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Abstract  

The Australian Murray-Darling Basin is home to one of the world’s most mature water markets. In recent decades, 

these markets have played a vital role supporting adaptation to the effects of drought, climate change and 10 

environmental reform. This study introduces a new monthly economic model of the water market with an emphasis 

on biophysical detail and empirical performance to enable integration with hydrological models. This model also 

contains significant economic structure, representing the stochastic and dynamic nature of water markets in 

storage-controlled rivers, including forward looking water users with rational expectations over future conditions.  

In this study, the model is applied to simulate the potential effects of climate change on water markets within the 15 

southern basin. The results show how markets support adaptation, with drier climates leading to increases in 

regional water trade volumes, particularly imports into the lower Murray.  Drier scenarios are also associated with 

more conservative crop planting decisions, which increase storage reserves to maintain supply reliability.  Under 

the driest future climates, the ability of markets to adapt is more limited, and the model simulates long-term 

declines in irrigation development.  However, the future climate remains highly uncertain, with a majority of the 20 

projection ensemble involving increases in water supply and irrigation activity relative to recent conditions.  In 

future, fully integrated hydro-economic models could help to design water market institutions that are robust to a 

non-stationary and uncertain climate.   
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Highlights  

• A monthly timestep economic model of the Murray-Darling Basin water market is developed 

• This model is applied to assess the potential impacts of climate change in the southern basin 30 

• The results show how markets enable adaptation by reallocating water over space and time 

• Under extreme dry scenarios the model simulates a decline in irrigation development 

• In future, integrated hydro-economic models could better support adaptation planning  
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1 Introduction 

Water markets have emerged in many river systems around the world including in the Western US (Schwabe et 35 

al., 2020; Wight et al., 2024), Chile (Bauer, 2004) and the Australian Murray-Darling Basin (MDB) (Brennan, 

2006; Grafton et al., 2012; Young & McColl, 2005). These markets play an important role in managing climate 

variability, particularly drought, by efficiently allocating scarce water resources among competing users. 

Increasingly, water markets are now also supporting longer-term adaptation to the effects of climate change (Bruno 

& Jessoe, 2024).  40 

The Australian MDB has experienced a long-term decline in winter season rainfall over the last 20-30 

years, a trend at least partly due to climate change (see Cai et al., 2012, 2014; Cai & Cowan, 2013). Lower rainfall 

has contributed to significant declines in streamflow and water supply in the basin in recent decades (Speer et al., 

2021; Zhang et al., 2016). At the same time, governments have been securing water for environmental flows to 

improve ecological outcomes in the region (Crase et al., 2012; Hart, 2016; Leblanc et al., 2012). Since 2008, over 45 

2,000 GL of water rights have been reallocated from farmers to the environment under the Murray-Darling Basin 

Plan; reducing consumptive supply by around 20 per cent.  

These reductions in supply have led to a range of adaptation responses including improvements in 

technology (e.g., more efficient irrigation infrastructure) (Connor et al., 2014; Hughes et al., 2023) and changes in 

irrigation development across regions (i.e., less pasture in the upper Murray, and more almonds in the lower 50 

Murray, see Zeleke & Luckett, 2025). These changes have been enabled largely by water markets. Trading has 

allowed the spatial pattern of irrigation development to adjust across the basin. In addition, carryover (i.e., storage 

of unused water in on-river dams, see Brennan, 2010; Hughes et al., 2023) has increased the reliability of water 

supply supporting more intensive activities, particularly perennial tree crops (Hughes et al., 2023; Zeleke & 

Luckett, 2025).  55 

Despite this, concerns remain over the future impacts of climate change in the region. Recent adaptations 

have increased the capital intensity of the irrigation sector raising the issue of stranded assets (see Bark et al., 2014; 

Hughes et al., 2020). To date, assessments of climate change in the MDB have relied mostly on hydro-climate 

modelling (CSIRO 2008; Potter & Srikanthan, 2008; A. Van Dijk et al., 2008), where catchment and river process 

models are used to simulate changes in streamflow and water supply under projected climate. For example, the 60 

CSIRO (2008) simulated a median decline in water availability by 2030 of 13 per cent in the southern MDB. While 

these models represent physical processes in detail, they largely ignore the economic behaviour of water users and 

markets, including potential adaptation responses.  

This study presents a model of the MDB water market representing the economic behaviour of water 

users (i.e., irrigation farmers) including monthly water use, annual crop planting and long-run investment 65 

decisions. The water market is modelled as a spatio-temporal equilibrium problem, where market prices are the 

product of optimal water use, trade and storage behaviour, subject to physical and institutional constraints. This 

study extends the previous annual model presented in Hughes et al., (2023), drawing on a recently developed 

monthly bio-economic water demand system (described in Hughes et al., 2025).  The model is demonstrated with 

an application to the southern MDB, simulating potential water market and irrigation responses to climate change. 70 
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These simulations make use of an ensemble of climate and water supply scenarios derived from a separate hydro-

climate model (John, Horne, & Hughes, 2025). 

This combination of economic and hydrologic models places our study within the wider literature on 

integrated Hydro-Economic Modelling (HEM) (Brouwer & Hofkes, 2008). In particular, our study is related to 

the simplified monthly hydro-economic models of the MDB developed previously by Kirby et al., (2014) and 75 

Qureshi et al., (2013), which were both applied to simulate the effects of climate change. A key point of difference, 

is that our model is dynamic in the sense that water users make forward looking decisions subject to uncertainty 

over stochastic water supplies.  The model is solved for a “rational expectations” equilibrium in which user 

behaviour reflects probabilities over future conditions drawn from a known distribution.  As a result, the model 

can represent adaptation responses, such as changes in crop planting, water trade, carryover or even irrigation 80 

development in response to a change in the long-run climate (i.e., the probability distribution over water supply 

conditions).  

Given the numerical complexities, most economic models of water markets (e.g., Grafton & Jiang, 2011; 

Quiggin et al., 2010; Wittwer & Griffith, 2011) tend to ignore storage dynamics, while economic and engineering 

models of water storage (e.g., Brennan, 2010; Dudley, 1988; Ahmad et al., 2014) tend to ignore markets. The 85 

model presented here represents both, using a combination of mathematical programming to solve the short-run 

water market (as a Mixed Complementarity Problem) and machine learning methods to resolve the stochastic-

dynamics (i.e., obtain a long-run rational expectations equilibrium).  In particular, the study employs methods 

from Reinforcement Learning to approximate user expectations over future water market prices.  

In this paper we provide a brief description of the study region and then set out our economic model, 90 

including water accounting constraints and the spatial and intertemporal equilibrium conditions. We then provide 

an overview of the numerical methods applied to solve the model, before presenting simulation results detailing 

the potential effects of climate change on irrigation activity and water markets in the region. 
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2 The Murray-Darling Basin 95 

The Murray-Darling Basin (MDB) drains an area of over 1,000,000 km2 across South-Eastern Australia. Irrigated 

agriculture accounts for more than 90% of total water use in the region. The southern MDB (sMDB)—which 

includes the Murray-river and its connected tributaries (Figure 1)—accounts for around three quarters of 

agricultural water use in the MDB (and around half of national agricultural use). 

 100 

Figure 1: The Murray–Darling Basin 

The sMDB is subject to a temperate climate with winter dominant inflows and relatively large on-river storages 

which support inter-year storage reserves. Irrigation within the sMDB is diverse with a mix of perennials (e.g., 

fruit and nut trees and grapevines), irrigated pasture and annual cropping (e.g., rice and cotton). Perennial crops 

are concentrated in the lower Murray (e.g., SA Murray and Vic. Murray Below Barmah regions), dairying / 105 

irrigated pasture in northern Victoria (e.g., Goulburn-Broken, Loddon, Campaspe) and rice and cotton in NSW 
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(Murray and Murrumbidgee, see Figure 1). In contrast, irrigation in the northern MDB is dominated by cotton 

crops.  

Water market reforms since the 1980s have seen the separation of water rights from land and the 

establishment and gradual refinement of cap-and-trade systems (Crase et al., 2004; Wheeler et al., 2014; Young 110 

& McColl, 2005). While water markets exist in many parts of Australia, the sMDB is by far the most active market 

(accounting for around 90% of water trade activity). Water property rights in the MDB involve a system of 

“entitlements” (perpetual rights to a share of water from a particular source / river) which receive annual water 

“allocations” (volumes of water available for use within the current year). Allocation volumes are determined by 

water authorities to reflect prevailing water availability (i.e., dam storage volumes).  115 

Another key feature of the MDB are carryover rights (see Brennan, 2010; Hughes et al., 2023), which 

allow farmers to hold unused water allocations in public reservoirs: creating buffer stocks to reduce variability in 

water use and prices over time. These storage reserves are important in the sMDB given river inflows are highly 

variable, while alternatives to reservoir storage (e.g., groundwater recharge, on-farm dams) are limited. Both water 

trade and carryover are subject to regulatory limits, in the form of water accounting rules designed to reflect 120 

physical constraints on the delivery and storage of water within the river system. Together the system of water 

property rights and accounting rules are designed to represent key features of the physical river system (i.e., 

reservoirs and rivers) ensuring consistency between water market transactions and real-world water flows. 

Under the Australian constitution, responsibility for water resource management lies primarily with the 

jurisdictions (i.e., state governments). As such, the implementation of water institutions varies considerably across 125 

the regions of the MDB, particularly the definition of water entitlements, water accounting and carryover rules 

and allocation determination processes. However, the annual water allocations held by end users remain relatively 

homogenous, such that trade across state borders can occur with low transaction costs. 

3 Methods 

3.1 The economic model 130 

Figure 2 provides an overview of the economic model. The model takes hydro-climate data (monthly sequences 

of water allocations, rainfall and evapotranspiration), irrigation data (irrigation development and commodity 

prices), and water market rules (trade and carryover limits) as inputs, simulating monthly irrigation and water 

market outcomes (Figure 2a). The model includes seven southern MDB regions and five northern MDB regions 

(Figure 2b). Consistent with exiting MDB trading rules, inter-regional water trade is allowed in the “connected” 135 

southern MDB, but not among the “disconnected” northern MDB regions. 

The model represents spatial and temporal equilibrium in water market, allowing for trade of water 

between regions and carryover of unused water between time periods. The supply side of the model includes a set 

of water accounting rules and trade limits, approximating those operating currently within each of the MDB 

regions. The demand side involves a detailed representation of irrigated agriculture, including crop production, 140 

revenue, costs and profits (drawing on Hughes et al., 2025).   
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Figure 2:  Overview of the economic water market model (a) Stylised representation of the model for a single region, 

including input data, model processes (water accounting, irrigation production and water markets) and model outputs. 

(b) Spatial overview of the model including allowable inter-region water trade flows. 145 
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3.1.1 Water supply 

Water accounting rules vary significantly across MDB regions and states, particularly in how they represent 

storage constraints (see Brennan, 2006; Hughes et al., 2023). The model adopts a simplified parametric 

representation of these accounting systems, which attempts to reflect the most relevant features within each region. 

Within the model, the volume of allocations 𝐴𝑖𝑡 available at end of of period 𝑡 (i.e., unused water) evolves 150 

according to: 

𝐴𝑖𝑡 = 𝑓𝐴(𝐴𝑖,𝑡−1) + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡 − 𝑈𝑖𝑡 + 𝑇𝑖𝑡 − 𝐹𝑖𝑡          (1) 

𝛥𝐴𝑖ℎ𝑡 = (𝑎ℎ𝑖𝑦,𝑚 − 𝑎ℎ𝑖𝑦,𝑚−1). 𝐸ℎ𝑖 + 𝐴𝑖𝑡
𝑜𝑡ℎ𝑒𝑟     

𝑓𝐴(𝐴𝑖,𝑡−1) = min ((1 − 𝛼𝑖𝑚
𝐺 )𝐴𝑖,𝑡−1, 𝛼𝑖𝑚

𝐶 ∑ 𝐸𝑖ℎ

ℎ

) 

𝜏𝑖𝑡
𝑙 ≤ 𝑇𝑖𝑡 ≤ 𝜏𝑖𝑡

𝑢  155 

0 < 𝐴𝑖𝑡 < 𝐴‾𝑖𝑡 

where 𝛥𝐴𝑖ℎ𝑡 are new allocation volumes made available in period 𝑡 (implicitly reflecting inflows into storages), 

𝑈𝑖𝑡 is allocation use, 𝑇𝑖𝑡  is net inter-region trade and 𝐹𝑖𝑡 are forfeits (reflecting storage constraints / losses). Note 

that in general we use 𝑡 to refer to the current time-period (month), but where necessary separately index the 

(financial) year 𝑦 and month 𝑚. 160 

The model represents two water entitlement types in each region with varying reliability levels ℎ ∈

{ℎ𝑖𝑔ℎ, 𝑙𝑜𝑤} (i.e., General and High Security in NSW and High and Low Reliability in Victoria). These water 

entitlements each receive annual allocations of water 𝑎ℎ𝑖,𝑡 . 𝐸ℎ𝑖 , where 𝑎ℎ𝑖,𝑡 is an annual allocation percentage 

updated monthly, and 𝐸ℎ𝑖  is a fixed (i.e., maximum) annual supply volume.  Finally, the term 𝐴𝑖𝑡
𝑜𝑡ℎ𝑒𝑟  reflects 

volumes of water available against other surface water rights not explicitly represented in the model, including 165 

conveyance losses and urban water (for details see Appendix A3). 

3.1.2 Water storage and trade limits 

The function 𝑓𝐴 governs the transfer (carryover) of unused water from one period to the next. Different rules are 

imposed across regions, including in some cases limits on the transfer of water between financial years (from June 

to July). Carryover rules are represented in the model via alternative specifications for 𝑓𝐴, 𝐹𝑖𝑡 and 𝐴‾𝑖𝑡  as set out in 170 

Appendix A1. 

The model includes four trading zones in the southern MDB (see Figure 2b) which represent the key physical 

constraints on inter-regional water trade. Net flows of water downstream on the Murray-river (into the Murray 

below Barmah) are constrained by the “Barmah Choke” a narrow section of the river which limits delivery 

capacity. Downstream deliveries from the Murrumbidgee and Goulburn tributaries are also subject to constraints. 175 
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Trade within these zones is unconstrained but trade between zones is subject to volumetric limits: 𝜏𝑖𝑡
𝑢 , 𝜏𝑖𝑡

𝑙 . These 

“Inter-valley Transfer” (IVT) limits evolve overtime in response to accumulated trade volumes and physical river 

flows, with specific accounting rules applied in each case (see Appendix A2). In general, upstream inter-regional 

trade is only possible where it offsets other downstream flows (referred to as “back-trade”,  Figure 2b). 

3.1.3 Irrigation water demand 180 

The demand side of the economic model is based on the monthly bio-economic water demand system developed 

by Hughes et al., (2025). This system represents 12 irrigation activities 𝑗 ∈ 𝐽  in each region including perennial 

crops (Almonds, Grapes, Vegetables and Other horticulture), summer crops (Rice, Cotton), winter/perennial crops 

(Hay, Pasture) winter/summer crops (Other). The parameters of the demand system 𝜷𝑖𝑗𝑡 are estimated from 

historical data over the period 2004-05 to 2021-22. The parameters vary over-time in line with observed 185 

technological trends (e.g., water use efficiency, irrigation development). The values applied in this study are based 

the 2021-22 estimates (intended to reflect current irrigation development and technology). 

A brief summary of the water demand models is provided below (for a complete description see Hughes 

et al., 2025). The demand model adopts a crop water balance equation in which monthly crop irrigation 

requirements (ML per hectare) 𝑤̅𝑖𝑗𝑡 are a function of effective rainfall 𝐸𝑅𝑖𝑡 (moisture in) and evapo-transpiration 190 

𝐸𝑇𝑖𝑡
0 (moisture out): 

𝑤̅𝑖𝑗𝑡 =
1

100
.

1

𝛽𝑖𝑗
𝑤0 max(𝑘𝑗𝑚

𝑐 𝐸𝑇𝑖𝑡
0 − 𝐸𝑅𝑖𝑡 , 0)         (2) 

where 𝑘𝑗𝑚
𝑐  are crop and month specific coefficients and 𝛽𝑖𝑗

𝑤0 is an estimated (water use efficiency) parameter. Here 

𝐸𝑅𝑖𝑡 is a parametric function of actual rainfall 𝑅𝑖𝑡 while both 𝐸𝑇𝑖𝑡
0 and 𝑅𝑖𝑡 are random variables.  Irrigators are 

required to make annual planting decisions, and monthly irrigation decisions to maximize expected profits. Annual 195 

crop areas planted 𝐿𝑖𝑗𝑡
𝑝

 are constrained by the level of irrigation development, represented by 𝐿‾𝑖𝑗: the maximum 

area set-up for crop type 𝑗 in region 𝑖 (as estimated in Hughes et al., 2025). For perennial crops annual area is fixed 

𝐿𝑖𝑗𝑡
𝑝

= 𝐿‾𝑖𝑗 . The model allows for deficit irrigation, where water applied 𝑊𝑖𝑗𝑡  is less than the full requirement 

𝑤̅𝑖𝑗𝑡 . 𝐿𝑖𝑗𝑡
𝑝

 resulting in yield penalties.  Note that planting decisions have a dynamic component as they depend on 

expectations (in the planting month) over weather, water supplies and any deficit irrigation over the rest of the 200 

crop growing season (see Appendix A.5). 

In the model, profits to irrigation farmers are equal to crop production revenue, less water and planting 

costs:  

𝜋𝑖𝑗𝑦 = 𝑃𝑗𝑦
𝑦

. 𝑦𝑖𝑗𝑦 − ∑ (𝑃𝑖𝑦𝑚
𝑤 + 𝛽𝑖

𝑐0)𝑚 𝑊𝑖𝑗𝑦𝑚 − 𝛽𝑗
𝑐2𝐿𝑖𝑗𝑦

𝑝
(1 + 𝛽𝑐1. 𝐿𝑖𝑗𝑦

𝑝
/2𝐿‾𝑖𝑗𝑦)          (3) 

 where 𝑃𝑗𝑦
𝑦

 is the crop output price and 𝑦𝑖𝑗𝑦  is crop production (a quadratic function of water applied), 205 

𝑊𝑖𝑗𝑦𝑚   is monthly water use,  𝑃𝑖𝑦𝑚
𝑤  is the water price, and 𝛽𝑖

𝑐0 a per unit water delivery charge. Reduced-form 

water demand functions (derived from the irrigation profit maximisation problem, see Hughes et al., 2025) then 

link area planted (i.e., 𝐿𝑖𝑗𝑡
𝑝

≤ 𝐿‾𝑖𝑗) and water use (i.e., 𝑊𝑖𝑗𝑡 ≤ 𝑤̅𝑖𝑗𝑡 . 𝐿𝑖𝑗𝑡
𝑝

) with water and crop prices, weather 

8

https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026
c© Author(s) 2026. CC BY 4.0 License.



conditions and model parameters. The specific functional forms vary by crop, for details see Hughes et al., (2025) 

or Appendix A.5.   210 

3.1.4 Total water demand 

While irrigation remains the major water user, some surface water allocations are used for other purposes including 

urban needs and environmental flows. As a result of the Murray-Darling Basin Plan “Held environmental water” 

(consumptive water entitlements recovered for environmental flows) now represent a significant share of total 

allocation ‘use’, the order of around 20-30 per cent depending on the region. 215 

Following Hughes et al., (2025) total use of water allocations 𝑈𝑖𝑡 is defined as: 

𝑈𝑖𝑡 = 𝛽𝑖
𝑢0𝑊𝑖𝑡 + 𝛽𝑖

𝑢1𝑈𝑖𝑡
𝑒𝑛𝑣 + 𝛽𝑖

𝑢2 + 𝛽𝑖
𝑢3𝑅𝑖𝑡/𝑅‾𝑖𝑚         (4) 

where 𝑅𝑖𝑦𝑚/𝑅‾𝑖𝑚 is monthly rainfall relative to the long-run monthly mean and 𝑈𝑖𝑦
𝑒𝑛𝑣  is an estimate of 

environmental water use in region 𝑖 (calibrated to historical data, see Appendix A4). 

3.1.5 Equilibrium conditions 220 

For a single month, the model can be formulated as a Mixed Complementary Problem (MCP), in which water 

prices are required to equalise across space and time subject to trade, carryover,  supply and market clearing 

constraints: 

𝑃𝑡
𝑤∗ − 𝑃𝑖𝑡

𝑤⟂𝜏𝑖𝑡
𝑙 < 𝑇𝑖𝑡 < 𝜏𝑖𝑡

𝑢          (5)
 

𝑃𝑖𝑡
𝑤 − (

1

1 + 𝑟
) 𝐄𝐭 [

∂𝑓𝐴

∂𝐴𝑖𝑡

. 𝑃𝑖,𝑡+1
𝑤 ] ⟂0 < 𝐴𝑖𝑡 < 𝐴‾𝑖𝑡          (6)

 225 

∂𝑓𝐴

∂𝐴𝑖𝑡

= {

0  if 𝐹𝑖𝑡  > 0
(1 − 𝛼𝑖𝑚

𝐺 ) otherwise  

Subject to: 

∑ 𝑇𝑖𝑡

𝑖

= 0 

𝐴𝑖𝑡
𝑜𝑝

= 𝑓𝐴(𝐴𝑖,𝑡−1) + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡 − 𝑈𝑖𝑡 + 𝑇𝑖𝑡 − 𝐹𝑖𝑡 

Here equilibrium in the water market in period 𝑡 requires the equalisation of water prices across each region, 230 

subject to trade constraints (Eq. 5). Above 𝑃𝑡
𝑤∗ refers to the ‘unrestricted’ water market price (effectively the price 

prevailing in the terminal Murray below Barmah region). Equilibrium also requires equalization of period 𝑡 water 

prices with the expected marginal value of water in period 𝑡 + 1 (Eq. 6). Here 𝑟 is the time (monthly) discount 

rate and 𝐄𝐭 [
∂𝑓𝐴

∂𝐴𝑖𝑡
. 𝑃𝑖,𝑡+1

𝑤 ] is the expected marginal value of unused allocations 𝐴𝑖𝑡 from period 𝑡 in period 𝑡 + 1. 

The term 
∂𝑓𝐴

∂𝐴𝑖𝑡
 is the marginal rate at which allocations can be transferred between time periods. This rate of 235 
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transformation is one in most cases but goes to zero if allocation account limits are reached in the next period (as 

any unused water is forfeited by users). 

Note that these conditions are dynamic (i.e., recursive): calculation of equilibrium prices in 𝑃𝑡
𝑤∗ is 

dependent on expected future prices. This recursion is resolved via an iterative “learning” approach outlined in the 

next section. 240 

3.2 Simulations 

3.2.1 Solving the model 

While a static (i.e., single period) MCP is easy to solve numerically, a dynamic stochastic problem presents some 

challenges. Notionally, the agents in this model (i.e., irrigation farmers) are making repeated water use-storage 

decisions subject to uncertainty over future climate conditions. As such, the economic model has some similarities 245 

with reservoir operation problems (see Stedinger et al., 1984): limiting current use 𝑈𝑖𝑡 in-order to increase reserves 

𝐴𝑖𝑡 may be beneficial if future conditions are dry, but wasteful if future conditions are wet. Commonly, Stochastic 

Dynamic Programming (SDP) methods are applied to solve such problems, however these suffer from well known 

computational issues. 

For this study, we follow the approach of economists Williams and Wright (1992) in solving the 250 

equilibrium conditions iteratively to resolve the recursive dynamics (similar to the methods implemented by 

Brennan, 2010; Hughes et al., 2023).  Typically, with this approach the unknown expectations (i.e., in our case 

𝐄𝐭 [
∂𝑓𝐴

∂𝐴𝑖𝑡
. 𝑃𝑖,𝑡+1

𝑤 ]) are replaced with a simple parametric approximation fit by least-squares. However, here we adopt 

non-parametric approximation methods from the field of Reinforcement Learning (RL) as summarised below. 

 255 

Figure 3: Solving the economic model: an iterative RL-MCP approach 
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This process takes three main inputs: an extended sequence of hydro-climate data {𝑎ℎ𝑖𝑡 , 𝑅𝑖𝑡 , 𝐸𝑇𝑖𝑡
0, }𝑡=0

𝒯 ; fixed 

parameter vectors 𝛃, 𝛂; and an initial approximation for the unknown expectations (i.e., some function 𝑝𝑖
0(. ) ≈

𝐄𝐭 [
∂𝑓𝐴

∂𝐴𝑖𝑡
. 𝑃𝑖,𝑡+1

𝑤 ] ) Given these inputs the problem can be solved as series of sequential MCPs, as shown in the ‘Inner 

loop’ in Figure 3. 260 

Here expected future prices are represented by a function defined over the state variables 𝑝𝑖(𝐴𝑖𝑡 , 𝑅𝑖𝑡 , 𝑚). 

We employ Tilecoding a non-parametric approximation scheme drawn from the field of Reinforcement Learning  

(Sutton & Barto, 1998) to approximate this function. Tilecoding can be viewed as a simplistic Neural Network 

with discrete (binary) basis functions defined on regular grids over the input space (see Appendix B).  In each 

iteration of the ‘Outer loop’ (Figure 3) the Tilecoding weights are trained on the latest batch of simulation data via 265 

Stochastic Gradient Descent (SGD) (see Appendix B). For the initial values 𝑝𝑖
0(. ) we train the tilecoding weights 

on historical observed data. For the model we implement a locally linear form of Tilecoding, described further in 

Appendix B. 

This approach differs from previous studies (including Hughes et al., 2023; Brennan, 2010) in solving 

directly on sequences of hydro-climate data without estimating explicit state transition probabilities (a ‘model free’ 270 

approach in the language of Reinforcement Learning). This offers some numerical efficiencies and supports 

integration with hydrologic models where simulation of historical climate sequences is common practice. 

While novel in the context of water markets, the general approach (i.e., use of adaptive learning to 

estimate rational expectations in a stochastic-dynamic market) is relatively common in other fields of economics, 

particularly macro-economic stochastic growth models (Den Haan & Marcet, 1990). The use of non-parametric 275 

machine learning methods in this context is also not uncommon (Heinemann, 2000).  

Note that in this study, learning algorithms are used purely as numerical method to derive a rational 

expectations solution. While learning algorithms can have an intuitive interpretation as an approximation of real-

world adaptive behaviour, we resist that leap in this study, reporting only results at the completion of the outer 

loop (an example of the convergence path of is presented in Appendix B.3) 280 

  

3.2.2 Annual crop planting decisions 

Expectations over water prices are not the only dynamic aspect of the economic model. In the irrigation water 

demand functions crop area planted 𝐿𝑖𝑗𝑦
𝑝

 is also subject to recursion, as these decisions are made at planting time 

subject to uncertainty over weather conditions and water allocations (and hence crop revenues and costs) for the 285 

remainder of the growing season (see Appendix A.5).  At each iteration of the outer loop, inputs for the crop 

planting decision, including expected crop water requirements and yield penalties, are also updated from the 

simulation data (Figure 3), although here a simple parametric (linear least squares) approximation scheme is 

adopted (see Appendix B.2)  
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3.2.3 Long-term irrigation investment 290 

The economic model also allows for adjustment in the level of irrigation development (including the area of 

perennial tree crops) in response to long-term changes in climate or commodity prices. In the model, the level of 

development is represented by maximum crop areas 𝐿‾𝑖𝑡, which can be adjusted at each iteration of the simulation 

outer loop (Figure 3). 

At each iteration, long-run average profit per hectare by region and crop is compared with to a baseline 295 

level 𝜋‾𝑖𝑡
0  (estimated from a model scenario intended to reflect current expectations of climate conditions and 

commodity prices). 𝐿‾𝑖𝑡 is then updated via the rule: 

𝐿‾𝑖𝑗𝑡
𝜈 = min(𝐿‾𝑖𝑗𝑡

𝜈−1 + 𝜂𝐿‾ 𝛥𝑖𝑗
𝐿‾ , 𝐿‾𝑖𝑗𝑡

0 )         (7) 

𝛥𝑖𝑗
𝐿‾ = (

𝜋‾𝑖𝑗𝑡
𝜈 − 𝜋‾𝑖𝑗𝑡

0

|𝜋‾ 𝑖𝑗𝑡
0 |

) , 𝜋‾𝑖𝑗𝑡
𝜈 =

1

𝒯
∑

𝜋𝑖𝑗𝑡
𝜈

𝐿‾𝑖𝑗

𝒯

𝑡=0

 

where 𝜂𝐿‾  is a learning rate parameter. This update is applied iteratively until profit levels are equal (or above) 300 

baseline levels. Note that in this study the update rule only allows for decreases in investment from baseline levels. 

This approach involves several implicit assumptions. Firstly, it assumes initial (i.e., currently observed) 

irrigation development levels (𝐿‾𝑖𝑡
0 ) represent a long-run equilibrium that is sustainable under a continuation of 

baseline scenario conditions. Secondly, it assumes the productivity and suitability of different crops in each region 

remains unchanged from baseline levels (in practice temperature increases could make some horticultural crops 305 

less suitable in warmer regions, and more suitable in cooler regions). Finally, it assumes fixed irrigation capital 

costs per hectare, fixed commodity prices, and ignores any adjustment cost or asset life-cycle issues.  

Importantly, the model generally assumes that while seasonal conditions are uncertain, the long-run climate 

(i.e., the mean and variance of water supply as represented by a given hydro-climate sequence) is known and 

stationary. As such, results for different climate scenarios (including the equilibrium levels of irrigation 310 

development) are to be interpreted as “long-term” outcomes with no attempt to account for a realistic transition 

path. In practice, ambiguity over climate change along with other practical constraints (i.e., adjustment costs) will 

limit the speed adjustment in the short to medium term (see Discussion and Conclusions). 

3.3 Hydro-climate data 

The climate change scenarios presented in this study draw on a hydro-climate data derived from a monthly timestep 315 

hydrological model of the southern MDB (John et al. 2025).  These data are based on an ensemble of 37 CMIP6 

GCM projections for the SSP5-8.5 (high-emissions) scenario. Bias-corrected rainfall and temperature change 

factors from the GCM ensemble (as at 2050) are applied to historic climate data for the period 1895-96 to 2021-

22. These rainfall and temperature data are then used to simulate monthly catchment runoff, inflow, storage 

volumes and allocation percentages for the southern MDB  (see John, Horne, Trail, et al., 2025). While using 320 

historical data sequences to represent climate variability, these simulations all assume contemporary levels of 

irrigation development, water institutions and river operating rules.  
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We also highlight three additional climate scenarios, consistent with the common practice of developing 

a smaller number of ‘bounding’ scenarios (François et al., 2024). These three scenarios represent the minimum, 

median and maximum of the ensemble in terms of mean total water allocation volume, and are labelled: Future 325 

(Dry), Future (Medium) and Future (Wet) respectively. We contrast these against the Historical scenario which 

uses historically climate observations but otherwise identical model settings (i.e., contemporary irrigation 

development, water institutions and river operating rules).  

A summary of the hydro-climate scenario data is presented in Figure 4. Figure 4a shows the percentage 

change in long-run mean (water allocation volumes across the climate projection ensemble relative to a historical 330 

scenario, showing a median decline in water supply of 10.1% for total sMDB). Figure 4b shows the distribution 

of annual water supply for the three representative scenarios, relative to the historical scenario. Given upper limits 

on annual water supply, drier scenarios lead to an increase in the variance of annual allocations (i.e., more years 

with less than 100% allocations).  

 335 

Figure 4: Hydro-climate scenarios: (a) Percentage changes in long-run mean water supply (end-of-year allocation) for 

the climate scenario ensemble by trading zone. (b) Distribution of annual water supply (end of year allocation) for three 

future climate scenarios: Future (Dry), Future (Med.) and Future (Wet) historical scenario. 
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4 Results 340 

4.1 Model validation  

Validation results for the economic model are presented in Figure 5, with further detail in Appendix C.1. These 

scenarios, test the ability of the model to replicate observed outcomes, including monthly water market prices, and 

annual water use and irrigation activity over the period 2008-09 to 2021-22.  For each year in this range the model 

is used to simulate water market and irrigation outcomes, given the estimated level of irrigation development in 345 

that year and the prevailing climate, water supply (allocations), commodity prices and opening carryover.   

The accuracy of these predictions depends on three main factors: the irrigation demand models 

(considered separately in Hughes et al. 2025), the assumed water market constraints (water trade and carryover 

rules, see Appendix A.1 and A.2) and importantly, the calibration of expected market prices.  

This calibration process requires an assumption over the distribution of water supply and climate 350 

conditions in the form of a specific hydro-climate sequence. This is challenging given the historical record is 

clearly non-stationary: being subject to a long-term drying trend related to climate change. For validation purposes 

we adopt a rolling 32-year climate and water supply sequence to represent of contemporary market perceptions of 

climate. For example, the validation results for the year 2021-22 are based on a sequence of observed climate and 

water supply data over the period 1990-91 to 2021-22 (which we refer to as the Baseline scenario, see Appendix 355 

B.4).  

With this approach, the model can predict historical variation in water market prices and irrigation activity 

over-time and across regions relatively well (Figure 5, Appendix C.1). In comparison with the annual model of 

Hughes et al., (2023) the monthly model better reflects observed water market prices, particularly in cases where 

water supplies increase late in the year (i.e., after the summer cropping season has started) as occurred in 2019-360 

20.  

In general, the accuracy of the model is best over the peak summer period (November to February) and 

weaker during winter (May to August), which is understandable given real markets have more information 

available to forecast future allocations (including current storage volumes). For example, modelled prices are 

lower than actuals at the end of the 2018-19 water year, with real markets better anticipating the drought conditions 365 

of 2019-20.  Modelled prices reach zero during the flood years of 2011 and 2012 due to binding carryover 

constraints in the model. Actual prices were slightly higher over this period, partly because the recently introduced 

spill rules in northern Victoria were ineffective during this period (see Hughes et al. 2016).  

Importantly, the results suggest that water market participants believe the current climate distribution 

(i.e., the mean and variance of water availability) is better represented by the drier recent period than the long-370 

term historical record (although not shown here validation scenarios based on the full historical record led to 

underestimation of observed market prices). Water allocations over the 1990-2022 period (the Baseline scenario) 

are 21% drier than the Historical (1896-2022) scenario (in terms of southern MDB mean annual water allocations)1. 

 

1 Comparisons between the 32-year Baseline scenario and the 127-year hydro-climate scenarios are not straightforward 

given the hydro-climate data for the later are derived from a hydrologic simulation model (with an assumption of fixed 
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This period also remains drier than a majority of the climate projection ensemble (sitting around the 19th percentile 

of the ensemble in terms of water allocation volumes).    375 

The results are consistent with other evidence (see Hughes et al. 2022) suggesting Australian farmers 

have updated their perceptions of climate in-line with recent rainfall changes. While largely beyond the scope of 

this study, non-stationarity in observational data and related climate ambiguity has important implications for real-

world adaptation responses (an issue considered further in the Discussion and Conclusions). 

 380 

Figure 5: Simulated and observed monthly water allocation market prices 𝑷𝒊𝒕
𝒘 by region in the southern MDB, July-

2009 to June 2022.  

 
development, water accounting and operational rules) while the former are based on observed climate and allocations, see 

Appendix B.4. However, the differences mostly reflect drier conditions observed in recent decades (i.e., lower mean 

rainfall) particularly the presence of multi-year droughts including the “Millenium Drought” (A. Van Dijk et al., 2013) and 

the “Tinderbox drought” (Devanand et al., 2024). 
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4.2 Climate scenarios 

Simulation results for the southern MDB climate scenarios (127-year hydro-climate sequences reflecting 2050 

climate projections, see section 4.4) are summarised in Figures 6 to 8, with further detail in Appendix C2. The 385 

results show a wide range of potential outcomes due to the substantial spread in the water supply volumes across 

the climate ensemble. This is typical of Australian climate change impact studies, given the significant variation 

across climate models in future projected rainfall (particularly in south-east Australia).  As discussed, most of the 

climate scenarios used in this paper involve water supply levels that are higher than recent experience in the region 

(as represented in Figure 6 by the Baseline scenario which is a model simulation based on observed hydro-climate 390 

data between 1990-91 and 2021-22). 

  

  

 

Figure 6: Climate scenario long-run mean outcomes versus long-run mean water supply for the total southern MDB, 

with both fixed and flexible irrigation development (a) Monthly water market prices (b) Total perennial crop area 

(Almonds, Grapes, Other Horticulture and Vegetables) (c) Gross value of irrigation production (revenue) (d) Net 

downstream water market trade (imports into the Murray below Barmah zone). 395 
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Figure 7: (a) Distribution of monthly water market prices for selected climate scenarios by trading zone ($ / ML) for 

selected climate scenarios. (b) Distribution of annual net trade volumes (GL) by trading zone for selected climate 

scenarios 

While each of the climate scenarios are subject to unique and subtle changes in rainfall and temperature, 

including differences in spatial and seasonal patterns, most of the variation in simulated outcomes (i.e., water 400 

prices and production) can be explained by the total long-run mean water supply volume of each scenario (as 

shown in Figure 6a and c). This reflects the flexibility offered by water markets, where small changes in spatial or 

seasonal patterns of water supply can be managed through adjustments in trade flows between regions or transfers 

of water across time via carryover (subject to trade and carryover limits).  As shown in Figure 6d water trade flows 

are highly sensitive to small changes in the distribution of water supply, with this flexibility in trade serving to 405 

limit variation in outcomes (i.e., water prices and production). 

While markets can limit the impacts of climate change to some extent, reductions in mean supply (for a 

given level of irrigation development) ultimately lead to increases in water prices (Figure 6a, Figure 8a). With 

fixed irrigation development, the driest scenarios result in large increases in simulated water market prices, 

particularly in the Murray below trading zones, as shortages in dry years become pronounced impacting higher 410 

value perennial tree crops. In the Future (Dry) scenario water prices increase to a mean of over $500 per ML in 

the Murray below zone, compared to the Historical scenario mean of $70 (see Table C1).  

Under these dry scenarios water markets literally hit their limits, with constraints on trade out of the 

Murrumbidgee, Goulburn, and Murray above zones (and into the Murray below) binding most of the time, leading 

to persistently higher prices in the Murray below zone compared with the upstream regions (Figure 8). In the 415 
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Future (Dry) scenario (with fixed irrigation development) the Murrumbidgee trade limit is binding 64% of the 

time, the Goulburn limit 95% and the Murray limit 79% (compared with 35%, 49% and 41% respectively in the 

Historical scenario). 

Water market prices in these dry scenarios, reflect an imbalance between the supply of water and the 

current level of irrigation development. Within the model, long-run adjustment is represented via reductions and 420 

in the level of development (by region crop type) which lower mean water prices and return irrigation profits back 

to Baseline levels.  As shown in Figure 6, with “Flexible irrigation development” the level of development declines 

under drier climate scenarios, with a reduction in southern MDB perennial crops under the Future (Dry) scenario 

of 16% (Figure 6b), driven largely by declines in almonds and grapes in the Murray below Barmah zone (see 

Figure C8). In addition to lowering water market prices this long-term adjustment also alleviates pressure on inter-425 

regional trade limits (Figure 7b).  

In Figure 6 the Baseline scenario is included as a reference point, however it should be remembered that 

this scenario involves a different variability profile (being based on the last 32 years rather than the full 127 record).  

In particular, the Future scenarios tend to include more dry and wet extremes relative to the Baseline scenario. 

This helps to explain why Future scenarios with comparable mean supply volumes lead to slightly lower mean 430 

irrigation development and production.  

While the reductions in water supply lead to declines in the value of irrigation production (Figure 6b), 

markets limit the impact by ensuring water is allocated to the highest value (i.e., most profitable activities) across 

the basin. As such, the percentage reductions in production value are smaller than the reductions in water supply 

(18% decline in mean production under the Future (Dry) scenario for a 35% decline in water supply). Generally, 435 

the results in Figure 6 highlight the non-linear nature of system responses to changes in water availability. This 

reinforces the value of producing large ensembles of projections, as non-linearities and threshold information may 

be less apparent when relying on a smaller number of ‘bounding’ scenarios.  

In addition to water trade, carryover also plays an important role in supporting adaptation to climate 

change. Figure 8 shows the storage-utilisation curve for selected climate scenarios, comparing the annual volume 440 

of water used to the volume available (with the difference forming carryover for future years). As discussed, drier 

climate scenarios tend to increase the volatility of water allocations. In response users increase the proportion of 

available water that is stored to maintain supply reliability. Since drier scenarios involve lower mean inflows 

(relative to a fixed dam storage capacity) they also tend to reduce the likelihood and size of spills which further 

increases the benefits of carryover. As shown in Appendix C (Figure C9), this lower utilisation rate under drier 445 

climate scenarios is associated with a change in crop planting behaviour, including a significant reduction in 

summer crop areas planted for a given amount of water available at planting time. 
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Figure 8: Simulated annual water use relative to available annual water supply (opening carryover plus annual 

allocations plus other water) for the total southern MDB (1896-97 to 2021-22). Scatter points represent individual years 

within each climate scenario sequence (a) Flexible irrigation development (b) Fixed irrigation development.  450 
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5 Discussion and conclusions 

This study presents a new monthly economic model of the Murray-Darling Basin (MDB) water market, which 

combines bio-physical and economic structure, with a data-driven approach to estimation and validation.  The 

model offers two key advantages over the prior literature. Firstly, the monthly timestep, bio-physical detail and 

empirical performance make this model more suitable for integration with hydrological models at a basin-scale.  455 

Secondly, the model represents forward-looking dynamic behaviour, where market participants have “rational 

expectations” over future conditions and prices. As such, the model is suited to analysing adaptation responses to 

shifts in water supply and demand, including the potential impacts of climate change.  

 Validation results show the model can replicate observed variation in water prices and irrigation activity 

in the basin between 2008-09 and 2021-22 with good accuracy.  Validating a dynamic model over this period is 460 

complicated by the large structural changes observed in both water demand (e.g., growth in almonds, decline in 

pasture, new environmental demands) and water supply (reduced rainfall and inflows). These long-term trends in 

water supply and demand likely led to some adjustment in the expectations of market participants over the period.  

To address this, the model was solved under the assumption that expectations reflect climate observations over the 

prior 32 years,  consistent with the idea that water users implement some form of Bayesian updating (see Eisele et 465 

al., 2021; Guthrie, 2019; Hobbs, 1997). 

 In this study the economic model was combined with hydro-climate scenarios for the southern MDB, to 

simulate water market and irrigation sector outcomes under an ensemble of future climates (as at 2050 under SSP-

8.5).  The results demonstrate the ability of water markets to support adaptation. Under drier future climates, users 

adapt by increasing inter-regional water trade flows, particularly into the downstream Murray below Barmah zone, 470 

to prevent water shortages for perennial tree crops in drought years. Under drier scenarios, users also adopt more 

conservative crop planting and irrigation behaviour, accumulating additional carryover reserves to maintain water 

supply variability and limit the extent of drought shortages.  

 Under the most severe dry future scenarios, the ability of users and markets to adapt is more limited. 

Inter-regional trade flows reach their limits, leading to large differences in water prices between zones, including 475 

higher prices in the Murray below Barmah zone as drought water shortages impact tree crops.  In these dry 

scenarios, the modelling suggests a reduction in the level of irrigation development would be required to bring 

water prices and irrigation profits back to sustainable levels.  Under the worst-case Future (Dry) scenario 

(involving a 35 per cent reduction in long-term mean water supply, relative to the 127-year Historical scenario), 

perennial crop areas are simulated to decrease by 16 per cent and the mean value of irrigation production to 480 

decrease by 18 per cent.  

 While these results shed some light on the potential effects on climate change in the basin, they are 

subject to several limitations and uncertainties.  Firstly, the prediction of long-term adjustment in irrigation 

investment requires strong simplifying assumptions.   For example, this study does not allow for changes in crop 

suitability resulting from higher temperatures.  Water market outcomes in dry scenarios reflect the difficulty of 485 

delivering water to high-value tree crops (e.g., almonds) in the warmer downstream regions of the Murray. 

However, future warmer climates could change the locations at which crops can be feasibly grown (including for 
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example allowing almonds to be grown further upstream) which could alter these results. These results also only 

allow for decreases in irrigation development from current levels. Under wetter future climates some expansion 

in development might be possible (although this would be subject to complex infrastructure, land and 490 

environmental constraints).  

 Secondly, as with most climate impact studies of this kind, the projection ensemble involves wide range 

of mean supply volumes, due to uncertainty over projected rainfall.  Importantly, a majority of the projection 

ensemble (derived from the full 127-year historical record) involve higher mean water supply and lower mean 

water prices than the Baseline period (1990-91 to 2021-22) due largely to the recent drying trend.   495 

Non-stationarity in observational data is a general challenge in hydrological assessments of climate 

change (see Bayazit, 2015; Mondal & Mujumdar, 2017). In keeping with standard practices, this study measures 

climate change impact as the difference between two steady state scenarios in which the climate (i.e., the long 

run mean and variance of rainfall, temperature and water availability) is known with certainty. In reality, the 

climate is non-stationary and the “true” distribution unknown, such that each year of observations provides new 500 

information, an environment conducing to adaptive learning, i.e., Bayesian updating).  

For example, in recent years (i.e., 2022-23 to 2025-26) above-average water supply volumes have been 

observed in the sMDB (at least relative to the 1990-91 to 2021-22 Baseline scenario presented here). During this 

period irrigation investment has remained strong with further expansion in perennial crops in some regions. 

These recent observations are entirely consistent with the results presented in this study. While extreme dry 505 

climates could require a long-term contraction in development, investors may rightly consider these scenarios 

unlikely over the investment horizon. Further, under uncertainty there can be value in delaying investment 

decisions and more generally keeping adaptation options open (see Guthrie, 2019; Pindyck, 1990). Given long 

investment horizons, non-trivial adjustment costs and high uncertainty (i.e., option value) irrigation adjustment 

to climate change is likely to be slow in practice. 510 

Since uncertainty in projections is unlikely to be resolved in the near term, research into the impacts of 

extreme events could have more immediate practical value than predictions of long-term outcomes. Recent 

experience in the MDB has shown that extreme events play a key role in motivating and to some extent forcing 

adaptation. Given current levels of development, the southern Basin remains vulnerable to the effects of extreme 

drought, particularly droughts beyond the range of historical observation. While such events are inherently 515 

unpredictable, modelling can be used to examine how water markets can be designed to be robust to extremes. 

In future, this type of policy analysis could be supported by the development of ‘holistic’ integrated 

hydro-economic models: models with two-way feedback between river systems and water markets (Brouwer & 

Hofkes, 2008).  To date, most applied climate change impact and water policy assessments have adopted a 

narrow hydrological perspective (Hall & Melvold, 2025), especially in the MDB (John, Young, Nathan, et al., 520 

2025).  In contrast, integrated models would enable analysis of water policy issues involving complex 

interactions between hydrology and economics: including the design of water markets (e.g., trade and carryover 

limits), river operations, new infrastructure (e.g., water supply or water saving projects) and environmental water 

management (e.g., short-term environmental-irrigator trading, see Connor et al., 2013).  Ultimately, this research 
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direction would aim to progress beyond projections, offering water managers and policy makers a testing 525 

environment to design robust institutions for an uncertain future.  
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Appendix A: Additional model detail 

A.1 Water account limits (carryover rules) 670 

The function 𝑓𝐴 governs the transfer of unused water from one period to the next: 

𝑓𝐴(𝐴𝑖,𝑡−1) = min ((1 − 𝛼𝑖𝑚
𝐺 )𝐴𝑖,𝑡−1, 𝛼𝑖𝑚

𝐶 ∑ 𝐸𝑖ℎ

ℎ

) 

Under the annual accounting systems of the southern MDB (ACO), special limits are imposed in some regions on 

carryover between the final water (financial) year month of June and opening month of July (𝛼𝑖6
𝐶  = 0.30 in the 

Murrumbidgee and 0.50 in the NSW Murray). In Northern Victoria there are no limits imposed on annual carry̅over 675 

volumes as such, however an annual loss factor is applied to reflect storage evaporation losses (𝛼𝑖6
𝐺  = 0.05). 

 In addition, most regions within the MDB impose some form of account limit at all times of the year, 

designed to represent storage capacity constraints and related spill losses. When account limits are reached any 

further allocations are forfeited (via the term 𝐹𝑖𝑡). In southern NSW there is a monthly limit imposed on the sum 

of annual carryover and allocation (aka the 100% rule): 680 

𝐹𝑖𝑡 = ∑ max

ℎ

(𝐶𝑖𝑦 + 𝑎𝑖ℎ𝑡𝐸𝑖ℎ − 𝛼𝑖ℎ
𝐴 𝐸𝑖ℎ , 0) − ∑ 𝐹𝑖𝑦𝑚

𝑚<𝑡

 

𝐹𝑖𝑡 = ∑ max

ℎ

(𝐶𝑖𝑦 + 𝑎𝑖ℎ𝑡𝐸𝑖ℎ − 𝛼𝑖ℎ
𝐴 , 0) − ∑ max

ℎ

(𝐶𝑖𝑦 + 𝑎𝑖ℎ𝑡𝐸𝑖ℎ − 𝛥𝐴ℎ𝑖𝑡 − 𝛼𝑖ℎ
𝐴 . 𝐸𝑖ℎ , 0) 

For the northern basin regions the model represents the NSW system of “Continuous Accounting” (CA), where 

the financial year transition (June-July) has no special significance, and users are able to carryover water each 

month subject to a fixed account limit specified as a proportion of entitlement volume, 𝛼𝑖ℎ
𝐴 , such that forfeits are: 685 

𝐹𝑖𝑡 = max (𝐴𝑖,𝑡−1 + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡 − ∑ 𝐸𝑖ℎ

ℎ

𝛼𝑖ℎ
𝐴 , 0) 

In Victoria carryover of water within “Allocation Bank Accounts” works similarly to continuous 

accounting in NSW, however any unused water more than entitlement volume is not immediately lost, being 

transferred to a “Spillable Water Account” (SWA) which is then only subject to forfeits in the event of physical 

storage spills. In the absence of any explicit hydrology, we predict spills via a simple annual statistical function 690 

calibrated to observed SWA spill forfeit data, as below (where 𝐼𝑖𝑦 refers to annual inflow): 

𝐹𝑖𝑡 = min (max (𝐴𝑖,𝑡−1 + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡 − ∑ 𝐸𝑖ℎ

ℎ

𝛼𝑖ℎ
𝐴 , 0) , 𝑍𝑖𝑡) 

𝑍𝑖𝑦𝑚 = 𝑚𝑎𝑥 (𝑧𝑖𝑦 −  ∑ 𝐹𝑖𝑦𝑠

𝑚

𝑠=7

, 0) 

𝑧𝑖𝑦 = 𝑚𝑎𝑥 (𝛽𝑖
𝑧0 + 𝛽𝑖

𝑧1(𝐴𝑖,𝑦−1,6 + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡)  + 𝛽𝑖
𝑧2 𝐼𝑖𝑦 +   𝛽𝑖

𝑧3(𝐴𝑖,𝑦−1,6 + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡). 𝐼𝑖𝑦 , 0) 
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 695 

The water accounting rules vary across each region as defined by the below parameters 𝛼𝑖ℎ
𝐴 , 𝛼𝑖ℎ

𝐶  and 𝛼𝑖
𝐺. Note that 

𝛼𝑖ℎ
𝐶  and 𝛼𝑖

𝐺 are set to zero in all months except June (as NSW and Vic. carryover limits are imposed only at the 

end of the financial year). Water accounting limits 𝛼𝑖ℎ
𝐴  are applied consistently across all months. For SA Murray 

the model assumes no annual carryover. While annual carryover rules do currently exist in the region, they remain 

highly limited in practice and have resulted in negligible effective carryover of water in the region since being 700 

adopted. 

 

Table A1: Water accounting parameters  

Region, 𝑖 ∈ 𝐼 

Account 

type 

Account limit Carryover limit Storage loss 

𝛼𝑙𝑜𝑤,𝑖
𝐴  𝛼ℎ𝑖𝑔ℎ,𝑖

𝐴  𝛼𝑙𝑜𝑤,𝑖
𝐶  𝛼ℎ𝑖𝑔ℎ,𝑖

𝐶  𝛼𝑖
𝐺 

Murrumbidgee ACO 1 1 0.30 0 0 

Goulburn SWA 1.1 1.1 0 0 0.05 

NSW Murray above ACO 1.1 1 0.50 0 0 

Vic. Murray above SWA 1.1 1.1 - - 0.05 

NSW Murray below ACO 1.1 1 0.50 0 0 

Vic. Murray below SWA 1.1 1.1 - - 0.05 

SA Murray below ACO 1 1 0 0 0 

Lachlan CA 2 0 - - 0 

Macquarie CA 1 1 - - 0 

Namoi CA 2 1 - - 0 

Gwydir CA 1.5 1 - - 0 

NSW Border rivers CA 1 1 - - 0 

 

A.2 Water trading rules (IVT limits) 705 

The Murrumbidgee adopts a rolling monthly limit, based on the evolution of an ‘Inter-valley Transfer’ (IVT) 

account: 

𝑉𝑖𝑡 = 𝑉𝑖,𝑡−1 − 𝑇𝑖,𝑡−1 − 𝑣𝑖𝑡  

𝜏𝑖𝑡
𝑙 = 𝑉𝑖𝑡 − 𝛼𝑖

𝑉𝐿 , 𝜏𝑖𝑡
𝑢 = 𝑉𝑖𝑡  

Here 𝑇𝑖𝑡  is the net trade volume for region 𝑖 in period 𝑡 (negative values reflecting exports, positive values imports), 710 

𝑉𝑖𝑡 is the IVT account volume at the end of period 𝑡, 𝛼𝑖
𝑉𝐿 the IVT account limit (100GL in the Murrumbidgee) and 

𝑣𝑖𝑡  are physical trade deliveries (aka IVT callouts). 

The Goulburn and Barmah Choke trade rules operate slightly differently, with an IVT account that resets 

on an annual basis: 

𝑉𝑖𝑡 = 𝑉′𝑖,𝑡−1 − 𝑇𝑖,𝑡−1 − 𝑣𝑖𝑡  715 
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𝑉′𝑖,𝑡−1 = {
0 if m = 7

𝑉𝑖,𝑡−1 otherwise
 

𝜏𝑖𝑡
𝑙 = 𝑉𝑖𝑡 − 𝛼𝑖

𝑉𝐿 , 𝜏𝑖𝑡
𝑢 = − ∑ 𝑇𝑖𝑦𝑚

𝑚≤𝑡

 

Trade limits are dependent on IVT account limits 𝛼𝑉𝐿 and 𝛼𝑉𝐿 specified below (Table A2) in GL units. Here a 

value of -1 implies no limit. Note that within the model (and in practice) effective limits on inter-region trade 

depend heavily on monthly trade opportunities / IVT ‘callouts’ 𝑣𝑖𝑡 .  Trade opportunities are dependent on 720 

hydrological factors and are therefore assumed exogenous in model simulations. The default assumptions for 

𝑣𝑖𝑡  are outlined in Table A3.  

Table A2: Water trade parameters  

Trading zone IVT type 

IVT limit 

𝛼𝑉𝐿 𝛼𝑉𝑈 

Murrumbidgee Rolling 100   0 

Northern Vic. Annual 0   0 

Murray above Annual 0   0 

Murray below NA -1   -1 

 

Table A3: IVT trade opportunities   725 

Month Murrumbidgee Northern Vic. Murray above 

January 15,000 0 0 

February 15,000 0 0 

March 15,000 0 0 

April 0 0 0 

May 0 0 0 

June 0 0 0 

July 0 232,500 30,000 

August 0 0 0 

September 0 0 0 

October 15,000 15,000 0 

November 15,000 15,000 0 

December 15,000 0 0 

 

A.3 Other water allocations 

Given historical data on all other components 𝐴𝑖𝑦𝑚
𝑜𝑡ℎ𝑒𝑟  can be computed as a residual, by exploiting changes in 

opening carryover between years (see Hughes et al., 2023). For the simulation model, we develop a simple 

statistical model predicting annual 𝐴𝑖𝑦
𝑜𝑡ℎ𝑒𝑟  as a function of annual allocations, entitlements and rainfall: 730 
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𝐴𝑖𝑦
𝑜𝑡ℎ𝑒𝑟 = 𝛽𝑎0 + 𝛽𝑎1. 𝐴𝑖𝑦𝛽𝑎2. 𝑅𝑖𝑦 + 𝛽𝑎3𝐴𝑖𝑦 . 𝑅𝑖𝑦 + 𝛽𝑎4. ∑ 𝐸𝑖ℎ

ℎ

 

𝐴𝑖𝑦 = ∑ max
𝑚

ℎ

{𝑎𝑖𝑦𝑚}. 𝐸𝑖ℎ 

Within the southern MDB regions 𝐴𝑖𝑦
𝑜𝑡ℎ𝑒𝑟  primarily reflects conveyance water, which is strongly correlated with 

irrigation water deliveries (and therefore allocation volumes). In the northern MDB, a larger component of this 

other water is derived from supplementary / unregulated water licenses and is therefore more strongly correlated 735 

with current and lagged rainfall data. Annual predictions are applied pro-rata across the months of the year. 

Validation results for 𝐴𝑖𝑦
𝑜𝑡ℎ𝑒𝑟  are provided in Appendix C.1. 

A.4 Environmental water use 

Historical environmental water use data is obtained from MDBA annual ‘take’ reports for each region over the 

period 2004-05 to 2020-21. A simple reduced from statistical model is estimated from this historical data, 740 

predicting environmental use as a function of held environmental water rights (entitlements and allocations) and 

rainfall: 

𝑈𝑖𝑦
𝑒𝑛𝑣 = 𝛽𝑒𝑛𝑣0. 𝐴𝑖𝑦

𝑒𝑛𝑣 + 𝛽𝑒1𝐴𝑖𝑦
𝑒𝑛𝑣 . 𝑅𝑖𝑦 + 𝛽𝑒2𝐸𝑖𝑦

𝑒𝑛𝑣 + 𝛽𝑒𝑛𝑣3𝐸𝑖𝑦
𝑒𝑛𝑣 . 𝑅𝑖,𝑦−1 

𝐴𝑖𝑦
𝑒𝑛𝑣 = ∑ max

𝑚
ℎ

{𝑎𝑖𝑦𝑚}. 𝛿𝑖ℎ𝑦 . 𝐸𝑖ℎ 

𝐸𝑖𝑦
𝑒𝑛𝑣 = ∑ 𝛿𝑖ℎ𝑦

ℎ

. 𝐸𝑖ℎ  745 

where 𝛿𝑖ℎ𝑦 is the share of entitlement class ℎ held by the environment in region 𝑖 year 𝑦. In the model annual 

𝑈𝑖𝑦
𝑒𝑛𝑣  is applied pro-rata across the months of the year (see Hughes et al., 2025). 

A.5 Water demand functions 

The monthly water demand system of Hughes et al., (2025) includes two functional forms Area Deficit (AD) 

(quadratic land productivity) and Water Deficit (quadratic yield response). Below are the water demand functions 750 

for the WD form, which apply for almonds, grapes, cotton and pasture crops: 

𝑊𝑖𝑗𝑡 = 𝑤‾ 𝑖𝑗𝑡 . 𝐿𝑖𝑗𝑡
𝑝

(1 −
𝑤‾ 𝑖𝑗𝑡(𝑃𝑖𝑗𝑡

𝑤 + 𝛽𝑗
𝑐0)

2. 𝑃𝑗𝑡
𝑦

. 𝛽𝑖𝑗
𝑦0

. 𝑘̇𝑖𝑗𝑡
𝑠

)   

𝐿𝑖𝑗𝑡
𝑝

= 𝐿‾𝑖𝑗𝑡 .
1

𝛽𝑖𝑗
𝑐1𝛽𝑖𝑗

𝑐2 . (𝑃𝑗𝑡
𝑦

𝛽𝑖𝑗
𝑦0

. (1 − 𝑘𝑖𝑗,𝑚0
∗ ) − 𝛽𝑖𝑗

𝑐2 − (𝛽𝑖𝑗
𝑐0 + 𝑃𝑖𝑗

𝑤). 𝑤𝑖𝑗,𝑚0
∗ ) 

𝑘𝑖𝑗,𝑚0
∗ =  𝐄𝑚=𝑚0 [∑ 𝑘̇𝑖𝑗𝑡

𝑠

𝑚

(
𝑤𝑖𝑗𝑡

𝑤‾ 𝑖𝑗𝑡

− 1)

2

] 
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𝑤𝑖𝑗,𝑚0
∗ = 𝐄𝑚=𝑚0 [∑ 𝑤𝑖𝑗𝑡

𝑚

] 755 

Here both crop area planted, and area irrigated are increasing in commodity (output) prices 𝑃𝑗𝑡
𝑦

, and decreasing in 

water (input) prices 𝑃𝑖𝑡
𝑤. Monthly irrigation decisions are increasing in water stress 𝑘̇𝑖𝑗𝑡

𝑠  (higher water stress reduces 

the gains from deficit irrigation), while crop planting decisions are decreasing in water stress (more water stress 

reduces the profitability of planting crops). Note that crop planting decisions are made once per year in the planting 

month 𝑚0 (October for Summer crops and April for Winter crops) subject to uncertainty over outcomes for the 760 

remainder of the cropping season. As such, area planted in year 𝑦 depend on prices in the planting month: 𝑃𝑖𝑦,𝑚0
𝑤  

and expected annual water requirements and crop yield penalties at planting time: $𝑤𝑖𝑗,𝑚0
∗ , 𝑘𝑖𝑗,𝑚0

∗ .   For full details 

see Hughes et al., (2025). 

 

  765 
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Appendix B: Model solution methods 

B.1 Tilecoding 

Tilecoding function approximation scheme commonly used in reinforcement learning (Sutton & Barto, 1998). 

Tilecoding works by dividing the state space into a set of overlapping, rectangular regions or ‘tiles’, and then 

associating a set of weights with each tile (Figure B1). The approximated function is then given by the weighted 770 

sum of the set of tiles that intersect with a given state. 

  

Figure B1: Simple example of Tilecoding with two input dimensions and 2 layers 

In the model, we represent the expected future price of water (or more precisely the marginal returns from water 

storage) in region 𝑖 at time 𝑡 via a locally linear form of Tilecoding: 775 

𝐄𝐭 [
∂𝑓𝐴

∂𝐴𝑖𝑡

. 𝑃𝑖,𝑡+1
𝑤 ] ≈ 𝑝𝑖

0(𝑿𝑖𝑡) + 𝑝𝑖
0(𝑿𝑖𝑡). 𝐴𝑖𝑡 

𝑝𝑖
0(𝑿𝑖𝑡) = ∑ 𝟏𝑗∈𝒥𝑡

𝑗∈𝒥

θij
0 ,       𝑝𝑖

1(𝑿𝑖𝑡) = ∑ 𝟏𝑗∈𝒥𝑡

𝑗∈𝒥

θij
1  

𝑿𝑖𝑡 = {𝐴𝑖𝑡
𝑜𝑝

,   𝐼𝑖̅𝑡 , 𝑚} 

𝐴𝑖𝑡
𝑜𝑝

= 𝑓𝐴(𝐴𝑖,𝑡−1) + ∑ 𝛥

ℎ

𝐴ℎ𝑖𝑡 − 𝐹𝑖𝑡 

Here for a given region and month expected prices are linear with respect to unused water 𝐴𝑖𝑡 (allowing the 780 

monthly MCP to be solved over simple parametric functions). Both the intercept and slope coefficients of this 

linear scheme are represented as Tilecoding functions defined over the state space 𝑝𝑖(𝑿𝑖𝑡). Above  𝒥𝑡 is the set of 

33

https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026
c© Author(s) 2026. CC BY 4.0 License.



tiles that intersect with the state 𝑿𝑖𝑡 , 𝟏𝑗∈𝒥𝑡
 is an indicator function equal to one if tile 𝑗 intersects with the state and 

zero otherwise, and θij
0 , θij

1  are weights associated with tile 𝑗 in region 𝑖 (for 𝑝𝑖
0 and 𝑝𝑖

1 respectively).  The state 

(input features) for each Tilecoding scheme is defined as {𝐴𝑖𝑡
𝑣 ,   𝐼𝑖̅𝑡 , 𝑚}, where 𝐴𝑖𝑡

𝑜𝑝
 is the opening availability of 785 

water allocations (before use and trade), and 𝐼𝑖̅𝑡 is the 12 month moving average of region inflow (taken from the 

hydro-climate data). In the northern regions, the 12 month moving average of rainfall is used in place of 𝐼𝑖̅𝑡 . 

The weights of each Tilecoding scheme are updated in each iteration of the outer loop using stochastic gradient 

descent: 

θ𝑖𝑗
0 ← θ𝑖𝑗

0 − 𝜂
1

𝑇
∑ 𝜖𝑖𝑡

𝑡

 790 

θ𝑖𝑗
1 ← θ𝑖𝑗

1 − 𝜂
1

𝑇
∑ 𝜖𝑖𝑡

𝑡

. 𝐴𝑖𝑡  

𝜖𝑖𝑡 = 𝑝𝑖
0/1(𝐴𝑖𝑡

𝑣 ,   𝐼𝑖̅𝑡 , 𝑚) −
∂𝑓𝐴

∂𝐴𝑖𝑡

. 𝑃𝑖,𝑡+1
𝑤  

where 𝜂 is the learning rate and 𝜖𝑖𝑡 is the prediction error. 

B.2 Crop planting decision 

As outlined in Appendix A.5 (and detailed in Hughes et al. 2025) crop planting decisions depend on expectations 795 

over future crop water requirements 𝑤𝑖𝑗,𝑚0
∗  and crop stress 𝑘𝑖𝑗,𝑚0

∗  penalties. When solving the model, these 

expectations are updated at each stage of the outer loop as simple linear function of planting time prices: 

𝑘𝑖𝑗,𝑚0
∗ ≈ 𝑚𝑎𝑥{𝛽𝑖𝑗

𝑒𝑘0 + 𝛽𝑖𝑗
𝑒𝑘1. 𝑃𝑖,𝑚0

𝑤 , 0} 

𝑤𝑖𝑗,𝑚0
∗ ≈ 𝑚𝑎𝑥{𝛽𝑖𝑗

𝑒𝑤0 + 𝛽𝑖𝑗
𝑒𝑤1 . 𝑃𝑖,𝑚0

𝑤 , 0} 

Here the parameters 𝛽 are fit by minimising the prediction error over the latest round of simulation data: 800 

𝑚𝑖𝑛𝛽 (𝑘̂𝑖𝑗𝑡
∗ −  max{𝛽𝑖𝑗

𝑒𝑘0 + 𝛽𝑖𝑗
𝑒𝑘1. 𝑃𝑖,𝑚0

𝑤 , 0})
2
 

 𝑚𝑖𝑛𝛽 (𝑤̂𝑖𝑗𝑡
∗ −  max{𝛽𝑖𝑗

𝑒𝑤0 + 𝛽𝑖𝑗
𝑒𝑤1. 𝑃𝑖,𝑚0

𝑤 , 0})
2
 

𝑘̂𝑖𝑗𝑡
∗  =  ∑ 𝑘̇𝑖𝑗𝑡

𝑠

𝑚

(
𝑤𝑖𝑗𝑡

𝑤‾ 𝑖𝑗𝑡

− 1)

2

 

𝑤̂𝑖𝑗𝑡
∗ = ∑ 𝑤𝑖𝑗𝑡

𝑚

 

  805 
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B.3 Convergence 

Figures B2 and B3 below provide an example of the convergence of the learning algorithm across the outer loop.  

 

Figure B2: Evolution of mean water prices 𝑷𝒊𝒕
𝒘 by southern MDB region during the outer loop, Future (Med.) scenario 

with flexible irrigation development 810 

 

Figure B2: Evolution of mean water prices 𝑷𝒊𝒕
𝒘 by southern MDB region during the outer loop, Future (Dry) scenario 

with flexible irrigation development 

 

B.4 Validation scenarios 815 

The validation scenarios (used to derive the simulation results in Appendix C.1 and Section 4.1) involve a rolling 

32-year window where results simulated for year x are generated from a climate and water supply sequence for 

the period x - 31 to x. For example, the validation results for the year 2021-22 (referred to in this paper as the 

Baseline scenario) are based on a climate and water supply sequence for the period 1990-91 to 2021-22.  
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Unlike the 127 hydro-climate scenarios (see Section 3.3) thesevalidation scenarios draw on historically 820 

observed climate data. Here rainfall and temperature data are based on historical monthly SILO observations. 

Between 2000-01 and 2021-22 allocation percentages are obtained from historical observations (collated from 

state government websites (see Hughes et al., 2025). For years prior to 2000-01 to 2022 synthetic observational 

data is derived by sampling from the 2000-01 to 2021-22 period using an analogue year approach (where analogue 

years are identified based on annual rainfall and lagged annual rainfall). 825 

 Validation scenarios adopt the default IVT trade opportunities (as set out in Table A.3) with some 

allowances made for additional trade volumes in observed in specific drought years (Murrumbidgee 3 factor 

increase in 2008-09, and 2 factor increase in 2020-21, Northern Vic. 30% increase in 2017-18 and 2018-19). 
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Appendix C: Additional results 830 

C.1 Validation results 

 

Figure C1: Simulated and observed annual water use 𝑼𝒊𝒕  by southern MDB region, 2008-09 to 2021-22. 

37

https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 835 

Figure C2: Simulated and observed other water supply 𝑨𝒊𝒕
𝒐𝒕𝒉𝒆𝒓 by southern MDB region, 2008-09 to 2021-22. 
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Figure C3: Simulated and observed water applied 𝑾𝒊𝒋𝒕 by crop for the southern MDB, 2008-09 to 2021-22. 
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 840 

Figure C4: Simulated allocation market prices by northern MDB region, July 2009 to June 2022. Namoi, Gwydir and 

NSW Border Rivers “observed” series are estimated shadow prices from Hughes et al. (2025), while Macquarie and 

Lachlan are actual observations. 
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 845 

Figure C5: Simulated and observed annual water use 𝑼𝒊𝒕  by northern MDB region, 2008-09 to 2021-22. 
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Figure C6: Simulated and observed other water supply 𝑨𝒊𝒕
𝒐𝒕𝒉𝒆𝒓 by northern MDB region, 2008-09 to 2021-22. 
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Figure C7: Simulated and observed water applied 𝑾𝒊𝒋𝒕 by crop for the northern MDB, 2008-09 to 2021-22. 850 
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C.2 Climate scenarios 

Table C1: Mean simulated prices, trade volumes and irrigation production by climate scenario and region 

Region Flexible development Fixed development 

  Hist. Wet Med. Dry Hist. Wet Med. Dry 

Mean water market prices ($ / ML) 

Murrumbidgee 64.5 25.0 123.8 188.0 64.4 26.6 122.0 259.1 

Goulburn 26.3 10.9 50.0 84.5 26.1 13.0 51.2 134.7 

NSW Murray (above) 37.0 12.5 85.7 140.1 37.5 12.5 87.4 243.6 

NSW Murray (below) 70.2 19.1 159.6 256.1 71.0 19.9 159.6 505.5 

SA Murray 70.2 19.1 159.6 256.1 71.0 19.9 159.6 505.5 

Vic. Murray (above) 37.0 12.5 85.7 140.1 37.5 12.5 87.4 243.6 

Vic. Murray (below) 70.2 19.1 159.6 256.1 71.0 19.9 159.6 505.5 

Mean net annual trade volume (GL) 

Murrumbidgee -54.7 -67.0 -58.4 -40.9 -54.7 -62.0 -59.2 -60.8 

Goulburn -183.6 -164.5 -245.7 -194.0 -184.5 -143.5 -241.6 -255.2 

NSW Murray (above) -85.7 -57.2 -93.0 9.5 -97.9 -94.4 -90.7 -42.1 

NSW Murray (below) 34.0 9.3 63.1 6.4 38.2 -5.8 55.9 36.1 

SA Murray 79.3 112.0 73.4 -2.3 75.2 112.7 77.0 26.8 

Vic. Murray (above) 129.6 124.3 119.8 68.1 146.0 141.7 114.3 54.1 

Vic. Murray (below) 81.1 43.2 140.8 153.2 77.7 51.4 144.4 241.1 

Mean annual gross value of irrigation production ($m) 

Murrumbidgee 1450 1468 1409 1184 1450 1467 1409 1268 

Goulburn 780 786 772 728 781 785 772 744 

NSW Murray (above) 419 430 394 316 419 430 394 309 

NSW Murray (below) 358 360 353 294 358 360 353 331 

SA Murray 1164 1166 1157 1058 1164 1166 1158 1141 

Vic. Murray (above) 134 135 132 117 134 135 132 123 

Vic. Murray (below) 1223 1228 1209 1026 1223 1228 1210 1166 

 855 
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Figure C8: Percentage change in long-run mean crop area irrigated for selected climate scenarios relative to the 

Historical scenario by southern MDB trading zone, for both flexible and fixed irrigation development. 

 

 860 
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Figure C9: Simulated summer crop area planted (rice, cotton and other) versus available water in October for the total 

southern MDB (1896-87 to 2021-22). Scatter points represent individual years within each climate scenario (a) Flexible 

irrigation development (b) Fixed irrigation development. 

 865 
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