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Abstract. Accurate particulate matter (PM₂.₅) monitoring using low-cost sensors requires careful consideration of 

meteorological influences and calibration against reference instruments. This study evaluates the performance of a low-cost 

optical sensor through an outdoor co-location experiment with a Beta Attenuation Monitor (BAM 1022). Raw measurements 

showed strong temporal agreement but substantial overestimation, particularly under high relative humidity, which induced 10 

hygroscopic particle growth and amplified light-scattering responses. Correlation and regression analyses confirmed 

humidity as the dominant environmental factor affecting low-cost sensor bias, while temperature exhibited only minor 

influence. To address these limitations, multiple calibration models (including Linear Regression, Random Forest, Gradient 

Boosting, Support Vector Regression, and an Adaptive-blend ensemble) were developed and assessed. Nonlinear and 

ensemble-based models significantly improved accuracy, reducing MAE from 17.40 µg/m³ (uncalibrated) to 5.85 µg/m³ after 15 

calibration. These findings demonstrate the necessity of environmental compensation and model-based correction for reliable 

low-cost PM₂.₅ monitoring and support their integration into high-resolution air quality networks. 
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I. INTORDUCTION 

Air pollution has emerged as one of the most pressing environmental and public health challenges of the 21st century, 

driven by rapid urbanization, industrial expansion, and the escalating impacts of climate change (Edwards et al., 2025; 

Schneider et al., 2020). Among various air pollutants, fine particulate matter, particularly PM₂.₅ and PM₁₀, poses the most 

severe risk to human health and environmental sustainability (Chacón-mateos et al., 2025; Orellano et al., 2020). These 25 

microscopic particles originate from both natural sources, such as dust and biomass burning, and anthropogenic activities, 

including vehicular emissions, industrial combustion, and construction processes (Orellano et al., 2020). Due to their small 

aerodynamic diameter, particulate matter can penetrate deep into the respiratory system and even enter the bloodstream, 

leading to a range of adverse health effects such as respiratory infections, cardiovascular diseases, and increased premature 

mortality (Pouri et al., 2024). Beyond human health, elevated concentrations of particulate matter also contribute to 30 
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atmospheric visibility degradation, alter radiative balance, and influence local and regional climate dynamics, thereby 

underscoring the urgent need for continuous monitoring and comprehensive understanding of PM behavior under varying 

environmental conditions (Orellano et al., 2020; Pouri et al., 2024). 

However, air pollution extends far beyond its health implications; it also exerts profound environmental and ecological 

impacts. Elevated levels of atmospheric pollutants contribute to phenomena such as acid rain, reduced visibility, ecosystem 35 

degradation, and climate alteration through the modification of radiative and cloud-forming processes (Bolan et al., 2024). 

Although these broader environmental consequences are not the primary focus of this study, they reinforce the necessity of 

understanding the mechanisms governing particulate matter dynamics. In particular, environmental parameters such as 

ambient air temperature and relative humidity play a critical role in influencing the formation, transformation, and dispersion 

of PM₂.₅ and PM₁₀ particles (Jayaratne et al., 2018; J. Wang & Ogawa, 2015; Zender-Świercz et al., 2024). Investigating how 40 

these meteorological factors affect particulate matter concentrations is essential for developing more accurate air quality 

models, improving sensor calibration, and formulating effective strategies to safeguard public health and environmental 

quality (Mahajan & Helbing, 2025; Venkata et al., 2024). 

In addition to its health and environmental implications, air pollution imposes substantial economic burdens on society. It 

contributes to decreased agricultural productivity, accelerates the deterioration of infrastructure, and increases public health 45 

expenditures due to pollution-related illnesses (Lanzi et al., 2020). These combined effects translate into significant financial 

losses at both local and national levels, underscoring the broad socio-economic relevance of air quality management. 

Consequently, investigating the influence of meteorological factors on air pollutant behavior is not only of scientific interest 

but also of practical importance. A deeper understanding of how temperature and humidity affect particulate matter 

concentrations can support more effective urban planning, environmental policy development, and adaptive response 50 

strategies to mitigate air pollution in cities and regions worldwide (Galiszewska et al., 2024). 

Numerous studies worldwide have examined the influence of meteorological parameters such as particularly air 

temperature, wind speed, and relative humidity, on the concentration of particulate matter (PM₂.₅ and PM₁₀) (Mahajan & 

Helbing, 2025; P. Wang et al., 2021; Zender-Świercz et al., 2024). These studies consistently highlight that humidity and 

temperature play a critical role in shaping the physical behavior of airborne particles, affecting their size distribution, 55 

hygroscopic growth, and atmospheric residence time. As summarized in Table 1, relative humidity often leads to 

overestimation in optical sensors due to light scattering by water-absorbing particles, while temperature influences both 

particle dispersion and sensor response. Although extensive research has been conducted to characterize these meteorological 

effects, most previous works have focused on ambient PM variability rather than on how these factors specifically influence 

measurement accuracy across different sensor technologies. 60 

The key research gap lies in understanding how temperature and humidity differentially affect low-cost optical particle 

sensors compared with reference-grade instruments such as the Beta Attenuation Monitor (BAM). Low-cost sensors are 
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widely adopted for dense air quality monitoring networks due to their affordability and portability, yet their performance 

under varying environmental conditions remains inconsistent. Differences in sensor design, optical principles, and lack of 

environmental compensation models often lead to deviations from reference measurements, particularly under high humidity 65 

or temperature fluctuations. Therefore, this study aims to systematically analyze and quantify the influence of ambient 

temperature and relative humidity on particulate matter readings obtained from low-cost sensors relative to BAM reference 

instruments. The outcome of this analysis will provide insights necessary for developing more robust calibration and 

environmental compensation frameworks, ultimately improving the reliability of low-cost sensor data for air quality 

assessment and public health applications. 70 

Tabel 1. Summary of the existing literature on the impact of meteorological parameters and air pollution by particulate matter.  

Reference Focus Meteorological 
Parameters 

Findings Impact 

Evaluation and Calibration of a Low-
Cost Particle Sensor in Ambient 
Condition Using ML (2020) (Si et al., 
2020) 

Sensor calibration 
using machine 
learning under 
varying T and RH 

Temperature, 
Relative Humidity 

ML models (e.g., RF, ANN) 
significantly improved PM2.5 
estimates by including RH and T; 
humidity strongly affects scattering 
response. 

Demonstrated need for 
environmental compensation 
in low-cost sensors. 

Improved PM2.5 Concentration 
Estimates from Low-Cost Sensors 
Using Calibration Models Categorized 
by RH (2021) (Hua et al., 2021) 

Categorical 
calibration model by 
RH levels 

Relative Humidity Separate calibration models by RH 
improved accuracy; PM2.5 
overestimation at high RH 
confirmed. 

Introduced RH-based 
segmentation as an effective 
compensation strategy. 

The Effect of Temperature and 
Humidity of Air on the Concentration 
of Particulate Matter (2024) (Zender-
Świercz et al., 2024) 

Correlation study 
between 
meteorological 
variables and PM 

Temperature, 
Humidity 

Temperature negatively correlated 
with PM concentration, humidity 
showed positive correlation 
especially at RH > 70%. 

Revealed nonlinear RH 
influence; emphasized local 
climatic variability. 

The Influence of Humidity on the 
Performance of a Low-Cost Air 
Particle Mass Sensor (2018) (Jayaratne 
et al., 2018) 

Humidity influence 
on sensor readings 

Relative Humidity Sensor readings increase 
exponentially with RH; signal 
distortion due to hygroscopic 
particle growth. 

Quantified humidity artifacts; 
supports RH correction 
necessity. 

Determining the Correlation Between 
PM10 and Meteorological Factors 
(2022) (Kirešová & Guzan, 2022) 

Statistical analysis of 
PM10â€“weather 
relationships 

Temperature, 
Humidity, Wind 
Speed, 
Precipitation, 
Pressure 

Negative correlation with wind 
speed and temperature; positive 
correlation with RH; rainfall reduces 
PM10. 

Validated classical 
meteorological influence 
patterns on PM. 

Diurnal and Daily Variation of PM2.5 
and Its Multiple Wavelet Coherence 
with Meteorological Variables (2024) 
(Cholianawati et al., 2024) 

Wavelet-based 
temporal analysis of 
PM2.5 vs 
meteorological 
factors 

Temperature, 
Humidity, Wind 
Speed, Pressure 

Strong coherence between PM2.5 
and RH at multi-day scales; 
temperature influence varies by 
season. 

Showed complex, scale-
dependent meteorological 
influence using wavelet 
methods. 

Effect of an Aerosol Dryer on 
Ambient PM Measurement with 
SDS011 Low-Cost Sensor (2023) 
(Nothhelfer et al., 2023) 

Mitigating humidity 
effects using aerosol 
dryer 

Relative Humidity Dryer reduces RH-related 
overestimation; calibrated readings 
align with reference monitors. 

Demonstrated practical 
mitigation strategy for RH 
interference. 

Effect of Relative Humidity on the 
Performance of Five Cost-Effective 
PM Sensors (2021) (P. Wang et al., 
2021) 

Comparative RH 
sensitivity of 
multiple sensors 

Relative Humidity All sensors show overresponse 
above 70% RH; degree varies by 
sensor type. 

Established inter-sensor 
variability and the need for 
RH-dependent correction. 

Effects of Meteorological Conditions 
on PM2.5 Concentrations in Nagasaki, 
Japan (2015) (J. Wang & Ogawa, 
2015) 

Long-term 
observation of 
PM2.5 and 
meteorology 

Temperature, 
Humidity, Wind 
Speed, Pressure 

Wind speed and precipitation reduce 
PM2.5; RH and temperature show 
complex seasonal patterns. 

Highlighted regional and 
seasonal dependence of 
meteorological effects. 

Impact Analysis of Temperature and 
Humidity Condition on 
Electrochemical Sensor Response in 
Ambient Air (2018) (Wei et al., 2018) 

Impact of T and RH 
on gas and PM 
sensors 

Temperature, 
Humidity 

Temperature and RH significantly 
alter baseline and sensitivity; 
compensation models improve 
stability. 

Validated environmental 
correction across multiple 
sensor types. 
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II. MATERIAL AND METHODS 

2.1 Sensor Particulate Matter Low-Cost vs Reference BAM 

In this study, two types of particulate matter (PM) measurement instruments were utilized: the low-cost optical sensor 75 

Winsen ZH03A and the reference-grade Beta Attenuation Monitor (BAM 1022, Met One Instruments Inc.). The Winsen 

ZH03A operates based on the principle of laser light scattering, where airborne particles passing through a laser beam cause 

scattering proportional to their size and concentration (Dong et al., 2025). This compact sensor is widely used in low-cost air 

quality monitoring networks due to its affordability (approximately USD 16), portability, and digital output compatibility with 

microcontrollers. It measures particles as small as 0.3 µm within a concentration range of 0–1000 µg m⁻³, operates at 5 V DC 80 

with less than 120 mA current draw, and performs reliably within ambient conditions of –10 °C to +50 °C and 0–85 % relative 

humidity (Hapidin et al., 2019). However, because it relies on optical scattering, its readings are highly sensitive to 

environmental factors such as humidity, which can cause hygroscopic growth of particles and lead to signal overestimation 

under high RH conditions (Mahajan & Helbing, 2025; Zender-Świercz et al., 2024). 

In contrast, the BAM 1022 functions as a federal equivalent method (FEM) instrument that measures particulate 85 

concentration using the beta-ray attenuation principle, providing traceable and reference-grade data (Shukla & Aggarwal, 

2022). The device draws a continuous airflow through a filter tape, where particles are collected and subsequently irradiated 

by a beta source. The degree of beta-particle attenuation is proportional to the mass of particles on the filter, yielding precise 

and humidity-compensated PM measurements. The BAM 1022 can measure particulate concentrations over a broad range (-

15 to 10 000 µg m⁻³ for PM₂.₅), with integrated temperature control to mitigate moisture effects and maintain stability in 90 

diverse environmental conditions. Unlike low-cost sensors, BAM instruments require regular maintenance and calibration but 

provide high-accuracy, regulatory-compliant data for air quality assessments. 

Figure 1 presents a side-by-side comparison between the reference-grade particulate matter sampler BAM 1022 and the 

Low-Cost Sensor (LCS) AQMS used in this study. The comparison highlights differences in physical design, airflow 

mechanisms, and environmental shielding for temperature and humidity measurements.  95 

The BAM 1022 (Figure 1(a)) is a U.S. EPA-approved Federal Equivalent Method (FEM) instrument for continuous 𝑃𝑀2.5 

and 𝑃𝑀10monitoring. It operates based on the beta attenuation principle, in which air is drawn through a filter tape and the 

particle mass is quantified by measuring the attenuation of beta radiation. The BAM unit has a vertical configuration with a 

total height of approximately 139.7 cm, a footprint width of 55.9 cm, and a depth of 45.1 cm. The core components include 

the PM inlet head, virtual impactor/size-selective cyclone (VSCC), condensation jar, nozzle block, beta source, and the 100 

automatic filter tape transport mechanism. Figure 1(b) illustrates the internal airflow mechanism of BAM. Ambient air enters 

through the PM inlet, passes through size-selective separation (e.g., VSCC for 𝑃𝑀2.5), and is then drawn across the filter tape 

by an internal pump. After measurement, the processed air exits through an outlet pathway. This controlled, isokinetic airflow 

ensures accurate mass concentration measurement under varying environmental conditions. The BAM uses an external multi-
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plate radiation shield (Figure 1(c)) to house the temperature and relative humidity sensors. The shield minimizes solar heating 105 

effects, ensuring that the environmental parameters used for RH correction and QC checks remain accurate.  

The LCS AQMS system (Figure 1(d)) is a compact, solar-powered air quality monitoring unit integrating low-cost 

particulate matter sensors. This system is designed for high-density networks with significantly lower deployment costs than 

reference instruments. The LCS enclosure has a height of 45 cm, a width of 29 cm, and a depth of 27 cm, making it 

considerably more compact than the BAM. The system includes a microcontroller, PM sensor module, gas sensors, lithium 110 

battery, and charge controller. A solar panel is mounted externally for autonomous outdoor operation. Figure 1(e) shows the 

airflow pathway inside the LCS. Ambient air enters through a dedicated air inlet channel, passes across the optical particulate 

matter sensor and exits via a designated outlet. The airflow relies on natural convection or a micro-fan, depending on the 

design, allowing continuous sensing with minimal power consumption. As with BAM, the LCS includes a radiation shield 

(Figure 1(f)) to protect temperature and humidity sensors from direct solar radiation. The shield consists of stacked plates that 115 

allow adequate airflow while minimizing thermal bias, ensuring accurate compensation of LCS PM signals for environmental 

effects. 

Table 2 summarizes the technical specifications of the low-cost PM₂.₅ sensors used in this study (GP2Y, ZH03, and 

SDS011) and compares them with the U.S. EPA Federal Equivalent Method (FEM) reference instrument BAM 1022. The 

comparison highlights key differences in detection principles, measurement capability, operational limits, and practical 120 

considerations relevant to field deployment and calibration. The three LCS devices rely on optical light-scattering, either using 

IR-LED (GP2Y) or laser diodes (ZH03 and SDS011). Laser-based sensors generally provide higher sensitivity and lower 

minimum detectable particle size (~0.3 µm). In contrast, the BAM 1022 utilizes beta attenuation, a reference-grade 

gravimetric surrogate method that measures the mass collected on a filter tape by detecting attenuation of beta radiation. 

Unlike optical sensors, the BAM does not specify a minimum optical particle size threshold because it directly measures mass.  125 

The concentration range and detection capability of low-cost PM sensors (LCSs) are notably limited compared to reference 

instruments, with ZH03 operating between 0–1,000 µg m⁻³ and SDS011 between 0.0–999.9 µg m⁻³, while the GP2Y does not 

output concentration values and provides only proportional analog signals. In contrast, the BAM 1022 offers a substantially 

wider dynamic range (−15 to 10,000 µg m⁻³), enabling accurate mass quantification under both clean-air and high-pollution 

conditions. From an electrical and operational standpoint, LCS devices function at low voltage (5 ± 0.1 V) and low current, 130 

making them compatible with battery-powered and IoT-based monitoring systems, whereas the BAM requires a higher AC 

power supply (100–240 VAC), limiting its use to stationary installations. Their environmental operating limits also differ, as 

LCSs support broader temperature ranges (−10 to 50°C) with humidity tolerance up to 70–85%, while the BAM operates 

within 30 to 50°C but accommodates higher humidity up to 90% RH under non-condensing conditions within its regulated 

measurement chamber. In terms of signal output, the GP2Y relies solely on analog voltage, whereas ZH03 and SDS011 use 135 

digital communication for improved stability; the BAM provides optically isolated analog outputs (0–1, 0–2.5, 0–5 VDC) 

coupled with high-resolution internal logging. Physical size, lifetime, and cost further differentiate these devices: LCSs are 
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compact (46–71 mm wide and 17–73 mm high), with lifetimes ranging from ~3 years (ZH03) to ~8,000 hours for SDS011, 

while the BAM is a large cabinet-style instrument (559 × 457 × 1397 mm) with filter-tape–dependent operational lifetimes 

exceeding 2.6 years at low sampling frequency. Cost differences are substantial, with LCSs priced between ~$8 and ~$25.9, 140 

compared to the BAM’s cost of approximately $5,500, underscoring the practicality of LCS units for dense monitoring 

networks and community-scale deployments, while the BAM remains reserved for regulatory-grade air quality monitoring. 

 

 

Figure 1: Comparison (a) reference sensor BAM 1022 device with (b) inlet and outlet air mechanism in BAM, and (c) radiation 145 
shield temperature and humidity measurement of BAM, vs (d) Low-Cost Sensor (LCS) AQMS with (e) inlet and outlet air 

mechanism in LCS AQMS, and (f) radiation shield temperature and humidity of LCS AQMS. 

Tabel 2. Low-cost sensor PM2.5 vs reference sensor BAM 1022 specification 

Abbreviation GP2Y ZH03 (Winsen, 

2016) 

SDS0 BAM (Instruments, 2018) 

Model Sharp GP2Y1010-AU0F Winsen ZH03A Novafitness SDS Met One Instruments BAM 1022 

Light source IR-LED Laser  Laser Beta attenuation (beta-ray attenuation across 

filter tape)  

Minimum particle size (𝜇𝑚) N/A 0.3 0.3 not typically specified as optical threshold for 

BAM 

Concentration range (𝜇𝑔𝑚−3) N/A 0 to 1000 0-999.9 -15 to 10.000 

Rated voltage (𝑉) 5 ± 0.5  5 ± 0.1  4.7 − 5.3  100-240 VAC 50/60 Hz universal input; 12 

VDC, 8.5A. 

Rated current (𝑚𝐴) < 20 < 120 70 ± 10  - 

Dimension WxHxD (𝑚𝑚3) 46 x 30 x 17.6 50 x 32.4 x 21 71 x 70 x 23 559 x 457 x 1397 

Operating temperature (℃) -10 to + 65 -10 to + 50 -20 to +50 -30 to +50 

Operating humidity (%) N/A 0  to 85 0 – 70 0 to 90, non-condensing. 

Output signal Analog Digital Digital Analog output: Two channels; optically 

isolated; 0-1, 0-2.5, 0-5 VDC. 

Lifetime N/A 3 years 8000 hours NA (Data logger memory 2.6 years @ 1 

record/hr.; 15.6 days @ 1 record/min) 

Cost (USD) ~$8 ~$16 ~$25.90 ~$ 5.500 (online platform) (not publicly 

disclosed) 
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2.2 Architecture System LCS AQMS vs BAM AQMS 150 

The low-cost air quality monitoring unit developed in this study, referred to as the AQUHIs system (Prayoga et al., 2025), 

was designed to provide autonomous and reliable measurement of particulate matter (PM₂.₅) alongside meteorological 

parameters such as temperature and relative humidity. Figure 2 compares the overall system architectures of the Low-Cost 

Sensor Air Quality Monitoring System (LCS AQMS) and the reference-grade BAM 1022. The diagrams illustrate the 

differences in power supply, sensing modules, air-handling mechanisms, signal acquisition, and data-processing pathways 155 

between the two types of monitoring systems. 

Figure 2(a) shows a compact and energy-efficient architecture built around an ESP32 microcontroller, which integrates 

wireless communication modules (Wi-Fi, GPRS, LoRaWAN) and interfaces with multiple sensors through ADC, I²C, SPI, 

and TWI communication buses. The system draws power from a 10 W photovoltaic panel, regulated through MPPT and BMS 

circuits, and stored in a rechargeable lithium battery, enabling autonomous operation in outdoor environments. The particulate 160 

matter sensor (Winsen ZH03) samples air via a simple inlet and micro-pump pathway, while temperature and humidity are 

measured using an SHT31 waterproof sensor housed in a radiation shield. A voltage regulation module ensures stable power 

delivery to the sensors and microcontrollers. The data acquisition pathway is digital, enabling real-time storage (MicroSD), 

processing, and wireless transmission. Electrical supply, data flow, and air flow pathways are highlighted to show the tightly 

integrated, low-power design suitable for distributed sensor networks. 165 

Figure 2(b) depicts the more complex architecture of the BAM 1022, which relies on precision hardware components and 

regulated environmental control to achieve reference-grade measurements. The system is powered by an external 100–230 

VAC power supply unit, reflecting its stationary installation requirements. Air is drawn through a mass-flow–controlled inlet, 

passing through a size-selective PM₂.₅/PM₁₀ cyclone and then through a glass-fiber filter tape that advances hourly. A vacuum 

pump and flow controller maintain strict volumetric flow conditions, while an inlet heater and in-situ temperature control 170 

minimize humidity-induced measurement errors. Core measurement is achieved through a beta attenuation subsystem, where a 

Carbon-14 beta source irradiates the filter tape, and a beta detector quantifies particle mass accumulation using continuous 

attenuation readings. Environmental parameters are monitored by integrated temperature, humidity, and pressure sensors. A 

high-resolution MCU controller with multi-channel ADC (16–24 bit) processes beta pulses, regulates the tape stepper motor, 

and stores data locally on SD/flash memory. Communication interfaces include UART, USB, and wireless modems (Wi-175 

Fi/4G/LoRaWAN/NB-IoT). 

Figure 3 illustrates the end-to-end data processing pipelines for the Low-Cost Sensor Air Quality Monitoring System 

(LCS AQMS) and the reference BAM 1022. The comparison highlights fundamental differences in data acquisition, 

preprocessing, validation, communication pathways, and backend integration between low-cost optical sensing systems and 

regulatory-grade beta attenuation monitors.  180 
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Figure 3(a) shows that the LCS AQMS begins its data pipeline at the air sampling stage, where PM₂.₅/PM₁₀, temperature, 

and humidity are recorded by the sensing layer. Raw optical scattering signals are converted into particulate matter values, 

followed by onboard preprocessing such as smoothing, averaging, and timestamping. The processed data are then assembled 

into compact transmission packets (≤ 250 bytes) and subjected to reliability checks including RSSI, SNR, and survival rate 

evaluation. 185 

The system dynamically selects a communication pathway depending on network availability. If a GPRS network is 

accessible, the device transmits data through a GPRS module to the gateway server; otherwise, the system switches to 

LoRaWAN transmission (SF10, BW125 kHz, 14 dBm) through the nearest LoRa gateway. Regardless of the chosen 

network, data are ultimately delivered to a cloud server database and API, where they are archived, visualized, and analyzed 

on dashboards or analytics platforms. This lightweight, adaptive data flow is optimized for intermittent connectivity, low-190 

power operation, and integration into distributed sensing networks. 

Figure 3(b) illustrates the more complex and controlled data pipeline of the BAM 1022. Air is drawn through the inlet 

and deposited onto a filter tape, where mass accumulation is quantified via the beta attenuation measurement process. 

Signals from the beta detector are converted into raw PM mass readings and then undergo the same preprocessing steps 

smoothing, averaging, and timestamping as seen in the LCS pipeline. The BAM continuously validates its measurements by 195 

performing internal diagnostic checks; if anomalies or errors are detected, data are flagged and maintenance alerts are logged 

and transmitted. 

 

 

Figure 2. The overall architecture of the system (a) LCS AQMS vs (b) Reference BAM 1022 200 

 

After data validation, measurements are formatted into structured outputs (JSON, CSV, Modbus), followed by application of 

security and protection protocols such as TLS encryption or token-based authentication. The BAM supports multiple 

communication interfaces, including Wi-Fi, 3G/4G/NB-IoT, and other LPWA options, enabling transmission to backend 
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servers. If network outages occur, the BAM stores data locally with ACK & retry mechanisms to ensure no data are lost. 205 

Telemetry and maintenance logs are also transmitted to support long-term reliability and regulatory compliance. 

 

 

Figure 3. Data flow of (a) LCS AQMS vs (b) Reference BAM 

 210 

2.3 Co-location Setup and Data Collection 

The overall co-location and data collection method shown in Figure 4. The overall workflow for the co-location 

experiment and data collection process was used to evaluate the performance of the LCS AQMS against the reference Beta 

Attenuation Mass (BAM) monitor. The methodology consists of three main stages: (1) system deployment and network 

registration, (2) co-location with a regulatory-grade reference instrument, and (3) acquisition, preprocessing, and statistical 215 

analysis of the sensor data. 

In the first stage (Figure 4, Step 1), the LCS AQMS device is designed, assembled, and installed at the monitoring site. 

Each LCS unit is registered on the communication network either LoRaWAN or GPRS, depending on signal availability. 

Once active, the device transmits measurement packets (including PM₂.₅, temperature, humidity, VOC, and battery voltage) at 

intervals of 15–20 minutes. The packets travel through nearby LoRa/GPRS gateways and are forwarded to the IoT platform. 220 

Raw sensor data are then stored in the AQMS cloud database, forming the primary dataset for preprocessing. 

Figure 4, Step 2 illustrates the co-location setup in which the LCS AQMS is placed in close proximity to a BAM reference 

station to ensure that both systems measure the same ambient air conditions. This side-by-side configuration enables direct 

comparison and calibration between the LCS and the reference instrument. The LCS transmits data every few minutes, while 

the BAM generates validated measurements on an hourly cycle, based on beta attenuation across the filter tape. Both data 225 

streams are stored in their respective databases and periodically synchronized to ensure temporal alignment during analysis. 
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In the final stage (Figure 4, Step 3), data from both the LCS and BAM databases undergo a unified data preprocessing 

pipeline. This includes timestamp matching, averaging, smoothing, outlier removal, and integrity checks. After preprocessing, 

paired datasets from both systems are used in the statistical analysis module, where variables such as PM₂.₅ concentration, 

temperature, humidity are compared. Time-series plots and statistical metrics (e.g., RMSE, bias, correlation) are generated to 230 

quantify differences and evaluate sensor performance under real environmental conditions. 

The LCS AQMS instruments positioned approximately 2 meters above ground level to ensure they sampled the same 

ambient air and shared identical meteorological exposure. The AQUHIs unit was mounted on a rigid aluminum frame, and all 

measurements were synchronized using timestamps from its integrated Real-Time Clock (RTC). Prior to analysis, the datasets 

were preprocessed through unit conversion, timestamp alignment, outlier removal, and temporal averaging to match the 235 

BAM’s hourly measurement resolution, enabling direct comparison between the two systems. The co-location campaign 

spanned multiple days and captured a wide range of temperature and humidity conditions that could influence sensor 

responses, and the resulting harmonized dataset provided the basis for statistical and regression analyses aimed at quantifying 

environmental effects and evaluating the agreement between the low-cost sensor and the reference BAM measurements. 

 240 

 

Figure 4. The overall co-location and data collection method  
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2.4 Data Preprocessing and calibration models 

Figure 5 illustrates the workflow used to develop, train, and evaluate calibration functions for improving the accuracy of 245 

the low-cost particulate matter sensor. The process comprises three main stages: data preprocessing, regression modeling, and 

independent validation using subsequent co-location datasets. 

In the first stage, the raw data collected from both the AQUHIs system and the BAM 1022 reference instrument underwent 

a structured preprocessing workflow prior to statistical analysis. All measurements transmitted from the AQUHIs units via the 

GPRS/LoRaWAN network were first aggregated and archived within the AQMS database. The dataset was then inspected to 250 

identify and remove incomplete or corrupted records arising from packet loss, sensor start-up instability, or power 

interruptions. 

Following this initial screening, outliers were identified and removed to ensure consistency between the two monitoring 

systems. Outlier detection employed a Z-score–based approach (DeVore, 2017) in which both independent and dependent 

variables were standardised according to Eq. (1): 255 

𝑍 =
𝑋−𝜇

𝜎
,                                                                                                                                                                                 (1) 

 

where 𝑋 is the measured value, 𝜇is the mean, and 𝜎is the standard deviation. Data points exceeding ∣ 𝑍 ∣> 3 were classified as 

potential outliers and excluded from subsequent modelling. Although the raw dataset did not contain severe anomalies such as 

negative readings or flatlines, several isolated concentration spikes were observed. While these may reflect true short-term 260 

pollution events, their rarity can bias regression estimates; therefore, they were flagged and removed during the cleaning 

process. For variables with different physical units (e.g., temperature, humidity, particulate concentration), Z-score 

normalisation was applied to ensure a standardised scale for model fitting. 

To enable direct comparison with the BAM 1022 reference instrument, AQUHIs data, originally transmitted at 15–20 

minute intervals were resampled to hourly averages. Time alignment between the two datasets was achieved through 265 

timestamp matching using each device’s Real-Time Clock (RTC), ensuring that paired observations reflected identical 

atmospheric conditions. Hourly averaging also mitigates small spatiotemporal discrepancies that may arise even under close 

colocation. 

In the second stage, the calibration of low-cost PM₂․₅ sensors is a critical step for improving data reliability, particularly 

when such sensors are deployed alongside reference-grade instruments such as BAM. In this work, we implemented and 270 

evaluated several calibration approaches, ranging from traditional statistical techniques to contemporary machine-learning 

models. Each method addresses different types of sensor errors offset bias, scale distortion, temporal drift, and nonlinear 

sensitivity to environmental factors (e.g., temperature and humidity).  
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The uncalibrated output represents the raw measurement produced by the low-cost sensor without any correction. This 

serves as the baseline against which all calibrated models are compared. Raw PM₂․₅ readings typically exhibit several types of 275 

errors, including systematic bias, nonlinear response across concentration ranges, sensitivity to relative humidity, and temporal 

instability. Although uncalibrated data can capture general pollution trends, the magnitude of error relative to reference 

instruments is often substantial, making calibration essential for quantitative applications. 

The first calibration approach applies a linear affine correction to remove systematic offset and scale errors (Aix et al., 

2023). A simple linear regression is fitted between the raw low-cost sensor reading 𝑃𝑀raw and the reference measurement 280 

𝑃𝑀ref 

PMref = 𝛼 + 𝛽PMraw.                                                                                                                                                              (2) 

 

 

Figure 5. Flow chart of developing and evaluating calibration functions 285 
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From this model, a corrected sensor signal (sensor_corr) is derived through an offset–scale adjustment: 

 

PMcorr = 𝛽(PMraw − 𝑎𝑠),  𝑎𝑠 = −
𝛼

𝛽
                                                                                                                                       (3) 

 290 

In this formulation, 𝑎𝑠 represents the estimated sensor offset (i.e., the raw reading at which the reference concentration is 

predicted to be zero), while 𝛽 adjusts the sensitivity of the sensor. This transformation forces the corrected signal to have a 

unity slope with respect to the reference, thereby removing consistent additive and multiplicative biases. Linear calibration is 

computationally efficient, interpretable, and provides substantial improvement when sensor errors are predominantly linear; 

however, it cannot capture nonlinear dynamics or complex environmental influences. 295 

To address nonlinear relationships, ensemble learning methods were employed. Random Forest (RF) constructs an 

ensemble of decision trees and aggregates their predictions to model nonlinear interactions (Ma et al., 2025) between the 

sensor output and environmental variables such as temperature, humidity, diurnal cycle, and the linearly corrected signal 

𝑃𝑀corr. Because RF is non-parametric and robust to noisy data, it effectively captures complex yet stable patterns in sensor 

behaviour. However, tree-based methods partition the feature space rather than learning smooth functions, which can limit 300 

performance when extrapolating beyond the training range. 

In addition to RF, Gradient Boosting (GB) was employed to further enhance the model’s ability to capture subtle, 

structured error patterns (Si et al., 2020). Unlike RF, which builds trees independently and aggregates their outputs, Gradient 

Boosting constructs trees sequentially, where each new tree is trained to correct the residual errors of the previous ensemble. 

This boosting strategy allows GB to approximate complex nonlinear relationships with greater precision, particularly in 305 

scenarios where sensor errors exhibit compound interactions. For example, when the influence of humidity varies across 

different PM₂․₅ concentration ranges or when temporal effects interact with environmental conditions. Gradient Boosting 

models are typically more sensitive to fine-scale patterns in the data and can achieve superior predictive accuracy relative to 

RF, although they require careful tuning to avoid overfitting. In the context of low-cost PM₂․₅ sensor calibration, GB 

demonstrated strong capability in capturing nonlinear biases and environmental dependencies, making it a powerful 310 

component of the calibration pipeline. 

Support Vector Regression (SVR) offers a kernel-based alternative that models nonlinear relationships through a smooth 

functional mapping. SVR uses an 𝜀-insensitive loss function to tolerate measurement noise while identifying a regression 

function with optimal complexity–accuracy tradeoff. This makes SVR suitable for capturing progressive nonlinear distortions 

in sensor response (Mai et al., 2025). SVR can achieve strong performance but requires careful tuning of kernel parameters 315 

(e.g., 𝐶, 𝜀, and 𝛾) and may be computationally expensive for large datasets. 
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To further enhance robustness, an Adaptive Calibration Model was developed by blending the physics-based linear 

correction and the nonlinear machine-learning prediction (Mahajan & Helbing, 2025). After training a base model (Gradient 

Boosting or LightGBM), we compute the blended output as: 

PMblend = 𝜔 ⋅ PMcorr   +   (1 − 𝜔) ⋅ PMmodel  (4) 320 

 

here 𝑃𝑀model is the machine-learning prediction and 𝜔 ∈ [0,1] is the blending coefficient. A grid search over 𝜔 is performed 

using a separate validation set to minimize the mean absolute error (MAE). This procedure prevents overreliance on either the 

linear correction (which may be too rigid) or the machine-learning prediction (which may be unstable in noisy or data-sparse 

regions). The adaptive approach consistently achieved the best overall performance, balancing accuracy, stability, and 325 

resilience against environmental variability. 

In the third stage, model development followed a principled strategy that prioritized interpretability while aiming to meet 

the U.S. EPA performance criterion of 𝑅2 ≥ 0.7 . The analysis progressed from simple univariate linear regression to 

multivariable regression and, where necessary, to nonlinear machine-learning models. After calibration, statistical analyses 

evaluated the agreement between the low-cost ZH03 sensor and the BAM reference across different environmental regimes. 330 

Performance metrics including the coefficient of determination (R²), root mean square error (RMSE), mean absolute error 

(MAE), and mean bias error (MBE), quantified both accuracy and systematic deviation. Additional correlation analysis 

assessed the influence of temperature and relative humidity on sensor performance. 

Results were further interpreted through visual diagnostic tools such as scatter plots, time-series overlays, Bland–Altman 

plots, and residual distributions, which helped elucidate temporal behaviour and environmental dependencies. All analyses 335 

were conducted using Python 3.11 and MATLAB R2023a, leveraging scientific libraries such as NumPy, Pandas, and 

Matplotlib. This integrated analytical framework captured both the temporal and environmental characteristics of the ZH03 

sensor, providing a robust foundation for calibration model development and subsequent environmental compensation 

modeling. 

 340 

III. RESULT DISCUSSION 

3.1 Data raw LCS ZH03 and Reference BAM 

Table 3 presents the raw data distribution of PM₂.₅ measurements recorded by the low-cost sensor (LCS ZH03) and the 

reference BAM 1022 across varying humidity and temperature ranges during the co-location campaign. The statistical 

summary includes the first and third quartiles (Q1 and Q3), minimum, median, and maximum concentrations, allowing an 345 

initial evaluation of the agreement and divergence between the two instruments before calibration. 
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Overall, the BAM reference measurements exhibit more constrained variability across environmental conditions, reflecting 

the stability of the beta-attenuation method. In contrast, the LCS ZH03 displays a broader dynamic range in the upper 

quantiles, particularly under elevated humidity levels. For instance, within the 85–95% RH range, the LCS recorded maximum 

PM₂.₅ values up to 209.2 µg/m³, nearly double the BAM maximum of 122.2 µg/m³. This pattern is consistent with known 350 

limitations of optical particle counters, where hygroscopic particle growth and humidity-driven scattering lead to 

overestimation of particulate concentrations at high relative humidity. 

At moderate humidity levels (55–75%), both instruments show more comparable medians—e.g., at 65–75% RH, the BAM 

median is 37.2 µg/m³, whereas the LCS median slightly overestimates at 47.9 µg/m³. This indicates that the LCS retains 

reasonable sensitivity and linearity under mid-range conditions but deviates more substantially as humidity approaches 355 

saturation. Temperature stratification exhibits a similar trend. At lower temperature ranges (22–25°C), both instruments 

demonstrate lower variability and closer agreement, with BAM and LCS medians of 28.4 µg/m³ and 39.9 µg/m³, respectively. 

However, at temperatures above 31°C, the LCS again shows greater spread, with maximum values nearly doubling the BAM 

readings. This reflects the temperature sensitivity of the ZH03’s laser scattering chamber, which can influence signal 

amplitude and particle count processing. 360 

Collectively, the distribution patterns in Table 3 confirm two essential characteristics. First, BAM produces stable and less 

environmentally sensitive measurements, serving as a consistent reference across all conditions. Second, LCS ZH03 is highly 

influenced by humidity and, to a lesser extent, temperature, resulting in higher measurement dispersion and systematic 

overestimation during unfavorable conditions. These findings reinforce the necessity of applying environmental compensation 

and calibration models to adjust LCS readings prior to interpretation. The raw data behavior observed here forms the empirical 365 

foundation for the regression-based correction functions developed in the subsequent stages of this research. 

 

Tabel 3. Data Raw distribution of LCS ZH03 and Reference BAM 1022 

Environemnt 
variable 

Value (HR in % 
and Temp in C) 

PM2.5 BAM reference PM2.5 LCS reference 

Q1 Q3 Min Median Max Q1 Q3 Min Median Max 

Humidity rate  (%) 

35–45 28.6 34.3 27.8 33.7 39.8 31.2 41 24.2 33.2 56.2 

45–55 31.5 47.8 17.9 37.7 76.2 29 49.8 11.5 40 102 

55–65 29.4 51.9 10.1 40 94.6 27 59.5 4.8 42.7 137.8 

65–75 27.8 46.8 11.8 37.2 136.9 31.8 68.6 5.2 47.9 209.2 

75–85 29.9 61.5 10.7 44.3 122.4 42.9 100.5 0.8 68.8 250 

85–95 29.2 55.7 3.6 45.2 122.2 32.4 90.1 0.5 60.8 162.5 

Temperature (C) 

22–25 17.9 45.3 3.6 28.4 83 21.4 71.6 2.7 39.9 127.2 

25–28 33.1 62 8.2 46.4 136.9 45.5 100.5 0.5 71.2 250 

28–31 26.5 45.3 11.8 35.6 108.6 28.1 66.1 0.8 44.2 179.5 

31–34 31.8 52 10.1 40.3 99.6 30 58.8 4.8 44 137.8 

34–37 27.2 50.7 21.8 35.1 77.3 29 45.1 13.2 35.5 104.2 
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Figure 6 compares the raw PM₂.₅ data from the low-cost sensor (LCS ZH03) and the reference BAM 1022 during the June–370 

August 2025 co-location period. The daily boxplots in Figure 6(a) show that the ZH03 consistently reports higher PM₂.₅ 

values than the BAM, with larger medians, wider spreads, and more outliers, particularly on humid or highly variable days. 

This pattern reflects the sensitivity of optical sensors to humidity-driven particle growth and enhanced light scattering. In 

contrast, the BAM exhibits more stable and constrained distributions. The hourly time-series in Figure 6(b) demonstrates that 

both instruments track similar temporal patterns, but the ZH03 displays amplified peaks, often reaching 150–250 µg/m³. 375 

Figure 6 indicates strong temporal agreement but systematic overestimation and higher variability in the ZH03 raw 

measurements. 

 

Figure 6. Time series data raw comparison of PM2.5 between LCS and BAM 

 380 
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Figure 7 presents detailed time-series comparisons of raw PM₂.₅ measurements from the low-cost ZH03 sensor and the 

BAM 1022 reference instrument, alongside ambient temperature and relative humidity for selected days during the co-location 

campaign. These four representative days illustrate different atmospheric scenarios,  such as high pollution events, extreme 

humidity conditions, and large humidity variability, to show how environmental factors influence the raw readings of the LCS. 

Figure 7(a) illustrates the day with the highest LCS PM₂.₅ peak, reaching values above 250 µg/m³. During the early 385 

morning hours (07–12 UTC+7), humidity exceeded 80%, coinciding with the rapid escalation in PM₂.₅ reported by the ZH03. 

In contrast, the BAM measurement rose more gradually and peaked significantly lower, indicating that the LCS over-response 

was not driven solely by real aerosol loading but was also amplified by humidity-induced particle scattering. As humidity 

decreased after noon, the LCS signal dropped sharply, aligning more closely with the BAM values. This pattern highlights the 

strong dependency of optical sensors on rapidly changing microclimatic conditions. 390 

Figure 7(b) shows another high-PM day where the ZH03 again exhibited elevated readings relative to the BAM, 

particularly during the early morning hours when humidity increased steadily above 85%. Although both devices captured the 

same peak time window, the LCS consistently overestimated by 40–60 µg/m³. The temperature remained relatively stable 

throughout the day, reinforcing the interpretation that humidity, rather than temperature, was the primary driver of the 

divergence. 395 

In contrast, Figure 7(c) presents a day with the highest recorded humidity levels (>90%). Under these conditions, the 

mismatch between the two sensors becomes even more pronounced. The LCS signal fluctuated widely and produced several 

high peaks not observed in the BAM dataset. The optical chamber of the ZH03 is particularly susceptible to hygroscopic 

growth of fine particles and microdroplet formation, both of which enhance light scattering and produce artificial inflation of 

the PM₂.₅ values. Despite temperature remaining stable around 29–31°C, the humidity-driven anomalies dominated the LCS 400 

behavior. 

Lastly, Figure 7(d) represents the day with the largest humidity range (max–min = 43.5%). This strong variability caused 

rapid shifts in the LCS measurement profile, with PM₂.₅ spikes occurring in parallel with humidity increases. The BAM signal 

remained stable and unaffected by these fluctuations. This subplot clearly illustrates the sensitivity of LCS optical detection to 

humidity dynamics rather than to actual changes in particulate loading. 405 

Overall, Figure 7 demonstrates that while the LCS ZH03 can capture temporal patterns similar to the BAM, its raw PM₂.₅ 

readings are strongly influenced by humidity magnitude and variability. These findings reinforce the critical need for 

environmental compensation and calibration models to correct the sensor’s overresponse under humid conditions. 
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 410 

Figure 7. Data raw of PM2.5 LCS, PM2.5 Reference, Ambient air temperature, and ambient air humidity rate (a) and (b) plot as 

highest PM2.5 LCS value and (c) plot as highest humidity rate above 90% along measurement period and (d) plot as highest 

humidity rate range (max-min=43.5) 

 

3.2 Raw data Precission between LCS and reference sensor 415 

Figure 8 presents the precision analysis between the low-cost sensor (LCS ZH03) and the reference BAM 1022 based on 

hourly raw PM₂.₅ measurements. The figure includes (a) a linear regression comparison and (b) a Bland–Altman analysis, 

providing a comprehensive assessment of agreement, proportional bias, and measurement variability prior to calibration. 

The scatter plot in Figure 8(a) displays the relationship between LCS ZH03 and BAM PM₂.₅ concentrations along with 

the best-fit regression line, y = 0.44x + 16.57. The slope less than 1 indicates that the LCS overestimates PM₂.₅ at low -to-420 

moderate concentrations but underestimates relative to the BAM at higher values. This nonlinear behavior reflects the 

combined influence of humidity-driven optical scattering and sensor saturation at elevated PM levels. The coefficient of 

determination R² = 0.676 demonstrates moderate correlation, showing that the LCS captures major temporal trends but with 

limited precision. Error metrics reinforce this: RMSE = 18.01 µg/m³, MAE = 8.01 µg/m³, and MBE ≈ 0 indicate substantial 

spread but minimal overall bias when averaged across the dataset. The relatively high dispersion around the regression line 425 

highlights the need for calibration to correct environmental sensitivity and improve predictive accuracy.  

The Bland–Altman plot in Figure 8(b) evaluates the measurement differences (LCS – BAM) against their average. The 

mean bias is +17.24 µg/m³, confirming that the LCS systematically overestimates PM₂.₅ relative to the BAM. The limits of 

agreement (LoA), ranging from −27.30 to +61.77 µg/m³, indicate wide variability and substantial disagreement at the 
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individual-measurement level. The upward trend in differences with increasing concentration suggests proportional bias, 430 

where overestimation becomes more pronounced under higher pollution levels or elevated humidity conditions. Most data 

points fall within the LoA range, but the spread increases at higher means, characteristic of optical sensor response 

amplification during periods of high particle scattering efficiency or hygroscopic aerosol growth. This aligns with earlier 

findings showing humidity as a major driver of LCS signal inflation. 

Together, the regression and Bland–Altman analyses confirm that while the LCS ZH03 follows the general PM₂.₅ trend 435 

measured by the BAM, it exhibits systematic overestimation, high variability, and proportional bias in its raw form. These 

results support the necessity of applying calibration models to correct the sensor's environmental sensitivity and improve 

reliability for quantitative air-quality monitoring. 

 

 440 

Figure 8. Data raw PM2.5 LCS vs BAM Precision analysis with linear regression 

 

3.3 Particulate matter correlation to environment variable 

Figure 9 presents a correlation analysis between PM₂.₅ concentrations and key environmental variables  (temperature and 

relative humidity) using both linear regression and Pearson’s correlation coefficients. The results provide insight into how 445 

environmental conditions influence raw PM₂.₅ measurements from the low-cost sensor (LCS ZH03) and the reference BAM 

1022. 

The scatter plot in Figure 9(a) shows a weak positive relationship between BAM PM₂.₅ and relative humidity, with an 

extremely low coefficient of determination (R² = 0.007). This indicates that humidity has minimal impact on the reference 

measurements, highlighting the robustness of the BAM’s beta attenuation method, which is designed to minimize moisture 450 
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interference. The fitted regression line is nearly flat, emphasizing that changes in humidity do not significantly affect BAM  

readings. 

 

Figure 9. Correlation analysis of PM2.5 with temperature and humidity use linear regression (Lin-Reg) and Pearson correlation 

(a) Lin-Reg PM2.5 BAM reference with humidity, (b) Lin-Reg PM2.5 BAM reference with temperature, (c) Lin-Reg PM2.5 LCS 455 
with humidity, (d) Lin-Reg PM2.5 LCS with temperature, and (e) Pearson correlation matrix PM2.5 LCS, PM2.5 BAM Reference, 

Humidity, and Temperature. 

 

Similarly, Figure 9(b) demonstrates a negligible relationship between BAM PM₂.₅ and temperature (R² = 0.002). The 

slight negative slope suggests a weak inverse trend, but the correlation is statistically insignificant. These results confirm that 460 

the BAM maintains stable performance across typical outdoor temperature fluctuations during the study period.  

Figure 9(c) reveals a stronger association between LCS PM₂.₅ readings and humidity, with a higher (but still modest) 

coefficient (R² = 0.061). The positive slope indicates that PM₂.₅ values reported by the ZH03 increase with rising humidity. 

This aligns with known limitations of optical sensors, where hygroscopic particle growth and increased light scattering 

contribute to an overestimation of PM₂.₅ under humid conditions. 465 

The relationship between LCS PM₂.₅ and temperature shown in Figure 9(d) is also weak, with R² = 0.045, though slightly 

stronger than the BAM relationship. The negative slope suggests that higher temperatures may reduce the LCS PM₂.₅ signal, 

potentially due to reduced relative humidity or thermal effects on the sensor’s optical chamber. Nevertheless, temperature 

remains a secondary factor compared to humidity. 

The Pearson correlation matrix in Figure 9(e) summarizes linear associations across all variables. PM₂.₅ from the LCS 470 

strongly correlates with BAM PM₂.₅ (r = 0.82, p < 0.01), reflecting good temporal agreement despite known biases. 

However, LCS PM₂.₅ also exhibits moderate positive correlation with humidity (r = 0.27), while BAM PM₂.₅ shows 

negligible correlation (r = 0.08). Temperature is weakly and negatively correlated with both PM₂.₅ measurements, with the 

strongest association observed between temperature and humidity (r = −0.94), confirming their expected inverse 
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meteorological relationship. Overall, Figure 9 demonstrates that humidity is a major source of bias in LCS measurements, 475 

whereas BAM readings remain largely unaffected by environmental conditions. These correlations justify the need for 

humidity-aware calibration models to enhance LCS data accuracy. 

 

3.4 Calibration models 

Figure 10 presents the accuracy improvement of the low-cost PM₂.₅ sensor (LCS ZH03) after applying various calibration 480 

models, using regression plots comparing model-adjusted predictions to the BAM 1022 reference measurements. Six 

calibration conditions are shown: uncalibrated raw data and five calibrated models (Linear Regression, Random Forest, 

Gradient Boosting, Support Vector Regression (SVR), and an Adaptive-blend ensemble). Each subplot illustrates predicted 

versus reference PM₂.₅ on the test dataset along with key statistical indicators (MAE, RMSE, R²). 

The uncalibrated LCS shows poor agreement with the reference, characterized by wide scattering around the 1:1 line and 485 

substantial overestimation at higher concentrations. Performance metrics (MAE = 17.40, RMSE = 22.59, R² = −0.970) 

confirm low accuracy and negative predictive power, reflecting the strong influence of humidity and nonlinear bias present in 

the raw data. Applying a simple Linear Regression model improves performance notably relative to raw data. The scatter 

becomes more aligned, and prediction errors decrease (MAE = 8.32, RMSE = 10.77, R² = 0.552). However, the model 

remains limited by its inability to capture nonlinear interactions between PM₂.₅, humidity, and temperature, resulting in 490 

moderate residual bias. 

The Random Forest model provides a substantial improvement, capturing nonlinear relationships more effectively. 

Predictions align closely with the reference values, with significantly reduced error (MAE = 6.21, RMSE = 7.99) and strong 

explanatory power (R² = 0.754). The Random Forest handles humidity-driven variability far better than linear methods. Then, 

Gradient Boosting performs similarly to Random Forest but with slightly better accuracy (MAE = 5.93, RMSE = 7.76, R² = 495 

0.768). The model produces a tighter clustering around the 1:1 line, suggesting superior capability in addressing complex, 

nonlinear error structures inherent in optical PM sensor data. Then, the SVR model also demonstrates strong predictive ability 

(MAE = 6.04, RMSE = 7.91, R² = 0.758). The regression plot shows compact dispersion along the ideal line, indicating that 

SVR effectively captures nonlinear patterns. Performance is comparable to Random Forest and slightly below Gradient 

Boosting. Lastly, The Adaptive-blend model, an ensemble combining strengths of multiple algorithms—achieves the highest 500 

performance among all models (MAE = 5.85, RMSE = 7.69, R² = 0.771). The regression plot reveals excellent alignment with 

the reference, with minimal scatter and low systematic error. The model successfully compensates for humidity effects and 

nonlinear LCS deviations. 

In Figure 10 demonstrates that calibration substantially enhances the accuracy of low-cost PM₂.₅ measurements. While 

simple linear correction provides moderate improvement, nonlinear machine-learning models (particularly Gradient 505 

Boosting, Random Forest, SVR, and the Adaptive-blend ensemble) significantly reduce measurement bias and variability. 
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The Adaptive-blend model performs best overall, offering a robust and reliable correction for LCS ZH03 under varying 

environmental conditions. 

 

Figure 10. Accuracy analysis of LCS after calibrated with various model vs BAM reference (a) regression plot of uncalibrated 510 
LCS, (b) regression plot of linear regression calibrated LCS, (c) regression plot of Random Forest calibrated LCS, (d) regression 

plot of Gradient Boosting calibrated LCS, (e) regression plot of Support Vector Regression calibrated LCD, and (f) regression  plot 

of Adaptive-blend calibrated LCS. 

 

Figure 11 presents Bland–Altman plots comparing the agreement between the low-cost PM₂.₅ sensor (LCS ZH03) and the 515 

BAM 1022 after applying various calibration models. Each subplot evaluates the mean difference (bias), spread of 

differences (standard deviation), and percentage of points outside the limits of agreement (LoA), providing insight into 

systematic error and precision improvement achieved by each model. 

The uncalibrated sensor (Figure 11(a)) exhibits the largest positive bias (+13.52 µg/m³) and substantial scatter (SD = 

18.13), with 6.71% of data points falling outside the LoA. The large spread and upward skew indicate significant 520 

overestimation and poor agreement with the reference, consistent with humidity-induced optical scattering effects observed 

earlier. Then, Applying Linear Regression (Figure 11(b) reduces the bias to +3.22 µg/m³ and narrows variability (SD = 
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10.30). The percentage of outliers decreases to 4.9%, reflecting moderate improvement. However, the residual positive bias 

indicates that linear correction is insufficient to fully compensate for the nonlinear environmental effects influencing the 

LCS. 525 

 

 

Figure 11. Bland-Altman Plot for LCS after calibrated with various model vs BAM reference (a) regression plot of uncalibrated 

LCS, (b) regression plot of linear regression calibrated LCS, (c) regression plot of Random Forest calibrated LCS, (d) regression 

plot of Gradient Boosting calibrated LCS, (e) regression plot of Support Vector Regression calibrated LCD, and (f) regression  plot 530 
of Adaptive-blend calibrated LCS 

 

The Random Forest (Figure 11(c)) model further reduces systematic error, yielding a bias of +3.23 µg/m³ and SD = 7.32, 

demonstrating tighter clustering around zero difference. The proportion of points outside the LoA drops to 4.9%, illustrating  

improved precision and effective handling of nonlinear relationships. Then, Gradient Boosting performs (Figure 11(d)) 535 

similarly to Random Forest but with slightly lower spread (SD = 7.12) and reduced bias (+3.10 µg/m³). Only 4.1% of data 

fall outside the LoA, indicating strong stability and reliable correction across the full PM₂.₅ range. Then, The SVR model 

(Figure 11(e)) produces the lowest bias (+2.28 µg/m³) and relatively small variability (SD = 7.59). However, 5.6% of 

measurements lie outside the LoA, showing good but slightly less stable performance compared to ensemble-based models. 

SVR effectively corrects nonlinear deviations but shows modest sensitivity to extreme values. Lastly, The Adaptive-blend 540 

model (Figure 11(f)) achieves one of the best agreements, with bias +2.84 µg/m³ and SD = 7.16, and 4.9% outside the LoA. 
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The tight distribution and minimal systematic deviation indicate that combining multiple algorithms yields robust calibration  

performance, balancing bias reduction and variability control. 

Figure 11 demonstrates that all calibration models significantly improve agreement between the LCS and BAM 

compared to the uncalibrated state. Ensemble-based methods (Gradient Boosting, Random Forest, and the Adaptive-blend) 545 

provide the most consistent performance, achieving low bias, reduced standard deviation, and fewer outliers. These models 

effectively correct the nonlinear, humidity-sensitive behavior of the LCS, supporting their suitability for field deployment in 

variable environmental conditions. 

Figure 12 presents a comparative analysis of the Mean Absolute Error (MAE) achieved by each calibration method, 

highlighting the substantial improvement obtained through model-based correction relative to the uncalibrated low-cost 550 

sensor (LCS). The uncalibrated PM₂.₅ measurements exhibit the highest MAE at 17.40 µg/m³, reflecting the significant raw 

bias and environmental sensitivity of the ZH03 sensor. Applying a simple Linear Regression model reduces the error to 8.32 

µg/m³, demonstrating that even a basic correction strategy substantially enhances accuracy. However, more advanced 

machine-learning methods outperform the linear approach. Random Forest and Support Vector Regression yield MAE 

values of 6.21 µg/m³ and 6.04 µg/m³, respectively, while Gradient Boosting achieves a slightly lower error of 5.93 µg/m³. 555 

The Adaptive-blend model provides the best overall performance, achieving the lowest MAE of 5.85 µg/m³, indicating its 

superior ability to capture nonlinear patterns and environmental interactions affecting LCS measurements. In Figure 12 

confirms that machine-learning–based calibration models significantly improve the reliability of low-cost PM₂.₅ sensors, 

with ensemble and hybrid approaches yielding the most accurate predictions relative to the reference BAM instrument. 

 560 

 

Figure 12. Comparative analysis of calibration methods showing the MAE across different approaches.  
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Figure 13 illustrates the time-series comparison of PM₂.₅ measurements from the low-cost sensor (LCS ZH03) before and 

after calibration against the BAM 1022 reference instrument, demonstrating the substantial improvement achieved through 565 

model-based correction. The raw LCS signal (red dashed line) shows pronounced overestimation and unstable fluctuations, 

particularly during peak pollution periods, where readings exceed 140–160 µg/m³ despite the reference remaining closer to 

80–100 µg/m³. After applying calibration models, the corrected outputs align much more closely with the reference time 

series, significantly reducing both amplitude bias and short-term variability. All calibrated models (Linear Regression, 

Random Forest, Gradient Boosting, Support Vector Regression, and the Adaptive-blend ensemble) successfully track the 570 

diurnal PM₂.₅ pattern, capturing both rising and declining trends with improved fidelity. Among them, ensemble and 

nonlinear models show the closest agreement, producing smooth trajectories that closely follow the BAM measurements 

across the entire period. This convergence demonstrates that calibration effectively mitigates humidity-induced signal 

inflation and nonlinear sensor distortions, enabling the LCS to provide reliable and representative PM₂.₅ estimates under real-

world environmental conditions. 575 

 

 

Figure 13. Post calibration time series for LCS compared to the BAM reference 

 

IV. CONCLUSION AND FUTUTRE WORKS 580 

This study systematically evaluated the performance of a low-cost particulate matter sensor (Winsen ZH03) through an 

extensive co-location experiment with a reference-grade Beta Attenuation Monitor (BAM 1022) under real outdoor 

environmental conditions. The analysis of raw data revealed that although the ZH03 sensor successfully captured temporal 

PM₂.₅ trends, it exhibited substantial overestimation and increased variability, particularly during periods of elevated humidity. 

Environmental correlation analyses confirmed humidity as the dominant driver of measurement bias, whereas temperature 585 
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exerted only a minor influence. These findings underscore the need for robust calibration strategies when deploying low-cost 

sensors in ambient air-quality monitoring applications. 

A comprehensive calibration framework was developed, incorporating multiple regression approaches (including Linear 

Regression, Random Forest, Gradient Boosting, Support Vector Regression, and an Adaptive-blend ensemble) to correct raw 

LCS readings. Comparative performance assessment demonstrated that while linear correction reduced baseline bias, 590 

nonlinear machine-learning models provided markedly superior improvements. Ensemble-based models, particularly Gradient 

Boosting and the Adaptive-blend approach, consistently delivered the lowest prediction errors (MAE ≈ 5.8–5.9 µg/m³) and 

strongest agreement with the BAM reference, as evidenced by higher R² values and tight Bland–Altman limits of agreement. 

These models effectively mitigated humidity-induced signal inflation and nonlinear distortions inherent to optical scattering 

sensors. 595 

Post-calibration time-series comparisons further validated the enhanced performance, showing that calibrated LCS outputs 

closely followed BAM measurements across varied pollution episodes and meteorological conditions. The improved 

alignment confirms that applying appropriate calibration models transforms low-cost sensors from trend-only indicators into 

quantitatively reliable instruments suitable for finer-scale air-quality monitoring. 

This research demonstrates that low-cost PM₂.₅ sensors (when properly corrected for environmental influences) can serve as 600 

effective complements to regulatory monitoring networks, enabling high-resolution spatial coverage at significantly lower 

cost. The proposed calibration methodology provides a practical pathway for improving data quality and supports broader 

adoption of low-cost sensing technologies in air-quality applications, particularly in regions with limited monitoring 

infrastructure. Future work may extend this framework by incorporating additional pollutants, real-time adaptive calibration, 

or physics-informed machine-learning models to further enhance robustness and scalability 605 
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