conditions. Hourly averaging also mitigates small spatiotemporal discrepancies that may arise even under close

colocation.

In the second stage, the calibration of low-cost PM..s sensors is a critical step for improving data reliability, particularly
when such sensors are deployed alongside reference-grade instruments such as BAM. In this work, we implemented and
evaluated several calibration approaches, ranging from traditional statistical techniques to contemporary machine-learning
models. Each method addresses different types of sensor errors offset bias, scale distortion, temporal drift, and nonlinear

sensitivity to environmental factors (e.g., temperature and humidity).
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The uncalibrated output represents the raw measurement produced by the low-cost sensor without any correction. This

275 serves as the baseline against which all calibrated models are compared. Raw PM..s readings typically exhibit several types of
errors, including systematic bias, nonlinear response across concentration ranges, sensitivity to relative humidity, and temporal
instability. Although uncalibrated data can capture general pollution trends, the magnitude of error relative to reference

instruments is often substantial, making calibration essential for quantitative applications.

The first calibration approach applies a linear affine correction to remove systematic offset and scale errors (Aix et al.,
280 2023). A simple linear regression is fitted between the raw low-cost sensor reading PM,,,, and the reference measurement

PMref

PMref =a+ ,BPMraw' (2)
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285  Figure 5. Flow chart of developing and evaluating calibration functions
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From this model, a corrected sensor signal (sensor_corr) is derived through an offset—scale adjustment:

PM;orr = B(PMyyy, — @), a5 = _%

3

In this formulation, a, represents the estimated sensor offset (i.e., the raw reading at which the reference concentration is
predicted to be zero), while £ adjusts the sensitivity of the sensor. This transformation forces the corrected signal to have a
unity slope with respect to the reference, thereby removing consistent additive and multiplicative biases. Linear calibration is
computationally efficient, interpretable, and provides substantial improvement when sensor errors are predominantly linear;

however, it cannot capture nonlinear dynamics or complex environmental influences.

To address nonlinear relationships, ensemble learning methods were employed. Random Forest (RF) constructs an
ensemble of decision trees and aggregates their predictions to model nonlinear interactions (Ma et al., 2025) between the
sensor output and environmental variables such as temperature, humidity, diurnal cycle, and the linearly corrected signal
PM,,,,. Because RF is non-parametric and robust to noisy data, it effectively captures complex yet stable patterns in sensor
behaviour. However, tree-based methods partition the feature space rather than learning smooth functions, which can limit

performance when extrapolating beyond the training range.

In addition to RF, Gradient Boosting (GB) was employed to further enhance the model’s ability to capture subtle,
structured error patterns (Si et al., 2020). Unlike RF, which builds trees independently and aggregates their outputs, Gradient
Boosting constructs trees sequentially, where each new tree is trained to correct the residual errors of the previous ensemble.
This boosting strategy allows GB to approximate complex nonlinear relationships with greater precision, particularly in
scenarios where sensor errors exhibit compound interactions. For example, when the influence of humidity varies across
different PM2.s concentration ranges or when temporal effects interact with environmental conditions. Gradient Boosting
models are typically more sensitive to fine-scale patterns in the data and can achieve superior predictive accuracy relative to
RF, although they require careful tuning to avoid overfitting. In the context of low-cost PM..s sensor calibration, GB
demonstrated strong capability in capturing nonlinear biases and environmental dependencies, making it a powerful

component of the calibration pipeline.

Support Vector Regression (SVR) offers a kernel-based alternative that models nonlinear relationships through a smooth
functional mapping. SVR uses an e-insensitive loss function to tolerate measurement noise while identifying a regression
function with optimal complexity—accuracy tradeoff. This makes SVR suitable for capturing progressive nonlinear distortions
in sensor response (Mai et al., 2025). SVR can achieve strong performance but requires careful tuning of kernel parameters

(e.g., C, &, and y) and may be computationally expensive for large datasets.
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To further enhance robustness, an Adaptive Calibration Model was developed by blending the physics-based linear
correction and the nonlinear machine-learning prediction (Mahajan & Helbing, 2025). After training a base model (Gradient

Boosting or LightGBM), we compute the blended output as:

PNIblend =w- PNlcorr + (1 - (‘)) : Pl\/Imodel (4)

here PM,,,4e 1S the machine-learning prediction and w € [0,1] is the blending coefficient. A grid search over w is performed
using a separate validation set to minimize the mean absolute error (MAE). This procedure prevents overreliance on either the
linear correction (which may be too rigid) or the machine-learning prediction (which may be unstable in noisy or data-sparse
regions). The adaptive approach consistently achieved the best overall performance, balancing accuracy, stability, and

resilience against environmental variability.

In the third stage, model development followed a principled strategy that prioritized interpretability while aiming to meet
the U.S. EPA performance criterion of R? > 0.7. The analysis progressed from simple univariate linear regression to
multivariable regression and, where necessary, to nonlinear machine-learning models. After calibration, statistical analyses
evaluated the agreement between the low-cost ZHO03 sensor and the BAM reference across different environmental regimes.
Performance metrics including the coefficient of determination (R?), root mean square error (RMSE), mean absolute error
(MAE), and mean bias error (MBE), quantified both accuracy and systematic deviation. Additional correlation analysis

assessed the influence of temperature and relative humidity on sensor performance.

Results were further interpreted through visual diagnostic tools such as scatter plots, time-series overlays, Bland—Altman
plots, and residual distributions, which helped elucidate temporal behaviour and environmental dependencies. All analyses
were conducted using Python 3.11 and MATLAB R2023a, leveraging scientific libraries such as NumPy, Pandas, and
Matplotlib. This integrated analytical framework captured both the temporal and environmental characteristics of the ZH03
sensor, providing a robust foundation for calibration model development and subsequent environmental compensation

modeling.

III. RESULT DISCUSSION
3.1 Data raw LCS ZH03 and Reference BAM

Table 3 presents the raw data distribution of PM2.s measurements recorded by the low-cost sensor (LCS ZHO03) and the
reference BAM 1022 across varying humidity and temperature ranges during the co-location campaign. The statistical
summary includes the first and third quartiles (Q1 and Q3), minimum, median, and maximum concentrations, allowing an

initial evaluation of the agreement and divergence between the two instruments before calibration.
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Overall, the BAM reference measurements exhibit more constrained variability across environmental conditions, reflecting
the stability of the beta-attenuation method. In contrast, the LCS ZHO03 displays a broader dynamic range in the upper
quantiles, particularly under elevated humidity levels. For instance, within the 85-95% RH range, the LCS recorded maximum
PM..s values up to 209.2 pg/m?, nearly double the BAM maximum of 122.2 pg/m?. This pattern is consistent with known
limitations of optical particle counters, where hygroscopic particle growth and humidity-driven scattering lead to

overestimation of particulate concentrations at high relative humidity.

At moderate humidity levels (55-75%), both instruments show more comparable medians—e.g., at 65-75% RH, the BAM
median is 37.2 pg/m3, whereas the LCS median slightly overestimates at 47.9 pg/m3. This indicates that the LCS retains
reasonable sensitivity and linearity under mid-range conditions but deviates more substantially as humidity approaches
saturation. Temperature stratification exhibits a similar trend. At lower temperature ranges (22-25°C), both instruments
demonstrate lower variability and closer agreement, with BAM and LCS medians of 28.4 pg/m? and 39.9 ng/m3, respectively.
However, at temperatures above 31°C, the LCS again shows greater spread, with maximum values nearly doubling the BAM
readings. This reflects the temperature sensitivity of the ZHO03’s laser scattering chamber, which can influence signal

amplitude and particle count processing.

Collectively, the distribution patterns in Table 3 confirm two essential characteristics. First, BAM produces stable and less
environmentally sensitive measurements, serving as a consistent reference across all conditions. Second, LCS ZHO03 is highly
influenced by humidity and, to a lesser extent, temperature, resulting in higher measurement dispersion and systematic
overestimation during unfavorable conditions. These findings reinforce the necessity of applying environmental compensation
and calibration models to adjust LCS readings prior to interpretation. The raw data behavior observed here forms the empirical

foundation for the regression-based correction functions developed in the subsequent stages of this research.

Tabel 3. Data Raw distribution of LCS ZH03 and Reference BAM 1022

Environemnt Value (HR in % PM2.5 BAM reference PM2.5 LCS reference

variable and Temp in C) Ql Q3 Min Median | Max Ql Q3 Min Median | Max
3545 28.6 343 27.8 33.7 39.8 31.2 41 242 33.2 56.2
45-55 315 47.8 17.9 37.7 76.2 29 49.8 11.5 40 102

Humidity rate (%) 55-65 294 51.9 10.1 40 94.6 27 59.5 4.8 42.7 137.8
65-75 27.8 46.8 11.8 37.2 1369 | 31.8 68.6 5.2 479 209.2
75-85 29.9 61.5 10.7 443 1224 | 429 100.5 | 0.8 68.8 250
85-95 29.2 55.7 3.6 45.2 1222 | 324 90.1 0.5 60.8 162.5
22-25 17.9 453 3.6 28.4 83 214 71.6 27 399 1272
25-28 33.1 62 8.2 46.4 1369 | 455 1005 | 0.5 71.2 250

Temperature (C) 28-31 26.5 453 11.8 35.6 108.6 | 28.1 66.1 0.8 442 179.5
31-34 31.8 52 10.1 40.3 99.6 30 58.8 4.8 44 137.8
34-37 27.2 50.7 21.8 35.1 77.3 29 45.1 132 35.5 104.2
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Figure 6 compares the raw PM..s data from the low-cost sensor (LCS ZHO03) and the reference BAM 1022 during the June—
August 2025 co-location period. The daily boxplots in Figure 6(a) show that the ZHO03 consistently reports higher PMo.s
values than the BAM, with larger medians, wider spreads, and more outliers, particularly on humid or highly variable days.
This pattern reflects the sensitivity of optical sensors to humidity-driven particle growth and enhanced light scattering. In
contrast, the BAM exhibits more stable and constrained distributions. The hourly time-series in Figure 6(b) demonstrates that
both instruments track similar temporal patterns, but the ZH03 displays amplified peaks, often reaching 150-250 pg/m?.

Figure 6 indicates strong temporal agreement but systematic overestimation and higher variability in the ZH03 raw

measurements.
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Figure 6. Time series data raw comparison of PM2.5 between LCS and BAM
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Figure 7 presents detailed time-series comparisons of raw PMa.s measurements from the low-cost ZH03 sensor and the
BAM 1022 reference instrument, alongside ambient temperature and relative humidity for selected days during the co-location
campaign. These four representative days illustrate different atmospheric scenarios, such as high pollution events, extreme

humidity conditions, and large humidity variability, to show how environmental factors influence the raw readings of the LCS.

Figure 7(a) illustrates the day with the highest LCS PMo..s peak, reaching values above 250 pg/m3. During the early
morning hours (07-12 UTC+7), humidity exceeded 80%, coinciding with the rapid escalation in PMa.s reported by the ZHO03.
In contrast, the BAM measurement rose more gradually and peaked significantly lower, indicating that the LCS over-response
was not driven solely by real aerosol loading but was also amplified by humidity-induced particle scattering. As humidity
decreased after noon, the LCS signal dropped sharply, aligning more closely with the BAM values. This pattern highlights the

strong dependency of optical sensors on rapidly changing microclimatic conditions.

Figure 7(b) shows another high-PM day where the ZHO03 again exhibited elevated readings relative to the BAM,
particularly during the early morning hours when humidity increased steadily above 85%. Although both devices captured the
same peak time window, the LCS consistently overestimated by 40—-60 pg/m*. The temperature remained relatively stable
throughout the day, reinforcing the interpretation that humidity, rather than temperature, was the primary driver of the

divergence.

In contrast, Figure 7(c) presents a day with the highest recorded humidity levels (>90%). Under these conditions, the
mismatch between the two sensors becomes even more pronounced. The LCS signal fluctuated widely and produced several
high peaks not observed in the BAM dataset. The optical chamber of the ZHO03 is particularly susceptible to hygroscopic
growth of fine particles and microdroplet formation, both of which enhance light scattering and produce artificial inflation of
the PMa2.s values. Despite temperature remaining stable around 29-31°C, the humidity-driven anomalies dominated the LCS

behavior.

Lastly, Figure 7(d) represents the day with the largest humidity range (max—min = 43.5%). This strong variability caused
rapid shifts in the LCS measurement profile, with PM2.s spikes occurring in parallel with humidity increases. The BAM signal
remained stable and unaffected by these fluctuations. This subplot clearly illustrates the sensitivity of LCS optical detection to

humidity dynamics rather than to actual changes in particulate loading.

Overall, Figure 7 demonstrates that while the LCS ZHO03 can capture temporal patterns similar to the BAM, its raw PMa.s
readings are strongly influenced by humidity magnitude and variability. These findings reinforce the critical need for

environmental compensation and calibration models to correct the sensor’s overresponse under humid conditions.
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(a) PM2.5, Humidity, and Temperature — 12 July 2025 (b) PM2.5, Humidity, and Temperature — 15 July 2025
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Figure 7. Data raw of PM2.5 LCS, PM2.5 Reference, Ambient air temperature, and ambient air humidity rate (a) and (b) plot as
highest PM2.5 LCS value and (c) plot as highest humidity rate above 90% along measurement period and (d) plot as highest
humidity rate range (max-min=43.5)

3.2 Raw data Precission between LCS and reference sensor

Figure 8 presents the precision analysis between the low-cost sensor (LCS ZHO03) and the reference BAM 1022 based on
hourly raw PM..s measurements. The figure includes (a) a linear regression comparison and (b) a Bland—Altman analysis,
providing a comprehensive assessment of agreement, proportional bias, and measurement variability prior to calibration.

The scatter plot in Figure 8(a) displays the relationship between LCS ZH03 and BAM PM..s concentrations along with
the best-fit regression line, y = 0.44x + 16.57. The slope less than 1 indicates that the LCS overestimates PM..s at low -to-
moderate concentrations but underestimates relative to the BAM at higher values. This nonlinear behavior reflects the
combined influence of humidity-driven optical scattering and sensor saturation at elevated PM levels. The coefficient of
determination R = 0.676 demonstrates moderate correlation, showing that the LCS captures major temporal trends but with
limited precision. Error metrics reinforce this: RMSE = 18.01 pg/m?, MAE = 8.01 ug/m?, and MBE = 0 indicate substantial
spread but minimal overall bias when averaged across the dataset. The relatively high dispersion around the regression line
highlights the need for calibration to correct environmental sensitivity and improve predictive accuracy.

The Bland—Altman plot in Figure 8(b) evaluates the measurement differences (LCS — BAM) against their average. The
mean bias is +17.24 pg/m?, confirming that the LCS systematically overestimates PMa.s relative to the BAM. The limits of
agreement (LoA), ranging from —27.30 to +61.77 ug/m?, indicate wide variability and substantial disagreement at the
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individual-measurement level. The upward trend in differences with increasing concentration suggests proportional bias,
where overestimation becomes more pronounced under higher pollution levels or elevated humidity conditions. Most data
points fall within the LoA range, but the spread increases at higher means, characteristic of optical sensor response
amplification during periods of high particle scattering efficiency or hygroscopic aerosol growth. This aligns with earlier
findings showing humidity as a major driver of LCS signal inflation.

Together, the regression and Bland—Altman analyses confirm that while the LCS ZHO03 follows the general PMo2.s trend
measured by the BAM, it exhibits systematic overestimation, high variability, and proportional bias in its raw form. These
results support the necessity of applying calibration models to correct the sensor's environmental sensitivity and improve

reliability for quantitative air-quality monitoring.

(a) Comparison: PM2.5 LCS vs Reference BAM (Hourly Data) (b) Precission between LCS and Reference BAM
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Figure 8. Data raw PM2.5 LCS vs BAM Precision analysis with linear regression

3.3 Particulate matter correlation to environment variable

Figure 9 presents a correlation analysis between PMz.s concentrations and key environmental variables (temperature and
relative humidity) using both linear regression and Pearson’s correlation coefficients. The results provide insight into how
environmental conditions influence raw PM:.s measurements from the low-cost sensor (LCS ZHO03) and the reference BAM
1022.

The scatter plot in Figure 9(a) shows a weak positive relationship between BAM PMo..s and relative humidity, with an
extremely low coefficient of determination (R? = 0.007). This indicates that humidity has minimal impact on the reference

measurements, highlighting the robustness of the BAM’s beta attenuation method, which is designed to minimize moisture
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interference. The fitted regression line is nearly flat, emphasizing that changes in humidity do not significantly affect BAM

readings.
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Figure 9. Correlation analysis of PM2.5 with temperature and humidity use linear regression (Lin-Reg) and Pearson correlation
(a) Lin-Reg PM2.5 BAM reference with humidity, (b) Lin-Reg PM2.5 BAM reference with temperature, (c) Lin-Reg PM2.5 LCS
with humidity, (d) Lin-Reg PM2.5 LCS with temperature, and (e) Pearson correlation matrix PM2.5 LCS, PM2.5 BAM Reference,
Humidity, and Temperature.

Similarly, Figure 9(b) demonstrates a negligible relationship between BAM PMa.s and temperature (R? = 0.002). The
slight negative slope suggests a weak inverse trend, but the correlation is statistically insignificant. These results confirm that
the BAM maintains stable performance across typical outdoor temperature fluctuations during the study period.

Figure 9(c) reveals a stronger association between LCS PMo..s readings and humidity, with a higher (but still modest)
coefficient (R? = 0.061). The positive slope indicates that PM..s values reported by the ZHO03 increase with rising humidity.
This aligns with known limitations of optical sensors, where hygroscopic particle growth and increased light scattering
contribute to an overestimation of PMa.s under humid conditions.

The relationship between LCS PM..s and temperature shown in Figure 9(d) is also weak, with R? = 0.045, though slightly
stronger than the BAM relationship. The negative slope suggests that higher temperatures may reduce the LCS PMo..s signal,
potentially due to reduced relative humidity or thermal effects on the sensor’s optical chamber. Nevertheless, temperature
remains a secondary factor compared to humidity.

The Pearson correlation matrix in Figure 9(e) summarizes linear associations across all variables. PMz.s from the LCS
strongly correlates with BAM PMz.s (r = 0.82, p < 0.01), reflecting good temporal agreement despite known biases.
However, LCS PMo..s also exhibits moderate positive correlation with humidity (r = 0.27), while BAM PM:.s shows
negligible correlation (r = 0.08). Temperature is weakly and negatively correlated with both PM.s measurements, with the

strongest association observed between temperature and humidity (r = —0.94), confirming their expected inverse

20



475

480

485

490

495

500

505

https://doi.org/10.5194/egusphere-2025-6203
Preprint. Discussion started: 26 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

meteorological relationship. Overall, Figure 9 demonstrates that humidity is a major source of bias in LCS measurements,
whereas BAM readings remain largely unaffected by environmental conditions. These correlations justify the need for

humidity-aware calibration models to enhance LCS data accuracy.

3.4 Calibration models

Figure 10 presents the accuracy improvement of the low-cost PM..s sensor (LCS ZHO03) after applying various calibration
models, using regression plots comparing model-adjusted predictions to the BAM 1022 reference measurements. Six
calibration conditions are shown: uncalibrated raw data and five calibrated models (Linear Regression, Random Forest,
Gradient Boosting, Support Vector Regression (SVR), and an Adaptive-blend ensemble). Each subplot illustrates predicted
versus reference PMz.s on the test dataset along with key statistical indicators (MAE, RMSE, R?).

The uncalibrated LCS shows poor agreement with the reference, characterized by wide scattering around the 1:1 line and
substantial overestimation at higher concentrations. Performance metrics (MAE = 17.40, RMSE = 22.59, R? = —0.970)
confirm low accuracy and negative predictive power, reflecting the strong influence of humidity and nonlinear bias present in
the raw data. Applying a simple Linear Regression model improves performance notably relative to raw data. The scatter
becomes more aligned, and prediction errors decrease (MAE = 8.32, RMSE = 10.77, R? = 0.552). However, the model
remains limited by its inability to capture nonlinear interactions between PM..s, humidity, and temperature, resulting in

moderate residual bias.

The Random Forest model provides a substantial improvement, capturing nonlinear relationships more effectively.
Predictions align closely with the reference values, with significantly reduced error (MAE = 6.21, RMSE = 7.99) and strong
explanatory power (R? = 0.754). The Random Forest handles humidity-driven variability far better than linear methods. Then,
Gradient Boosting performs similarly to Random Forest but with slightly better accuracy (MAE = 5.93, RMSE = 7.76, R? =
0.768). The model produces a tighter clustering around the 1:1 line, suggesting superior capability in addressing complex,
nonlinear error structures inherent in optical PM sensor data. Then, the SVR model also demonstrates strong predictive ability
(MAE = 6.04, RMSE = 791, R? = 0.758). The regression plot shows compact dispersion along the ideal line, indicating that
SVR effectively captures nonlinear patterns. Performance is comparable to Random Forest and slightly below Gradient
Boosting. Lastly, The Adaptive-blend model, an ensemble combining strengths of multiple algorithms—achieves the highest
performance among all models (MAE = 5.85, RMSE = 7.69, R? = 0.771). The regression plot reveals excellent alignment with
the reference, with minimal scatter and low systematic error. The model successfully compensates for humidity effects and

nonlinear LCS deviations.

In Figure 10 demonstrates that calibration substantially enhances the accuracy of low-cost PM2.s measurements. While
simple linear correction provides moderate improvement, nonlinear machine-learning models (particularly Gradient

Boosting, Random Forest, SVR, and the Adaptive-blend ensemble) significantly reduce measurement bias and variability.
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The Adaptive-blend model performs best overall, offering a robust and reliable correction for LCS ZHO03 under varying

environmental conditions.
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Figure 10. Accuracy analysis of LCS after calibrated with various model vs BAM reference (a) regression plot of uncalibrated
LCS, (b) regression plot of linear regression calibrated LCS, (c) regression plot of Random Forest calibrated LCS, (d) regression
plot of Gradient Boosting calibrated LCS, (e) regression plot of Support Vector Regression calibrated LCD, and (f) regression plot
of Adaptive-blend calibrated LCS.

Figure 11 presents Bland—Altman plots comparing the agreement between the low-cost PMa.s sensor (LCS ZH03) and the
BAM 1022 after applying various calibration models. Each subplot evaluates the mean difference (bias), spread of
differences (standard deviation), and percentage of points outside the limits of agreement (LoA), providing insight into
systematic error and precision improvement achieved by each model.

The uncalibrated sensor (Figure 11(a)) exhibits the largest positive bias (+13.52 pg/m®) and substantial scatter (SD =
18.13), with 6.71% of data points falling outside the LoA. The large spread and upward skew indicate significant
overestimation and poor agreement with the reference, consistent with humidity-induced optical scattering effects observed

earlier. Then, Applying Linear Regression (Figure 11(b) reduces the bias to +3.22 pg/m? and narrows variability (SD =
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10.30). The percentage of outliers decreases to 4.9%, reflecting moderate improvement. However, the residual positive bias

indicates that linear correction is insufficient to fully compensate for the nonlinear environmental effects influencing the
525 LCS.
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Figure 11. Bland-Altman Plot for LCS after calibrated with various model vs BAM reference (a) regression plot of uncalibrated
LCS, (b) regression plot of linear regression calibrated LCS, (c) regression plot of Random Forest calibrated LCS, (d) regression

530 plot of Gradient Boosting calibrated LCS, (e) regression plot of Support Vector Regression calibrated LCD, and (f) regression plot
of Adaptive-blend calibrated LCS

The Random Forest (Figure 11(c)) model further reduces systematic error, yielding a bias of +3.23 ng/m* and SD = 7.32,
demonstrating tighter clustering around zero difference. The proportion of points outside the LoA drops to 4.9%, illustrating

535 improved precision and effective handling of nonlinear relationships. Then, Gradient Boosting performs (Figure 11(d))
similarly to Random Forest but with slightly lower spread (SD = 7.12) and reduced bias (+3.10 pg/m?). Only 4.1% of data

fall outside the LoA, indicating strong stability and reliable correction across the full PMa.s range. Then, The SVR model
(Figure 11(e)) produces the lowest bias (+2.28 pg/m?) and relatively small variability (SD = 7.59). However, 5.6% of
measurements lie outside the LoA, showing good but slightly less stable performance compared to ensemble-based models.

540 SVR effectively corrects nonlinear deviations but shows modest sensitivity to extreme values. Lastly, The Adaptive-blend

model (Figure 11(f)) achieves one of the best agreements, with bias +2.84 ug/m?* and SD = 7.16, and 4.9% outside the LoA.
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The tight distribution and minimal systematic deviation indicate that combining multiple algorithms yields robust calibration
performance, balancing bias reduction and variability control.

Figure 11 demonstrates that all calibration models significantly improve agreement between the LCS and BAM
compared to the uncalibrated state. Ensemble-based methods (Gradient Boosting, Random Forest, and the Adaptive-blend)
provide the most consistent performance, achieving low bias, reduced standard deviation, and fewer outliers. These models
effectively correct the nonlinear, humidity-sensitive behavior of the LCS, supporting their suitability for field deployment in
variable environmental conditions.

Figure 12 presents a comparative analysis of the Mean Absolute Error (MAE) achieved by each calibration method,
highlighting the substantial improvement obtained through model-based correction relative to the uncalibrated low-cost
sensor (LCS). The uncalibrated PM..s measurements exhibit the highest MAE at 17.40 pg/m?®, reflecting the significant raw
bias and environmental sensitivity of the ZH03 sensor. Applying a simple Linear Regression model reduces the error to 8.32
pg/m?, demonstrating that even a basic correction strategy substantially enhances accuracy. However, more advanced
machine-learning methods outperform the linear approach. Random Forest and Support Vector Regression yield MAE
values of 6.21 pg/m® and 6.04 pg/m?, respectively, while Gradient Boosting achieves a slightly lower error of 5.93 pg/m?.
The Adaptive-blend model provides the best overall performance, achieving the lowest MAE of 5.85 ng/m?, indicating its
superior ability to capture nonlinear patterns and environmental interactions affecting LCS measurements. In Figure 12
confirms that machine-learning—based calibration models significantly improve the reliability of low-cost PMz.s sensors,

with ensemble and hybrid approaches yielding the most accurate predictions relative to the reference BAM instrument.

MAE (test) per method
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Figure 12. Comparative analysis of calibration methods showing the MAE across different approaches.
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Figure 13 illustrates the time-series comparison of PM2.s measurements from the low-cost sensor (LCS ZH03) before and
after calibration against the BAM 1022 reference instrument, demonstrating the substantial improvement achieved through
model-based correction. The raw LCS signal (red dashed line) shows pronounced overestimation and unstable fluctuations,
particularly during peak pollution periods, where readings exceed 140—160 pg/m? despite the reference remaining closer to
80-100 pg/m?3. After applying calibration models, the corrected outputs align much more closely with the reference time
series, significantly reducing both amplitude bias and short-term variability. All calibrated models (Linear Regression,
Random Forest, Gradient Boosting, Support Vector Regression, and the Adaptive-blend ensemble) successfully track the
diurnal PM2.s pattern, capturing both rising and declining trends with improved fidelity. Among them, ensemble and
nonlinear models show the closest agreement, producing smooth trajectories that closely follow the BAM measurements
across the entire period. This convergence demonstrates that calibration effectively mitigates humidity-induced signal
inflation and nonlinear sensor distortions, enabling the LCS to provide reliable and representative PM..s estimates under real-

world environmental conditions.

Comparison of PM2.5 readings befare and after calibration

Reference

Sensor raw
Sensor corr
Linear Regression
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Gradient Boosting
SVR
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Figure 13. Post calibration time series for LCS compared to the BAM reference

IV. CONCLUSION AND FUTUTRE WORKS

This study systematically evaluated the performance of a low-cost particulate matter sensor (Winsen ZH03) through an
extensive co-location experiment with a reference-grade Beta Attenuation Monitor (BAM 1022) under real outdoor
environmental conditions. The analysis of raw data revealed that although the ZH03 sensor successfully captured temporal
PM..s trends, it exhibited substantial overestimation and increased variability, particularly during periods of elevated humidity.

Environmental correlation analyses confirmed humidity as the dominant driver of measurement bias, whereas temperature
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exerted only a minor influence. These findings underscore the need for robust calibration strategies when deploying low-cost

sensors in ambient air-quality monitoring applications.

A comprehensive calibration framework was developed, incorporating multiple regression approaches (including Linear
Regression, Random Forest, Gradient Boosting, Support Vector Regression, and an Adaptive-blend ensemble) to correct raw
LCS readings. Comparative performance assessment demonstrated that while linear correction reduced baseline bias,
nonlinear machine-learning models provided markedly superior improvements. Ensemble-based models, particularly Gradient
Boosting and the Adaptive-blend approach, consistently delivered the lowest prediction errors (MAE = 5.8-5.9 pg/m?®) and
strongest agreement with the BAM reference, as evidenced by higher R? values and tight Bland—Altman limits of agreement.
These models effectively mitigated humidity-induced signal inflation and nonlinear distortions inherent to optical scattering

SENSors.

Post-calibration time-series comparisons further validated the enhanced performance, showing that calibrated LCS outputs
closely followed BAM measurements across varied pollution episodes and meteorological conditions. The improved
alignment confirms that applying appropriate calibration models transforms low-cost sensors from trend-only indicators into

quantitatively reliable instruments suitable for finer-scale air-quality monitoring.

This research demonstrates that low-cost PM..s sensors (when properly corrected for environmental influences) can serve as
effective complements to regulatory monitoring networks, enabling high-resolution spatial coverage at significantly lower
cost. The proposed calibration methodology provides a practical pathway for improving data quality and supports broader
adoption of low-cost sensing technologies in air-quality applications, particularly in regions with limited monitoring
infrastructure. Future work may extend this framework by incorporating additional pollutants, real-time adaptive calibration,

or physics-informed machine-learning models to further enhance robustness and scalability
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