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Abstract: Ecosystem water use efficiency (WUE), defined as the ratio of carbon gain to water loss, is significantly affected 16 

by drought. Elucidating the coupling relationship between WUE and drought is essential for understanding the carbon–water 17 

trade-off strategies of vegetation under drought stress. Most existing studies mainly evaluated coupling relationship using 18 

correlation coefficients or regression slopes. However, the optimal drought timescale governing WUE responses to drought 19 

has not yet been systematically investigated. To fill these gaps, this study investigated the spatiotemporal patterns of the WUE–20 

drought coupling relationship (characterized by the maximum correlation coefficient, Rmax, and optimal lag time, Topt) across 21 

global terrestrial ecosystems from 1982 to 2018, and further explored the potential causal mechanisms. The results revealed a 22 

delaying of the drought-response timescale of WUE, accompanied by a weakening in the WUE–drought correlation at the 23 

optimal timescale, as evidenced by a decrease in Rmax at a rate of -0.0003/year and an increase in Topt at a rate of 0.0155 24 

months/year, indicating a globally weakened coupling relationship. Moreover, pronounced heterogeneity in the changes of 25 

coupling relationships changes was observed across different drought gradients and vegetation types. Attribution analysis 26 

indicated that CO2 fertilization was the primary factor contributing to the weakening of the coupling relationship. Surface soil 27 

moisture (SMsurf) was the most critical hydrothermal driver, exhibiting nearly opposite effects and significant threshold effects 28 

on Rmax and Topt. Causality diagnosis was further employed to construct direct and indirect causal networks of hydrothermal 29 

factors affecting Rmax and Topt across different vegetation types and drought gradients. This study highlights the weakened 30 

coupling between WUE and drought, suggesting that vegetation's carbon-water trade-off is evolving toward drought adaptation, 31 

which is crucial for understanding the adaptive strategies of vegetation in response to climate change. 32 

Short summary: 33 

Ecosystem water use efficiency exhibited a reduced correlation with drought and a delayed response timing from 1982 to 2018, 34 

a pattern primarily driven by CO₂ fertilization. Surface soil moisture emerged as the dominant hydroclimatic driver, exerting 35 

contrasting influences and exhibiting pronounced threshold effects. This study highlights the divergent vegetation adaptation 36 

strategies across arid and humid regions, underscoring the need to reassess the water use efficiency–drought relationship. 37 

Keywords:  38 

Water Use Efficiency (WUE), Standardized Precipitation-Evapotranspiration Index (SPEI), Coupling relationship, Dynamic 39 
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https://doi.org/10.5194/egusphere-2025-6195
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



3 

 

1. Introduction 41 

Ecosystem water use efficiency (WUE) refers to the ratio of carbon assimilation to ecosystem water evapotranspiration 42 

(Beer et al., 2009). A high WUE indicates that an ecosystem can more effectively carry out photosynthesis and growth under 43 

limited water resources (Wang et al., 2022). Therefore, the interactions between the carbon and water cycles within ecosystems 44 

is often quantified using WUE (Xue et al., 2022). 45 

Drought, as one of the major natural disturbances affecting ecosystems, plays a critical role in regulating carbon uptake 46 

and transpiration. Drought can constrain vegetation growth (Jiao et al., 2021; Wu et al., 2025), and even trigger widespread 47 

vegetation mortality, thereby disrupting terrestrial carbon balance (Reichstein et al., 2013; Schwalm et al., 2012). Previous 48 

studies have investigated the impacts of drought on WUE from multiple perspectives. Some studies have focused on the effects 49 

of drought events on WUE (Huang et al., 2017; Ma et al., 2019; Xie et al., 2016; Zhao et al., 2022). For example, Huang et al. 50 

(2017) identified contrasting WUE responses to drought stress, with negative responses in arid ecosystems but positive 51 

responses in humid ecosystems. Ma et al. (2019) found that in young Forest in northern China, drought reduced WUE in 52 

summer but enhanced it in autumn. Xie et al. (2016) reported similar patterns, showing that drought during the leaf expansion 53 

stage reduced WUE, whereas drought during the leaf discoloration stage increased WUE. In addition, Zhao et al. (2022), in 54 

their study of alpine meadows on the Tibetan Plateau, observed that drought led to an increase in WUE in the early growing 55 

season, but a decrease in mid-season WUE. Other studies have emphasized the relationships between drought characteristics 56 

and WUE (Lu and Zhuang, 2010; Huang et al., 2021; Wang et al., 2021; Li et al., 2022a). For instance, Lu and Zhuang (2010) 57 

identified a two-phase relationship between WUE and drought intensity, whereby WUE increased under moderate drought but 58 

declined under severe drought. The timing of drought occurrence also plays a crucial role in regulating both the direction and 59 

magnitude of WUE responses, as ecosystem physiological and physical processes exhibit varying sensitivities to water stress 60 

across different growth stages (Huang et al., 2021; Wang et al., 2021). Moreover, Li et al. (2022a) demonstrated that WUE 61 

increased as drought intensity weakened. Because WUE at different scales represents distinct carbon–water cycling processes, 62 

several studies have examined scale-dependent drought responses of WUE (Yang et al., 2025; Poppe Terán et al., 2023; Li et 63 

al., 2025). A recent pan-European analysis showed that ecosystem WUE predominantly responded negatively to drought, 64 

whereas intrinsic WUE (IWUE, defined as the ratio of GPP to canopy conductance) exhibited positive responses across more 65 

than 90% of Europe (Poppe Terán et al., 2023). Yang et al. (2025) examined the directional responses of multi-scale WUE to 66 

drought and found that during drought periods, transpiration WUE (TWUE, defined as GPP divided by transpiration) declined, 67 

ecosystem WUE showed no clear directional change, and underlying WUE (uWUE, defined as WUE multiplied by the square 68 

root of vapor pressure deficit) increased. Using a conceptual drought propagation framework, Li et al. (2025) further 69 
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demonstrated that although IWUE increased during drought, ecosystem WUE declined, indicating that stomatal regulation 70 

operates primarily at the leaf level and cannot fully offset drought-induced reductions in ecosystem-scale WUE. 71 

In recent years, increasing attention has been paid to characterizing temporal changes in vegetation responses to drought, 72 

with most studies reporting an increasing sensitivity of vegetation to drought (Jiao et al., 2021; Li et al., 2022b; Zhang et al., 73 

2022b). However, these studies were largely conducted at specific or fixed drought timescales, neglecting the cumulative and 74 

lagged effects of drought on vegetation dynamics (Wen et al., 2019), and primarily relied on single indicators such as gross 75 

primary productivity (GPP), which represents photosynthetic activity, or vegetation indices that reflect canopy greenness. In 76 

contrast, ecosystem WUE provides a more integrative measure of vegetation carbon–water trade-off strategies under water 77 

stress. It is widely acknowledged that drought not only impacts vegetation growth synchronously but also exhibits lagged and 78 

cumulative effects, where past drought conditions influence current vegetation growth (Huang et al., 2018; Kannenberg et al., 79 

2020). Vicente-Serrano et al. (2013) emphasized that vegetation responses to drought are inherently multi-timescale in nature. 80 

Longer timescales imply stronger memory effects, which may buffer the impacts of recent drought events and thereby reduce 81 

vegetation drought sensitivity (Seddon et al., 2016). In contrast, shorter timescales indicate more rapid vegetation responses 82 

to moisture deficits, reflecting higher drought sensitivity (Jiao et al., 2021). Despite the growing body of literature on WUE 83 

responses to drought, few studies have examined the coupling relationship between WUE and drought, particularly from a 84 

multi-timescale perspective. Therefore, incorporating multi-timescale drought effects into analyses of WUE–drought coupling 85 

is essential for a more comprehensive and accurate understanding of vegetation carbon–water trade-offs under drought stress. 86 

Therefore, we calculated the coupling relationship between WUE and SPEI across time scales ranging from 1 to 24 87 

months, including the maximum correlation coefficient (Rmax) and optimal lag time (Topt). Subsequently, we utilized Dynamic 88 

Global Vegetation Models from TRENDY project to quantify the contributions of CO2, climate change (CLI), and land-use 89 

change (LCC) to this coupling relationship. To further explore the impact of climate change, we employed the eXtreme 90 

Gradient Boosting (XGBoost) algorithm combined with SHapley Additive Explanations (SHAP) to identify both the relative 91 

importance and modes of influence of key hydrothermal factors in shaping the coupling relationship between WUE and 92 

drought. Finally, we employed Peter-Clark Momentary Conditional Independence Plus (PCMCI+) to uncover the complex 93 

causal network between hydrothermal factors, Rmax, and Topt. These findings are expected to enhance our understanding of the 94 

vulnerability of terrestrial ecosystems to drought and provides valuable insights for supporting ecosystem sustainability under 95 

climate change. 96 
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2. Data sources and processing 97 

2.1. GPP and ET data 98 

Three widely used GPP datasets were employed in this study: FLUXCOM GPP, GLASS GPP, and NIRv GPP. 99 

FLUXCOM GPP, which is derived from a machine learning-based integration of eddy covariance measurements and remote 100 

sensing data, offers global coverage with monthly temporal resolution and a spatial resolution of 0.5°. The GLASS GPP 101 

product, generated using a light use efficiency model in conjunction with AVHRR reflectance data, provides 8-day composite 102 

estimates with a spatial resolution of 0.5° from 1982 - 2018. To aggregate the 8-day time-scale GPP data into monthly values, 103 

the maximum value method was utilized. NIRv GPP, a recently developed satellite-derived index based on near-infrared 104 

reflectance of vegetation, features a monthly temporal resolution and a 0.05° spatial resolution, and exhibits a strong correlation 105 

with tower-based GPP measurements. These datasets collectively represent distinct methodological approaches to quantifying 106 

terrestrial carbon uptake while maintaining complementary spatiotemporal characteristics suitable for cross-comparison 107 

analysis. 108 

Three widely used ET datasets were analyzed in this study: ERA5 ET, GLASS ET, and GLEAM ET. ERA5 ET, produced 109 

by the European Centre for Medium-Range Weather Forecasts through atmospheric reanalysis modeling, provides monthly 110 

temporal resolution at a 0.25° spatial grid, incorporating land-atmosphere interaction processes. The AVHRR-based GLASS 111 

ET data employs the Bayesian Model Averaging method, which merges five process-based ET algorithms to improve ET 112 

estimation. It provides ET data spanning from 1981 to 2022 with an 8-day temporal resolution and a 0.5° spatial resolution. In 113 

GLEAM, multiplicative evaporative stress factors are applied to convert the estimated potential evapotranspiration values of 114 

three land components—bare soil, high-canopy, and short-canopy—into bare soil evaporation (Eb) and transpiration (Et). 115 

Interception loss (Ei) is calculated separately using an analytical model driven by precipitation and vegetation characteristics. 116 

The actual evapotranspiration is estimated as the sum of these three components. GLEAM ET provides data with a monthly 117 

temporal resolution and a 0.25° spatial resolution. These datasets collectively represent diverse retrieval approaches (reanalysis, 118 

hybrid model, and observation-driven algorithm) while maintaining spatially and temporally complementary resolutions, 119 

enabling robust intercomparison of terrestrial water flux patterns across multiple scales. 120 

Furthermore, WUE is calculated as the ratio of GPP to ET according to Equation (1): 121 

 𝑊𝑈𝐸 = 𝐺𝑃𝑃/𝐸𝑇 (1) 122 

In this study, based on these three independent sets of GPP products and three sets of ET products, we first computed 123 

WUE for each GPP-ET product combination. Then, we integrated the results of the nine WUE combinations using an 124 

arithmetic mean, ultimately generating a multi-product averaged WUE. This approach effectively reduces the impact of 125 

systematic errors from individual products, thereby enhancing the robustness of the estimated results (Wu et al., 2025). 126 
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2.2. FLUXNET data 127 

To validate the reliability of WUE data observed from multi-source remote sensing products, this study collected flux 128 

data from FLUXNET 2015 (https://fluxnet.org/). Representative long-term scale sites from different land use types were 129 

selected, and remote sensing products were compared with ground-based flux measurements. In the calculation of WUE, GPP 130 

can be directly obtained, while ET is computed using the Equation (2): 131 

 𝐸𝑇 =
𝐿𝐸

2.501−2.361×10−3×𝑇
 (2) 132 

where ET represents actual evapotranspiration (mm/month), LE (W/m²) represents latent heat flux, and T (°C) is the air 133 

temperature. 134 

To ensure the long-term reliability of WUE observations, we selected sites with continuous observation records of more 135 

than 5 years, all with valid data. Based on this criterion, we ultimately selected 85 flux stations for analysis at the monthly 136 

scale (Figure S1, Table S1). The validation results indicated a high correlation between satellite-based WUE and the flux-137 

based WUE (R = 0.62, Figure S2), implying that satellite-based WUE results were very robust. 138 

2.3. TRENDY v12 multi-model simulated GPP and ET data 139 

The latest version TRENDY v12 (Trends in Net Land-Atmosphere Carbon Exchange) is a collaborative initiative that 140 

integrates multiple Dynamic Global Vegetation Models (DGVMs) (https://blogs.exeter.ac.uk/trendy), aimed at quantifying 141 

global carbon budgets using forcing data on carbon dioxide concentrations, climate variables, and land use changes 142 

(Friedlingstein et al., 2023). All models utilize the same forcing data, with historical climate fields derived from the CRUv.4.07 143 

and CRU-JRA55 datasets, and global atmospheric CO2 concentrations obtained from a combination of ice core records and 144 

atmospheric observations. Each DGVM model runs four simulation scenarios: S0 (no changes in CO2, climate, or land cover), 145 

S1 (changes in CO2, static climate conditions, and static land use), S2 (changes in CO2 and climate conditions, static land use), 146 

and S3 (changes in CO2, climate conditions, and land use). 147 

2.4. SPEI data 148 

The SPEI is commonly used to assess climate drought conditions. By incorporating regional precipitation, potential 149 

evapotranspiration, and temperature, the SPEI quantifies the hydrological balance over a specific period and provides an 150 

objective method for comparing drought severity across different regions and time periods. It is of considerable importance 151 

for monitoring and predicting the impact of climate change on water resources and ecosystems. To ensure consistency with 152 

the climate data version used in the TRENDY model (CRU TS 4.07), we selected the SPEI version 2.9 dataset, which is 153 
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derived from CRU TS 4.07 (https://spei.csic.es/spei_database). This dataset has a spatial resolution of 0.5° × 0.5° and covers 154 

timescales ranging from 1 to 24 months (Beguería et al., 2014). 155 

2.5. Hydrothermal factors data 156 

Since CRU climate data (CRUts4.07 and CRU-JRA55) is widely used as climate forcing in DGVMs, we adopt the same 157 

climate factor data in this study to ensure consistency with these models. Specifically, we collected monthly mean temperature 158 

(Temp), precipitation (Pre), and actual vapor pressure data (𝑉ap) from the CRUts4.07 climate product, as well as downward 159 

shortwave radiation (Rad) and wind speed (WS) data from the CRU Japanese Reanalysis (CRU JAR) 160 

(https://crudata.uea.ac.uk/). Soil moisture data for the surface layer (0-10 cm, SMsurf) and root zone (10-100 cm, SMroot) 161 

were obtained from the Global Land Evaporation Amsterdam Model (GLEAM) (https://www.gleam.eu/). Additionally, the 162 

vapor pressure deficit (VPD) was calculated based on monthly average temperature and actual vapor pressure using the 163 

following Equation (Wang et al., 2025): 164 

 lg𝐸w = 𝐶1 × (1 −
𝑇1

𝑇
) + 𝐶2 × lg (

𝑇

𝑇1
) + 𝐶3 × [1 − 10

C6×(
𝑇

𝑇1
−1)

] + 𝐶4 × [10C7×(1−𝑇1/𝑇) − 1] + 𝐶5 (3) 165 

 VPD = 𝐸w − 𝑉ap (4) 166 

Where, 𝐸w represents the saturated vapor pressure. and 𝑉ap represents the actual vapor pressure. The constants used are 167 

as follows: 𝐶1 = 0.1079574 × 102 , 𝐶2 = −0.5028 × 10 , 𝐶3 = 0.150475 × 103 , 𝐶4 = 0.42873 × 10−3 , 𝐶5 = 0.78614 , 168 

𝐶6 = −0.82969 × 10, 𝐶7 = 0.476955 × 10. Additionally, 𝑇1 = 273.16K (the triple point temperature of water), and 𝑇 =169 

276.15 + t(K), where t is the air temperature in Celsius. 170 

2.6. Land use types data 171 

This study utilizes the annual HLDA+ Global Land Use Change dataset 172 

(https://doi.pangaea.de/10.1594/PANGAEA.921846), which includes six general land use/cover categories: urban areas, 173 

croplands, pastures/rangelands, Forest, unmanaged grasslands/shrublands, and sparse/bare soils. We excluded pixels with land 174 

use types of "urban areas" and "sparse/bare soils" to define permanent vegetation areas (Winkler et al., 2021), and all 175 

subsequent studies were conducted within these permanent vegetation areas (Figure S4). 176 

2.7. Aridity index data 177 

Using the third edition of the Global Aridity Index and Potential Evapotranspiration dataset (Global-AI-PET-v3, 178 

https://doi.org/10.6084/m9.figshare.7504448.v5), the globe is classified into four aridity gradients based on the following 179 

thresholds: AI < 0.2 as arid (AR), 0.2 ≤ AI < 0.5 as semi-arid (SAR), 0.5 ≤ AI < 0.65 as dry sub-humid (DSH), and AI > 0.65 180 

as humid (HU) (Figure S3). 181 
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2.8. Pre-processing 182 

All datasets were resampled to a spatial resolution of 0.25° using bilinear interpolation (Li et al., 2022c). Moreover, 183 

seasonal cycles and long-term trends in WUE and SPEI data may lead to spurious correlations (Boulton et al., 2022). Therefore, 184 

it is essential to perform deseasonalization and detrending on WUE and SPEI prior to subsequent calculations (Smith and 185 

Boers, 2023). This study employed the Seasonal and Trend decomposition using Loess (STL) method to decompose WUE and 186 

SPEI time series of each grid cell into the overall trend, seasonal component, and residual component, as implemented using 187 

the stl() function in the "stats" package in R (v4.2.1). The STL residual component, which represents the deseasonalized and 188 

detrended WUE and SPEI time series, were utilized for further analysis (Wang et al., 2023). 189 

3. Methods 190 

3.1. Calculation of coupling relationship between WUE and drought 191 

Vicente-Serrano et al. (2013) showed that Rmax and Topt are reliable indicators of the vegetation-drought coupling. The 192 

Topt, which reflects vegetation’s response to drought, is determined by identifying the time scale at which Rmax occurs between 193 

WUE and SPEI (Vicente‐Serrano et al., 2012). Specifically, for each pixel, the WUE time series (1-12 months) is compared 194 

to the corresponding SPEI series, spanning time scales from 1 to 24 months. The highest value among the 288 correlation 195 

coefficients (12 months × 24 time scales) is retained for each pixel, and the corresponding SPEI time scale is defined as Topt 196 

(Li et al., 2024). 197 

3.2. Trend analysis 198 

An 18-year moving window was employed to investigate the temporal variations in Rmax and Topt over the past four 199 

decades. Then, we utilized a combination of Theil-Sen slope estimation and the Mann-Kendall (MK) test to identify and 200 

analyze trends in long-term time series data. The Theil-Sen method was applied to calculate robust linear trends, with p-values 201 

that remain resilient to the influence of outliers (Gocic and Trajkovic, 2013). At the same time, the non-parametric MK test 202 

was employed to assess the significance of monotonic trends by evaluating their slope values (Ma et al., 2020). To ensure the 203 

robustness of the identified temporal trends, we further examined the trends of Rmax and Topt by varying the width of the moving 204 

window. 205 

3.3. Attribution analysis and causality diagnosis of WUE-drought coupling relationship 206 

We compared the coupling relationships derived from the simulation results of all DGVMs under the S3 scenario with 207 

those calculated from remote sensing observations, and ultimately retained only the seven models that were consistent with 208 
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the remote sensing results: E3SM, EDv3, JSBACH, JULES, LPJ-GUESS, SDGVM, and VISIT (Figure S6). We not only 209 

computed WUE for each individual model but also calculated the multi-model mean WUE under the S1, S2, and S3 scenarios. 210 

Furthermore, we derived Rmax and Topt to examine the relationship between WUE and SPEI. Considering that the coupling 211 

relationship under the S1 scenario can only represent the effects of CO2 changes, we also computed the coupling relationships 212 

for the (S2 - S1) and (S3 - S2) scenarios to quantify the contributions of CLI and LCC to the changes in Rmax and Topt. 213 

Machine learning models are capable of effectively capturing the nonlinear relationships between multidimensional 214 

predictors and target variables (Yan et al., 2025). With the advancement of interpretability techniques such as SHapley 215 

Additive Explanations (SHAP), machine learning has gradually evolved from a black-box paradigm into an explainable 216 

artificial intelligence framework. Therefore, to complement our understanding of CLI, this study selected a series of 217 

hydrothermal factors—including VPD, SMsurf, SMroot, Temp, Pre, WS, and Rad—and employed the XGBoost algorithm to 218 

quantify their respective influences on Rmax and Topt (Piao et al., 2020). To increase the sample size, all time-series data from 219 

each grid cell were extracted. The dataset was divided into training and testing subsets at a ratio of 80:20. Bayesian optimization 220 

combined with five-fold cross-validation was used for hyperparameter tuning, and model performance was evaluated using 221 

the mean coefficient of determination (R²) and root mean square error (RMSE) obtained through five-fold cross-validation 222 

(Figure S19). 223 

This study further employed the improved Peter-Clark Momentary Conditional Independence plus algorithm (PCMCI+) 224 

(Runge et al., 2019; Runge, 2020) to investigate the causal mechanisms between Rmax and Topt, and hydrothermal factors. This 225 

method introduced three key optimizations to the classical PCMCI framework: (1) enhancing traditional Granger causality, 226 

which focuses solely on lagged effects, by incorporating momentary causality detection; (2) adopting a mixed conditioning set 227 

strategy to improve computational efficiency in high-dimensional datasets; and (3) refining false discovery rate (FDR) 228 

correction methods to enhance the reliability of causal networks. Specifically, the analytical process comprised two 229 

interdependent stages. In the first stage, an adaptive PC algorithm was employed to simultaneously select variables and 230 

determine lag orders, utilizing an information entropy-based variable importance assessment to dynamically construct the 231 

"candidate causal set" for each target variable. In the second stage, an improved Momentary Conditional Independence (MCI) 232 

test was conducted, which not only considered traditional lagged causality (τ ≤ 5) but also incorporated momentary causality 233 

(τ = 0). Instead of the conventional ParCorr method, a Gaussian process-based nonlinear conditional independence test (GPDC) 234 

was applied, and p-values were computed through permutation testing (500 bootstrap iterations), with significance determined 235 

using an FDR-corrected threshold of p < 0.05. 236 
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4. Results 237 

4.1. Spatiotemporal Characteristics of Rmax and Topt 238 

Based on remote sensing observations and the TRENDY multi-model ensemble, we computed the Rmax and Topt trends 239 

between ecosystem WUE and drought (Figure 1). The results indicated that the Rmax derived from both datasets declined 240 

significantly at a rate of -0.0003/year (p<0.01), which was consistent with our observations under the 16-year and 20-year 241 

moving window analyses (Figure S5). Furthermore, the Topt calculated from remote sensing observations and the TRENDY 242 

multi-model ensemble increased at rates of 0.0155 months/year and 0.0222 months/year (p<0.01), respectively. Notably, the 243 

Rmax derived from the TRENDY multi-model ensemble were approximately 0.02 lower than those from remote sensing 244 

observations, whereas the Topt were about 0.5 months higher; however, both datasets exhibited nearly identical temporal trends. 245 

 246 
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Figure 1. Temporal trends of the Rmax and Topt between global WUE and SPEI calculated from (a) the remote sensing 247 

observations and (b) the TRENDY multi-model ensemble using an 18-year moving window. 248 

The spatial patterns of the multi-year mean values and trends of Rmax and Topt were generally consistent, although the Rmax 249 

derived from the TRENDY multi-model ensemble was smaller and the Topt was larger than those obtained from remote sensing 250 

observations (Figure 2). It was also noteworthy that the absolute values of the Rmax and Topt trends estimated from remote 251 

sensing observations were slightly larger than those derived from the TRENDY multi-model ensemble. Similar patterns were 252 

also observed in the 16-year and 20-year moving window analyses (Figures S7–S11). Specifically,  in the high-latitude regions 253 

of the Northern Hemisphere, the Rmax generally showed a decreasing trend, with the exception of the Chersky Mountains, the 254 

West Siberian Plain, and the North American Great Plains. Notably, the decrease was most pronounced in the Central Siberian 255 

Plateau. In contrast, the Southern Hemisphere exhibited more regions where the Rmax have increased, particularly in areas such 256 

as the Chad Basin, southern Africa, northern Australia, and the Amazon Basin, where the increasing rate was notably high. 257 

The Topt exhibited an opposite trend to the Rmax, showing a clear increase between 30°N and 60°N, while the remaining regions 258 

primarily exhibited a decreasing trend.  259 

From the perspectives of vegetation type and drought gradient, the mean values of Rmax and Topt showed relatively small 260 

differences, whereas their trends exhibited pronounced heterogeneity across these two dimensions (Figure 2c). Specifically, 261 

the mean Rmax varied little across drought gradients but differed among vegetation types, with Shrub showing higher mean 262 

values than other vegetation types, particularly Shrub in HR, which reached 0.54. The mean characteristics of Topt were 263 

consistent with those of Rmax, with the highest mean Topt observed in HR across drought gradients and among shrubs across 264 

vegetation types. In terms of the rate of change, Rmax showed an overall decreasing trend globally but increased in AR, with 265 

the highest growth rates observed in Forest and Shrub, at 0.0017/year and 0.0021/year, respectively. Across vegetation types, 266 

Rmax also tended to increase in Pasture. In contrast, the rate of change in Topt showed marked regional differences across drought 267 

gradients, with higher increasing rates in AR, reaching up to 0.1181 months/year in Pasture, while SH showed a decreasing 268 

trend at –0.0010 months/year. Across vegetation types, Topt increased more rapidly in Cropland and Pasture, whereas Forest 269 

displayed a decreasing trend, with the largest decline occurring in Forest within SAR at –0.0394 months/year. 270 
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 271 

Figure 2. Spatial distribution of the mean and change rates of Rmax and Topt calculated from (a) the remote sensing observations 272 

and (b) the TRENDY multi-model ensemble using an 18-year moving window, along with (c) statistical plots for different 273 

vegetation types and drought gradients. 274 
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4.2. Separation of the Driving Factors of the changes in Rmax and Topt 275 

Since the spatial distributions simulated by individual DGVM exhibited certain deviations (Figures S9–S11), this study 276 

adopted TRENDY multi-model ensemble to separate the effects of CO₂ fertilization, CLI, and LCC on Rmax and Topt. In addition, 277 

similar simulations were conducted using 16-year and 20-year moving windows, which showed high consistency with the 278 

results obtained from the 18-year moving window (Figures S12–S13). The results from the TRENDY multi-model ensemble 279 

indicated that the negative effect of CO2 on the Rmax and the positive effect on Topt were primarily concentrated in the high-280 

latitude regions of the Northern Hemisphere. However, the opposite contributions were observed in the Mississippi Plain, the 281 

Central Siberian Plateau and its eastern mountain ranges, as well as the southern edge of the Mongolian Plateau and the 282 

Qinghai-Tibet Plateau. In the Southern Hemisphere, CO2 exerted a predominantly positive effect on the Rmax and a negative 283 

effect on Topt, revealing an overall opposite spatial pattern. In comparison to CO2, the contributions of CLI and LCC were 284 

relatively smaller. The negative contribution of CLI to the Rmax was mainly distributed in the southern part of the East European 285 

Plain, the West Siberian Plain, and the Amazon Basin, while the negative contribution of LCC was primarily concentrated in 286 

the southern part of the East European Plain and the Chad Basin. Both factors showed an overall opposite spatial distribution 287 

pattern for their contributions to Topt relative to the Rmax (Figure 3). 288 

 289 
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Figure 3. The contributions of CO2, CLI, and LCC to the Rmax and Topt under an 18-year moving window. (The left and right 290 

columns represented the contributions of variables to the Rmax and Topt, respectively, with the contributions of CO2, CLI, and 291 

LCC shown from top to bottom.) 292 

At the global scale, the contribution of CO2 to the Rmax was approximately -5×10⁻⁴/year, while the contributions of LCC 293 

and CLI were approximately -0.5×10⁻⁴/year and -1.5×10⁻⁴/year, respectively. The contributions of CO2, LCC, and CLI to Topt 294 

were 2.3×10⁻² months/year, 0.2×10⁻² months/year, and -0.2×10⁻² months/year, respectively (Figure 4). The observations under 295 

the 16-year and 20-year moving window analyses also revealed similar phenomena (Figure S14 – Figure S15). Further analysis 296 

across vegetation types and drought gradients revealed that CO2 generally exerted a negative contribution to Rmax, with 297 

substantial variation among vegetation types. The strongest negative contribution occurred in Cropland, particularly in 298 

Cropland within AR (-1.3×10⁻³/year). Conversely, Forest and Shrub in AR and Pasture in HR exhibited relatively high positive 299 

contributions of 0.8×10⁻³/year, 1.2×10⁻³/year, and 1.3×10⁻³/year. In contrast, the contribution of LCC to Rmax was negligible, 300 

with an absolute magnitude less than 0.1×10⁻³/year. The contribution of CLI to Rmax was strongly dependent on drought 301 

gradients, with its negative effect gradually intensifying from AR to HR. For Topt, the contributions of LCC and CO₂ exhibited 302 

broadly consistent patterns across vegetation types and drought gradients. Across drought gradients, the largest contributions 303 

of CO₂ and LCC occurred in AR, while across vegetation types, their effects were much greater in cropland and pasture, with 304 

the maximum observed in pastures within AR, where the contributions of CO₂ and LCC reached 0.0815 months/year and 305 

0.0196 months/year, respectively. The contribution of CLI to Topt was predominantly negative in AR and SAR but positive in 306 

more humid regions (SH and HR). Specifically, the strongest negative contribution of CLI to Topt occurred in pastures within 307 

AR (-0.0196 months/year), whereas the strongest positive contribution was observed in pastures within SH. 308 

https://doi.org/10.5194/egusphere-2025-6195
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



15 

 

 309 

Figure 4. The contributions separated by DGVMs under an 18-year moving window, along with statistical plots for different 310 

vegetation types and drought gradients. 311 
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Based on the independent contributions of CO2, LCC and CLI, their spatially dominant regions were further identified 312 

(Figure 5). The results indicated that, for both Rmax and Topt, CO₂ dominated the largest area, followed by CLI, while LCC 313 

accounted for the smallest proportion. For Rmax, the regions dominated by negative CO₂ contributions accounted for 27.3% of 314 

the total area and were mainly distributed across the East European Plain, West Siberian Plain, Mongolian Plateau, Paraná 315 

Plateau, Congo Basin, East African Plateau, and the Australian Great Dividing Range. Regions dominated by positive CO₂ 316 

contributions covered a slightly smaller proportion (approximately 25.0%), mainly concentrated in the Central Siberian Plateau 317 

and its eastern mountains, the Katanga Plateau, the Karaganda Basin, the Adzhan Plateau, and the Brazilian Highlands and 318 

surrounding areas. Regions dominated by CLI accounted for 34.5% of the total area and were mainly distributed along the 319 

margins of the CO₂-dominated zones, whereas those dominated by LCC accounted for only 13.2%. For Topt, regions dominated 320 

by positive CO₂ contributions accounted for 38.2% of the total area and were concentrated between 30°N and 60°N. In contrast, 321 

regions dominated by negative CO₂ contributions accounted for 20.2% and were mainly distributed in high-elevation regions 322 

such as the Central Siberian Plateau, Qinghai–Tibet Plateau, and the Mississippi River Plateau. The regions dominated by CLI 323 

and LCC were relatively scattered. The results derived from the 16-year and 20-year moving window analyses also exhibited 324 

a similar distribution pattern (Figure S16 – Figure S17). 325 
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 326 

Figure 5. Spatial distribution of the dominant factors of CO2, LCC, and CLI on (a) the Rmax and (b) Topt under an 18-year 327 

moving window. 328 

4.3. The effects of hydrothermal factors on the WUE-drought coupled relationship 329 

Using XGBoost and SHAP, we quantified the contributions of hydrothermal factors to the coupling relationship between 330 

WUE and drought (Figure 6). From a global perspective, SMsurf was identified as the most important driving factor for both 331 

Rmax and Topt, yet it exhibited nearly opposite influence patterns. Specifically, the effect of SMsurf on Rmax displayed a unimodal 332 

pattern: it reduced Rmax when SMsurf was below 0.22m3/m3, promoted Rmax between 0.22m3/m3 and 0.44m3/m3, and peaked 333 

around 0.35m3/m3. SMsurf showed a significant nonlinear negative relationship with Topt: as SMsurf increased, its effect on 334 

Topt shifted from positive to negative at approximately 0.25 m3/m3. The effects of SMroot on Rmax and Topt were opposite to 335 

those of SMsurf, although the relative importance of SMroot was lower. Another key driving factor for both Rmax and Topt was 336 

Temp, ranking third and second in relative importance, respectively. Specifically, Temp promoted Rmax at temperatures below 337 
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5.01 °C, inhibited it between 5.01 °C and 18.38 °C with a local minimum near 12 °C, and again exerted a positive effect above 338 

18.38 °C. For Topt, Temp exerted predominantly negative effects below 1.66 °C and above 22.80 °C, while showing positive 339 

effects between these thresholds. Other hydrothermal factors also exhibited nonlinear patterns and threshold effects in their 340 

influences on Rmax and Topt. 341 

 342 

 343 

Figure 6. Global and local SHAP analyses of the contributions of hydrothermal factors to (a) Rmax and (b) Topt. Panels 1 344 

represent the global analysis, while panels 2–9 show the local SHAP analyses for Pre, Rad, SMroot, SMsurf, Temp, VPD and 345 

WS on Rmax and Topt. 346 

The relative importance rankings and influence mechanisms of hydrothermal factors on Rmax and Topt varied slightly across 347 

vegetation types and drought gradients (Figures S20–S27). In Cropland, VPD was the most important driver of Rmax, exhibiting 348 

a single-threshold effect: VPD exerted a negative influence when exceeding 1.13 hPa and a positive influence when below this 349 
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threshold. Rad was the dominant driver of Topt, showing two distinct thresholds: Rad promoted Topt below 145.69W/m2, 350 

inhibited it between 145.69 and 204.51W/m2, and promoted it again above 204.51W/m2, with a local SHAP maximum at 351 

204.51W/m2. For Forest, Temp was the most important factor for both Rmax and Topt. Temp reduced Rmax between 2.23 °C and 352 

18.65 °C, with the strongest inhibition near 10 °C, whereas it increased Topt between –0.99 °C and 22.00 °C, showing the 353 

strongest promotion around 10 °C. For Pasture, Pre and SMsurf were the most critical factors influencing Rmax and Topt, 354 

respectively. Pre decreased Rmax when below 438.46 mm but increased it above this value, while SMsurf promoted Topt below 355 

0.24 m3/m3 and inhibited it above. For Shrub, SMsurf was the most important driver for both Rmax and Topt with thresholds of 356 

0.23 m3/m3 and 0.20 m3/m3, respectively, showing opposite effects across the thresholds. 357 

Across drought gradients, Pre and SMsurf were the most important drivers of Rmax and Topt, respectively, in AR. The effect 358 

of Pre on Rmax shifted from negative to positive at 245.03 mm, while that of SMsurf on Topt changed from positive to negative 359 

at 0.12m3/m3. In SAR, Temp and Rad were the most critical drivers of Rmax and Topt, respectively. The influence of Temp on 360 

Rmax exhibited pronounced nonlinearity: Temp decreased Rmax below 16.91 °C (with a local minimum near 13 °C) but promoted 361 

Topt above 16.91 °C, showing a local maximum near 23 °C. Rad inhibited Topt below 206.65 W/m2 but promoted it above this 362 

threshold. In SH, VPD and Rad were the dominant drivers of Rmax and Topt, respectively; VPD increased Rmax when exceeding 363 

0.58 hPa, while lower VPD values reduced it, and the positive effects of Rad on Tₒₚₜ were concentrated between 598.44 and 364 

1472.70 W/m2. In HR, Temp was the most critical driver for both Rmax and Topt, with their partial dependence plots exhibiting 365 

nearly opposite patterns. 366 

The results derived from PCMCI+ revealed a complex causal network between hydrothermal factors, Rmax, and Topt 367 

(Figure 7). At the global scale, WS exhibited a negative causal relationship with Rmax, while Rmax, in turn, negatively influenced 368 

Pre, Rad, and Temp. Although many factors did not exert a direct causal effect on Rmax, they influenced it indirectly through 369 

various pathways. For instance, VPD affected Rmax indirectly via WS, while Rad influenced Temp, which subsequently 370 

impacted WS and ultimately affected Rmax. For Topt, Rad and WS exhibited direct negative and positive causal relationships, 371 

respectively. Conversely, Topt exerted a direct positive causal effect on Pre and a direct negative effect on Temp. Additionally, 372 

SMroot and SMsurf were causally linked to Topt, though the direction of their influence remained unclear. 373 

To further explore the causal network under different vegetation types and drought gradients, we conducted an in-depth 374 

statistical analysis, examining interactions within overlapping regions of vegetation type and drought gradient (Figure S28–375 

Figure S31). In terms of drought gradients, the causal network structures in AR and SAR were relatively simple. In AR, Rmax 376 

was directly influenced by Rad, while Topt showed little causal linkage with other hydrothermal factors. In SAR, Rmax was not 377 

directly affected by hydrothermal factors but exhibited direct causal relationships with VPD and WS. Meanwhile, Topt was 378 

positively influenced by Temp and Pre, negatively influenced by WS, and had an undefined negative causal relationship with 379 
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SMsurf. Conversely, the causal relationships in SH and HR were considerably more intricate. Beyond the complex interactions 380 

among hydrothermal factors and their indirect effects on Rmax and Topt, hydrothermal factors also directly influenced Rmax and 381 

Topt through multiple pathways. For example, in SH, both Pre and Rad exerted direct negative causal effects on Rmax, while 382 

Temp had a direct positive influence. From the perspective of vegetation types, the causal networks in Cropland, Pasture, and 383 

Forest were relatively complex, whereas Shrub exhibited a simpler structure. In Cropland, Rmax was directly and negatively 384 

influenced by Rad, while Topt was directly and positively affected by Rad but negatively impacted by SMroot and WS. In 385 

Pasture, Rmax was negatively influenced by Pre, while Topt was negatively affected by SMroot. In Forest, Rmax was negatively 386 

influenced by Rad, whereas Topt was negatively influenced by VPD and WS but positively affected by Pre and Temp. In Shrub, 387 

SMroot exerted a direct negative influence on Rmax, while Temp had a direct positive effect. Topt, on the other hand, was mainly 388 

influenced by Pre through a direct positive causal relationship and was negatively influenced by SMsurf and Temp. 389 
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 390 

Figure 7. Causal network diagram of hydrothermal factors, Rmax, and Topt across different vegetation types, drought gradients, 391 

and the global scale. 392 

5. Discussion 393 

5.1 Robustness of the results 394 

To ensure the robustness of the remotely sensed WUE observations, we averaged three sets of GPP and ET products and 395 

validated the results against data from 85 FLUXNET 2015 sites (Figure S1, Table S1). The results indicated a high consistency 396 

between the multi-product average WUE from remote sensing and the site data (R = 0.62, Figure S2). To confirm the alignment 397 

of the selected DGVMs with the remote sensing observations, we performed calculations for all models within TRENDY v12 398 
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and identified seven models whose trends under the S3 scenarios were consistent with the remote sensing observations. As 399 

shown in the Taylor diagram, the multi-model ensemble results exhibited high correlation with the remote sensing observations 400 

and lower standard deviation, supporting the credibility of the separated contributions of CO2, LCC, and CLI (Figure S6). To 401 

mitigate the impact of interannual variations on trend significance, all calculations were performed within an 18-year moving 402 

window. To test the robustness of the Rmax and Topt under different window choices, we repeated all calculations using 16-year 403 

and 20-year windows, which yielded similar conclusions (Figure S7-Figure S17). Therefore, we considered our results to be 404 

highly reliable. 405 

5.2 Spatiotemporal variation characteristics of the coupling relationship 406 

This study pioneers the identification of optimal time scale for WUE response to drought coupling, demonstrating 407 

significant spatiotemporal heterogeneity. Temporally, the optimal WUE-drought response scale exhibited an upward trend 408 

(Figure 1), indicating a delayed WUE response to drought and, consequently, an enhanced buffering capacity of vegetation 409 

against drought has been enhanced (Peters et al., 2018; Frank et al., 2015). This phenomenon likely stems from climate change-410 

driven drought intensification, compelling vegetation to utilize slow-response water sources like deep soil moisture or 411 

groundwater (Miguez-Macho and Fan, 2012). However, Tang et al. (2024) employed GPP as a proxy for vegetation and found 412 

that vegetation sensitivity to drought increased and its response time shortened, which appears to contradict our findings. 413 

However, that study focused only on single indicators such as GPP, which reflect vegetation photosynthesis, whereas WUE 414 

likely plays a more complex role in regulating water and carbon dynamics. Li et al. (2025) found, from the perspective of 415 

drought propagation, that stomata play a crucial role in regulating water use efficiency to resist drought. Therefore, it is 416 

reasonable to infer that under drought stress, stomatal behavior primarily buffers drought impacts by regulating 417 

evapotranspiration. In addition, differences in the definition of sensitivity, data sources, methods, research periods, and 418 

research areas might lead to different conclusions. Different types of droughts might also result in different outcomes. 419 

Therefore, our findings did not necessarily refute previous views. However, we firmly believe that considering the time scale 420 

in the response of WUE to drought is a crucial step in revealing the dynamic relationship between WUE and SPEI. 421 

Across drought gradients, the optimal time scale for WUE and SPEI in arid regions was significantly shorter than in 422 

humid regions. This phenomenon could be explained by the resource limitation hypothesis (Huxman et al., 2004) , which 423 

posited that in humid regions, plant growth was generally limited by light or nutrient availability, whereas in arid regions, it 424 

was primarily constrained by water scarcity (Maurer et al., 2020; Knapp et al., 2024). Larger Topt were mainly concentrated in 425 

humid, energy-limited regions, where drought conditions caused by insufficient precipitation were often accompanied by high 426 

temperatures and intense solar radiation, thereby enhancing the resistance of WUE to drought (Gentine et al., 2019; Walther 427 
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et al., 2019). For instance, Miller et al. (2023) reported a sustained increase in plant photosynthesis during spring droughts 428 

across most vegetated areas of the Northern Hemisphere. Similarly, during recent drought events such as those in Europe in 429 

2018 and 2022, several energy-limited ecosystems also exhibited enhanced plant activity (Bastos et al., 2020). Differences in 430 

vegetation adaptation strategies along drought gradients might also have led to distinct response times. Vegetation in arid 431 

regions optimized water use through stomatal dynamics, whereas humid ecosystems buffered drought effects via deep rooting 432 

systems and canopy shading (Klein et al., 2011). A shorter response time might indirectly indicate higher sensitivity (Vicente-433 

Serrano et al., 2013); thus, our findings also supported previous conclusions that vegetation in arid regions exhibited stronger 434 

drought sensitivity (De Keersmaecker et al., 2015; Seddon et al., 2016). However, we found that this pattern was shifting 435 

between arid and humid regions. Specifically, the optimal time scale for WUE and SPEI in arid regions showed the most rapid 436 

increase, whereas the rate of change in humid regions was much smaller or even declined. We attributed this discrepancy in 437 

the consideration of time scales. 438 

From the perspective of vegetation types, the response time of WUE to drought increased rapidly in Cropland and Pasture, 439 

increased slightly in Shrub, but decreased in Forest. This pattern might result from the stronger influence of human activities 440 

on Cropland and Pasture, where irrigation and fertilization altered the water and nutrient conditions of these ecosystems 441 

(Jaramillo et al., 2018). On the one hand, irrigation maintained adequate soil moisture at all times. On the other hand, sufficient 442 

nitrogen supply ensured high photosynthetic nitrogen-use efficiency in crop leaves, indicating that even under partial stomatal 443 

closure and limited intercellular CO₂ concentration, leaves were still able to efficiently utilize the available CO₂ for 444 

photosynthesis. In contrast, Shrub and Forest were mostly subject to natural conditions. The slight increase in Topt observed in 445 

Shrub might have reflected their conservative, isohydric water-use strategy (Yang et al., 2016). The decrease in Topt in Forest 446 

might have been attributed to continued transpiration under water stress, which persisted due to their extensive canopies and 447 

residual hydraulic function, thereby shortening the response time to drought (Novick et al., 2016). These findings collectively 448 

reveal vegetation-drought coupling as a nonlinear outcome of climate forcing, ecological adaptation, and anthropogenic 449 

intervention, necessitating multi-scale models and sustained monitoring to unravel critical thresholds (Reichstein et al., 2013). 450 

5.3. Influencing factors of coupling relationship 451 

TRENDY multi-model simulations identified CO₂ fertilization as the dominant driver weakening WUE-SPEI coupling 452 

(Figure 4). Elevated CO₂ enhanced WUE directly through stimulated photosynthesis and reduced stomatal conductance 453 

(Keenan et al., 2013) , thereby strengthening the resistance of WUE to drought. Land-use changes exert secondary but critical 454 

impacts, including tropical deforestation, forest degradation, and afforestation programs, all of which gradually altered global 455 

vegetation patterns. In addition, agricultural management practices such as irrigation, fertilization, and crop modification did 456 
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not change vegetation cover types but still influenced vegetation adaptability to environmental conditions. Chen et al. (2019) 457 

found that human land-use practices might have contributed to more than one-third of the global vegetation increase, 458 

particularly in extensive cropland regions—most notably in China (25%) and India (6.8%). Therefore, we reasonably inferred 459 

that LCC driven by human interventions enhanced ecosystem resilience to drought and other extreme events, particularly in 460 

croplands. This was manifested in our results as LCC contributed a negative effect in Rmax and a positive effect in Topt.  461 

Although TRENDY multi-model simulations indicated that the influence of climate change was minimal, this study 462 

employed XGBoost and SHAP to reveal how meteorological factors affected the WUE–SPEI coupling relationship. SMsurf 463 

was identified as the most important driving factor, exhibiting nearly opposite effects on Rmax and Topt and a significant 464 

threshold response (Figure 6). In fact, this remained closely associated with increased atmospheric CO₂. Previous studies 465 

suggested that although elevated atmospheric CO₂ could reduce plant water loss by decreasing stomatal conductance—thereby 466 

theoretically slowing soil moisture depletion (Gray et al., 2016) —the elevated CO₂ was accompanied by increased leaf 467 

temperature and accelerated evaporation from shallow soils, which offset this water-saving effect (Wilson et al., 1999), 468 

ultimately promoting soil moisture depletion(Kellner et al., 2019). As the direct “water reservoir” for vegetation, surface soil 469 

moisture limited plant water supply and reduced photosynthesis, thereby exerting a profound influence on the WUE–SPEI 470 

coupling relationship (Liu et al., 2020; Martínez-Vilalta et al., 2014). Along the drought gradient, precipitation was the most 471 

important factor influencing the WUE–SPEI coupling in arid regions, with SMsurf ranking third in importance. In contrast, in 472 

humid regions, temperature and radiation were the dominant factors, while SMsurf ranked fifth and sixth in importance for 473 

Rmax and Topt, respectively (Figure S23; Figure S26), consistent with previous findings. Vegetation in arid regions was typically 474 

water-limited, and precipitation, as its direct water source, played a crucial regulatory role in drought response (Li et al., 2022b). 475 

In contrast, in humid regions with sufficient water supply, vegetation responses to drought were primarily controlled by energy-476 

related factors such as temperature and radiation(Liu et al., 2025). Across vegetation types, the dominant factors influencing 477 

the WUE–SPEI coupling were more clearly defined in Forest and Shrub, being temperature and surface soil moisture, 478 

respectively, which were closely related to their rooting patterns and drought-resistance strategies (Yang et al., 2025). In 479 

contrast, the dominant factors in Pasture and Cropland were more complex, likely resulting from vegetation structural diversity 480 

and intensive human interventions(Liu et al., 2018). 481 

6. Conclusion 482 

Understanding the coupling relationship between WUE and drought is crucial for assessing the impact of drought on 483 

terrestrial ecosystem carbon-water cycles. To this end, we investigated the spatiotemporal patterns of the WUE-SPEI coupling 484 

relationship from 1982 to 2018 globally. Using the DGVMs, we separated the contributions of CO₂ fertilization, CLI, and LCC 485 
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to the changes in WUE-drought coupling relationship. Furthermore, the XGBoost combined with SHAP and PCMCI+ were 486 

employed to elucidate the mechanisms and influencing pathways of hydrothermal factors on the coupling relationship. Our 487 

key findings included the following: 488 

(1) Rmax decreased at a rate of -0.0003/year, while Topt increased at a rate of 0.0155 months/year, indicating the buffer 489 

capacity of WUE against drought was enhanced. The rates of change in Rmax and Topt varied substantially across drought 490 

gradients and vegetation types. Rmax increased most rapidly in Shrub within AR at 0.0021/year, whereas the largest decreases 491 

occurred in Shrub within SAR and Forest within SH, both at -0.0020/year. Topt increased most rapidly in Pasture within AR at 492 

0.1181 months/year, while it decreased most markedly in Forest within SAR at -0.0394 months/year. 493 

(2) CO₂ fertilization was identified as the primary cause for the weakening of the coupling relationship. SMsurf was 494 

identified as the most critical driver, exhibiting nearly opposite effects and significant threshold effects on Rmax and Topt. 495 

(3) At the global scale, WS exhibited a direct negative causal relationship with Rmax, while Rad and WS had direct negative 496 

and positive causal effects on Topt, respectively. The complex causal networks under different vegetation types and drought 497 

gradients were also revealed. 498 

Overall, our findings highlighted an enhanced resistance of WUE to drought, manifested as a reduced correlation and a 499 

delayed response time. Moreover, vegetation under different drought gradients gradually adjusted its water-use strategies to 500 

maintain WUE stability. These findings encourage a reassessment of the WUE–drought relationship, offering new insights to 501 

support the sustainable development of ecosystems under climate change. 502 
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