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Abstract  

Hydrologic models typically predict irrigation water demands via bio-physical processes in-line with FAO-56 

standards. However, irrigation demands also depend heavily on the economic behaviour of farmers, 10 

particularly their responses to water and crop prices. This study develops a novel method for predicting 

monthly irrigation water demand that integrates bio-physical processes with an economic profit maximization 

framework. This method yields a set of simple parametric equations for predicting annual crop areas and 

monthly water use as a function of both weather and prices. We apply this method to the Australian Murray-

Darling Basin (MDB) with a dataset covering 13 regions and 12 irrigation activities between 2004-05 and 15 

2021-22. Model parameters are obtained using structural estimation, with a joint system of physical and 

behavioural equations solved by non-linear least squares. Validation results show strong performance for 

water use particularly in the southern basin (annual in-sample R2 0.94, cross-validated R2 0.90). Performance 

is weaker in the northern basin partly on account of data quality issues (annual in-sample R2 0.84, cross-

validated R2 0.71). The model is applied to measure the effects on water demand of long-term adjustment in 20 

the irrigation sector, including the emergence of almond and cotton crops in the southern basin. The results 

show that new almond plantings have contributed to a 40 per cent increase in peak summer demands in the 

lower Murray since 2014.  In future, this bio-economic approach could provide a foundation for integrated 

hydro-economic models capable of analysing complex water policy issues, including environmental water 

management, water market design and climate change adaptation.  25 
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Highlights  

• This study presents a new model of irrigation water demand which integrates bio-physical processes 

and economic behaviour 

• In addition to irrigation water use, the model also predicts irrigation crop areas, production and profit 

• The model parameters are calibrated to the Murray-Darling Basin via a structural estimation approach 35 

involving a joint system of non-linear equations  

• The model is validated against historical data for the period 2004-05 to 2021-22. Performance is 

better in the southern basin than the northern basin  

• The model is applied to quantify long-term changes in irrigation demands in the basin, including 

growth in almond water use in the lower southern basin 40 

• In future, the model could be used to support integrated hydrologic-economic simulation models   
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1 Introduction 

Models play a central role in the management of water in large, regulated river systems. Within the Australian 

Murray–Darling Basin (MDB) hydrologic models are central to all aspects of water management, from river 

operations to water accounting and compliance, to long-term planning and policy decisions. 45 

Predicting water demand is a key aspect of these models. Short-term forecasts of water demand are 

routinely used to support river operations; however, the same demand models are also used to examine long-

term policy issues. For example, in the MDB, models are used to assess the effects of recovering water for the 

environment under the Basin Plan (Kirby et al., 2014; MDBA 2020). Assessments of long-term climate change 

(CSIRO 2020; Fowler et al., 2022; Kirby et al., 2014) also depend heavily on water demand models and their 50 

responses to rainfall, temperature and water availability. 

In hydrologic models, irrigation demands are typically simulated via bio-physical crop and soil water 

balances in line with FAO-56 standards (see Allen, 1998; MDBA 2018). While these approaches have proven 

effective, particularly for short-term predictions, they ignore economic factors such as water and crop prices 

which in practice have a large bearing on irrigation activity and water demand (Brennan, 2006; Scheierling et 55 

al., 2006; Wheeler et al., 2008). In contrast, economic models represent irrigation farmers as profit maximizing 

businesses with water demands that respond to prices of inputs (i.e., water) and outputs (i.e., crops). Economic 

models employ either mathematical programming or statistical methods to link water demand with prices 

(Adamson et al., 2007; Hall et al., 1994; Grafton & Jiang, 2011; Hughes et al., 2023). However, economic 

models are more abstract, with higher spatial and temporal resolution (i.e., annual), less bio-physical detail 60 

and often less emphasis on predictive power and validation. As a result, economic models play a lesser role in 

river management, often being applied within research literature to examine the economics of water markets, 

or other water policy issues (see Kirby et al., 2014; Qureshi et al., 2013; Hughes et al., 2023). 

In this paper, a bio-economic approach for predicting monthly irrigation water demand is developed 

and applied to the MDB. This approach combines bio-physical systems from hydrologic models with an 65 

economic profit maximization framework. While representing the key bio-physical and economic processes 

the model is designed to have a simple parametric form which is empirically tractable. 

This study extends the annual economic demand model of Hughes et al. (2023) in several directions: 

introducing a monthly time-step, coverage of northern MDB regions, along with more biophysical and 

economic structure. In related work, Ahmed et al. (2024) present an approach to downscale annual outputs 70 

from the Hughes et al. (2023) model to a monthly time-step. In contrast with Ahmed et al. (2024), this study 
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develops a fully dynamic monthly model with irrigator crop planting and water use decisions dependent on 

prices and weather conditions in each month. 

While the approach involves additional economic and bio-physical structure it remains heavily data-

driven with parameters estimated from historical data for the period 2004–05 to 2021–22. A comprehensive 75 

dataset was constructed to support this work, with various improvements and extensions made to the data of 

ABARES (2021). A structural estimation approach is developed with parameters jointly estimated via a non-

linear system of physical (hydrologic) and behavioural (economic) equations. This structural approach widens 

the potential scope for applications beyond short-term water demand prediction and forecasting to counter 

factual simulation modelling. 80 

These demand models are intended to support development of integrated hydro-economic simulation 

models which represent both physical river systems and the economics of irrigation and water markets 

(Brouwer & Hofkes, 2008).  As a first step, Hughes et al. (2025 unpublished) use these water demands to 

develop an economic model of the MDB linked to a monthly hydrologic model (John et al., 2025 unpublished). 

In this sense, the work has similarities with previous hydro-economic models of the MDB including those of 85 

Kirby et al. (2013) and Qureshi et al. (2013); as well as the CALVIN model of California (Draper et al., 2003; 

Howitt et al., 2010). While conceptually similar, our demand system differs from Qureshi et al. (2013) and 

Howitt et al. (2010) in at least two respects.  First, the parameters are obtained by statistical estimation rather 

than calibration (i.e., Positive Mathematical Programming, Howitt et al., 2012). Second, our approach yields 

reduced-form demand equations (predicting water use as a function of weather conditions and water and crop 90 

prices) which can be used as a stand-alone system or embedded in simulation models. 

In future, fully integrated (aka “holistic") hydro-economic models have the potential to address many 

contemporary water policy questions, including those related to the design of water markets,  environmental 

management and climate change adaptation (Brouwer & Hofkes, 2008). While the value of integrated models 

is often recognized (see Quinlivan, 2022) they have seen limited use in the MDB to date outside of the research 95 

literature. This study helps address at least one long-standing constraint to integrated modelling: different 

time-steps between hydrologic (e.g., daily/monthly) and economic (e.g., annual) models. 

In this paper, we describe our bio-economic water demand system in detail, including the data, bio-

physical and economic assumptions and the estimation methods. We then present validation results measuring 

in-sample and cross-validated out-of-sample performance. Finally, we apply the demand system to isolate key 100 

trends in water demand in the MDB in recent years, particularly increased demand in the lower Murray due 

to new almond plantations. 
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2 The Murray-Darling Basin 

The Murray–Darling Basin (MDB) drains an area of over 1,000,000 km2 across South-Eastern Australia. 

Irrigated agriculture accounts for more than 90% of total water use in the region. The southern MDB 105 

(sMDB)—which includes the Murray River and its connected tributaries (Figure 1)—accounts for around 

three quarters of agricultural water use in the MDB (and around half of national agricultural water use). 

The sMDB is subject to a more temperate climate, with winter dominant inflows and relatively large 

on-river storages which support inter-year carryover reserves. In contrast, the northern MDB (nMDB) has a 

sub-tropical climate with highly variable and summer dominant inflows and smaller on-river storage capacity. 110 

As a result, a greater percentage of water use in these regions is obtained from flood-plain harvesting and on-

farm dams (as opposed to extraction from regulated rivers). 

Irrigation within the sMDB is diverse with a mix of perennials (e.g., fruit and nut trees and 

grapevines), irrigated pasture and annual cropping (e.g., rice and cotton). Perennial crops are concentrated in 

the lower Murray, dairying / irrigated pasture in northern Victoria (e.g., Goulburn–Broken) and rice and cotton 115 

in NSW (Murray and Murrumbidgee, see Figure 1). The nMDB is dominated by cotton, which accounts for 

over 80 per cent of water use in the region. 

The last decade has seen much structural change, with declines in some activities—such as dairy in 

northern Victoria—and expansion in others, particularly almonds in the lower Murray regions and cotton in 

the Murrumbidgee (see Zeleke & Luckett, 2025). These trends have been driven by commodity prices and 120 

technology, including new cotton varieties suited to the southern Australian climate. 
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Figure 1: The Murray–Darling Basin 
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3 Data 125 

As documented in previous studies (Hughes et al., 2023; Qureshi et al., 2013) the collation of economic and 

hydrologic data for MDB presents many challenges. The dataset constructed for this study draws on a wide 

range of sources, with the key variables listed in Table 1. The data covers the period 2004–05 to 2021–22, for 

15 catchment regions (Table 2) and 12 irrigation activities (Table 3). 

For this study, three related but distinct measures of water use are defined: diversions 𝐷, allocation 130 

use 𝑈 and water applied 𝑊 (see Figure A1, Appendix A). Diversions are physical volumes of surface water 

extracted from river systems; water applied refers to volumes applied by irrigation farmers to crops, while 

allocation use reflects usage by water right holders of annual water allocations. Allocation use includes held 

environmental water which is effectively “used” (i.e., released from storage) but not diverted, while irrigation 

water applied excludes conveyance losses, but may also include groundwater applied to crops.  135 

Agricultural data, including areas irrigated, yield, and water use, are derived from ABARES (2021) 

and ABS (2022) are available annually from 2005–06 to 2020–21 for all regions. Further adjustments were 

applied to better align irrigation data with diversion and water accounting records, particularly on a spatial 

basis. This process drew on additional data sources including aerial photography data (SunRISE Mapping and 

Research, 2022), irrigation operator data (Murray Irrigation Limited) and industry reports (Cotton Australia, 140 

Australian Almond Board). As in  Hughes et al., (2023) and Qureshi et al., (2013), Geographic Information 

System (GIS) methods were used to translate ABS (2022) regional data to catchment regions. 

Monthly allocation usage data were obtained from state agencies for Victorian and NSW regions (but 

were not available for SA and QLD). Monthly reference evapotranspiration and rainfall are derived from the 

Australian SILO daily dataset (Jeffrey et al., 2001) for representative locations within each irrigation region. 145 

Crop coefficients are sourced from MDBA (2018) and from Ahmed et al. (2024). 

Monthly water market price data were also obtained from ABARES based on underlying state water 

trade register data (processed using the method of Sanders et al. 2019). The availability and quality of water 

price data is generally lower in the northern MDB, given less mature and active markets in these regions. 

Finally, diversion data are mostly annual, with monthly data available for the Murray regions and the Goulburn 150 
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Table 1: Variable descriptions and data sources  

Variable Units Description Data sources 

𝑊𝑖𝑗𝑡  ML Irrigation water use in region 𝑖 for crop 𝑗 in period 𝑡 ABARES/ABS1 

𝐿𝑖𝑗𝑡  Ha Area of crop 𝑗 irrigated in region 𝑖 in period 𝑡 ABARES/ABS1 

𝑌𝑖𝑗𝑡  t Quantity of production for crop 𝑗 in region 𝑖 in period 𝑡 ABARES/ABS1 

𝑃𝑗𝑦
𝑦

 $ / t Output price for crop 𝑗 in year 𝑦 ABARES/ABS1 

𝑃𝑖𝑡
𝑤 $ / ML Market price for water allocations in region 𝑖 period 𝑡 MDB states2 

𝐴𝑖𝑡 ML Water allocations available for use in region 𝑖 period 𝑡 MDB states2 

𝑈𝑖𝑦  ML Usage of water allocation in region 𝑖 in year 𝑦 MDB states2 

𝑈𝑖𝑦
𝑒𝑛𝑣  ML Usage of environmental water in region 𝑖 in year 𝑦 MDBA3 

𝐷𝑖𝑡  ML Diversions in region 𝑖 in period 𝑡 MDBA3 

𝐸𝑇𝑖𝑡
0 mm Reference evapotranspiration for region 𝑖 in month 𝑚 SILO4 

𝑅𝑖𝑡 mm Rainfall in region 𝑖 in month 𝑚 (excluding estimated run-off) SILO4 
1ABARES (2021), ABS (2022), SunRISE Mapping and Research (2022), Cotton Australia, 

(https://www.cottondata.com.au/),  Australian Almond Board (https://australianalmonds.com.au/),  Murray Irrigation 

Limited Annual Reports (https://www.murrayirrigation.com.au/) 155 

2NSW Department of Climate Change, Energy, the Environment and Water, Water NSW, Victorian Water Register 

(https://waterregister.vic.gov.au/), SA Department of Environment and Water, all processed by ABARES 

3MDBA annual take reports (https://www.mdba.gov.au/sites/default/files/publications/annual-water-take-report-2022-

23_1.pdf), monthly data MDBA personal communications 

4SILO climate data (https://www.longpaddock.qld.gov.au/silo/)  (Jeffrey et al., 2001) 160 

  

https://doi.org/10.5194/egusphere-2025-6181
Preprint. Discussion started: 8 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

9 

 

 

 

Table 2: Model regions (𝒊 ∈ 𝑰) 

Regions, 𝑖 ∈ 𝐼 State Trading Zone 

Goulburn–Broken–Loddon–Campaspe Vic. Northern Vic. 

Vic. Murray (above) Vic. Murray above 

Vic. Murray (below) Vic. Murray below 

NSW Murray (above) NSW Murray above 

NSW Murray (below) NSW Murray below 

SA Murray SA Murray below 

Murrumbidgee NSW Murrumbidgee 

Lachlan NSW Lachlan 

Macquarie–Castlereagh NSW Macquarie 

Namoi NSW Namoi 

Gwydir NSW Gwydir 

Barwon–Darling NSW Barwon–Darling 

NSW Border Rivers NSW Border Rivers 

QLD Border Rivers QLD Border Rivers 

Condamine–Balonne QLD Condamine 

 

 

Table 3: Model activities (𝒋 ∈ 𝑱) 165 

Irrigation activities, 𝑗 ∈ 𝐽 Crops, Season/s, 𝑠 ∈ 𝑆 

Other Horticulture Tree crops (excl. almonds) Perennial 

Grapes Grapes (wine and table) Perennial 

Almonds Almonds Perennial 

Rice Rice Summer 

Cotton Cotton Summer 

Pasture (Perennial) Pasture Perennial 

Pasture (Winter) Pasture Winter 

Hay (Perennial) Hay Perennial 

Hay (Winter) Hay Winter 

Vegetables Vegetables Perennial 

Other (Summer) Other field crops Summer 

Other (Winter) Other field crops Winter 
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4 The model 

4.1 Sets 

The model is defined over three main sets: regions 𝐼 (Table 2), irrigation activities 𝐽 (Table 3) and time 𝑇. 

While the model has a monthly time-step, some variables are annual. In the below equations, the time index 170 

varies between the generic 𝑡 and the specific year 𝑦 and month 𝑚 as required. While 15 regions are defined 

(Table 2, Figure 1) the two Queensland regions are omitted from much of the analysis due to data limitations. 

Nine irrigation crop types are defined following those available in the irrigation data (Table 3). Crops 

are defined to be either perennial, summer or winter in type. Perennial crops have a fixed planted area, and 

require irrigation all year round, while winter and summer subject to annual planting decisions and seasonal 175 

irrigation. Here the Other crops include both annual and summer types and Pasture and Hay includes both 

perennial and winter types, leading to a total of 12 distinct irrigation activities. 

4.2 Crop irrigation requirements 

Following hydrologic models, short-term crop water requirements are determined by bio-physical drivers 

(Figure 2). Specifically, water requirements 𝑤̅𝑖𝑗𝑚  (for crop 𝑗  in region 𝑖  in month 𝑚 ) are a function of 180 

potential crop evapotranspiration 𝐸𝑇𝑖𝑚
0  less effective rainfall 𝐸𝑅𝑖𝑚: 

𝑤̅𝑖𝑗𝑚 ∝ max(𝑘𝑗𝑚
𝑐 𝐸𝑇𝑖𝑡

0 − 𝐸𝑅𝑖𝑡 , 0) 

Here 𝑘𝑖𝑗𝑚
𝑐  are pre-defined ‘crop coefficients’ and 𝐸𝑇𝑖𝑡

0 is the reference ET for region 𝑖 in time period 𝑡 (year 

𝑦 , month 𝑚 ) and both 𝐸𝑇𝑖𝑚
0 , and 𝐸𝑅𝑖𝑚  are functions of weather data. Following hydrological model 

conventions, crop water requirements are defined in mm units (later converted to ML / ha, via the 1 /100 factor 185 

in Eq. 2). 
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The approach adopted in this model differs from typically FAO-56 systems in at least two respects: 

the time-step is monthly rather than daily, and there is no explicit soil moisture balance. To improve empirical 

performance of this simplified approach, we calibrate both effective rainfall and crop water requirements via 190 

the parametric equations: 

𝐸𝑅𝑖𝑚 = 𝛽𝑗
𝐸𝑅0min(max(𝑅𝑖𝑡 − 𝛽𝑗

𝐸𝑅1. 𝐸𝑇𝑖𝑡
0 + 𝛽𝑗

𝐸𝑅2, 0), 𝑅𝑖𝑡)  (1) 

𝑤̅𝑖𝑗𝑡 =
1

100
.

1

𝛽𝑖𝑗
𝑤0 max(𝑘𝑗𝑡

𝑐 𝐸𝑇𝑖𝑦𝑡
0 + 𝑘𝑗𝑡

𝑆𝑀 − 𝐸𝑅𝑖𝑦𝑡 , 0)  (2) 

𝑤𝑖𝑗𝑚
𝑛𝑏𝑟 = 𝛽𝑤3. 𝑤̅𝑖𝑗𝑚 

where 𝜷 are parameters to be estimated. 195 

In the absence of a soil moisture balance we introduce a monthly soil moisture recharge / depletion target 𝑘𝑗𝑡
𝑆𝑀 

which is used to account for pondage in the case of rice crops (but is set to zero for all other crops). Lastly, for 

almond crops we also account for the lower water requirements of non-bearing almond trees, where 𝑤𝑛𝑏𝑟  is 

the per hectare water requirement for non-bearing tree areas 

 200 

 

Figure 2: Water demand model crop water requirements and land constraints. (a) Crop water balance bio-physical 

processes. (b) Two forms of deficit irrigation: Area Deficit (AD) and Water Deficit (WD) 
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4.3 Crop areas 

As shown in Figure 2, an upper limit of area planted, 𝐿‾𝑖𝑗𝑡 , is defined to reflect the maximum area that could 205 

potentially be used, while, 𝐿𝑖𝑗𝑡
𝑝

, reflects the estimated area actually planted. For perennial crops (i.e., fruit and 

nut trees, wine grapes, vegetables) area planted is held fixed (at observed levels 𝐿‾𝑖𝑗𝑡 = 𝐿𝑖𝑗𝑡
𝑝

). For annual crops, 

areas planted can vary each year in response to water prices and other factors, with 𝐿‾𝑖𝑗𝑡  calibrated from the 

data with an allowance for a linear time-trend (to account for historical shifts in irrigation development)1: 

𝐿‾𝑖𝑗𝑡 = 𝛽𝑖𝑗
𝑙0. (1 + 𝛽𝑖𝑗

𝑙1. 𝑡)  (3) 210 

The model allows for two different forms of deficit irrigation: Area Deficit (AD) and Water Deficit 

(WD) as shown in Figure 2. Under AD, water application rates 𝑤𝑖𝑗𝑡  are fixed at 𝑤̅𝑖𝑗𝑡  but area irrigated 

𝐿𝑖𝑗𝑦,𝑚
𝑤  can be less than area planted. Under WD the planted area is subject to a variable application rate 𝑤𝑖𝑗𝑡 ≤

𝑤̅𝑖𝑗𝑚. The two approaches are the result of different assumptions on crop yield responses, as outlined in the 

next section.  215 

Water use for crop 𝑗 in region 𝑖 in period 𝑡 is then defined as area watered 𝐿𝑖𝑗𝑚
𝑤  times application rate 

𝑤𝑖𝑗𝑡, with an allowance for non-bearing areas 𝐿𝑖𝑗𝑡
𝑛𝑏𝑟 (in the case of almond crops): 

𝑊𝑖𝑗𝑚 = 𝐿𝑖𝑗𝑚
𝑤 . 𝑤𝑖𝑗𝑚 + 𝐿𝑖𝑗𝑡

𝑛𝑏𝑟 . 𝑤𝑖𝑗𝑚
𝑛𝑏𝑟  (4) 

𝐿𝑖𝑗𝑚
𝑤 ≤ (𝐿𝑖𝑗𝑡 − 𝐿𝑖𝑗𝑡

𝑛𝑏𝑟),    𝐿𝑖𝑗𝑚
𝑤 ≤ 𝐿𝑖𝑗𝑡

𝑝
,   𝑤𝑖𝑗𝑚  ≤  𝑤̅𝑖𝑗𝑚 

4.4 Crop production 220 

As is standard in economic models, we assume crop production is subject to diminishing marginal 

productivity. The model adopts two alternative functional forms or “technologies” for crop production, 

labelled Area Deficit (AD) and Water Deficit (WD) (consistent with Figure 2 above): 

 
1   Three of the crops are specified with multiple season types: pasture and hay (winter and perennial) and other 

(summer and winter). However, crop data is only available for annual areas (with no summer, winter, perennial splits). 

For these three crops, limits on area planted in each season type are a fixed share of an estimated annual crop limit (in 

the model estimation, the sum of perennial, winter and summer estimates are compared with the annual crop activity 

data). 
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𝑓𝑖𝑗
𝑦

(𝐿𝑖𝑗𝑡
𝑝

) = 𝛽𝑖𝑗
𝑦0

(𝐿𝑖𝑗𝑡
𝑝

−
𝐿𝑖𝑗𝑡

𝑝2

2. 𝛽𝑗
𝑦1

𝐿‾𝑖𝑗𝑡

)           (5 𝐴𝐷) 

𝑓𝑖𝑗
𝑦

(𝐿𝑖𝑗𝑡
𝑝

) = 𝛽𝑖𝑗
𝑦0

. 𝐿𝑖𝑗𝑡
𝑝

                (5 𝑊𝐷) 225 

𝑦𝑖𝑗𝑡   =  𝑓𝑖𝑗
𝑦

(𝐿𝑖𝑗𝑡
𝑝

) − ∑ 𝑘̇𝑖𝑗𝑡
𝑠

𝑚

(𝑓𝑖𝑗
𝑦

(𝐿𝑖𝑗𝑡
𝑝

) − 𝑓𝑖𝑗
𝑦

(𝐿𝑖𝑗𝑡
𝑤 ))              (6 𝐴𝐷) 

𝑦𝑖𝑗𝑡 = (1 − ∑ 𝑘̇𝑖𝑗𝑡
𝑠 (

𝑤𝑖𝑗𝑡

𝑤‾ 𝑖𝑗𝑡

− 1)

2

𝑚

) 𝑓𝑖𝑗
𝑦

(𝐿𝑖𝑗𝑡
𝑝

)
            (6 𝑊𝐷) 

𝑌𝑖𝑗𝑡 = max[𝑦𝑖𝑗𝑡 , 0] 

𝑘𝑖𝑗𝑡
𝑠 = 𝛽𝑗

𝑠0 (1 −
min[𝐸𝑅𝑖𝑡 , 𝑘𝑗𝑚

𝑐 𝐸𝑇𝑖𝑡
0]

𝑘𝑗𝑚
𝑐 𝐸𝑇𝑖𝑡

0 )            

𝑘̇𝑚𝑗 = (
𝑘𝑗𝑚

𝑐

∑ 𝑘𝑗𝑚
𝑐

𝑚

) ,  𝑘̇𝑖𝑗𝑡
𝑠 = 𝑘̇𝑚𝑗 . 𝑘𝑖𝑗𝑡

𝑠  230 

 

Here 𝑓𝑖𝑗
𝑦

 is a production function linking crop area planted to potential crop production (production in the 

absence of any water stress) and  𝑘𝑖𝑗𝑡
𝑠  is an FAO-56 type water stress coefficient. The AD and WD forms may 

be better suited to crops, with the choice of functional form to be guided by empirical testing and / or domain 

knowledge. For example, decreasing land productivity is likely to occur where there exists heterogeneity 235 

across individual farms within a region (for a given crop type) due for example to variations in land quality or 

crop variety. As such, AD may be more appropriate for broadly defined crop categories (i.e., other crops, 

vegetables, other horticulture) or larger regions. Assumptions for the crops in the MDB model are shown in 

Table 3.   

Note that, the above crop yield response approach simplifies FAO-56 by assuming that water stress 240 

in each month has an independent additive effect on yields (ensuring that short-run crop yield responses and 

water demands are independent of past and future months).   An allowance is also made for yield penalties: 

where water stress is severe enough to impact future yields or impose other costs beyond the loss of the current 

year’s production. In these cases, ∑ 𝑘̇𝑖𝑗𝑡
𝑠

𝑚  can be greater than 1, and 𝑦𝑖𝑗𝑡  can be negative. These penalties can 
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be viewed as estimates of future lost production (e.g., as a result of tree damage or death) and related costs 245 

(such as re-planting of trees) due to current season water stress. 

4.5 Water use 

Monthly diversions in each region are modelled as a function of total water applied to crops, as detailed below. 

This function implicitly represents the net effects of other sources of water used for irrigation (such as 

groundwater), non-irrigation diversions such as domestic water along with conveyance losses. 250 

𝐷𝑖𝑦𝑚 = 𝛽𝑖
𝑑0 ∑ 𝑊𝑖𝑗𝑦𝑚

𝑗

+ 𝛽𝑖𝑚
𝑑1 + 𝛽𝑖

𝑑2.
𝑅𝑖𝑦𝑚

𝑅̅𝑖𝑚

  (7) 

where 𝑅𝑖𝑦𝑚/𝑅‾𝑖𝑚 is monthly rainfall relative to the long-run monthly mean. 

Allocation use explicitly accounts for total irrigation water applied 𝑊𝑖𝑦 and environmental water use 

𝑈𝑖𝑦
𝑒 , and implicitly the net effects of any ‘unregulated’ surface water extraction (such as flood plain 

harvesting): 255 

𝑈𝑖𝑦 = 𝛽𝑖
𝑢0𝑊𝑖𝑦 + 𝛽𝑖

𝑢1𝑈𝑖𝑦
𝑒𝑛𝑣 + 𝛽𝑖

𝑢2 + 𝛽𝑖
𝑢3

𝑅𝑖𝑦𝑚

𝑅‾𝑖𝑚

  (8) 

In Appendix A.3, we present a simple statistical model for predicting annual environmental water use as a 

function of held environmental water entitlements, allocations and rainfall. 

4.6 Irrigation costs and profits 

Annual profits from water use 𝜋𝑖𝑗𝑦  in region 𝑖 in year 𝑦 for activity 𝑗 are defined as: 260 

𝜋𝑖𝑗𝑦 = 𝑃𝑗𝑦
𝑦

. 𝑦𝑖𝑗𝑦 − ∑ (𝑃𝑖𝑦𝑚
𝑤 + 𝛽𝑖

𝑐0)

𝑚

𝑊𝑖𝑗𝑦𝑚 − 𝛽𝑗
𝑐2𝐿𝑖𝑗𝑦

𝑝
(1 + 𝛽𝑐1.

𝐿𝑖𝑗𝑦
𝑝

2𝐿‾𝑖𝑗𝑦

)         (9 𝐴𝐷) 

Here regional profits equal revenue from crop production (net of any yield penalties), less water costs and less 

planting costs. Water costs include both the market price of water 𝑃𝑖𝑡
𝑤 and any usage / delivery costs 𝛽𝑖

𝑐0. 

Planting costs are assumed quadratic with respect to area planted (such that per hectare costs increase linearly). 

Note this profit function (and associated water demand functions) are short-run in nature excluding any capital 265 

investment costs. 
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5 Estimation 

5.1 Model reduced-form 

The above model can be framed as an economic optimization problem where irrigators make crop planting 

and water use decisions to maximize expected profits given prevailing and expected prices, climate conditions 270 

and other physical constraints: 

max 𝜋𝑖𝑗𝑦

𝐿
𝑖𝑗𝑡
𝑝

,𝑊𝑖𝑗𝑡

 

subject to Eq. 1-6 and 9. 

From the first order conditions of this problem, a set of reduced-form input-demand functions can be derived 

(see Appendix A.4). Short-run (monthly) water demand given crop area planted are shown below for both 275 

forms: 

𝑊𝑖𝑗𝑡 = 𝑤‾ 𝑖𝑗𝑡𝐿‾𝑖𝑗𝑡 . 𝛽𝑗
𝑦1

(1 −
𝑤𝑖𝑗𝑡(𝑃𝑖𝑡

𝑤 + 𝛽𝑖
𝑐0)

𝑃𝑗𝑡
𝑦

. 𝛽𝑖𝑗
𝑦0

. 𝑘̇𝑖𝑗𝑡
𝑠

) (10 𝐴𝐷)  

𝑊𝑖𝑗𝑡 = 𝑤‾ 𝑖𝑗𝑡 . 𝐿𝑖𝑗𝑡
𝑝

(1 −
𝑤‾ 𝑖𝑗𝑡(𝑃𝑖𝑗𝑡

𝑤 + 𝛽𝑗
𝑐0)

2. 𝑃𝑗𝑡
𝑦

. 𝛽𝑖𝑗
𝑦0

. 𝑘̇𝑖𝑗𝑡
𝑠

)   (10 𝑊𝐷) 

0 ≤ 𝑊𝑖𝑗𝑚 ≤ 𝐿𝑖𝑗𝑚
𝑝

𝑤̅𝑖𝑗𝑚 

Crop planting decisions are slightly more complex given decisions are made at planting time, with uncertainty 280 

over the prices and weather conditions that will prevail over the rest of the cropping season. However, with 

some minor simplifying assumptions, parametric functions can be derived linking area planted with crop and 

water prices (as at the time of planting, (equations 11 AD, 11 WD in Appendix A.4). In particular, we assume 

that expected water prices over the crop season are equal to prices at planting time, and that expected water 

requirements and water stress can be approximated by linear functions of planting time prices (see Appendix 285 

A.4 for full details).   

5.2 Numerical methods 

The estimation is set up as a simultaneous equation non-linear least squares problem, with the parameters 

chosen to minimize the total weighted squared error of the model predictions relative to the historical data for 
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𝑊𝑖𝑗𝑡 , 𝐿𝑖𝑗𝑡 , 𝑌𝑖𝑗𝑡 , 𝑈𝑖𝑡 and 𝐷𝑖𝑡(see Appendix A.5). This approach to estimation offers flexibility to accommodate 290 

differences in data availability and quality across regions and years. The system approach also makes full use 

of the available data, allowing the limited monthly data (for variables such as diversions) to influence monthly 

irrigator crop planting and water use parameters where possible. 

The estimation is also flexible enough to handle regions where water price data 𝑃𝑖𝑡
𝑤 are missing or of 

low quality due to thin markets (including the Macquarie, Gwydir, Namoi and NSW Border Rivers). In these 295 

regions an additional equation is added to the system, imputing a shadow water price as a function of water 

supply data. These shadow prices are then used in-place of observed data in the water use and crop area 

functions (see Appendix A.5) 

Given a set of starting values and bound constraints, non-linear optimisation methods, specifically 

the L-BFGS algorithm (Liu & Nocedal, 1989) are used to find the error minimising parameters. Here bound 300 

constraints also provide an opportunity to impose various feasibility and economic conditions (i.e., 

diminishing marginal productivity). The estimation is implemented in Julia via the JuMP modelling language 

(Lubin et al., 2023) using the NLOPT (L-BFGS) solver (Johnson & Schueller, 2021). For further details see 

Appendix A.5.  
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6 Results 305 

6.1 Validation 

Validation results are shown in Figure 3 to 5 (with further detail in Appendix B). Actual data are compared 

against both in-sample fitted values, and cross-validated (Leave-One-Year-Out, LOYO) predictions. 

The Cross-validated (LOYO) Symmetric Median Absolute Percentage Error (SMAPE) for MDB 

annual diversions is 12.8 per cent (𝑅2 = 0.94), with better performance in southern MDB regions (SMAPE 310 

10.0 per cent, 𝑅2 = 0.92) than northern regions (SMAPE 20.5 per cent, 𝑅2 = 0.67) (see Appendix B, Table 

B1 and B3). While direct comparisons with other models are difficult (due to differences in spatial and 

temporal extents and reported metrics) the performance for annual diversions in the Murray regions (Table 

B2) appears similar to that reported for the Murray Source hydrological model (see MDBA 2018, Table 1). 

In the northern MDB performance is constrained somewhat by larger volumes of unregulated water 315 

use (i.e., flood-plain harvesting and on-farm dams) and the absence of accurate water market price data.  

Within the model unregulated water use volumes are represented implicitly via statistical relationships with 

rainfall (within the use and diversion equations, Eq. 7 and Eq. 8, and the shadow price functions, see Appendix 

A.5). These statistical approaches are relatively effective in-sample, but performance is lower out-of-sample. 

Further, note that the observed diversion data in these regions are themselves subject to measurement error, 320 

as some forms of unregulated take are not metered and have to be approximated (MDBA 2024).  

In regions where reliable monthly diversion data are available (the Murray) the model replicates the 

seasonal (i.e., summer dominant) pattern of water demands reasonably well (Figure 6) with better performance 

in the larger regions (Vic. Murray below and NSW Murray above). While direct comparisons are again 

difficult, the monthly performance for the Murray regions (particularly 𝑅2, see Table B5) appears similar to 325 

that reported for the Murray Source model (see MDBA 2018). 

At a crop level, performance is stronger for the largest crops including rice, cotton and pasture and 

generally weaker for other crops and hay (Figures B1-B3, Appendix B) with the model replicating historical 

variation in area planted (ha) and production (t) as well as water applied.  As shown in Figure B3, annual 

variation in production for horticulture, grapes and vegetables is not well explained by the model. Much of 330 

this variation is unrelated to water use, reflecting external factors such as changes in observed crop varieties 

within each category (e.g., the mix of wine and table grapes) due both to actual changes and measurement 

(sampling) error.   
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Figure 3: Observed, fitted and LOYO-CV annual allocation use 𝑼𝒊𝒚 southern MDB regions 335 
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Figure 4: Observed, fitted and LOYO-CV allocation use 𝑼𝒊𝒚 by region, northern MDB regions  
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(a)  

(b)  

Figure 5: (a) Observed, fitted and LOYO-CV monthly diversions 𝑫𝒊𝒕 (GL) in Murray regions 2005-06 to 2021-22. 

(b) Mean diversions by month (GL) for Murray regions (mean of 2005-06 to 2021-22)  
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6.2 Water demand trends 340 

The estimated model can be applied to measure long-term historical changes in irrigation water demands by 

region and crop type. The model equations identify both changes in irrigation development (i.e., area set-up 

for annual crops, area planted to perennial crops, maturity of trees) and technology (i.e., improvements in 

yields and water use efficiency). As such, the model can be applied to separate long-term structural change 

from the effects of annual climate and price variability. 345 

Here we apply the model equations to estimate water demands under both 2006-07 and 2021-22 

development and technology, in each case under a repeat of historical climate and price variability (2004-05 

to 2021-22). Figure 6 presents the long-term changes in average water applied by crop and region. 

 

Figure 6: Effect of long-term change in irrigation development (2006-07 to 2021-22) on median water applied 𝑾𝒊𝒋 350 

(GL) by region and crop 
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The results highlight the large increase in water demand from new almond plantings in the lower Murray 

regions, along with the recent expansion of cotton in the southern MDB, offset to some extent by declines in 355 

pasture, hay, rice and wine grapes. In contrast with the southern MDB, water demands in the northern regions 

have remained relatively stable over time.  

The growth in water demand in lower Murray regions is of interest to water managers, as it has raised 

concerns over the ability of the river system (and therefore the water market) to support large downstream 

flows. Figure 7b provides an estimate of monthly water demands (diversions) in the lower Murray regions 360 

(NSW, Vic. and SA Murray) under 2022 development levels (and a repeat of 2004-05 to 2021-22 prices and 

climate). Figure 7a shows the long-term trend in lower Murray diversions for the peak month of January, 

which increased around 40 per cent since 2014. 

 

Figure 7 (a) Effect of annual change in irrigation development (2006-07 to 2021-22) on lower-Murray January 365 
diversions (GL) (total for Vic. Murray below, NSW Murray below and SA Murray) (b) Monthly lower-Murray 

diversions (GL) (total for Vic. Murray below, NSW Murray below and SA Murray) under 2021-22 irrigation 

development   
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7 Discussion and conclusions 

This study introduces a new approach to modelling irrigation water demand in a regulated river system, one 370 

that integrates bio-physical processes with the economic behaviour of irrigation farmers. The model yields a 

set of parametric equations which can be estimated as a system against suitable set historical data. While 

computationally intensive, this approach is highly flexible and can be tailored to suit the available data. 

Validation results show the model can replicate historical variation in water demands in the Murray 

Darling Basin with good accuracy. Within the southern MDB, where data quality is highest, annual water 375 

diversions are predicted with Symmetric Median Absolute Percentage Error (SMAPE) of 12.7 per cent, and 

an 𝑅2 of 0.90 (based on a Leave-One-Year-Out cross-validation). While monthly validation data are currently 

limited, the model can represent monthly diversions in the key Murray River regions well. 

To demonstrate the model, we present an analysis estimating long-term changes in water demands 

by region and crop in the MDB between 2006-07 and 2021-22. These results highlight the significant structural 380 

changes within the southern MDB over the period, including the emergence of almonds and cotton and 

declines in pasture, hay, rice and grapes. These changes have also altered the spatial pattern of water use, 

increasing demand in the lower Murray regions. 

While these demand models can be used directly for short-term forecasting or historical analysis (as 

above) they have been developed primarily for simulation modelling, with the bio-physical and economic 385 

structure intended to support counter factual scenario analysis such as alternative climate or policy scenarios.  

In recent work, Hughes et al. (2025) use this demand system as the basis for a new monthly economic model 

of irrigation production and water markets in the MDB. This economic model has already been applied to 

simulate climate change outcomes in the southern MDB drawing on water availability (i.e., allocation) 

scenarios from a simplified hydrological model (John et al., 2025).  A longer-term the goal is to develop fully 390 

integrated models with two-way feedback between economic and hydrological processes (“holistic” models 

in the terminology of Brouwer & Hofkes, 2008).  With this goal in-mind. there remains scope to further refine 

and extend the water demand system to improve skill and generalization.  

As would be expected, model performance is weaker in the northern basin. This is partly due to the 

larger volumes of un-regulated water use (i.e., flood-plain harvesting and on-farm dams) and related data 395 

quality issues.  Additional data on these un-regulated water sources and / or better-quality water price data 

would help model predictions in these regions. In addition, although the model can produce reasonable 

monthly use patterns in the Murray regions, further refinement would be required to support integration with 

hydrological models drawing on a larger sample of monthly data. Diversion and allocation use predictions 
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could also be improved if the model explicitly represented non-irrigation demand components (such as 400 

conveyance and town water). 

One key question is the model’s ability to generalize, particularly to climate conditions outside the 

range of historical data.  It is important to note this issue applies equally, if not more so, to traditional bio-

physical demand models, which rely on statistical calibration (particularly crop area / water availability curves, 

see MDBA 2018) and standard crop coefficients (derived from historical observation). The economic structure 405 

of this model—where crop areas respond to profit drivers—should improve generalization compared with 

models where crop areas are held fixed or are based on fixed statistical relationships. Further, the estimation 

is designed to be updated annually, such that demand models can at least capture recent technological changes. 

Regardless, for some applications it may be advisable to supplement these demand models with 

external information. For example, temperature increases under climate change are likely to alter the locations 410 

at which crops can be feasibly grown (e.g., improving the viability of horticultural crops in cool regions and 

reducing it in warm regions).  To account for this, water demand models might need to be combined with 

some form of temperature-based crop suitability analysis. 

 

  415 
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Appendix A: Additional model detail 

For this study, three related but distinct measures of water use are defined: diversions 𝐷, allocation use 𝑈 and 520 

water applied 𝑊 (Figure A1). Diversions are physical volumes of surface water extracted from river systems; 

water applied refers to volumes applied by irrigation farmers to crops, while allocation use reflects usage by 

water right holders of annual water allocations. Allocation use includes held environmental water which is 

effectively “used” (i.e., released from storage) but not diverted, while irrigation water applied excludes 

conveyance losses, but may also include groundwater applied to crops.  525 

A.1: Allocation use, water applied and diversions 

 

Figure A1: Three measures of water use: allocations, diversions and water applied 
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A.2 Other water allocation supply 530 

While this study is concerned with water demand, some components of the demand model depend on historical 

estimates of water availability, particularly the predicted shadow prices 𝑃̂𝑖𝑡
𝑤 in regions with inadequate price 

data. Although historical water accounting data (including monthly allocations) are readily available for most 

regions in the MDB, estimation of monthly water availability is not straight forward, requiring the imposition 

of accounting rules, simplifying assumptions and some statistical calibration. 535 

Adapting the approach set out in Hughes et al., (2023) water allocations available for use at in year 𝑡 

month 𝑚 can be defined as: 

𝐴𝑖𝑦𝑡 = ∑ 𝐶𝑖𝑦ℎ

ℎ

+ ∑ 𝑎𝑖𝑦𝑚

ℎ

. 𝐸𝑖ℎ − 𝑈𝑖𝑦𝑚 + 𝑇𝑖𝑦𝑚 − 𝐹𝑖𝑦𝑚 + 𝐴𝑖𝑦𝑚
𝑜𝑡ℎ𝑒𝑟  

where 𝐶𝑖𝑦ℎ  are allocations carried over from the previous (financial year), 𝑎𝑖𝑦𝑚  are allocation 

percentages and 𝐸𝑖ℎ water entitlements, 𝑈𝑖𝑦𝑚 are monthly water use volumes, 𝑇𝑖𝑦𝑚 monthly net inter-region 540 

trade volumes (net imports), and 𝐹𝑖𝑦𝑚 user forfeits. Our data includes the two main entitlement classes ℎ in 

each region (e.g., high and low reliability in Victoria, and General and High Security in NSW) which are 

combined to estimate total allocations. 

Historical data is available on most of these components (see Hughes et al., 2023), although trade and 

forfeit data are only available annually, with monthly values imputed pro-rata. The unobserved 𝐴𝑖𝑦𝑚
𝑜𝑡ℎ𝑒𝑟  term 545 

represents other sources of allocations (beyond the two main entitlement classes) including those against 

conveyance (bulk) water entitlements, town and stock and domestic entitlements, and supplementary / non-

regulated entitlements (water extracted directly from rivers or via flood-plain harvesting during periods of 

high flow). These latter sources of water allocation represent a larger share of supply in the northern MDB 

regions. Given historical data on all other components 𝐴𝑖𝑦𝑚
𝑜𝑡ℎ𝑒𝑟  can be computed as a residual by exploiting 550 

changes in opening carryover between years (see Hughes et al., 2023). 

A.3 Environmental water demands 

The water demand system focuses on consumptive (i.e., irrigation) use. While historical data on environmental 

water use is available, for any out-of-sample applications these would also need to be modelled. As part of 

this study simple reduced-form equations were also estimated to predict environmental water use as a function 555 

of held environmental water rights (entitlements and allocations) and rainfall: 

𝑈𝑖𝑦
𝑒𝑛𝑣 = 𝛽𝑒𝑛𝑣0. 𝐴𝑖𝑦

𝑒𝑛𝑣 + 𝛽𝑒1𝐴𝑖𝑦
𝑒𝑛𝑣 . 𝑅𝑖𝑦 + 𝛽𝑒2𝐸𝑖𝑦

𝑒𝑛𝑣 + 𝛽𝑒𝑛𝑣3𝐸𝑖𝑦
𝑒𝑛𝑣 . 𝑅𝑖,𝑦−1  
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𝐴𝑖𝑦
𝑒𝑛𝑣 = ∑ max

𝑚
ℎ

{𝑎𝑖𝑦𝑚}. 𝛿𝑖ℎ𝑦 . 𝐸𝑖ℎ 

𝐸𝑖𝑦
𝑒𝑛𝑣 = ∑ 𝛿𝑖ℎ𝑦

ℎ

. 𝐸𝑖ℎ  

where 𝛿𝑖ℎ𝑦 is the share of entitlement class ℎ held by the environment in region 𝑖 year 𝑦. 560 

 

Figure A2: Observed and fitted environmental water use by region, 2004-05 to 2021-22 
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Figure A3: Observed and fitted environmental water use by northern MDB region, 2004-05 to 2021-22 565 
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A.4 Model reduced-form 

The irrigation problem involves selecting crop areas and water use to maximise expected profit: 

max
𝐿

𝑖𝑗𝑡
𝑝

,𝑊𝑖𝑗𝑡

𝜋𝑖𝑗𝑡  

subject to equations 1 to 6.  570 

 

The first order conditions can then be used to derive a set of demand functions, linking crop areas and water 

use with water and crop prices: 

∂𝜋𝑖𝑡

∂𝑊𝑖𝑗𝑡

= 0,
∂𝜋𝑖𝑡

∂𝐿𝑖𝑗𝑡
𝑝 = 0 

0 ≤ 𝑊𝑖𝑗𝑚 ≤ 𝐿𝑖𝑗𝑚
𝑝

𝑤̅𝑖𝑗𝑚 575 

0 ≤ 𝐿𝑖𝑗𝑡
𝑝

≤ 𝐿‾𝑖𝑗𝑡 

The water use functions for both the AD and WD forms are straightforward to derive:  

𝑊𝑖𝑗𝑡 = 𝑤‾ 𝑖𝑗𝑡𝐿‾𝑖𝑗𝑡 . 𝛽𝑗
𝑦1

(1 −
𝑤𝑖𝑗𝑡(𝑃𝑖𝑡

𝑤 + 𝛽𝑖
𝑐0)

𝑃𝑗𝑡
𝑦

. 𝛽𝑖𝑗
𝑦0

. 𝑘̇𝑖𝑗𝑡
𝑠

) (8 𝐴𝐷)  

𝑊𝑖𝑗𝑡 = 𝑤‾ 𝑖𝑗𝑡 . 𝐿𝑖𝑗𝑡
𝑝

(1 −
𝑤‾ 𝑖𝑗𝑡(𝑃𝑖𝑗𝑡

𝑤 + 𝛽𝑗
𝑐0)

2. 𝑃𝑗𝑡
𝑦

. 𝛽𝑖𝑗
𝑦0

. 𝑘̇𝑖𝑗𝑡
𝑠

)   (8 𝑊𝐷) 

 580 

With 𝑚0 denoting the planting month and ℎ the harvest month, the first-order condition for 𝐿𝑖𝑗𝑡
𝑝

 under the AD 

from can be written as: 

𝐄𝐦=𝐦𝟎 [
𝛽𝑖𝑗

𝑐1. 𝛽𝑖𝑗
𝑐2

𝐿‾𝑖𝑗𝑡

+ ∑ (1 − 𝐈𝐢𝐣𝐭)

ℎ

𝑚=𝑚0

𝑤𝑖𝑗𝑡(𝛽𝑖𝑗
𝑐0 + 𝑃𝑖𝑡

𝑤)]

= 𝐄𝑚=𝑚0 [(1 − ∑ 𝑘̇𝑖𝑗𝑡
𝑠

ℎ

𝑚=𝑚0

𝐈𝐢𝐣𝐭) 𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

(1 − 𝐿𝑖𝑗𝑡
𝑝

.
1

𝛽𝑗
𝑦1

𝐿‾𝑖𝑗𝑡

)] 

𝐈𝑖𝑗𝑡 = {
0,  if 𝐿𝑖𝑗𝑡

𝑤 ≥ 𝐿𝑖𝑗𝑡
𝑝

1,  if 𝐿𝑖𝑗𝑡
𝑤 < 𝐿𝑖𝑗𝑡

𝑝 } 585 
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Here the first-order condition requires the expected marginal costs of planting a crop (including water and 

non-water costs) to equal the expected marginal revenues. Expectations are required because there is 

uncertainty at planting time over future prices 𝑃𝑖𝑡
𝑤 , 𝑃𝑗𝑡

𝑦
, water requirements 𝑤𝑖𝑗𝑡 and the occurrence of deficit 

irrigation and water stress. We simplify further by assuming expected prices over the cropping season are 

equal to prices in the planting month. We can then derive a function for 𝐿𝑖𝑗𝑡
𝑝

 as 590 

𝐿𝑖𝑗𝑡
𝑝

= 𝛽𝑗
𝑦1

𝐿‾𝑖𝑗𝑡 (1 −
𝛽𝑖𝑗

𝑐2 + (𝛽𝑖𝑗
𝑐0 + 𝑃𝑖,𝑚0

𝑤 ). 𝑤𝑖𝑗𝑡
∗

𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. (1 − 𝑘𝑖𝑗,𝑚0
∗ )

) . (1 +
𝛽𝑖𝑗

𝑐1. 𝛽𝑖𝑗
𝑐2. 𝛽𝑗

𝑦1

𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. (1 − 𝑘𝑖𝑗,𝑚0
∗ )

)

−1

  (9) 

𝑤𝑖𝑗,𝑚0
∗ = 𝐄𝐦=𝐦𝟎 [ ∑ (1 − 𝐈𝐢𝐣𝐭)

ℎ

𝑚=𝑚0

𝑤̅𝑖𝑗𝑡] 

𝑘𝑖𝑗,𝑚0
∗ = 𝐄𝑚=𝑚0 [ ∑ 𝑘̇𝑖𝑗𝑡

𝑠

ℎ

𝑚=𝑚0

𝐈𝐢𝐣𝐭] 

where 𝑤𝑖𝑗,𝑚0
∗  are the expected (at the time of planting 𝑚0) annual water requirements and 𝑘𝑖𝑗,𝑚0

∗  expected 

annual yield penalties. 595 

Following a similar approach, we can derive the crop area planted function for the WD form as:  

 

𝐿𝑖𝑗𝑡
𝑝

= 𝐿‾𝑖𝑗𝑡 .
1

𝛽𝑖𝑗
𝑐1𝛽𝑖𝑗

𝑐2 . (𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. (1 − 𝑘𝑖𝑗,𝑚0
∗ ) − 𝛽𝑖𝑗

𝑐2 − (𝛽𝑖𝑗
𝑐0 + 𝑃𝑖𝑗

𝑤). 𝑤𝑖𝑗,𝑚0
∗ ) 

𝑘𝑖𝑗,𝑚0
∗ =  𝐄𝑚=𝑚0 [∑ 𝑘̇𝑖𝑗𝑡

𝑠

𝑚

(
𝑤𝑖𝑗𝑡

𝑤‾ 𝑖𝑗𝑡

− 1)

2

] 

𝑤𝑖𝑗,𝑚0
∗ = 𝐄𝑚=𝑚0 [∑ 𝑤𝑖𝑗𝑡

𝑚

] 600 

To proceed further we assume that the expectations terms in both equations can be approximated by a linear 

function of the price at the time of planting: 

𝑘𝑖𝑗,𝑚0
∗ = 𝛽𝑖𝑗

𝑒𝑘0 + 𝛽𝑖𝑗
𝑒𝑘1𝑃𝑖𝑗𝑚0

𝑤  

𝑤𝑖𝑗,𝑚0
∗ =  𝛽𝑖𝑗

𝑒𝑤0 + 𝛽𝑖𝑗
𝑒𝑤1𝑃𝑖𝑗𝑚0

𝑤  
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This leaves us with the following crop area functions for the AD and WD forms: 605 

𝐿𝑖𝑗𝑡
𝑝

= 𝛽𝑗
𝑦1

𝐿‾𝑖𝑗𝑡 (1 −
𝛽𝑖𝑗

𝑐2 + (𝛽𝑖𝑗
𝑐0 + 𝑃𝑖,𝑚0

𝑤 ). (𝛽𝑖𝑗
𝑒𝑘0 + 𝛽𝑖𝑗

𝑒𝑘1𝑃𝑖𝑗𝑚0
𝑤 )

𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. (1 − 𝛽𝑖𝑗
𝑒𝑘0 − 𝛽𝑖𝑗

𝑒𝑘1𝑃𝑖𝑗𝑚0
𝑤 )

)  × 

(1 +
𝛽𝑖𝑗

𝑐1. 𝛽𝑖𝑗
𝑐2. 𝛽𝑗

𝑦1

𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. (1 − 𝛽𝑖𝑗
𝑒𝑘0 − 𝛽𝑖𝑗

𝑒𝑘1𝑃𝑖𝑗𝑚0
𝑤 )

)

−1

  (9 𝐴𝐷) 

𝐿𝑖𝑗𝑡
𝑝

= 𝐿‾𝑖𝑗𝑡 .
1

𝛽𝑖𝑗
𝑐1𝛽𝑖𝑗

𝑐2 . (𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. [1 − 𝛽𝑖𝑗
𝑒𝑘0 − 𝛽𝑖𝑗

𝑒𝑘1𝑃𝑖𝑗𝑚0
𝑤 ] − 𝛽𝑖𝑗

𝑐2 − (𝛽𝑖𝑗
𝑐0 + 𝑃𝑖𝑗

𝑤). [𝛽𝑖𝑗
𝑒𝑤0 + 𝛽𝑖𝑗

𝑒𝑤1. 𝑃𝑖𝑗𝑚0
𝑤 ])     (9 𝑊𝐷) 

where 𝛽𝑖𝑗
𝑒𝑘0 , 𝛽𝑖𝑗

𝑒𝑘1, 𝛽𝑖𝑗
𝑒𝑤0, 𝛽𝑖𝑗

𝑒𝑤1 are additional parameters to be estimated (as outlined in Appendix A.5 below). 

  610 
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A.5 Estimation  

The parameter estimation problem is set-up as a non-linear minimization problem, where the parameters are 

chosen to minimize the weighted sum of squared prediction errors:  

min
𝛃

𝜖2 

𝜖2 = ∑ (𝛿𝑖𝑗𝑡
𝐿 (𝐿𝑖𝑗𝑡 − 𝐿̂𝑖𝑗𝑡))

2

𝑖𝑗𝑡

+ ∑ (𝛿𝑖𝑗𝑡
𝑊 (𝑊𝑖𝑗𝑡 − 𝑊̂𝑖𝑗𝑡))

2

𝑖𝑗𝑡

+ ∑ (𝛿𝑖𝑗𝑡
𝑌 (𝑌𝑖𝑗𝑡 − 𝑌̂𝑖𝑗𝑡))

2

𝑖𝑗𝑡

+

∑ (𝛿𝑖𝑡
𝑈(𝑈𝑖𝑡 − 𝑈𝑖𝑡))

2

𝑖𝑡

+ ∑ (𝛿𝑖𝑡
𝑈𝑒

(𝑈𝑖𝑡
𝑒 − 𝑈̂𝑖𝑡

𝑒 ))
2

𝑖𝑡

+ ∑ (𝛿𝑖𝑡
𝐷(𝐷𝑖𝑡 − 𝐷̂𝑖𝑡))

2

+ ∑ (𝛿𝑖𝑡
𝑃(𝑃𝑖𝑡

𝑊 − 𝑃̂𝑖𝑡
𝑊))

2

𝑖𝑡𝑖𝑡

 

 615 

subject to Equations 1 to 11 

Table A1: Parameters to be estimated 

Parameter Description / function 

𝛽𝑖
𝑒𝑟0, 𝛽𝑖

𝑒𝑟1, 𝛽𝑖
𝑒𝑟2 Effective rainfall 

𝛽𝑖𝑗
𝑤0, 𝛽𝑗

𝑤2, 𝛽𝑤3 Crop water requirements 

𝛽𝑗
𝑠0, 𝛽𝑗

𝑠1 Crop water stress 

𝛽𝑖𝑗
𝑦0

, 𝛽𝑗
𝑦1

, 𝛽𝑗
𝑦2

 Crop yield response 

𝛽𝑖𝑗
𝑙0, 𝛽𝑖𝑗

𝑙1 Crop area constraint 

𝛽𝑗
𝑐1, 𝛽𝑗

𝑐2 Crop planting costs 

𝛽𝑖
𝑐0 Water delivery charge 

𝛽𝑖
𝑑0, 𝛽𝑖𝑚

𝑑1, 𝛽𝑖
𝑑2 Diversions 

𝛽𝑖
𝑢0, 𝛽𝑖

𝑢1, 𝛽𝑖
𝑢2, 𝛽𝑖

𝑢3 Water allocation use 

𝛽𝑖
𝑒𝑛𝑣0, 𝛽𝑖

𝑒𝑛𝑣1, 𝛽𝑖
𝑒𝑛𝑣2, 𝛽𝑖

𝑒𝑛𝑣3 Environmental water use 

 

The estimation weights  𝛿𝐿 , 𝛿𝑌 are scaled by mean application rates and yields respectively, such that all 

variables are in comparable units (i.e., ML). Weights are also increased linearly over-time to put greater 620 

emphasis on recent years of data. 

In some northern basin regions (Macquire, Namoi, Gwydir, Border Rivers) water market price data 

is deemed to be of limited quality and is replaced with an imputed “shadow” price 𝑃̂𝑖𝑡
𝑊 estimated as a non-

linear function of water availability (Equation 10). These shadow water prices are then used in-place of 

observed data (in Equations 8, 9, 8b, 9b). In all other regions, actual observed water market prices are used. 625 
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𝑃𝑖𝑡
𝑊 = 𝛽𝑖

𝑃0 + 𝛽𝑖
𝑃1𝐴̇𝑖𝑡 + 𝛽𝑖

𝑃2log(Ṙit
12) + 𝛽𝑖

𝑃3𝑦 + 𝛽𝑖
𝑃4 𝐴̇𝑖𝑡

(
1

𝛽𝑖
𝑃5−1

)

 (12) 

𝑃𝑖𝑡
𝑊 ≥ 0 

𝐴̇𝑖𝑡 =
𝐴𝑖𝑡

∑ 𝐸𝑖ℎℎ

 

where 𝐴̇𝑖𝑡  is the estimated monthly allocation water supply volume relative to entitlement volume, and Ṙit
12 

the 12-month moving average of regional rainfall relative to the long run annual mean. 630 

To determine the expected crop water requirements and water stress parameters 𝛽𝑖𝑗
𝑒𝑘0, 𝛽𝑖𝑗

𝑒𝑘1 , 

𝛽𝑖𝑗
𝑒𝑤0 , 𝛽𝑖𝑗

𝑒𝑤1  an iterative bootstrapping approach is employed.  First the main model parameters are estimated 

as above given an initial guess for the expectation terms (k𝑖𝑗𝑡
∗ = 0, w𝑖𝑗𝑡

∗ = 𝑤̅𝑖𝑗𝑡). Next 𝛽𝑖𝑗
𝑒𝑘0, 𝛽𝑖𝑗

𝑒𝑘1, 𝛽𝑖𝑗
𝑒𝑤0 , 𝛽𝑖𝑗

𝑒𝑤1 

are estimated by solving: 

min
𝛽𝑖𝑗

𝑒𝑘0,𝛽𝑖𝑗
𝑒𝑘1,𝛽𝑖𝑗

𝑒𝑤0,𝛽𝑖𝑗
𝑒𝑤1

∑ (𝛿𝑖𝑗𝑡
𝑘 (k𝑖𝑗𝑡

∗ − k∗̂
𝑖𝑗𝑡))

2

𝑖𝑗𝑡

+ ∑ (𝛿𝑖𝑗𝑡
𝑤 (w𝑖𝑗𝑡

∗ − w∗̂
𝑖𝑗𝑡))

2

𝑖𝑗𝑡

 635 

This process then proceeds iteratively until convergence.   
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Appendix B: Additional validation results 

Table B1: Symmetric Medan Absolute Percentage Error (SMAPE) for annual allocation use 𝑼, diversion 𝑫 and 640 
water applied 𝑾 by region. Fitted and cross-validated (Leave-One-Year-Out, LOYO) 

Region 𝑈 (Fitted) 𝑈 (LOYO) 𝐷 (Fitted) 𝐷 (LOYO) 𝑊 (Fitted) 𝑊 (LOYO) 

NSW Murray (above) 14.4 13.3 4.6 8.2 11.2 14.4 

Vic. Murray (above) 15.5 20.3 10.0 14.1 22.1 22.9 

Vic. Murray (below) 8.9 14.3 7.5 8.0 6.1 6.6 

NSW Murray (below) 8.0 10.0 9.4 11.0 11.1 12.6 

Murrumbidgee 3.9 11.1 5.7 6.7 9.0 10.4 

Goulburn 10.1 12.8 12.2 11.2 11.7 15.0 

SA Murray 5.4 5.9 5.4 5.8 10.6 11.6 

Southern MDB 8.1 12.7 8.4 10.0 11.2 12.3 

Lachlan 23.8 21.0 29.0 33.5 14.5 17.0 

Macquarie 15.6 24.6 13.6 25.7 16.9 21.4 

Namoi 24.9 24.9 11.2 10.2 16.9 25.8 

Gwydir 14.8 20.0 17.7 12.8 20.1 26.3 

NSW Border Rivers 22.9 27.7 19.3 23.3 29.2 42.0 

Northern MDB 18.2 24.9 17.6 20.5 17.8 25.8 

MDB 12.1 17.1 10.9 12.8 13.4 16.6 

 

Table B2: Symmetric Medan Absolute Percentage Error (SMAPE) for water applied, area planted and production 

by crop. In-sample and cross-validated (Leave-One-Year-Out) 

Region 𝑊 (Fitted) 𝑊 (LOYO) 𝐿 (Fitted) 𝐿 (LOYO) 𝑌 (Fitted) 𝑌 (LOYO) 

Almonds 3.6 4.1   6.0 6.3 

Cotton 14.7 27.8 11.2 22.5 15.0 22.6 

Grapes 4.9 5.9   14.8 16.6 

Hay 16.5 21.7 17.4 18.5 33.7 28.9 

Horticulture 4.6 5.2   23.0 26.1 

Other Crops 14.7 20.2 10.3 10.3 21.2 21.7 

Pasture 13.4 15.7 11.2 22.2   

Rice 14.6 15.7 18.0 17.6 23.3 29.5 

Vegetables 3.4 5.5   23.3 23.9 

All crops 6.9 9.2 3.3 1.9   

  645 

https://doi.org/10.5194/egusphere-2025-6181
Preprint. Discussion started: 8 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

40 

 

 

 

Table B3: 𝑹𝟐  for annual allocation use, diversion and water applied by region. In-sample and cross-validated 

(Leave-One-Year-Out) 

Region 𝑈 (Fitted) 𝑈 (LOYO) 𝐷 (Fitted) 𝐷 (LOYO) 𝑊 (Fitted) 𝑊 (LOYO) 

NSW Murray (above) 0.94 0.84 0.90 0.82 0.93 0.85 

Vic. Murray (above) 0.41 0.32 0.67 0.60 0.51 0.43 

Vic. Murray (below) 0.52 0.28 0.67 0.59 0.84 0.75 

NSW Murray (below) 0.89 0.76 0.81 0.70 0.73 0.66 

Murrumbidgee 0.95 0.85 0.93 0.86 0.83 0.74 

Goulburn 0.73 0.65 0.49 0.38 0.75 0.66 

SA Murray 0.89 0.81 0.51 0.25 0.06 -0.06 

Southern MDB 0.94 0.90 0.95 0.92 0.95 0.92 

Lachlan 0.81 0.71 0.74 0.60 0.23 0.25 

Macquarie 0.86 0.68 0.79 0.58 0.70 0.44 

Namoi 0.83 0.65 0.83 0.58 0.68 0.28 

Gwydir 0.87 0.78 0.90 0.79 0.90 0.77 

NSW Border Rivers 0.45 0.12 0.50 0.15 0.72 0.30 

Northern MDB 0.84 0.71 0.83 0.67 0.80 0.61 

MDB 0.96 0.93 0.96 0.94 0.95 0.92 

 

Table B4: 𝑹𝟐 for water applied, area planted and production by crop. In-sample and cross-validated (Leave-One-

Year-Out) 650 

Region 𝑊 (Fitted) 𝑊 (LOYO) 𝐿 (Fitted) 𝐿 (LOYO) 𝑌 (Fitted) 𝑌 (LOYO) 

Almonds 0.96 0.94   0.95 0.94 

Cotton 0.87 0.75 0.85 0.28 0.86 0.67 

Grapes 0.73 0.51   -0.58 -1.00 

Hay 0.45 0.30 0.30 0.06 -0.12 -0.45 

Horticulture 0.31 0.04   -1.16 -1.55 

Other Crops 0.14 -0.19 -0.02 -0.34 -0.04 -0.31 

Pasture 0.81 0.74 0.46 0.07   

Rice 0.96 0.89 0.94 0.88 0.85 0.80 

Vegetables 0.84 0.72   -5.43 -5.19 

All crops 0.93 0.89     
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Figure B1: Observed, fitted and hindcast annual water applied 𝑾𝒊𝒚 by crop 
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Figure B2: Observed, fitted and hindcast annual area planted by crop 
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Figure B3: Observed, fitted and hindcast production (quantity) by crop 
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Table B5: 𝑹𝟐 and SMAPE for monthly diversions. In-sample and cross-validated (Leave-One-Year-Ou  

 
R2 SMAPE 

Region D (Fitted) D (LOYO) D (Fitted) D (LOYO) 

NSW Murray (above) 0.85 0.79 37.0 42.5 

NSW Murray (below) 0.70 0.66 33.5 36.0 

Vic. Murray (above) 0.76 0.71 31.2 33.6 

Vic. Murray (below) 0.83 0.80 19.9 20.9 

Total Murray 0.88 0.85 28.8 32.3 
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