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16 Abstract: Ecosystem water use efficiency (WUE), defined as the ratio of carbon gain to water loss, is significantly affected
17 by drought. Elucidating the coupling relationship between WUE and drought is essential for understanding the carbon—water
18 trade-off strategies of vegetation under drought stress. Most existing studies mainly evaluated coupling relationship using
19 correlation coefficients or regression slopes. However, the optimal drought timescale governing WUE responses to drought
20 has not yet been systematically investigated. To fill these gaps, this study investigated the spatiotemporal patterns of the WUE—
21 drought coupling relationship (characterized by the maximum correlation coefficient, Ry, and optimal lag time, 7,,,) across
22 global terrestrial ecosystems from 1982 to 2018, and further explored the potential causal mechanisms. The results revealed a
23 delaying of the drought-response timescale of WUE, accompanied by a weakening in the WUE—drought correlation at the
24 optimal timescale, as evidenced by a decrease in Ryq at a rate of -0.0003/year and an increase in 7, at a rate of 0.0155
25 months/year, indicating a globally weakened coupling relationship. Moreover, pronounced heterogeneity in the changes of
26 coupling relationships changes was observed across different drought gradients and vegetation types. Attribution analysis
27 indicated that CO; fertilization was the primary factor contributing to the weakening of the coupling relationship. Surface soil
28 moisture (SMsurf) was the most critical hydrothermal driver, exhibiting nearly opposite effects and significant threshold effects
29 on Ryq and Ty Causality diagnosis was further employed to construct direct and indirect causal networks of hydrothermal
30 factors affecting R..x and T, across different vegetation types and drought gradients. This study highlights the weakened
31 coupling between WUE and drought, suggesting that vegetation's carbon-water trade-off is evolving toward drought adaptation,

32 which is crucial for understanding the adaptive strategies of vegetation in response to climate change.

33 Short summary:

34 Ecosystem water use efficiency exhibited a reduced correlation with drought and a delayed response timing from 1982 to 2018,
35 a pattern primarily driven by CO: fertilization. Surface soil moisture emerged as the dominant hydroclimatic driver, exerting
36 contrasting influences and exhibiting pronounced threshold effects. This study highlights the divergent vegetation adaptation

37 strategies across arid and humid regions, underscoring the need to reassess the water use efficiency—drought relationship.

38 Keywords:

39 Water Use Efficiency (WUE), Standardized Precipitation-Evapotranspiration Index (SPEI), Coupling relationship, Dynamic

40 Global Vegetation Models (DGVMs), Machine learning, Causal diagnosis
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41 1. Introduction

42 Ecosystem water use efficiency (WUE) refers to the ratio of carbon assimilation to ecosystem water evapotranspiration
43 (Beer et al., 2009). A high WUE indicates that an ecosystem can more effectively carry out photosynthesis and growth under
44 limited water resources (Wang et al., 2022). Therefore, the interactions between the carbon and water cycles within ecosystems
45 is often quantified using WUE (Xue et al., 2022).

46 Drought, as one of the major natural disturbances affecting ecosystems, plays a critical role in regulating carbon uptake
47 and transpiration. Drought can constrain vegetation growth (Jiao et al., 2021; Wu et al., 2025), and even trigger widespread
48 vegetation mortality, thereby disrupting terrestrial carbon balance (Reichstein et al., 2013; Schwalm et al., 2012). Previous
49 studies have investigated the impacts of drought on WUE from multiple perspectives. Some studies have focused on the effects
50 of drought events on WUE (Huang et al., 2017; Ma et al., 2019; Xie et al., 2016; Zhao et al., 2022). For example, Huang et al.
51 (2017) identified contrasting WUE responses to drought stress, with negative responses in arid ecosystems but positive
52 responses in humid ecosystems. Ma et al. (2019) found that in young Forest in northern China, drought reduced WUE in
53 summer but enhanced it in autumn. Xie et al. (2016) reported similar patterns, showing that drought during the leaf expansion
54 stage reduced WUE, whereas drought during the leaf discoloration stage increased WUE. In addition, Zhao et al. (2022), in
55 their study of alpine meadows on the Tibetan Plateau, observed that drought led to an increase in WUE in the early growing
56 season, but a decrease in mid-season WUE. Other studies have emphasized the relationships between drought characteristics
57 and WUE (Lu and Zhuang, 2010; Huang et al., 2021; Wang et al., 2021; Li et al., 2022a). For instance, Lu and Zhuang (2010)
58 identified a two-phase relationship between WUE and drought intensity, whereby WUE increased under moderate drought but
59 declined under severe drought. The timing of drought occurrence also plays a crucial role in regulating both the direction and
60  magnitude of WUE responses, as ecosystem physiological and physical processes exhibit varying sensitivities to water stress
61 across different growth stages (Huang et al., 2021; Wang et al., 2021). Moreover, Li et al. (2022a) demonstrated that WUE
62 increased as drought intensity weakened. Because WUE at different scales represents distinct carbon—water cycling processes,
63 several studies have examined scale-dependent drought responses of WUE (Yang et al., 2025; Poppe Teran et al., 2023; Li et
64 al., 2025). A recent pan-European analysis showed that ecosystem WUE predominantly responded negatively to drought,
65 whereas intrinsic WUE (IWUE, defined as the ratio of GPP to canopy conductance) exhibited positive responses across more
66 than 90% of Europe (Poppe Teran et al., 2023). Yang et al. (2025) examined the directional responses of multi-scale WUE to
67 drought and found that during drought periods, transpiration WUE (TWUE, defined as GPP divided by transpiration) declined,
68 ecosystem WUE showed no clear directional change, and underlying WUE (uWUE, defined as WUE multiplied by the square

69 root of vapor pressure deficit) increased. Using a conceptual drought propagation framework, Li et al. (2025) further
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70 demonstrated that although IWUE increased during drought, ecosystem WUE declined, indicating that stomatal regulation
71 operates primarily at the leaf level and cannot fully offset drought-induced reductions in ecosystem-scale WUE.

72 In recent years, increasing attention has been paid to characterizing temporal changes in vegetation responses to drought,
73 with most studies reporting an increasing sensitivity of vegetation to drought (Jiao et al., 2021; Li et al., 2022b; Zhang et al.,
74 2022b). However, these studies were largely conducted at specific or fixed drought timescales, neglecting the cumulative and
75 lagged effects of drought on vegetation dynamics (Wen et al., 2019), and primarily relied on single indicators such as gross
76 primary productivity (GPP), which represents photosynthetic activity, or vegetation indices that reflect canopy greenness. In
77 contrast, ecosystem WUE provides a more integrative measure of vegetation carbon—water trade-off strategies under water
78 stress. It is widely acknowledged that drought not only impacts vegetation growth synchronously but also exhibits lagged and
79 cumulative effects, where past drought conditions influence current vegetation growth (Huang et al., 2018; Kannenberg et al.,
80  2020). Vicente-Serrano et al. (2013) emphasized that vegetation responses to drought are inherently multi-timescale in nature.
81 Longer timescales imply stronger memory effects, which may buffer the impacts of recent drought events and thereby reduce
82 vegetation drought sensitivity (Seddon et al., 2016). In contrast, shorter timescales indicate more rapid vegetation responses
83 to moisture deficits, reflecting higher drought sensitivity (Jiao et al., 2021). Despite the growing body of literature on WUE
84 responses to drought, few studies have examined the coupling relationship between WUE and drought, particularly from a
85 multi-timescale perspective. Therefore, incorporating multi-timescale drought effects into analyses of WUE—drought coupling
86 is essential for a more comprehensive and accurate understanding of vegetation carbon—water trade-offs under drought stress.
87 Therefore, we calculated the coupling relationship between WUE and SPEI across time scales ranging from 1 to 24
88 months, including the maximum correlation coefficient (Ru.x) and optimal lag time (75,:). Subsequently, we utilized Dynamic
89 Global Vegetation Models from TRENDY project to quantify the contributions of CO», climate change (CLI), and land-use
90 change (LCC) to this coupling relationship. To further explore the impact of climate change, we employed the eXtreme
91 Gradient Boosting (XGBoost) algorithm combined with SHapley Additive Explanations (SHAP) to identify both the relative
92 importance and modes of influence of key hydrothermal factors in shaping the coupling relationship between WUE and
93 drought. Finally, we employed Peter-Clark Momentary Conditional Independence Plus (PCMCI+) to uncover the complex
94 causal network between hydrothermal factors, Rax, and 7. These findings are expected to enhance our understanding of the
95 vulnerability of terrestrial ecosystems to drought and provides valuable insights for supporting ecosystem sustainability under

96 climate change.
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97 2. Data sources and processing

98 2.1. GPP and ET data

99 Three widely used GPP datasets were employed in this study: FLUXCOM GPP, GLASS GPP, and NIRv GPP.
100 FLUXCOM GPP, which is derived from a machine learning-based integration of eddy covariance measurements and remote
101 sensing data, offers global coverage with monthly temporal resolution and a spatial resolution of 0.5°. The GLASS GPP
102 product, generated using a light use efficiency model in conjunction with AVHRR reflectance data, provides 8-day composite
103 estimates with a spatial resolution of 0.5° from 1982 - 2018. To aggregate the 8-day time-scale GPP data into monthly values,
104  the maximum value method was utilized. NIRv GPP, a recently developed satellite-derived index based on near-infrared
105 reflectance of vegetation, features a monthly temporal resolution and a 0.05° spatial resolution, and exhibits a strong correlation
106 with tower-based GPP measurements. These datasets collectively represent distinct methodological approaches to quantifying
107 terrestrial carbon uptake while maintaining complementary spatiotemporal characteristics suitable for cross-comparison
108 analysis.

109 Three widely used ET datasets were analyzed in this study: ERAS ET, GLASS ET, and GLEAM ET. ERAS ET, produced
110 by the European Centre for Medium-Range Weather Forecasts through atmospheric reanalysis modeling, provides monthly
111 temporal resolution at a 0.25° spatial grid, incorporating land-atmosphere interaction processes. The AVHRR-based GLASS
112 ET data employs the Bayesian Model Averaging method, which merges five process-based ET algorithms to improve ET
113 estimation. It provides ET data spanning from 1981 to 2022 with an 8-day temporal resolution and a 0.5° spatial resolution. In
114 GLEAM, multiplicative evaporative stress factors are applied to convert the estimated potential evapotranspiration values of
115 three land components—bare soil, high-canopy, and short-canopy—into bare soil evaporation (Eb) and transpiration (Et).
116 Interception loss (Ei) is calculated separately using an analytical model driven by precipitation and vegetation characteristics.
117 The actual evapotranspiration is estimated as the sum of these three components. GLEAM ET provides data with a monthly
118 temporal resolution and a 0.25° spatial resolution. These datasets collectively represent diverse retrieval approaches (reanalysis,
119 hybrid model, and observation-driven algorithm) while maintaining spatially and temporally complementary resolutions,

120 enabling robust intercomparison of terrestrial water flux patterns across multiple scales.

121 Furthermore, WUE is calculated as the ratio of GPP to ET according to Equation (1):
122 WUE = GPP/ET 1)
123 In this study, based on these three independent sets of GPP products and three sets of ET products, we first computed

124 WUE for each GPP-ET product combination. Then, we integrated the results of the nine WUE combinations using an
125 arithmetic mean, ultimately generating a multi-product averaged WUE. This approach effectively reduces the impact of

126 systematic errors from individual products, thereby enhancing the robustness of the estimated results (Wu et al., 2025).

5
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127 2.2. FLUXNET data

128 To validate the reliability of WUE data observed from multi-source remote sensing products, this study collected flux
129 data from FLUXNET 2015 (https://fluxnet.org/). Representative long-term scale sites from different land use types were
130 selected, and remote sensing products were compared with ground-based flux measurements. In the calculation of WUE, GPP

131 can be directly obtained, while ET is computed using the Equation (2):

LE

132 ET = o o 2
133 where ET represents actual evapotranspiration (mm/month), LE (W/m?) represents latent heat flux, and T (°C) is the air
134 temperature.

135 To ensure the long-term reliability of WUE observations, we selected sites with continuous observation records of more

136 than 5 years, all with valid data. Based on this criterion, we ultimately selected 85 flux stations for analysis at the monthly
137 scale (Figure S1, Table S1). The validation results indicated a high correlation between satellite-based WUE and the flux-

138 based WUE (R = 0.62, Figure S2), implying that satellite-based WUE results were very robust.

139 2.3. TRENDY v12 multi-model simulated GPP and ET data

140 The latest version TRENDY v12 (Trends in Net Land-Atmosphere Carbon Exchange) is a collaborative initiative that

141 integrates multiple Dynamic Global Vegetation Models (DGVMs) (https://blogs.exeter.ac.uk/trendy), aimed at quantifying

142 global carbon budgets using forcing data on carbon dioxide concentrations, climate variables, and land use changes
143 (Friedlingstein et al., 2023). All models utilize the same forcing data, with historical climate fields derived from the CRUv.4.07
144 and CRU-JRASS datasets, and global atmospheric CO; concentrations obtained from a combination of ice core records and
145 atmospheric observations. Each DGVM model runs four simulation scenarios: SO (no changes in CO», climate, or land cover),
146 S1 (changes in CO,, static climate conditions, and static land use), S2 (changes in CO> and climate conditions, static land use),

147 and S3 (changes in CO», climate conditions, and land use).

148 2.4. SPEI data

149 The SPEI is commonly used to assess climate drought conditions. By incorporating regional precipitation, potential
150 evapotranspiration, and temperature, the SPEI quantifies the hydrological balance over a specific period and provides an
151 objective method for comparing drought severity across different regions and time periods. It is of considerable importance
152 for monitoring and predicting the impact of climate change on water resources and ecosystems. To ensure consistency with

153 the climate data version used in the TRENDY model (CRU TS 4.07), we selected the SPEI version 2.9 dataset, which is
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154 derived from CRU TS 4.07 (https://spei.csic.es/spei_database). This dataset has a spatial resolution of 0.5° x 0.5° and covers

155 timescales ranging from 1 to 24 months (Begueria et al., 2014).

156 2.5. Hydrothermal factors data

157 Since CRU climate data (CRUts4.07 and CRU-JRAS5) is widely used as climate forcing in DGVMs, we adopt the same
158 climate factor data in this study to ensure consistency with these models. Specifically, we collected monthly mean temperature
159 (Temp), precipitation (Pre), and actual vapor pressure data (V,p) from the CRUts4.07 climate product, as well as downward
160 shortwave radiation (Rad) and wind speed (WS) data from the CRU Japanese Reanalysis (CRU JAR)

161 (https://crudata.uea.ac.uk/). Soil moisture data for the surface layer (0-10 cm, SMsurf) and root zone (10-100 cm, SMroot)

162 were obtained from the Global Land Evaporation Amsterdam Model (GLEAM) (https:/www.gleam.eu/). Additionally, the

163 vapor pressure deficit (VPD) was calculated based on monthly average temperature and actual vapor pressure using the

164 following Equation (Wang et al., 2025):

T
165 IgE = C; x (1-2) + ¢, x1g(£) + G X [1 - 10C5X(TT1)] + €y X [1057%A-T1/D) _ 1] 4 ¢, 3)
1
166 VPD = E,, — Vip O]
167 Where, E,, represents the saturated vapor pressure. and V,, represents the actual vapor pressure. The constants used are

168  as follows: C; = 0.1079574 x 102, C, = —0.5028 x 10, C; = 0.150475 x 103, C, = 0.42873 x 1073, C5 = 0.78614,
169 Ce = —0.82969 x 10, C; = 0.476955 x 10. Additionally, T; = 273.16K (the triple point temperature of water), and T =

170 276.15 + t(K), where t is the air temperature in Celsius.

171 2.6. Land use types data

172 This study utilizes the annual HLDA+ Global Land Use Change dataset

173 (https://doi.pangaea.de/10.1594/PANGAEA.921846), which includes six general land use/cover categories: urban areas,

174 croplands, pastures/rangelands, Forest, unmanaged grasslands/shrublands, and sparse/bare soils. We excluded pixels with land
175 use types of "urban areas" and "sparse/bare soils" to define permanent vegetation areas (Winkler et al., 2021), and all

176 subsequent studies were conducted within these permanent vegetation areas (Figure S4).

177 2.7. Aridity index data

178 Using the third edition of the Global Aridity Index and Potential Evapotranspiration dataset (Global-AI-PET-v3,
179 https://doi.org/10.6084/m9.figshare.7504448.v5), the globe is classified into four aridity gradients based on the following
180 thresholds: AI < 0.2 as arid (AR), 0.2 < AI < 0.5 as semi-arid (SAR), 0.5 < AI < 0.65 as dry sub-humid (DSH), and AI > 0.65

181 as humid (HU) (Figure S3).
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182 2.8. Pre-processing

183 All datasets were resampled to a spatial resolution of 0.25° using bilinear interpolation (Li et al., 2022¢). Moreover,
184 seasonal cycles and long-term trends in WUE and SPEI data may lead to spurious correlations (Boulton et al., 2022). Therefore,
185 it is essential to perform deseasonalization and detrending on WUE and SPEI prior to subsequent calculations (Smith and
186 Boers, 2023). This study employed the Seasonal and Trend decomposition using Loess (STL) method to decompose WUE and
187 SPEI time series of each grid cell into the overall trend, seasonal component, and residual component, as implemented using
188 the stl() function in the "stats" package in R (v4.2.1). The STL residual component, which represents the deseasonalized and

189 detrended WUE and SPEI time series, were utilized for further analysis (Wang et al., 2023).

190 3. Methods

191 3.1. Calculation of coupling relationship between WUE and drought

192 Vicente-Serrano et al. (2013) showed that R,.x and T, are reliable indicators of the vegetation-drought coupling. The
193 Topi» which reflects vegetation’s response to drought, is determined by identifying the time scale at which R, occurs between
194  WUE and SPEI (Vicente-Serrano et al., 2012). Specifically, for each pixel, the WUE time series (1-12 months) is compared
195 to the corresponding SPEI series, spanning time scales from 1 to 24 months. The highest value among the 288 correlation
196 coefficients (12 months x 24 time scales) is retained for each pixel, and the corresponding SPEI time scale is defined as 7o,

197 (Lietal., 2024).
198 3.2. Trend analysis

199 An 18-year moving window was employed to investigate the temporal variations in Rua and T,, over the past four
200 decades. Then, we utilized a combination of Theil-Sen slope estimation and the Mann-Kendall (MK) test to identify and
201 analyze trends in long-term time series data. The Theil-Sen method was applied to calculate robust linear trends, with p-values
202 that remain resilient to the influence of outliers (Gocic and Trajkovic, 2013). At the same time, the non-parametric MK test
203 was employed to assess the significance of monotonic trends by evaluating their slope values (Ma et al., 2020). To ensure the
204  robustness of the identified temporal trends, we further examined the trends of Rya and 7, by varying the width of the moving

205 window.
206 3.3. Attribution analysis and causality diagnosis of WUE-drought coupling relationship

207 We compared the coupling relationships derived from the simulation results of all DGVMs under the S3 scenario with

208 those calculated from remote sensing observations, and ultimately retained only the seven models that were consistent with
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209 the remote sensing results: E3SM, EDv3, JSBACH, JULES, LPJ-GUESS, SDGVM, and VISIT (Figure S6). We not only
210 computed WUE for each individual model but also calculated the multi-model mean WUE under the S1, S2, and S3 scenarios.
211 Furthermore, we derived R, and T,y to examine the relationship between WUE and SPEI. Considering that the coupling
212 relationship under the S1 scenario can only represent the effects of CO; changes, we also computed the coupling relationships
213 for the (S2 - S1) and (S3 - S2) scenarios to quantify the contributions of CLI and LCC to the changes in Ry and Top.

214 Machine learning models are capable of effectively capturing the nonlinear relationships between multidimensional
215 predictors and target variables (Yan et al., 2025). With the advancement of interpretability techniques such as SHapley
216  Additive Explanations (SHAP), machine learning has gradually evolved from a black-box paradigm into an explainable
217 artificial intelligence framework. Therefore, to complement our understanding of CLI, this study selected a series of
218 hydrothermal factors—including VPD, SMsurf, SMroot, Temp, Pre, WS, and Rad—and employed the XGBoost algorithm to
219 quantify their respective influences on R, and T, (Piao et al., 2020). To increase the sample size, all time-series data from
220 each grid cell were extracted. The dataset was divided into training and testing subsets at a ratio of 80:20. Bayesian optimization
221 combined with five-fold cross-validation was used for hyperparameter tuning, and model performance was evaluated using
222 the mean coefficient of determination (R?) and root mean square error (RMSE) obtained through five-fold cross-validation
223 (Figure S19).

224 This study further employed the improved Peter-Clark Momentary Conditional Independence plus algorithm (PCMCI+)
225 (Runge et al., 2019; Runge, 2020) to investigate the causal mechanisms between Ry and 7y, and hydrothermal factors. This
226  method introduced three key optimizations to the classical PCMCI framework: (1) enhancing traditional Granger causality,
227 which focuses solely on lagged effects, by incorporating momentary causality detection; (2) adopting a mixed conditioning set
228 strategy to improve computational efficiency in high-dimensional datasets; and (3) refining false discovery rate (FDR)
229 correction methods to enhance the reliability of causal networks. Specifically, the analytical process comprised two
230 interdependent stages. In the first stage, an adaptive PC algorithm was employed to simultaneously select variables and
231 determine lag orders, utilizing an information entropy-based variable importance assessment to dynamically construct the
232 "candidate causal set" for each target variable. In the second stage, an improved Momentary Conditional Independence (MCI)
233 test was conducted, which not only considered traditional lagged causality (t < 5) but also incorporated momentary causality
234 (t=0). Instead of the conventional ParCorr method, a Gaussian process-based nonlinear conditional independence test (GPDC)
235 was applied, and p-values were computed through permutation testing (500 bootstrap iterations), with significance determined

236 using an FDR-corrected threshold of p < 0.05.
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237 4. Results

238  4.1. Spatiotemporal Characteristics of Ruac and Tope

239 Based on remote sensing observations and the TRENDY multi-model ensemble, we computed the Ryac and Ty, trends
240  between ecosystem WUE and drought (Figure 1). The results indicated that the R, derived from both datasets declined
241 significantly at a rate of -0.0003/year (p<0.01), which was consistent with our observations under the 16-year and 20-year
242 moving window analyses (Figure S5). Furthermore, the 7, calculated from remote sensing observations and the TRENDY
243 multi-model ensemble increased at rates of 0.0155 months/year and 0.0222 months/year (p<0.01), respectively. Notably, the
244 Ry derived from the TRENDY multi-model ensemble were approximately 0.02 lower than those from remote sensing

245 observations, whereas the 7,,; were about 0.5 months higher; however, both datasets exhibited nearly identical temporal trends.
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247 Figure 1. Temporal trends of the R and T,, between global WUE and SPEI calculated from (a) the remote sensing
248 observations and (b) the TRENDY multi-model ensemble using an 18-year moving window.

249 The spatial patterns of the multi-year mean values and trends of R« and T, were generally consistent, although the Rax
250 derived from the TRENDY multi-model ensemble was smaller and the 7, was larger than those obtained from remote sensing
251 observations (Figure 2). It was also noteworthy that the absolute values of the Rya. and T, trends estimated from remote
252 sensing observations were slightly larger than those derived from the TRENDY multi-model ensemble. Similar patterns were
253 also observed in the 16-year and 20-year moving window analyses (Figures S7T-S11). Specifically, in the high-latitude regions
254 of the Northern Hemisphere, the R... generally showed a decreasing trend, with the exception of the Chersky Mountains, the
255 West Siberian Plain, and the North American Great Plains. Notably, the decrease was most pronounced in the Central Siberian
256 Plateau. In contrast, the Southern Hemisphere exhibited more regions where the R, have increased, particularly in areas such
257 as the Chad Basin, southern Africa, northern Australia, and the Amazon Basin, where the increasing rate was notably high.
258 The T,y exhibited an opposite trend to the Rya, Showing a clear increase between 30°N and 60°N, while the remaining regions
259 primarily exhibited a decreasing trend.

260 From the perspectives of vegetation type and drought gradient, the mean values of R and 7, showed relatively small
261 differences, whereas their trends exhibited pronounced heterogeneity across these two dimensions (Figure 2¢). Specifically,
262 the mean R varied little across drought gradients but differed among vegetation types, with Shrub showing higher mean
263 values than other vegetation types, particularly Shrub in HR, which reached 0.54. The mean characteristics of 7,, were
264 consistent with those of Ryuar, with the highest mean 7., observed in HR across drought gradients and among shrubs across
265  vegetation types. In terms of the rate of change, Ry showed an overall decreasing trend globally but increased in AR, with
266  the highest growth rates observed in Forest and Shrub, at 0.0017/year and 0.0021/year, respectively. Across vegetation types,
267  Ruaxalso tended to increase in Pasture. In contrast, the rate of change in 7¢,; showed marked regional differences across drought
268 gradients, with higher increasing rates in AR, reaching up to 0.1181 months/year in Pasture, while SH showed a decreasing
269 trend at —0.0010 months/year. Across vegetation types, 7o, increased more rapidly in Cropland and Pasture, whereas Forest

270 displayed a decreasing trend, with the largest decline occurring in Forest within SAR at —0.0394 months/year.

11
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272 Figure 2. Spatial distribution of the mean and change rates of R and Ty, calculated from (a) the remote sensing observations
273 and (b) the TRENDY multi-model ensemble using an 18-year moving window, along with (c) statistical plots for different

274  vegetation types and drought gradients.
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275 4.2. Separation of the Driving Factors of the changes in Ruax and Topr

276 Since the spatial distributions simulated by individual DGVM exhibited certain deviations (Figures S9-S11), this study
277 adopted TRENDY multi-model ensemble to separate the effects of CO: fertilization, CLI, and LCC on Ryua and T, In addition,
278 similar simulations were conducted using 16-year and 20-year moving windows, which showed high consistency with the
279 results obtained from the 18-year moving window (Figures S12—S13). The results from the TRENDY multi-model ensemble
280 indicated that the negative effect of CO; on the Rya and the positive effect on 7., were primarily concentrated in the high-
281 latitude regions of the Northern Hemisphere. However, the opposite contributions were observed in the Mississippi Plain, the
282 Central Siberian Plateau and its eastern mountain ranges, as well as the southern edge of the Mongolian Plateau and the
283 Qinghai-Tibet Plateau. In the Southern Hemisphere, CO, exerted a predominantly positive effect on the Ryq and a negative
284 effect on T,,, revealing an overall opposite spatial pattern. In comparison to CO,, the contributions of CLI and LCC were
285 relatively smaller. The negative contribution of CLI to the R« was mainly distributed in the southern part of the East European
286 Plain, the West Siberian Plain, and the Amazon Basin, while the negative contribution of LCC was primarily concentrated in
287 the southern part of the East European Plain and the Chad Basin. Both factors showed an overall opposite spatial distribution

288 pattern for their contributions to 7, relative to the Ry.x (Figure 3).

001 -0.005 [ 0.005 001 02 0.1 [ 0.1 02

289
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290 Figure 3. The contributions of CO,, CLI, and LCC to the R, and T, under an 18-year moving window. (The left and right
291 columns represented the contributions of variables to the Ruax and Ty, respectively, with the contributions of CO,, CLI, and
292 LCC shown from top to bottom.)

293 At the global scale, the contribution of CO; to the R, was approximately -5x10~*/year, while the contributions of LCC
294 and CLI were approximately -0.5x10#/year and -1.5x10 */year, respectively. The contributions of CO,, LCC, and CLI to T,
295 were 2.3x1072 months/year, 0.2x1072 months/year, and -0.2x1072 months/year, respectively (Figure 4). The observations under
296  the 16-year and 20-year moving window analyses also revealed similar phenomena (Figure S14 — Figure S15). Further analysis
297 across vegetation types and drought gradients revealed that CO, generally exerted a negative contribution to Ryuax, With
298 substantial variation among vegetation types. The strongest negative contribution occurred in Cropland, particularly in
299 Cropland within AR (-1.3x1073/year). Conversely, Forest and Shrub in AR and Pasture in HR exhibited relatively high positive
300 contributions of 0.8x1073/year, 1.2x103/year, and 1.3x10%/year. In contrast, the contribution of LCC to R, was negligible,
301 with an absolute magnitude less than 0.1x1073/year. The contribution of CLI to R,... was strongly dependent on drought
302 gradients, with its negative effect gradually intensifying from AR to HR. For T, the contributions of LCC and CO: exhibited
303 broadly consistent patterns across vegetation types and drought gradients. Across drought gradients, the largest contributions
304 0of CO: and LCC occurred in AR, while across vegetation types, their effects were much greater in cropland and pasture, with
305 the maximum observed in pastures within AR, where the contributions of CO. and LCC reached 0.0815 months/year and
306 0.0196 months/year, respectively. The contribution of CLI to 7y, was predominantly negative in AR and SAR but positive in
307 more humid regions (SH and HR). Specifically, the strongest negative contribution of CLI to 7y, occurred in pastures within

308 AR (-0.0196 months/year), whereas the strongest positive contribution was observed in pastures within SH.
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310  Figure 4. The contributions separated by DGVMs under an 18-year moving window, along with statistical plots for different

311 vegetation types and drought gradients.
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312 Based on the independent contributions of CO,, LCC and CLI, their spatially dominant regions were further identified
313 (Figure 5). The results indicated that, for both Ry and Ty, CO2 dominated the largest area, followed by CLI, while LCC
314 accounted for the smallest proportion. For Ry, the regions dominated by negative CO: contributions accounted for 27.3% of
315 the total area and were mainly distributed across the East European Plain, West Siberian Plain, Mongolian Plateau, Parana
316  Plateau, Congo Basin, East African Plateau, and the Australian Great Dividing Range. Regions dominated by positive CO:
317 contributions covered a slightly smaller proportion (approximately 25.0%), mainly concentrated in the Central Siberian Plateau
318 and its eastern mountains, the Katanga Plateau, the Karaganda Basin, the Adzhan Plateau, and the Brazilian Highlands and
319 surrounding areas. Regions dominated by CLI accounted for 34.5% of the total area and were mainly distributed along the
320  margins of the CO:-dominated zones, whereas those dominated by LCC accounted for only 13.2%. For Ty, regions dominated
321 by positive CO: contributions accounted for 38.2% of the total area and were concentrated between 30°N and 60°N. In contrast,
322 regions dominated by negative CO: contributions accounted for 20.2% and were mainly distributed in high-elevation regions
323 such as the Central Siberian Plateau, Qinghai—Tibet Plateau, and the Mississippi River Plateau. The regions dominated by CLI
324 and LCC were relatively scattered. The results derived from the 16-year and 20-year moving window analyses also exhibited

325 a similar distribution pattern (Figure S16 — Figure S17).
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327 Figure 5. Spatial distribution of the dominant factors of CO,, LCC, and CLI on (a) the Rya and (b) 7oy under an 18-year

328 moving window.

329 4.3. The effects of hydrothermal factors on the WUE-drought coupled relationship

330 Using XGBoost and SHAP, we quantified the contributions of hydrothermal factors to the coupling relationship between
331 WUE and drought (Figure 6). From a global perspective, SMsurf was identified as the most important driving factor for both
332 Ry and Ty, yet it exhibited nearly opposite influence patterns. Specifically, the effect of SMsurf on R displayed a unimodal
333 pattern: it reduced Ry when SMsurf was below 0.22m?/m?, promoted Ryuqx between 0.22m?*/m? and 0.44m*/m?, and peaked
334 around 0.35m?/m3. SMsurf showed a significant nonlinear negative relationship with T,,: as SMsurf increased, its effect on
335 Top shifted from positive to negative at approximately 0.25 m3/m>. The effects of SMroot on Ryua. and T,y were opposite to
336 those of SMsurf, although the relative importance of SMroot was lower. Another key driving factor for both Ry and 7o, was

337 Temp, ranking third and second in relative importance, respectively. Specifically, Temp promoted Ry at temperatures below
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349

5.01 °C, inhibited it between 5.01 °C and 18.38 °C with a local minimum near 12 °C, and again exerted a positive effect above
18.38 °C. For T,,r, Temp exerted predominantly negative effects below 1.66 °C and above 22.80 °C, while showing positive
effects between these thresholds. Other hydrothermal factors also exhibited nonlinear patterns and threshold effects in their

influences on Ryax and Typr.
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Figure 6. Global and local SHAP analyses of the contributions of hydrothermal factors to (a) Rua and (b) 7, Panels 1
represent the global analysis, while panels 2—9 show the local SHAP analyses for Pre, Rad, SMroot, SMsurf, Temp, VPD and
WS on Ryax and Topr.

The relative importance rankings and influence mechanisms of hydrothermal factors on Ry« and Ty, varied slightly across
vegetation types and drought gradients (Figures S20—-S27). In Cropland, VPD was the most important driver of Ryax, exhibiting

a single-threshold effect: VPD exerted a negative influence when exceeding 1.13 hPa and a positive influence when below this

18



https://doi.org/10.5194/egusphere-2025-6195
Preprint. Discussion started: 14 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

350 threshold. Rad was the dominant driver of Ty,, showing two distinct thresholds: Rad promoted 7, below 145.69W/m?,
351 inhibited it between 145.69 and 204.51W/m?, and promoted it again above 204.51W/m?, with a local SHAP maximum at
352 204.51W/m?. For Forest, Temp was the most important factor for both Ry and T,,,. Temp reduced Ryx between 2.23 °C and
353 18.65 °C, with the strongest inhibition near 10 °C, whereas it increased 7,, between —0.99 °C and 22.00 °C, showing the
354  strongest promotion around 10 °C. For Pasture, Pre and SMsurf were the most critical factors influencing R and Top,
355 respectively. Pre decreased Ru.x when below 438.46 mm but increased it above this value, while SMsurf promoted 7, below
356 0.24 m*/m? and inhibited it above. For Shrub, SMsurf was the most important driver for both Ry and T, with thresholds of
357  0.23 m*m? and 0.20 m3/m?, respectively, showing opposite effects across the thresholds.

358 Across drought gradients, Pre and SMsurf were the most important drivers of Ru. and 7o, respectively, in AR. The effect
359 of Pre on R, shifted from negative to positive at 245.03 mm, while that of SMsurf on 7, changed from positive to negative
360 at 0.12m*m?>. In SAR, Temp and Rad were the most critical drivers of Ry and T, respectively. The influence of Temp on
361 Ryax exhibited pronounced nonlinearity: Temp decreased Ryuax below 16.91 °C (with a local minimum near 13 °C) but promoted
362 Topr above 16.91 °C, showing a local maximum near 23 °C. Rad inhibited 7, below 206.65 W/m? but promoted it above this
363 threshold. In SH, VPD and Rad were the dominant drivers of Ryq and Ty, respectively; VPD increased Ry when exceeding
364 0.58 hPa, while lower VPD values reduced it, and the positive effects of Rad on T,y were concentrated between 598.44 and
365 1472.70 W/m?. In HR, Temp was the most critical driver for both R, and Ty, with their partial dependence plots exhibiting
366 nearly opposite patterns.

367 The results derived from PCMCI+ revealed a complex causal network between hydrothermal factors, Ruax, and T,p
368 (Figure 7). At the global scale, WS exhibited a negative causal relationship with R, While Ry, in turn, negatively influenced
369  Pre, Rad, and Temp. Although many factors did not exert a direct causal effect on R4, they influenced it indirectly through
370  various pathways. For instance, VPD affected Ry indirectly via WS, while Rad influenced Temp, which subsequently
371 impacted WS and ultimately affected Ry For T,,,, Rad and WS exhibited direct negative and positive causal relationships,
372 respectively. Conversely, T, exerted a direct positive causal effect on Pre and a direct negative effect on Temp. Additionally,
373 SMroot and SMsurf were causally linked to 7, though the direction of their influence remained unclear.

374 To further explore the causal network under different vegetation types and drought gradients, we conducted an in-depth
375 statistical analysis, examining interactions within overlapping regions of vegetation type and drought gradient (Figure S28—
376 Figure S31). In terms of drought gradients, the causal network structures in AR and SAR were relatively simple. In AR, Ryax
377 was directly influenced by Rad, while 7, showed little causal linkage with other hydrothermal factors. In SAR, Ry Was not
378 directly affected by hydrothermal factors but exhibited direct causal relationships with VPD and WS. Meanwhile, 7,,; was
379 positively influenced by Temp and Pre, negatively influenced by WS, and had an undefined negative causal relationship with
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380 SMsurf. Conversely, the causal relationships in SH and HR were considerably more intricate. Beyond the complex interactions
381 among hydrothermal factors and their indirect effects on Ryq and 7., hydrothermal factors also directly influenced R,u.x and
382 T,p: through multiple pathways. For example, in SH, both Pre and Rad exerted direct negative causal effects on Ry, while
383 Temp had a direct positive influence. From the perspective of vegetation types, the causal networks in Cropland, Pasture, and
384  Forest were relatively complex, whereas Shrub exhibited a simpler structure. In Cropland, R, was directly and negatively
385 influenced by Rad, while 7,, was directly and positively affected by Rad but negatively impacted by SMroot and WS. In
386 Pasture, R, Was negatively influenced by Pre, while 7,,, was negatively affected by SMroot. In Forest, R,..x was negatively
387 influenced by Rad, whereas T, was negatively influenced by VPD and WS but positively affected by Pre and Temp. In Shrub,
388 SMroot exerted a direct negative influence on Ryua, while Temp had a direct positive effect. 7., on the other hand, was mainly

389 influenced by Pre through a direct positive causal relationship and was negatively influenced by SMsurf and Temp.
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391 Figure 7. Causal network diagram of hydrothermal factors, Ry.ax, and T, across different vegetation types, drought gradients,

392 and the global scale.

393 5. Discussion

394 5.1 Robustness of the results

395 To ensure the robustness of the remotely sensed WUE observations, we averaged three sets of GPP and ET products and
396  validated the results against data from 85 FLUXNET 2015 sites (Figure S1, Table S1). The results indicated a high consistency
397  between the multi-product average WUE from remote sensing and the site data (R = 0.62, Figure S2). To confirm the alignment

398 of the selected DGVMs with the remote sensing observations, we performed calculations for all models within TRENDY v12
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399 and identified seven models whose trends under the S3 scenarios were consistent with the remote sensing observations. As
400 shown in the Taylor diagram, the multi-model ensemble results exhibited high correlation with the remote sensing observations
401 and lower standard deviation, supporting the credibility of the separated contributions of CO,, LCC, and CLI (Figure S6). To
402 mitigate the impact of interannual variations on trend significance, all calculations were performed within an 18-year moving
403  window. To test the robustness of the R,..x and T, under different window choices, we repeated all calculations using 16-year
404 and 20-year windows, which yielded similar conclusions (Figure S7-Figure S17). Therefore, we considered our results to be

405 highly reliable.
406 5.2 Spatiotemporal variation characteristics of the coupling relationship

407 This study pioneers the identification of optimal time scale for WUE response to drought coupling, demonstrating
408 significant spatiotemporal heterogeneity. Temporally, the optimal WUE-drought response scale exhibited an upward trend
409 (Figure 1), indicating a delayed WUE response to drought and, consequently, an enhanced buffering capacity of vegetation
410 against drought has been enhanced (Peters et al., 2018; Frank et al., 2015). This phenomenon likely stems from climate change-
411 driven drought intensification, compelling vegetation to utilize slow-response water sources like deep soil moisture or
412 groundwater (Miguez-Macho and Fan, 2012). However, Tang et al. (2024) employed GPP as a proxy for vegetation and found
413 that vegetation sensitivity to drought increased and its response time shortened, which appears to contradict our findings.
414  However, that study focused only on single indicators such as GPP, which reflect vegetation photosynthesis, whereas WUE
415 likely plays a more complex role in regulating water and carbon dynamics. Li et al. (2025) found, from the perspective of
416 drought propagation, that stomata play a crucial role in regulating water use efficiency to resist drought. Therefore, it is
417 reasonable to infer that under drought stress, stomatal behavior primarily buffers drought impacts by regulating
418 evapotranspiration. In addition, differences in the definition of sensitivity, data sources, methods, research periods, and
419 research areas might lead to different conclusions. Different types of droughts might also result in different outcomes.
420 Therefore, our findings did not necessarily refute previous views. However, we firmly believe that considering the time scale
421 in the response of WUE to drought is a crucial step in revealing the dynamic relationship between WUE and SPEIL

422 Across drought gradients, the optimal time scale for WUE and SPEI in arid regions was significantly shorter than in
423 humid regions. This phenomenon could be explained by the resource limitation hypothesis (Huxman et al., 2004) , which
424 posited that in humid regions, plant growth was generally limited by light or nutrient availability, whereas in arid regions, it
425 was primarily constrained by water scarcity (Maurer et al., 2020; Knapp et al., 2024). Larger 7,,; were mainly concentrated in
426  humid, energy-limited regions, where drought conditions caused by insufficient precipitation were often accompanied by high

427 temperatures and intense solar radiation, thereby enhancing the resistance of WUE to drought (Gentine et al., 2019; Walther
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428 et al., 2019). For instance, Miller et al. (2023) reported a sustained increase in plant photosynthesis during spring droughts
429 across most vegetated areas of the Northern Hemisphere. Similarly, during recent drought events such as those in Europe in
430 2018 and 2022, several energy-limited ecosystems also exhibited enhanced plant activity (Bastos et al., 2020). Differences in
431 vegetation adaptation strategies along drought gradients might also have led to distinct response times. Vegetation in arid
432 regions optimized water use through stomatal dynamics, whereas humid ecosystems buffered drought effects via deep rooting
433 systems and canopy shading (Klein et al., 2011). A shorter response time might indirectly indicate higher sensitivity (Vicente-
434 Serrano et al., 2013); thus, our findings also supported previous conclusions that vegetation in arid regions exhibited stronger
435 drought sensitivity (De Keersmaecker et al., 2015; Seddon et al., 2016). However, we found that this pattern was shifting
436 between arid and humid regions. Specifically, the optimal time scale for WUE and SPEI in arid regions showed the most rapid
437 increase, whereas the rate of change in humid regions was much smaller or even declined. We attributed this discrepancy in
438 the consideration of time scales.

439 From the perspective of vegetation types, the response time of WUE to drought increased rapidly in Cropland and Pasture,
440 increased slightly in Shrub, but decreased in Forest. This pattern might result from the stronger influence of human activities
441 on Cropland and Pasture, where irrigation and fertilization altered the water and nutrient conditions of these ecosystems
442 (Jaramillo et al., 2018). On the one hand, irrigation maintained adequate soil moisture at all times. On the other hand, sufficient
443 nitrogen supply ensured high photosynthetic nitrogen-use efficiency in crop leaves, indicating that even under partial stomatal
444 closure and limited intercellular CO: concentration, leaves were still able to efficiently utilize the available CO: for
445 photosynthesis. In contrast, Shrub and Forest were mostly subject to natural conditions. The slight increase in 7,,, observed in
446 Shrub might have reflected their conservative, isohydric water-use strategy (Yang et al., 2016). The decrease in 7, in Forest
447 might have been attributed to continued transpiration under water stress, which persisted due to their extensive canopies and
448 residual hydraulic function, thereby shortening the response time to drought (Novick et al., 2016). These findings collectively
449 reveal vegetation-drought coupling as a nonlinear outcome of climate forcing, ecological adaptation, and anthropogenic

450 intervention, necessitating multi-scale models and sustained monitoring to unravel critical thresholds (Reichstein et al., 2013).
451 5.3. Influencing factors of coupling relationship

452 TRENDY multi-model simulations identified CO- fertilization as the dominant driver weakening WUE-SPEI coupling
453 (Figure 4). Elevated CO: enhanced WUE directly through stimulated photosynthesis and reduced stomatal conductance
454 (Keenan et al., 2013) , thereby strengthening the resistance of WUE to drought. Land-use changes exert secondary but critical
455 impacts, including tropical deforestation, forest degradation, and afforestation programs, all of which gradually altered global

456  vegetation patterns. In addition, agricultural management practices such as irrigation, fertilization, and crop modification did
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457 not change vegetation cover types but still influenced vegetation adaptability to environmental conditions. Chen et al. (2019)
458 found that human land-use practices might have contributed to more than one-third of the global vegetation increase,
459 particularly in extensive cropland regions—most notably in China (25%) and India (6.8%). Therefore, we reasonably inferred
460 that LCC driven by human interventions enhanced ecosystem resilience to drought and other extreme events, particularly in
461 croplands. This was manifested in our results as LCC contributed a negative effect in R,..» and a positive effect in 7.

462 Although TRENDY multi-model simulations indicated that the influence of climate change was minimal, this study
463 employed XGBoost and SHAP to reveal how meteorological factors affected the WUE—SPEI coupling relationship. SMsurf
464  was identified as the most important driving factor, exhibiting nearly opposite effects on R, and T, and a significant
465 threshold response (Figure 6). In fact, this remained closely associated with increased atmospheric CO.. Previous studies
466 suggested that although elevated atmospheric CO: could reduce plant water loss by decreasing stomatal conductance—thereby
467 theoretically slowing soil moisture depletion (Gray et al., 2016) —the elevated CO. was accompanied by increased leaf
468 temperature and accelerated evaporation from shallow soils, which offset this water-saving effect (Wilson et al., 1999),
469 ultimately promoting soil moisture depletion(Kellner et al., 2019). As the direct “water reservoir” for vegetation, surface soil
470  moisture limited plant water supply and reduced photosynthesis, thereby exerting a profound influence on the WUE-SPEI
471 coupling relationship (Liu et al., 2020; Martinez-Vilalta et al., 2014). Along the drought gradient, precipitation was the most
472 important factor influencing the WUE—-SPEI coupling in arid regions, with SMsurf ranking third in importance. In contrast, in
473 humid regions, temperature and radiation were the dominant factors, while SMsurf ranked fifth and sixth in importance for
474 Ruar and T,p, respectively (Figure S23; Figure S26), consistent with previous findings. Vegetation in arid regions was typically
475 water-limited, and precipitation, as its direct water source, played a crucial regulatory role in drought response (Li et al., 2022b).
476 In contrast, in humid regions with sufficient water supply, vegetation responses to drought were primarily controlled by energy-
477 related factors such as temperature and radiation(Liu et al., 2025). Across vegetation types, the dominant factors influencing
478 the WUE-SPEI coupling were more clearly defined in Forest and Shrub, being temperature and surface soil moisture,
479 respectively, which were closely related to their rooting patterns and drought-resistance strategies (Yang et al., 2025). In
480 contrast, the dominant factors in Pasture and Cropland were more complex, likely resulting from vegetation structural diversity

481 and intensive human interventions(Liu et al., 2018).

482 6. Conclusion

483 Understanding the coupling relationship between WUE and drought is crucial for assessing the impact of drought on
484 terrestrial ecosystem carbon-water cycles. To this end, we investigated the spatiotemporal patterns of the WUE-SPEI coupling

485 relationship from 1982 to 2018 globally. Using the DGVMs, we separated the contributions of CO: fertilization, CLI, and LCC
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486 to the changes in WUE-drought coupling relationship. Furthermore, the XGBoost combined with SHAP and PCMCI+ were
487 employed to elucidate the mechanisms and influencing pathways of hydrothermal factors on the coupling relationship. Our
488 key findings included the following:

489 (1) Ruax decreased at a rate of -0.0003/year, while T, increased at a rate of 0.0155 months/year, indicating the buffer
490 capacity of WUE against drought was enhanced. The rates of change in Ry and T, varied substantially across drought
491 gradients and vegetation types. Ry increased most rapidly in Shrub within AR at 0.0021/year, whereas the largest decreases
492 occurred in Shrub within SAR and Forest within SH, both at -0.0020/year. T, increased most rapidly in Pasture within AR at
493 0.1181 months/year, while it decreased most markedly in Forest within SAR at -0.0394 months/year.

494 (2) CO: fertilization was identified as the primary cause for the weakening of the coupling relationship. SMsurf was
495 identified as the most critical driver, exhibiting nearly opposite effects and significant threshold effects on Ry and Topr.

496 (3) At the global scale, WS exhibited a direct negative causal relationship with Ry, while Rad and WS had direct negative
497 and positive causal effects on 7o, respectively. The complex causal networks under different vegetation types and drought
498 gradients were also revealed.

499 Overall, our findings highlighted an enhanced resistance of WUE to drought, manifested as a reduced correlation and a
500 delayed response time. Moreover, vegetation under different drought gradients gradually adjusted its water-use strategies to
501 maintain WUE stability. These findings encourage a reassessment of the WUE—drought relationship, offering new insights to
502 support the sustainable development of ecosystems under climate change.
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