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Abstract
The Australian Murray-Darling Basin is home to one of the world’s most mature water markets. In recent decades,
10 these markets have played a vital role supporting adaptation to the effects of drought, climate change and
environmental reform. This study introduces a new monthly economic model of the water market with an emphasis
on biophysical detail and empirical performance to enable integration with hydrological models. This model also
contains significant economic structure, representing the stochastic and dynamic nature of water markets in
storage-controlled rivers, including forward looking water users with rational expectations over future conditions.
15 In this study, the model is applied to simulate the potential effects of climate change on water markets within the
southern basin. The results show how markets support adaptation, with drier climates leading to increases in
regional water trade volumes, particularly imports into the lower Murray. Drier scenarios are also associated with
more conservative crop planting decisions, which increase storage reserves to maintain supply reliability. Under
the driest future climates, the ability of markets to adapt is more limited, and the model simulates long-term
20 declines in irrigation development. However, the future climate remains highly uncertain, with a majority of the
projection ensemble involving increases in water supply and irrigation activity relative to recent conditions. In
future, fully integrated hydro-economic models could help to design water market institutions that are robust to a

non-stationary and uncertain climate.
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Highlights
e A monthly timestep economic model of the Murray-Darling Basin water market is developed
30 e  This model is applied to assess the potential impacts of climate change in the southern basin
e  The results show how markets enable adaptation by reallocating water over space and time
e Under extreme dry scenarios the model simulates a decline in irrigation development

e In future, integrated hydro-economic models could better support adaptation planning
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1 Introduction

35 Water markets have emerged in many river systems around the world including in the Western US (Schwabe et
al., 2020; Wight et al., 2024), Chile (Bauer, 2004) and the Australian Murray-Darling Basin (MDB) (Brennan,
2006; Grafton et al., 2012; Young & McColl, 2005). These markets play an important role in managing climate
variability, particularly drought, by efficiently allocating scarce water resources among competing users.
Increasingly, water markets are now also supporting longer-term adaptation to the effects of climate change (Bruno
40 & Jessoe, 2024).

The Australian MDB has experienced a long-term decline in winter season rainfall over the last 20-30
years, a trend at least partly due to climate change (see Cai et al., 2012, 2014; Cai & Cowan, 2013). Lower rainfall
has contributed to significant declines in streamflow and water supply in the basin in recent decades (Speer et al.,
2021; Zhang et al., 2016). At the same time, governments have been securing water for environmental flows to

45 improve ecological outcomes in the region (Crase et al., 2012; Hart, 2016; Leblanc et al., 2012). Since 2008, over
2,000 GL of water rights have been reallocated from farmers to the environment under the Murray-Darling Basin
Plan; reducing consumptive supply by around 20 per cent.

These reductions in supply have led to a range of adaptation responses including improvements in

technology (e.g., more efficient irrigation infrastructure) (Connor et al., 2014; Hughes et al., 2023) and changes in
50 irrigation development across regions (i.e., less pasture in the upper Murray, and more almonds in the lower

Murray, see Zeleke & Luckett, 2025). These changes have been enabled largely by water markets. Trading has

allowed the spatial pattern of irrigation development to adjust across the basin. In addition, carryover (i.e., storage

of unused water in on-river dams, see Brennan, 2010; Hughes et al., 2023) has increased the reliability of water

supply supporting more intensive activities, particularly perennial tree crops (Hughes et al., 2023; Zeleke &
55  Luckett, 2025).

Despite this, concerns remain over the future impacts of climate change in the region. Recent adaptations
have increased the capital intensity of the irrigation sector raising the issue of stranded assets (see Bark et al., 2014;
Hughes et al., 2020). To date, assessments of climate change in the MDB have relied mostly on hydro-climate
modelling (CSIRO 2008; Potter & Srikanthan, 2008; A. Van Dijk et al., 2008), where catchment and river process

60  models are used to simulate changes in streamflow and water supply under projected climate. For example, the
CSIRO (2008) simulated a median decline in water availability by 2030 of 13 per cent in the southern MDB. While
these models represent physical processes in detail, they largely ignore the economic behaviour of water users and
markets, including potential adaptation responses.

This study presents a model of the MDB water market representing the economic behaviour of water

65 users (i.e., irrigation farmers) including monthly water use, annual crop planting and long-run investment
decisions. The water market is modelled as a spatio-temporal equilibrium problem, where market prices are the
product of optimal water use, trade and storage behaviour, subject to physical and institutional constraints. This
study extends the previous annual model presented in Hughes et al., (2023), drawing on a recently developed
monthly bio-economic water demand system (described in Hughes et al., 2025). The model is demonstrated with

70 an application to the southern MDB, simulating potential water market and irrigation responses to climate change.
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These simulations make use of an ensemble of climate and water supply scenarios derived from a separate hydro-
climate model (John, Horne, & Hughes, 2025).
This combination of economic and hydrologic models places our study within the wider literature on
integrated Hydro-Economic Modelling (HEM) (Brouwer & Hofkes, 2008). In particular, our study is related to
75 the simplified monthly hydro-economic models of the MDB developed previously by Kirby et al., (2014) and
Qureshi et al., (2013), which were both applied to simulate the effects of climate change. A key point of difference,
is that our model is dynamic in the sense that water users make forward looking decisions subject to uncertainty
over stochastic water supplies. The model is solved for a “rational expectations” equilibrium in which user
behaviour reflects probabilities over future conditions drawn from a known distribution. As a result, the model
80 can represent adaptation responses, such as changes in crop planting, water trade, carryover or even irrigation
development in response to a change in the long-run climate (i.e., the probability distribution over water supply
conditions).
Given the numerical complexities, most economic models of water markets (e.g., Grafton & Jiang, 2011;
Quiggin et al., 2010; Wittwer & Griffith, 2011) tend to ignore storage dynamics, while economic and engineering
85 models of water storage (e.g., Brennan, 2010; Dudley, 1988; Ahmad et al., 2014) tend to ignore markets. The
model presented here represents both, using a combination of mathematical programming to solve the short-run
water market (as a Mixed Complementarity Problem) and machine learning methods to resolve the stochastic-
dynamics (i.e., obtain a long-run rational expectations equilibrium). In particular, the study employs methods
from Reinforcement Learning to approximate user expectations over future water market prices.
90 In this paper we provide a brief description of the study region and then set out our economic model,
including water accounting constraints and the spatial and intertemporal equilibrium conditions. We then provide
an overview of the numerical methods applied to solve the model, before presenting simulation results detailing

the potential effects of climate change on irrigation activity and water markets in the region.
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95 2 The Murray-Darling Basin
The Murray-Darling Basin (MDB) drains an area of over 1,000,000 km? across South-Eastern Australia. Irrigated
agriculture accounts for more than 90% of total water use in the region. The southern MDB (sMDB)—which
includes the Murray-river and its connected tributaries (Figure 1)—accounts for around three quarters of
agricultural water use in the MDB (and around half of national agricultural use).
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Figure 1: The Murray—Darling Basin
The sMDB is subject to a temperate climate with winter dominant inflows and relatively large on-river storages
which support inter-year storage reserves. Irrigation within the sMDB is diverse with a mix of perennials (e.g.,
fruit and nut trees and grapevines), irrigated pasture and annual cropping (e.g., rice and cotton). Perennial crops
105 are concentrated in the lower Murray (e.g., SA Murray and Vic. Murray Below Barmah regions), dairying /

irrigated pasture in northern Victoria (e.g., Goulburn-Broken, Loddon, Campaspe) and rice and cotton in NSW
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(Murray and Murrumbidgee, see Figure 1). In contrast, irrigation in the northern MDB is dominated by cotton
crops.

Water market reforms since the 1980s have seen the separation of water rights from land and the

110 establishment and gradual refinement of cap-and-trade systems (Crase et al., 2004; Wheeler et al., 2014; Young
& McColl, 2005). While water markets exist in many parts of Australia, the sMDB is by far the most active market
(accounting for around 90% of water trade activity). Water property rights in the MDB involve a system of
“entitlements” (perpetual rights to a share of water from a particular source / river) which receive annual water
“allocations” (volumes of water available for use within the current year). Allocation volumes are determined by

115 water authorities to reflect prevailing water availability (i.e., dam storage volumes).

Another key feature of the MDB are carryover rights (see Brennan, 2010; Hughes et al., 2023), which
allow farmers to hold unused water allocations in public reservoirs: creating buffer stocks to reduce variability in
water use and prices over time. These storage reserves are important in the sMDB given river inflows are highly
variable, while alternatives to reservoir storage (e.g., groundwater recharge, on-farm dams) are limited. Both water

120 trade and carryover are subject to regulatory limits, in the form of water accounting rules designed to reflect
physical constraints on the delivery and storage of water within the river system. Together the system of water
property rights and accounting rules are designed to represent key features of the physical river system (i.e.,
reservoirs and rivers) ensuring consistency between water market transactions and real-world water flows.

Under the Australian constitution, responsibility for water resource management lies primarily with the

125  jurisdictions (i.e., state governments). As such, the implementation of water institutions varies considerably across
the regions of the MDB, particularly the definition of water entitlements, water accounting and carryover rules
and allocation determination processes. However, the annual water allocations held by end users remain relatively

homogenous, such that trade across state borders can occur with low transaction costs.

3 Methods
130 3.1 The economic model

Figure 2 provides an overview of the economic model. The model takes hydro-climate data (monthly sequences
of water allocations, rainfall and evapotranspiration), irrigation data (irrigation development and commodity
prices), and water market rules (trade and carryover limits) as inputs, simulating monthly irrigation and water
market outcomes (Figure 2a). The model includes seven southern MDB regions and five northern MDB regions

135 (Figure 2b). Consistent with exiting MDB trading rules, inter-regional water trade is allowed in the “connected”
southern MDB, but not among the “disconnected” northern MDB regions.

The model represents spatial and temporal equilibrium in water market, allowing for trade of water
between regions and carryover of unused water between time periods. The supply side of the model includes a set
of water accounting rules and trade limits, approximating those operating currently within each of the MDB

140 regions. The demand side involves a detailed representation of irrigated agriculture, including crop production,

revenue, costs and profits (drawing on Hughes et al., 2025).
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Figure 2: Overview of the economic water market model (a) Stylised representation of the model for a single region,

including input data, model processes (water accounting, irrigation production and water markets) and model outputs.
(b) Spatial overview of the model including allowable inter-region water trade flows.

145



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

3.1.1  Water supply

Water accounting rules vary significantly across MDB regions and states, particularly in how they represent
storage constraints (see Brennan, 2006; Hughes et al., 2023). The model adopts a simplified parametric

representation of these accounting systems, which attempts to reflect the most relevant features within each region.

150 Within the model, the volume of allocations A;; available at end of of period ¢t (i.e., unused water) evolves

according to:
A= A(Aie) + ) Adnie =V + T =Fe (1)
h

— other
AAjp = (ahiy,m - ahiy,m—l)- Ep; + Aj

FA(Ap-) = min| (= )i, @ D Ein
h

155 th ST, <t
0 <Ay <Ay

where AA4;,; are new allocation volumes made available in period t (implicitly reflecting inflows into storages),
U;; is allocation use, Tj; is net inter-region trade and Fj; are forfeits (reflecting storage constraints / losses). Note
that in general we use t to refer to the current time-period (month), but where necessary separately index the
160  (financial) year y and month m.
The model represents two water entitlement types in each region with varying reliability levels h €
{high, low} (i.e., General and High Security in NSW and High and Low Reliability in Victoria). These water
entitlements each receive annual allocations of water ap;¢. E,;, where ay; . is an annual allocation percentage
updated monthly, and Ej; is a fixed (i.e., maximum) annual supply volume. Finally, the term A%"®" reflects
165  volumes of water available against other surface water rights not explicitly represented in the model, including

conveyance losses and urban water (for details see Appendix A3).

3.1.2  Water storage and trade limits

The function f4 governs the transfer (carryover) of unused water from one period to the next. Different rules are
imposed across regions, including in some cases limits on the transfer of water between financial years (from June
170 to July). Carryover rules are represented in the model via alternative specifications for 4, F;, and 4;; as set out in

Appendix Al.

The model includes four trading zones in the southern MDB (see Figure 2b) which represent the key physical
constraints on inter-regional water trade. Net flows of water downstream on the Murray-river (into the Murray
below Barmah) are constrained by the “Barmah Choke” a narrow section of the river which limits delivery

175 capacity. Downstream deliveries from the Murrumbidgee and Goulburn tributaries are also subject to constraints.
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Trade within these zones is unconstrained but trade between zones is subject to volumetric limits: T, 7). These
“Inter-valley Transfer” (IVT) limits evolve overtime in response to accumulated trade volumes and physical river
flows, with specific accounting rules applied in each case (see Appendix A2). In general, upstream inter-regional

trade is only possible where it offsets other downstream flows (referred to as “back-trade”, Figure 2b).

180 3.1.3  Irrigation water demand

The demand side of the economic model is based on the monthly bio-economic water demand system developed
by Hughes et al., (2025). This system represents 12 irrigation activities j € J in each region including perennial
crops (Almonds, Grapes, Vegetables and Other horticulture), summer crops (Rice, Cotton), winter/perennial crops
(Hay, Pasture) winter/summer crops (Other). The parameters of the demand system B;;, are estimated from
185 historical data over the period 2004-05 to 2021-22. The parameters vary over-time in line with observed
technological trends (e.g., water use efficiency, irrigation development). The values applied in this study are based
the 2021-22 estimates (intended to reflect current irrigation development and technology).
A brief summary of the water demand models is provided below (for a complete description see Hughes
et al.,, 2025). The demand model adopts a crop water balance equation in which monthly crop irrigation
190 requirements (ML per hectare) wj; are a function of effective rainfall ER;; (moisture in) and evapo-transpiration

ETJ (moisture out):

— 1 1
Wije = E.Wmax(k;mETi‘g — ER;,0) )

where kf, are crop and month specific coefficients and ;7 0 is an estimated (water use efficiency) parameter. Here
ER;; is a parametric function of actual rainfall R;, while both ET{ and R;; are random variables. Irrigators are
195 required to make annual planting decisions, and monthly irrigation decisions to maximize expected profits. Annual

crop areas planted Lé’jt are constrained by the level of irrigation development, represented by L; j+ the maximum
area set-up for crop type j in region i (as estimated in Hughes et al., 2025). For perennial crops annual area is fixed

1P

e = L; j- The model allows for deficit irrigation, where water applied W;j; is less than the full requirement

Wijt. L’i’jt resulting in yield penalties. Note that planting decisions have a dynamic component as they depend on
200 expectations (in the planting month) over weather, water supplies and any deficit irrigation over the rest of the

crop growing season (see Appendix A.5).

In the model, profits to irrigation farmers are equal to crop production revenue, less water and planting

costs:
Tijy = B-i-}’ijy —Zm (Pi‘gz/m + Bico) Wijym — ﬁsz?jy(l + ﬁ61'in’jy/2Zi]-y) 3)
205 where Fﬁ is the crop output price and y;;, is crop production (a quadratic function of water applied),

Wijym is monthly water use, Pjy,, is the water price, and BF° a per unit water delivery charge. Reduced-form
water demand functions (derived from the irrigation profit maximisation problem, see Hughes et al., 2025) then

link area planted (i.e., ijt < Zi]-) and water use (i.e., Wij; < Wij[.Li-’jt) with water and crop prices, weather
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conditions and model parameters. The specific functional forms vary by crop, for details see Hughes et al., (2025)

210 or Appendix A.S.

3.14 Total water demand

While irrigation remains the major water user, some surface water allocations are used for other purposes including

urban needs and environmental flows. As a result of the Murray-Darling Basin Plan “Held environmental water”

(consumptive water entitlements recovered for environmental flows) now represent a significant share of total
215 allocation ‘use’, the order of around 20-30 per cent depending on the region.

Following Hughes et al., (2025) total use of water allocations U;, is defined as:

Uy = ﬂinVVit + ﬂzleiiW + ﬁzuz + ﬁiusRit/Rim 4)

env

where Ry, /R, is monthly rainfall relative to the long-run monthly mean and Uiy™ is an estimate of

environmental water use in region i (calibrated to historical data, see Appendix A4).
220 3.1.5 Equilibrium conditions

For a single month, the model can be formulated as a Mixed Complementary Problem (MCP), in which water

prices are required to equalise across space and time subject to trade, carryover, supply and market clearing

constraints:

Py — Pi‘g]J-Tilt < Ty <7th 5)

w 1 af4 w _

225 Pit - (m) E; E'Pi,t+l 10 <Ay <Ay (6)
L
o (O if Fj >0
A= (1—af,) otherwise
it

Subject to:

ZTit =0
i

Ay = fA(Ai,t—l) + Z AApy — Uy + Ty — Fye
7

230 Here equilibrium in the water market in period t requires the equalisation of water prices across each region,
subject to trade constraints (Eq. 5). Above PY’* refers to the ‘unrestricted’ water market price (effectively the price
prevailing in the terminal Murray below Barmah region). Equilibrium also requires equalization of period t water

prices with the expected marginal value of water in period t + 1 (Eq. 6). Here r is the time (monthly) discount
A

rate and E, [%. Py +1] is the expected marginal value of unused allocations A4;; from period t in period t + 1.
it

ar4 . . . . . . .
235 The term # is the marginal rate at which allocations can be transferred between time periods. This rate of
it
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transformation is one in most cases but goes to zero if allocation account limits are reached in the next period (as
any unused water is forfeited by users).

Note that these conditions are dynamic (i.e., recursive): calculation of equilibrium prices in P is
dependent on expected future prices. This recursion is resolved via an iterative “learning” approach outlined in the

next section.

3.2 Simulations

3.2.1  Solving the model

While a static (i.e., single period) MCP is easy to solve numerically, a dynamic stochastic problem presents some
challenges. Notionally, the agents in this model (i.e., irrigation farmers) are making repeated water use-storage
decisions subject to uncertainty over future climate conditions. As such, the economic model has some similarities
with reservoir operation problems (see Stedinger et al., 1984): limiting current use U;; in-order to increase reserves
A;; may be beneficial if future conditions are dry, but wasteful if future conditions are wet. Commonly, Stochastic
Dynamic Programming (SDP) methods are applied to solve such problems, however these suffer from well known
computational issues.

For this study, we follow the approach of economists Williams and Wright (1992) in solving the
equilibrium conditions iteratively to resolve the recursive dynamics (similar to the methods implemented by

Brennan, 2010; Hughes et al., 2023). Typically, with this approach the unknown expectations (i.e., in our case

ot . . . N
E; [ﬁu' Pl-‘f‘;ﬂ]) are replaced with a simple parametric approximation fit by least-squares. However, here we adopt

non-parametric approximation methods from the field of Reinforcement Learning (RL) as summarised below.

Outer loop v = [1,2,...,A]

Inner loop, t = [1,2,...,T]
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Figure 3: Solving the economic model: an iterative RL-MCP approach
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This process takes three main inputs: an extended sequence of hydro-climate data {ay;, R;;, ETS, Y—o; fixed
parameter vectors B, &; and an initial approximation for the unknown expectations (i.e., some function p?(.) =

A
E, [%. P; t+1] ) Given these inputs the problem can be solved as series of sequential MCPs, as shown in the ‘Inner
it

260  loop’ in Figure 3.
Here expected future prices are represented by a function defined over the state variables p; (4;;, Rie, m).
We employ Tilecoding a non-parametric approximation scheme drawn from the field of Reinforcement Learning
(Sutton & Barto, 1998) to approximate this function. Tilecoding can be viewed as a simplistic Neural Network
with discrete (binary) basis functions defined on regular grids over the input space (see Appendix B). In each
265 iteration of the ‘Outer loop’ (Figure 3) the Tilecoding weights are trained on the latest batch of simulation data via
Stochastic Gradient Descent (SGD) (see Appendix B). For the initial values p{(.) we train the tilecoding weights
on historical observed data. For the model we implement a locally linear form of Tilecoding, described further in
Appendix B.
This approach differs from previous studies (including Hughes et al., 2023; Brennan, 2010) in solving
270 directly on sequences of hydro-climate data without estimating explicit state transition probabilities (a ‘model free’
approach in the language of Reinforcement Learning). This offers some numerical efficiencies and supports
integration with hydrologic models where simulation of historical climate sequences is common practice.
While novel in the context of water markets, the general approach (i.e., use of adaptive learning to
estimate rational expectations in a stochastic-dynamic market) is relatively common in other fields of economics,
275 particularly macro-economic stochastic growth models (Den Haan & Marcet, 1990). The use of non-parametric
machine learning methods in this context is also not uncommon (Heinemann, 2000).
Note that in this study, learning algorithms are used purely as numerical method to derive a rational
expectations solution. While learning algorithms can have an intuitive interpretation as an approximation of real-
world adaptive behaviour, we resist that leap in this study, reporting only results at the completion of the outer

280 loop (an example of the convergence path of is presented in Appendix B.3)

3.2.2  Annual crop planting decisions

Expectations over water prices are not the only dynamic aspect of the economic model. In the irrigation water

14

demand functions crop area planted L;;,, is also subject to recursion, as these decisions are made at planting time

285 subject to uncertainty over weather conditions and water allocations (and hence crop revenues and costs) for the
remainder of the growing season (see Appendix A.5). At each iteration of the outer loop, inputs for the crop
planting decision, including expected crop water requirements and yield penalties, are also updated from the
simulation data (Figure 3), although here a simple parametric (linear least squares) approximation scheme is

adopted (see Appendix B.2)
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290 3.23 Long-term irrigation investment

The economic model also allows for adjustment in the level of irrigation development (including the area of
perennial tree crops) in response to long-term changes in climate or commodity prices. In the model, the level of
development is represented by maximum crop areas L;,, which can be adjusted at each iteration of the simulation
outer loop (Figure 3).

295 At each iteration, long-run average profit per hectare by region and crop is compared with to a baseline
level ) (estimated from a model scenario intended to reflect current expectations of climate conditions and

commodity prices). L;; is then updated via the rule:

b L @)

Ly, = min(_‘{j;1 +nka

= () gy Ly
|7rijt T =0 Ly
300 where n is a learning rate parameter. This update is applied iteratively until profit levels are equal (or above)
baseline levels. Note that in this study the update rule only allows for decreases in investment from baseline levels.
This approach involves several implicit assumptions. Firstly, it assumes initial (i.e., currently observed)
irrigation development levels (L%) represent a long-run equilibrium that is sustainable under a continuation of
baseline scenario conditions. Secondly, it assumes the productivity and suitability of different crops in each region
305 remains unchanged from baseline levels (in practice temperature increases could make some horticultural crops

less suitable in warmer regions, and more suitable in cooler regions). Finally, it assumes fixed irrigation capital

costs per hectare, fixed commodity prices, and ignores any adjustment cost or asset life-cycle issues.

Importantly, the model generally assumes that while seasonal conditions are uncertain, the long-run climate

(i-e., the mean and variance of water supply as represented by a given hydro-climate sequence) is known and

310 stationary. As such, results for different climate scenarios (including the equilibrium levels of irrigation
development) are to be interpreted as “long-term” outcomes with no attempt to account for a realistic transition

path. In practice, ambiguity over climate change along with other practical constraints (i.e., adjustment costs) will

limit the speed adjustment in the short to medium term (see Discussion and Conclusions).

3.3  Hydro-climate data

315 The climate change scenarios presented in this study draw on a hydro-climate data derived from a monthly timestep
hydrological model of the southern MDB (John et al. 2025). These data are based on an ensemble of 37 CMIP6
GCM projections for the SSP5-8.5 (high-emissions) scenario. Bias-corrected rainfall and temperature change
factors from the GCM ensemble (as at 2050) are applied to historic climate data for the period 1895-96 to 2021-
22. These rainfall and temperature data are then used to simulate monthly catchment runoff, inflow, storage
320 volumes and allocation percentages for the southern MDB (see John, Horne, Trail, et al., 2025). While using
historical data sequences to represent climate variability, these simulations all assume contemporary levels of

irrigation development, water institutions and river operating rules.
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We also highlight three additional climate scenarios, consistent with the common practice of developing

a smaller number of ‘bounding’ scenarios (Frangois et al., 2024). These three scenarios represent the minimum,

325 median and maximum of the ensemble in terms of mean total water allocation volume, and are labelled: Future

(Dry), Future (Medium) and Future (Wet) respectively. We contrast these against the Historical scenario which

uses historically climate observations but otherwise identical model settings (i.e., contemporary irrigation
development, water institutions and river operating rules).

A summary of the hydro-climate scenario data is presented in Figure 4. Figure 4a shows the percentage

330 change in long-run mean (water allocation volumes across the climate projection ensemble relative to a historical

scenario, showing a median decline in water supply of 10.1% for total sMDB). Figure 4b shows the distribution

of annual water supply for the three representative scenarios, relative to the historical scenario. Given upper limits

on annual water supply, drier scenarios lead to an increase in the variance of annual allocations (i.e., more years

with less than 100% allocations).
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Figure 4: Hydro-climate scenarios: (a) Percentage changes in long-run mean water supply (end-of-year allocation) for
the climate scenario ensemble by trading zone. (b) Distribution of annual water supply (end of year allocation) for three
future climate scenarios: Future (Dry), Future (Med.) and Future (Wet) historical scenario.
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340 4 Results
4.1 Model validation

Validation results for the economic model are presented in Figure 5, with further detail in Appendix C.1. These
scenarios, test the ability of the model to replicate observed outcomes, including monthly water market prices, and
annual water use and irrigation activity over the period 2008-09 to 2021-22. For each year in this range the model

345 is used to simulate water market and irrigation outcomes, given the estimated level of irrigation development in
that year and the prevailing climate, water supply (allocations), commodity prices and opening carryover.

The accuracy of these predictions depends on three main factors: the irrigation demand models
(considered separately in Hughes et al. 2025), the assumed water market constraints (water trade and carryover
rules, see Appendix A.1 and A.2) and importantly, the calibration of expected market prices.

350 This calibration process requires an assumption over the distribution of water supply and climate
conditions in the form of a specific hydro-climate sequence. This is challenging given the historical record is
clearly non-stationary: being subject to a long-term drying trend related to climate change. For validation purposes
we adopt a rolling 32-year climate and water supply sequence to represent of contemporary market perceptions of
climate. For example, the validation results for the year 2021-22 are based on a sequence of observed climate and

355 water supply data over the period 1990-91 to 2021-22 (which we refer to as the Baseline scenario, see Appendix
B.4).

With this approach, the model can predict historical variation in water market prices and irrigation activity
over-time and across regions relatively well (Figure 5, Appendix C.1). In comparison with the annual model of
Hughes et al., (2023) the monthly model better reflects observed water market prices, particularly in cases where

360 water supplies increase late in the year (i.e., after the summer cropping season has started) as occurred in 2019-
20.

In general, the accuracy of the model is best over the peak summer period (November to February) and
weaker during winter (May to August), which is understandable given real markets have more information
available to forecast future allocations (including current storage volumes). For example, modelled prices are

365 lower than actuals at the end of the 2018-19 water year, with real markets better anticipating the drought conditions
of 2019-20. Modelled prices reach zero during the flood years of 2011 and 2012 due to binding carryover
constraints in the model. Actual prices were slightly higher over this period, partly because the recently introduced
spill rules in northern Victoria were ineffective during this period (see Hughes et al. 2016).

Importantly, the results suggest that water market participants believe the current climate distribution

370 (i.e., the mean and variance of water availability) is better represented by the drier recent period than the long-
term historical record (although not shown here validation scenarios based on the full historical record led to
underestimation of observed market prices). Water allocations over the 1990-2022 period (the Baseline scenario)

are 21% drier than the Historical (1896-2022) scenario (in terms of southern MDB mean annual water allocations)'.

I Comparisons between the 32-year Baseline scenario and the 127-year hydro-climate scenarios are not straightforward
given the hydro-climate data for the later are derived from a hydrologic simulation model (with an assumption of fixed
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This period also remains drier than a majority of the climate projection ensemble (sitting around the 19th percentile

375 of the ensemble in terms of water allocation volumes).

The results are consistent with other evidence (see Hughes et al. 2022) suggesting Australian farmers
have updated their perceptions of climate in-line with recent rainfall changes. While largely beyond the scope of
this study, non-stationarity in observational data and related climate ambiguity has important implications for real-
world adaptation responses (an issue considered further in the Discussion and Conclusions).
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Figure 5: Simulated and observed monthly water allocation market prices P}; by region in the southern MDB, July-

2009 to June 2022.

development, water accounting and operational rules) while the former are based on observed climate and allocations, see
Appendix B.4. However, the differences mostly reflect drier conditions observed in recent decades (i.e., lower mean
rainfall) particularly the presence of multi-year droughts including the “Millenium Drought” (A. Van Dijk et al., 2013) and
the “Tinderbox drought” (Devanand et al., 2024).
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4.2 Climate scenarios

Simulation results for the southern MDB climate scenarios (127-year hydro-climate sequences reflecting 2050

385 climate projections, see section 4.4) are summarised in Figures 6 to 8, with further detail in Appendix C2. The
results show a wide range of potential outcomes due to the substantial spread in the water supply volumes across
the climate ensemble. This is typical of Australian climate change impact studies, given the significant variation
across climate models in future projected rainfall (particularly in south-east Australia). As discussed, most of the
climate scenarios used in this paper involve water supply levels that are higher than recent experience in the region

390  (asrepresented in Figure 6 by the Baseline scenario which is a model simulation based on observed hydro-climate
data between 1990-91 and 2021-22).
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Figure 6: Climate scenario long-run mean outcomes versus long-run mean water supply for the total southern MDB,
with both fixed and flexible irrigation development (a) Monthly water market prices (b) Total perennial crop area
(Almonds, Grapes, Other Horticulture and Vegetables) (c) Gross value of irrigation production (revenue) (d) Net
395 downstream water market trade (imports into the Murray below Barmah zone).
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Figure 7: (a) Distribution of monthly water market prices for selected climate scenarios by trading zone ($ / ML) for
selected climate scenarios. (b) Distribution of annual net trade volumes (GL) by trading zone for selected climate
scenarios

While each of the climate scenarios are subject to unique and subtle changes in rainfall and temperature,

400 including differences in spatial and seasonal patterns, most of the variation in simulated outcomes (i.e., water

prices and production) can be explained by the total long-run mean water supply volume of each scenario (as

shown in Figure 6a and c). This reflects the flexibility offered by water markets, where small changes in spatial or

seasonal patterns of water supply can be managed through adjustments in trade flows between regions or transfers

of water across time via carryover (subject to trade and carryover limits). As shown in Figure 6d water trade flows

405 are highly sensitive to small changes in the distribution of water supply, with this flexibility in trade serving to
limit variation in outcomes (i.e., water prices and production).

While markets can limit the impacts of climate change to some extent, reductions in mean supply (for a
given level of irrigation development) ultimately lead to increases in water prices (Figure 6a, Figure 8a). With
fixed irrigation development, the driest scenarios result in large increases in simulated water market prices,

410 particularly in the Murray below trading zones, as shortages in dry years become pronounced impacting higher
value perennial tree crops. In the Future (Dry) scenario water prices increase to a mean of over $500 per ML in
the Murray below zone, compared to the Historical scenario mean of $70 (see Table C1).

Under these dry scenarios water markets literally hit their limits, with constraints on trade out of the
Murrumbidgee, Goulburn, and Murray above zones (and into the Murray below) binding most of the time, leading

415 to persistently higher prices in the Murray below zone compared with the upstream regions (Figure 8). In the
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Future (Dry) scenario (with fixed irrigation development) the Murrumbidgee trade limit is binding 64% of the
time, the Goulburn limit 95% and the Murray limit 79% (compared with 35%, 49% and 41% respectively in the
Historical scenario).

Water market prices in these dry scenarios, reflect an imbalance between the supply of water and the

420 current level of irrigation development. Within the model, long-run adjustment is represented via reductions and
in the level of development (by region crop type) which lower mean water prices and return irrigation profits back
to Baseline levels. As shown in Figure 6, with “Flexible irrigation development” the level of development declines
under drier climate scenarios, with a reduction in southern MDB perennial crops under the Future (Dry) scenario
of 16% (Figure 6b), driven largely by declines in almonds and grapes in the Murray below Barmah zone (see

425 Figure C8). In addition to lowering water market prices this long-term adjustment also alleviates pressure on inter-
regional trade limits (Figure 7b).

In Figure 6 the Baseline scenario is included as a reference point, however it should be remembered that
this scenario involves a different variability profile (being based on the last 32 years rather than the full 127 record).
In particular, the Future scenarios tend to include more dry and wet extremes relative to the Baseline scenario.

430 This helps to explain why Future scenarios with comparable mean supply volumes lead to slightly lower mean
irrigation development and production.

While the reductions in water supply lead to declines in the value of irrigation production (Figure 6b),
markets limit the impact by ensuring water is allocated to the highest value (i.e., most profitable activities) across
the basin. As such, the percentage reductions in production value are smaller than the reductions in water supply

435 (18% decline in mean production under the Future (Dry) scenario for a 35% decline in water supply). Generally,
the results in Figure 6 highlight the non-linear nature of system responses to changes in water availability. This
reinforces the value of producing large ensembles of projections, as non-linearities and threshold information may
be less apparent when relying on a smaller number of ‘bounding’ scenarios.

In addition to water trade, carryover also plays an important role in supporting adaptation to climate

440 change. Figure 8 shows the storage-utilisation curve for selected climate scenarios, comparing the annual volume
of water used to the volume available (with the difference forming carryover for future years). As discussed, drier
climate scenarios tend to increase the volatility of water allocations. In response users increase the proportion of
available water that is stored to maintain supply reliability. Since drier scenarios involve lower mean inflows
(relative to a fixed dam storage capacity) they also tend to reduce the likelihood and size of spills which further

445 increases the benefits of carryover. As shown in Appendix C (Figure C9), this lower utilisation rate under drier
climate scenarios is associated with a change in crop planting behaviour, including a significant reduction in

summer crop areas planted for a given amount of water available at planting time.
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Figure 8: Simulated annual water use relative to available annual water supply (opening carryover plus annual
allocations plus other water) for the total southern MDB (1896-97 to 2021-22). Scatter points represent individual years
450 within each climate scenario sequence (a) Flexible irrigation development (b) Fixed irrigation development.
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5 Discussion and conclusions

This study presents a new monthly economic model of the Murray-Darling Basin (MDB) water market, which
combines bio-physical and economic structure, with a data-driven approach to estimation and validation. The
model offers two key advantages over the prior literature. Firstly, the monthly timestep, bio-physical detail and

455 empirical performance make this model more suitable for integration with hydrological models at a basin-scale.
Secondly, the model represents forward-looking dynamic behaviour, where market participants have “rational
expectations” over future conditions and prices. As such, the model is suited to analysing adaptation responses to
shifts in water supply and demand, including the potential impacts of climate change.

Validation results show the model can replicate observed variation in water prices and irrigation activity

460 in the basin between 2008-09 and 2021-22 with good accuracy. Validating a dynamic model over this period is
complicated by the large structural changes observed in both water demand (e.g., growth in almonds, decline in
pasture, new environmental demands) and water supply (reduced rainfall and inflows). These long-term trends in
water supply and demand likely led to some adjustment in the expectations of market participants over the period.
To address this, the model was solved under the assumption that expectations reflect climate observations over the

465  prior 32 years, consistent with the idea that water users implement some form of Bayesian updating (see Eisele et
al., 2021; Guthrie, 2019; Hobbs, 1997).

In this study the economic model was combined with hydro-climate scenarios for the southern MDB, to
simulate water market and irrigation sector outcomes under an ensemble of future climates (as at 2050 under SSP-
8.5). The results demonstrate the ability of water markets to support adaptation. Under drier future climates, users

470 adapt by increasing inter-regional water trade flows, particularly into the downstream Murray below Barmah zone,
to prevent water shortages for perennial tree crops in drought years. Under drier scenarios, users also adopt more
conservative crop planting and irrigation behaviour, accumulating additional carryover reserves to maintain water
supply variability and limit the extent of drought shortages.

Under the most severe dry future scenarios, the ability of users and markets to adapt is more limited.

475 Inter-regional trade flows reach their limits, leading to large differences in water prices between zones, including
higher prices in the Murray below Barmah zone as drought water shortages impact tree crops. In these dry
scenarios, the modelling suggests a reduction in the level of irrigation development would be required to bring
water prices and irrigation profits back to sustainable levels. Under the worst-case Future (Dry) scenario
(involving a 35 per cent reduction in long-term mean water supply, relative to the 127-year Historical scenario),

480  perennial crop areas are simulated to decrease by 16 per cent and the mean value of irrigation production to
decrease by 18 per cent.

While these results shed some light on the potential effects on climate change in the basin, they are
subject to several limitations and uncertainties. Firstly, the prediction of long-term adjustment in irrigation
investment requires strong simplifying assumptions. For example, this study does not allow for changes in crop

485 suitability resulting from higher temperatures. Water market outcomes in dry scenarios reflect the difficulty of
delivering water to high-value tree crops (e.g., almonds) in the warmer downstream regions of the Murray.

However, future warmer climates could change the locations at which crops can be feasibly grown (including for

20
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example allowing almonds to be grown further upstream) which could alter these results. These results also only
allow for decreases in irrigation development from current levels. Under wetter future climates some expansion

490 in development might be possible (although this would be subject to complex infrastructure, land and
environmental constraints).

Secondly, as with most climate impact studies of this kind, the projection ensemble involves wide range
of mean supply volumes, due to uncertainty over projected rainfall. Importantly, a majority of the projection
ensemble (derived from the full 127-year historical record) involve higher mean water supply and lower mean

495 water prices than the Baseline period (1990-91 to 2021-22) due largely to the recent drying trend.

Non-stationarity in observational data is a general challenge in hydrological assessments of climate
change (see Bayazit, 2015; Mondal & Mujumdar, 2017). In keeping with standard practices, this study measures
climate change impact as the difference between two steady state scenarios in which the climate (i.e., the long
run mean and variance of rainfall, temperature and water availability) is known with certainty. In reality, the

500 climate is non-stationary and the “true” distribution unknown, such that each year of observations provides new
information, an environment conducing to adaptive learning, i.e., Bayesian updating).

For example, in recent years (i.e., 2022-23 to 2025-26) above-average water supply volumes have been
observed in the sMDB (at least relative to the 1990-91 to 2021-22 Baseline scenario presented here). During this
period irrigation investment has remained strong with further expansion in perennial crops in some regions.

505 These recent observations are entirely consistent with the results presented in this study. While extreme dry
climates could require a long-term contraction in development, investors may rightly consider these scenarios
unlikely over the investment horizon. Further, under uncertainty there can be value in delaying investment
decisions and more generally keeping adaptation options open (see Guthrie, 2019; Pindyck, 1990). Given long
investment horizons, non-trivial adjustment costs and high uncertainty (i.e., option value) irrigation adjustment

510 to climate change is likely to be slow in practice.

Since uncertainty in projections is unlikely to be resolved in the near term, research into the impacts of
extreme events could have more immediate practical value than predictions of long-term outcomes. Recent
experience in the MDB has shown that extreme events play a key role in motivating and to some extent forcing
adaptation. Given current levels of development, the southern Basin remains vulnerable to the effects of extreme

515 drought, particularly droughts beyond the range of historical observation. While such events are inherently
unpredictable, modelling can be used to examine how water markets can be designed to be robust to extremes.

In future, this type of policy analysis could be supported by the development of ‘holistic’ integrated
hydro-economic models: models with two-way feedback between river systems and water markets (Brouwer &
Hofkes, 2008). To date, most applied climate change impact and water policy assessments have adopted a

520 narrow hydrological perspective (Hall & Melvold, 2025), especially in the MDB (John, Young, Nathan, et al.,
2025). In contrast, integrated models would enable analysis of water policy issues involving complex
interactions between hydrology and economics: including the design of water markets (e.g., trade and carryover
limits), river operations, new infrastructure (e.g., water supply or water saving projects) and environmental water

management (e.g., short-term environmental-irrigator trading, see Connor et al., 2013). Ultimately, this research

21
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525 direction would aim to progress beyond projections, offering water managers and policy makers a testing

environment to design robust institutions for an uncertain future.

Acknowledgements

This project was undertaken as part of the Hydro-Economic Model linkage project: a collaboration between

530 ABARES and the University of Melbourne (UoM). This work benefited from conversations with and written
comments from ABARES staff particularly Simon Hone and David Galeano. This project was funded by the
Australian Government Department of Climate Change Energy Environment and Water (DCCEEW) as part of the
Hydro-Economic Model linkage project.

535 Data availability

A data repository is available on Mendeley Data (DOI: 10.17632/cf5sk9n5bn.1)

22



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

540 6  References
Ahmad, A., El-Shafie, A., Razali, S. F. M., & Mohamad, Z. S. (2014). Reservoir optimization in water
resources: A review. Water Resources Management, 28, 3391-3405.
Bark, R., Kirby, M., Connor, J. D., & Crossman, N. D. (2014). Water allocation reform to meet environmental
uses while sustaining irrigation: A case study of the Murray—Darling Basin, Australia. Water Policy,
545 16(4), 739-754.
Bauer, C. J. (2004). Results of Chilean water markets: Empirical research since 1990. Water Resources
Research, 40(9). https://doi.org/10.1029/2003wr002838
Bayazit, M. (2015). Nonstationarity of Hydrological Records and Recent Trends in Trend Analysis: A State-of-
the-art Review. Environmental Processes, 2(3), 527-542. https://doi.org/10.1007/s40710-015-0081-7
550 Brennan, D. (2006). Water policy reform in Australia: Lessons from the Victorian seasonal water market*.
Australian Journal of Agricultural and Resource Economics, 50(3), 403—423.
Brennan, D. (2010). Economic potential of market-oriented water storage decisions: Evidence from Australia.
Water Resources Research, 46(8).
Brouwer, R., & Hofkes, M. (2008). Integrated hydro-economic modelling: Approaches, key issues and future
555 research directions. Ecological Economics, 66(1), 16-22.
Bruno, E. M., & Jessoe, K. (2024). Designing water markets for climate change adaptation. Nature Climate
Change, 14(4), 331-339.
Cai, W., & Cowan, T. (2013). Southeast Australia autumn rainfall reduction: A climate-change-induced
poleward shift of ocean—atmosphere circulation. Journal of Climate, 26(1), 189-205.
560 Cai, W., Cowan, T., & Thatcher, M. (2012). Rainfall reductions over Southern Hemisphere semi-arid regions:
The role of subtropical dry zone expansion. Scientific Reports, 2.
Cai, W., Purich, A., Cowan, T., van Rensch, P., & Weller, E. (2014). Did climate change—induced rainfall trends
contribute to the Australian Millennium Drought? Journal of Climate, 27(9), 3145-3168.
Commonwealth Scientific Industrial Research Organisation. (2008). Water Availablity in the Murray-Darling

565 Basin: A Report from CSIRO to the Australian Government. CSIRO.

23



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Connor, J. D., Franklin, B., Loch, A., Kirby, M., & Wheeler, S. A. (2013). Trading water to improve
environmental flow outcomes. Water Resources Research, 49(7), 4265-4276.
https://doi.org/10.1002/wrcr.20323

Connor, J. D., Kandulu, J. M., & Bark, R. H. (2014). Irrigation revenue loss in Murray—Darling Basin drought:

570 An econometric assessment. Agricultural Water Management, 145, 163—170.

Crase, L., O’Keefe, S., & Kinoshita, Y. (2012). Enhancing agrienvironmental outcomes: Market-based
approaches to water in Australia’s Murray-Darling Basin. Water Resources Research, 48(9).

Crase, L., Pagan, P., & Dollery, B. (2004). Water markets as a vehicle for reforming water resource allocation in
the Murray-Darling Basin of Australia. Water Resources Research, 40(8).

575 Den Haan, W. J., & Marcet, A. (1990). Solving the Stochastic Growth Model by Parameterizing Expectations.
Journal of Business & Economic Statistics, 8(1), 31-34.
https://doi.org/10.1080/07350015.1990.10509770

Devanand, A., Falster, G. M., Gillett, Z. E., Hobeichi, S., Holgate, C. M., Jin, C., Mu, M., Parker, T., Rifai, S.
W., Rome, K. S., Stojanovic, M., Vogel, E., Abram, N. J., Abramowitz, G., Coats, S., Evans, J. P.,

580 Gallant, A. J. E., Pitman, A. J., Power, S. B., ... Ukkola, A. M. (2024). Australia’s Tinderbox Drought:
An extreme natural event likely worsened by human-caused climate change. Science Advances, 10(10),
eadj3460. https://doi.org/10.1126/sciadv.adj3460

Dudley, N. J. (1988). A single decision-maker approach to irrigation reservoir and farm management decision
making. Water Resources Research, 24(5), 633—-640.

585 Eisele, M., Troost, C., & Berger, T. (2021). How Bayesian Are Farmers When Making Climate Adaptation
Decisions? A Computer Laboratory Experiment for Parameterising Models of Expectation Formation.
Journal of Agricultural Economics, 72(3), 805—828. https://doi.org/10.1111/1477-9552.12425

Francois, B., Dufour, A., Nguyen, T. N. K., Bruce, A., Park, D. K., & Brown, C. (2024). From many futures to
one: Climate-informed planning scenario analysis for resource-efficient deep climate uncertainty

590 analysis. Climatic Change, 177(7), 111. https://doi.org/10.1007/s10584-024-03772-9

Guthrie, G. (2019). Real options analysis of climate-change adaptation: Investment flexibility and extreme

weather events. Climatic Change, 156(1-2), 231-253. https://doi.org/10.1007/s10584-019-02529-z

24



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Hall, C., & Melvold, J. (2025). Advancing hydrology for societal impact: Integrating transdisciplinary
frameworks to bridge research and practice. Philosophical Transactions of the Royal Society A:
595 Mathematical, Physical and Engineering Sciences, 383(2302), 20240283.
https://doi.org/10.1098/rsta.2024.0283
Hart, B. T. (2016). The Australian Murray—Darling Basin plan: Challenges in its implementation (part 1).
International Journal of Water Resources Development, 32(6), 819—-834.
Heinemann, M. (2000). Adaptive learning of rational expectations using neural networks. Journal of Economic
600 Dynamics and Control, 24(5-7), 1007-1026.
Hobbs, B. F. (1997). Bayesian methods for analysing climate change and water resource uncertainties. Journal
of Environmental Management, 49(1), 53-72.
Hughes, N., Donoghoe, M., & Whittle, L. (2020). Farm Level Effects of On-Farm Irrigation Infrastructure
Programs in the Southern Murray—Darling Basin. Australian Economic Review, 53(4), 494-516.
605 Hughes, N., Gupta, M.., & Rathakumar, K. (2016). Lessons from the water market: the southern Murray-Darling
Basin water allocation market 2000-01 to 2015-16.
Hughes, N., Soh, W. Y., Boult, C., & Lawson, K. (2022). Defining drought from the perspective of Australian
farmers. Climate Risk Management, 35, 100420.
Hughes, N., Gupta, M., Whittle, L., & Westwood, T. (2023). An Economic Model of Spatial and Temporal
610 Water Trade in the Australian Southern Murray-Darling Basin. Water Resources Research, 59(4).
https://doi.org/10.1029/2022WR032559
Hughes, N., Zhao, M., & Downham, R. (2025). A bio-economic approach for predicting monthly irrigation
water demands. Pre-Print.
John, A., Horne, A., & Hughes, N. (2025). Climate change impacts on seasonal water allocations, water trade
615 and water price in a large regulated rirver system.
John, A., Horne, A., Trail, L., Fowler, K., & Nathan, R. (2025). Bottom-up assessment of climate change
vulnerability of a large and complex river basin using emulator models. Journal of Hydrology:

Regional Studies.

25



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

John, A., Young, W., Nathan, R., Cleugh, H., Westra, S., Guo, D., Daniell, K., Kiem, S., & Neal, B. (2025).
620 Research and institutional priorities for assessing hydroclimate risks to Murray-Darling Basin Plan
outcomes. Australasian Journal of Water Resources.
Leblanc, M., Tweed, S., Van Dijk, A., & Timbal, B. (2012). A review of historic and future hydrological
changes in the Murray-Darling Basin. Global and Planetary Change, 80, 226-246.
Mondal, A., & Mujumdar, P. P. (2017). Hydrologic Extremes Under Climate Change: Non-stationarity and
625 Uncertainty. In E. Kolokytha, S. Oishi, & R. S. V. Teegavarapu (Eds.), Sustainable Water Resources
Planning and Management Under Climate Change (pp. 39-60). Springer Singapore.
https://doi.org/10.1007/978-981-10-2051-3_2
Pindyck, R. S. (1990). Irreversibility, uncertainty, and investment. National Bureau of Economic Research
Cambridge, Mass., USA. https://www.nber.org/papers/w3307
630 Potter, N. J., & Srikanthan, R. (2008). Characterisation of recent rainfall and runoff in the Murray-Darling
Basin: A report to the Australian government from the CSIRO Murray-Darling basin sustainable yields
project. CSIRO Australia. https://csiropedia.csiro.au/mdb-sustainable-yields-project-2/
Schwabe, K., Nemati, M., Landry, C., & Zimmerman, G. (2020). Water markets in the Western United States:
Trends and opportunities. Water, 12(1), 233.
635 Speer, M. S., Leslie, L. M., MacNamara, S., & Hartigan, J. (2021). From the 1990s climate change has
decreased cool season catchment precipitation reducing river heights in Australia’s southern Murray-
Darling Basin. Scientific Reports, 11(1), 16136.
Stedinger, J. R., Sule, B. F., & Loucks, D. P. (1984). Stochastic dynamic programming models for reservoir
operation optimization. Water Resources Research, 20(11), 1499-1505.
640 https://doi.org/10.1029/wr020i011p01499
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). MIT press Cambridge.
https://www.cambridge.org/core/journals/robotica/article/robot-learning-edited-by-jonathan-h-connell-
and-sridhar-mahadevan-kluwer-boston-19931997-x1i240-pp-isbn-0792393651-hardback-21800-
guilders-12000-8995/737FD21CA908246DF17779E9C20B6DF6
645 Van Dijk, A., Beck, H. E., Crosbie, R. S., De Jeu, R. A. M., Liu, Y. Y., Podger, G. M., Timbal, B., & Viney, N.

R. (2013). The Millennium Drought in southeast Australia (2001-2009): Natural and human causes and

26



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

implications for water resources, ecosystems, economy, and society. Water Resources Research, 49(2),
1040-1057. https://doi.org/10.1002/wrcr.20123
Van Dijk, A., Kirby, J. M., Paydar, Z., Podger, G., Mainuddin, M. D., Marvanek, S., & Pefia-Arancibia, J.

650 (2008). Uncertainty in river modelling across the Murray-Darling Basin. A report to the Australian
Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. Citeseer.
https://citeseerx.ist.psu.edu/document?repid=rep 1 &type=pdf&doi=a21261075f7a9c¢3431b3£5¢9994bf8c
44d796340

Wheeler, S., Loch, A., Zuo, A., & Bjornlund, H. (2014). Reviewing the adoption and impact of water markets in

655 the Murray—Darling Basin, Australia. Journal of Hydrology, 518, 28-41.

Wight, C., Garmany, K., Arima, E., & Garrick, D. (2024). Texas water markets: Understanding their trends,
drivers, and future potential. Ecological Economics, 224, 108259.

Young, M., & McColl, J. (2005). Defining tradable water entitlements and allocations: A robust system.
Canadian Water Resources Journal, 30(1), 65-72.

660 Zeleke, K., & Luckett, D. J. (2025). Irrigated agricultural production dynamics in response to rainfall variability
and water policy reforms in the southern Murray-Darling Basin of Australia. Agricultural Water
Management, 315, 109539.

Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D., Kent, D. M., MacDonald, A. M.,
Turner, M. E., & Tuteja, N. K. (2016). How streamflow has changed across Australia since the 1950s:
665 Evidence from the network of hydrologic reference stations. Hydrology and Earth System Sciences,

20(9), 3947-3965.

27



https://doi.org/10.5194/egusphere-2025-6180
Preprint. Discussion started: 8 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Appendix A: Additional model detail
670 A.1  Water account limits (carryover rules)

The function f4 governs the transfer of unused water from one period to the next:

FA(Age) = min( (1= @G A, 06 ) E
h

Under the annual accounting systems of the southern MDB (ACO), special limits are imposed in some regions on
carryover between the final water (financial) year month of June and opening month of July (a$ = 0.30 in the

675 Murrumbidgee and 0.50 in the NSW Murray). In Northern Victoria there are no limits imposed on annual carryover
volumes as such, however an annual loss factor is applied to reflect storage evaporation losses (@S, = 0.05).

In addition, most regions within the MDB impose some form of account limit at all times of the year,

designed to represent storage capacity constraints and related spill losses. When account limits are reached any

further allocations are forfeited (via the term F;;). In southern NSW there is a monthly limit imposed on the sum

680 of annual carryover and allocation (aka the 100% rule):

Fy = Z max (Ciy + aincEin — afyEin, 0) - Z Fiym
n

m<t
Fie = Z max (Cyy + aincEin — afy, 0) — Z max (Ciy + aipeEip — AApie — iy Ein, 0)
7 D

For the northern basin regions the model represents the NSW system of “Continuous Accounting” (CA), where
the financial year transition (June-July) has no special significance, and users are able to carryover water each

685 month subject to a fixed account limit specified as a proportion of entitlement volume, e}, such that forfeits are:

Fy, = max (Ai_t_l + Z Adpy — Z Ep afh, 0)
h h

In Victoria carryover of water within “Allocation Bank Accounts” works similarly to continuous
accounting in NSW, however any unused water more than entitlement volume is not immediately lost, being
transferred to a “Spillable Water Account” (SWA) which is then only subject to forfeits in the event of physical

690 storage spills. In the absence of any explicit hydrology, we predict spills via a simple annual statistical function

calibrated to observed SWA spill forfeit data, as below (where [, refers to annual inflow):

Fit = min (maX <Ai,t—1 + z A Ahit - Z Eih 0({?[, 0) lZit)
h h
m
Ziym = max <ziy - Z Fl-ys,0>
s=7

2z, = max (ﬁizo + B (Aiy-16 + Z AApy) + B Ly + BP(Aiy-as+ Z A Apie)- Iy, 0)
7 7
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695
The water accounting rules vary across each region as defined by the below parameters afy, a5, and af. Note that
af, and af are set to zero in all months except June (as NSW and Vic. carryover limits are imposed only at the
end of the financial year). Water accounting limits af}, are applied consistently across all months. For SA Murray
the model assumes no annual carryover. While annual carryover rules do currently exist in the region, they remain
700 highly limited in practice and have resulted in negligible effective carryover of water in the region since being

adopted.

Table A1: Water accounting parameters

Account Account limit Carryover limit Storage loss

Region, i € ] type Ao, Chigh,i Ao, Ahigh,i af
Murrumbidgee ACO 1 1 0.30 0 0
Goulburn SWA 1.1 1.1 0 0 0.05
NSW Murray above ACO 1.1 1 0.50 0 0

Vic. Murray above SWA 1.1 1.1 - - 0.05
NSW Murray below  ACO 1.1 1 0.50 0 0

Vic. Murray below SWA 1.1 1.1 - - 0.05
SA Murray below ACO 1 1 0 0 0
Lachlan CA 2 0 - - 0
Macquarie CA 1 1 - - 0
Namoi CA 2 1 - - 0
Gwydir CA 1.5 1 - - 0

NSW Border rivers CA 1 1 - - 0

705 A.2 Water trading rules (IVT limits)

The Murrumbidgee adopts a rolling monthly limit, based on the evolution of an ‘Inter-valley Transfer’ (IVT)

account:
Vie = Viger = Tipm1 — Vit
T =V —alt Tl = Vy
710 Here T, is the net trade volume for region i in period t (negative values reflecting exports, positive values imports),
V. is the IVT account volume at the end of period ¢, @/’ the IVT account limit (100GL in the Murrumbidgee) and
v;, are physical trade deliveries (aka IVT callouts).

The Goulburn and Barmah Choke trade rules operate slightly differently, with an IVT account that resets

on an annual basis:

715 Vie =V'ito1 — Tipm1 — Vit
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g0 ifm=T
b-1 7 V-1 otherwise

th=Ve—allth == ) Tym
mst
Trade limits are dependent on IVT account limits a”% and a"* specified below (Table A2) in GL units. Here a
value of -1 implies no limit. Note that within the model (and in practice) effective limits on inter-region trade
720 depend heavily on monthly trade opportunities / IVT ‘callouts’ v;,. Trade opportunities are dependent on
hydrological factors and are therefore assumed exogenous in model simulations. The default assumptions for

vy, are outlined in Table A3.

Table A2: Water trade parameters

IVT limit
Trading zone IVT type a’t a’l
Murrumbidgee Rolling 100
Northern Vic. Annual 0
Murray above Annual 0
Murray below NA -1 -1
725 Table A3: IVT trade opportunities
Month Murrumbidgee Northern Vic. Murray above
January 15,000 0 0
February 15,000 0 0
March 15,000 0 0
April 0 0 0
May 0 0 0
June 0 0 0
July 0 232,500 30,000
August 0 0 0
September 0 0 0
October 15,000 15,000 0
November 15,000 15,000 0
December 15,000 0 0
A.3 Other water allocations
other

Given historical data on all other components A7, can be computed as a residual, by exploiting changes in
opening carryover between years (see Hughes et al., 2023). For the simulation model, we develop a simple

730 statistical model predicting annual A?;h" as a function of annual allocations, entitlements and rainfall:
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A?}fher — ﬂao + ﬂal_Ainaleiy + ﬁaSAiy-Riy + ﬁaz}_z Eih
h

Aiy = Z m"z?x {aiym}- Ein
h

Within the southern MDB regions A%fher primarily reflects conveyance water, which is strongly correlated with
irrigation water deliveries (and therefore allocation volumes). In the northern MDB, a larger component of this
735 other water is derived from supplementary / unregulated water licenses and is therefore more strongly correlated
with current and lagged rainfall data. Annual predictions are applied pro-rata across the months of the year.

Validation results for A%fh" are provided in Appendix C.1.

A.4 Environmental water use

Historical environmental water use data is obtained from MDBA annual ‘take’ reports for each region over the
740 period 2004-05 to 2020-21. A simple reduced from statistical model is estimated from this historical data,
predicting environmental use as a function of held environmental water rights (entitlements and allocations) and

rainfall:

env _ penv0 penv el penv e2 penv env3 renv
U™ = B5 ALY + B ALY Ry + BELY + B ESY Ry

env _
Ay = Z max {aiym}- Siny- Ein
7

745 EJW = Z Oiny - Ein
7

where 8y, is the share of entitlement class h held by the environment in region i year y. In the model annual

UZY is applied pro-rata across the months of the year (see Hughes et al., 2025).

A.5 Water demand functions

The monthly water demand system of Hughes et al., (2025) includes two functional forms Area Deficit (AD)
750 (quadratic land productivity) and Water Deficit (quadratic yield response). Below are the water demand functions

for the WD form, which apply for almonds, grapes, cotton and pasture crops:

wie (Pl + 3f°)>

W =w:. IP. |1 —
ijt ijt l]t( 2. Py ﬁyo kut

l}i?/'t = lJt Bz cZ ( (1 kzj,mo) - ﬂicjz - (Bicio + Pi‘;')'wi7,m0)

ij

X Wije
kl] mo — Em =mo0 [Z kl]t <WUt ) ]
ij
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755 Wi*j,mO = Em:mO [Z Wi}'t:|
m

Here both crop area planted, and area irrigated are increasing in commodity (output) prices Py,

and decreasing in
water (input) prices P} . Monthly irrigation decisions are increasing in water stress fcfjt (higher water stress reduces
the gains from deficit irrigation), while crop planting decisions are decreasing in water stress (more water stress
reduces the profitability of planting crops). Note that crop planting decisions are made once per year in the planting
760 month m0 (October for Summer crops and April for Winter crops) subject to uncertainty over outcomes for the
remainder of the cropping season. As such, area planted in year y depend on prices in the planting month: P .,

and expected annual water requirements and crop yield penalties at planting time: $w;; 1o, kijmo. For full details

see Hughes et al., (2025).

765
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Appendix B: Model solution methods
B.1 Tilecoding

Tilecoding function approximation scheme commonly used in reinforcement learning (Sutton & Barto, 1998).
Tilecoding works by dividing the state space into a set of overlapping, rectangular regions or ‘tiles’, and then
770 associating a set of weights with each tile (Figure B1). The approximated function is then given by the weighted

sum of the set of tiles that intersect with a given state.

—— input space

— tiling layer 1

—— tiling layer 2

. input point X,

activated tile, layer 1

activated tile, layer 2

Figure B1: Simple example of Tilecoding with two input dimensions and 2 layers

In the model, we represent the expected future price of water (or more precisely the marginal returns from water

775 storage) in region i at time t via a locally linear form of Tilecoding:

of4
E Pl = P! (Xie) + p) (Xie). A
04;;

PP (Xi) = Z 15,05  pl(Xy) = Z 1cs, 65

Jj€J JjeJ
_ (0P T
X = {Ait ’ Iit'm}

AY = fA(Ai,t—l) + Z AApi — Fie
7

780 Here for a given region and month expected prices are linear with respect to unused water A;, (allowing the
monthly MCP to be solved over simple parametric functions). Both the intercept and slope coefficients of this

linear scheme are represented as Tilecoding functions defined over the state space p;(X;;). Above J, is the set of
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tiles that intersect with the state X;;, 17, is an indicator function equal to one if tile j intersects with the state and
zero otherwise, and 63, 91 are weights associated with tile j in region i (for p? and p} respectively). The state
785 (input features) for each Tilecoding scheme is defined as {AY,, [;;, m}, where A?f is the opening availability of
water allocations (before use and trade), and I, is the 12 month moving average of region inflow (taken from the

hydro-climate data). In the northern regions, the 12 month moving average of rainfall is used in place of I;.

The weights of each Tilecoding scheme are updated in each iteration of the outer loop using stochastic gradient

descent:

0 0 1
790 0;; eeii—anEit
t

1 1 1
Bij < 6; _UFZ Eit - At
t

0/1 - of*

€it = P; (A% Leym) — 6A-t'Pi'M;+1
L

where 7 is the learning rate and €;; is the prediction error.

B.2 Crop planting decision

795 As outlined in Appendix A.5 (and detailed in Hughes et al. 2025) crop planting decisions depend on expectations
over future crop water requirements w;; o and crop stress kj;n, penalties. When solving the model, these

expectations are updated at each stage of the outer loop as simple linear function of planting time prices:
kl] mo ~ max{ﬁz £ko + .BEkl PLM';nO' 0}

Wl} mo ~ max{ﬁswo + ﬂewl PLM;nO' 0}

800 Here the parameters 8 are fit by minimising the prediction error over the latest round of simulation data:
s 2
ming (kl-jt max{ﬁf]ko + ﬁe"l PY .0}

ming (@5, — max{Bg*° + B5. Plino, 0})°

Wije
ut Z kut(
P
Wije = Wije
m

805
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B.3 Convergence

EGUsphere\

Figures B2 and B3 below provide an example of the convergence of the learning algorithm across the outer loop.
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Figure B2: Evolution of mean water prices P}; by southern MDB region during the outer loop, Future (Med.) scenario
810 with flexible irrigation development
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Figure B2: Evolution of mean water prices P}; by southern MDB region during the outer loop, Future (Dry) scenario
with flexible irrigation development

815 B.4 Validation scenarios

The validation scenarios (used to derive the simulation results in Appendix C.1 and Section 4.1) involve a rolling

32-year window where results simulated for year x are generated from a climate and water supply sequence for

the period x - 31 to x. For example, the validation results for the year 2021-22 (referred to in this paper as the

Baseline scenario) are based on a climate and water supply sequence for the period 1990-91 to 2021-22.
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820 Unlike the 127 hydro-climate scenarios (see Section 3.3) thesevalidation scenarios draw on historically
observed climate data. Here rainfall and temperature data are based on historical monthly SILO observations.
Between 2000-01 and 2021-22 allocation percentages are obtained from historical observations (collated from
state government websites (see Hughes et al., 2025). For years prior to 2000-01 to 2022 synthetic observational
data is derived by sampling from the 2000-01 to 2021-22 period using an analogue year approach (where analogue

825 years are identified based on annual rainfall and lagged annual rainfall).

Validation scenarios adopt the default IVT trade opportunities (as set out in Table A.3) with some
allowances made for additional trade volumes in observed in specific drought years (Murrumbidgee 3 factor

increase in 2008-09, and 2 factor increase in 2020-21, Northern Vic. 30% increase in 2017-18 and 2018-19).
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830 Appendix C: Additional results

C.1 Validation results
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Figure C1: Simulated and observed annual water use U;; by southern MDB region, 2008-09 to 2021-22.
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Figure C2: Simulated and observed other water supply A;-’t""” by southern MDB region, 2008-09 to 2021-22.
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Figure C3: Simulated and observed water applied W;;; by crop for the southern MDB, 2008-09 to 2021-22.
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Figure C4:

Simulated allocation market prices by northern MDB region, July 2009 to June 2022. Namoi, Gwydir and

NSW Border Rivers “observed” series are estimated shadow prices from Hughes et al. (2025), while Macquarie and

Lachlan are actual observations.
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Figure C5: Simulated and observed annual water use U;; by northern MDB region, 2008-09 to 2021-22.
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Figure C6: Simulated and observed other water supply A%*¢" by northern MDB region, 2008-09 to 2021-22.
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850 Figure C7: Simulated and observed water applied W;;; by crop for the northern MDB, 2008-09 to 2021-22.
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C.2 Climate scenarios

Table C1: Mean simulated prices, trade volumes and irrigation production by climate scenario and region

Region Flexible development Fixed development
Hist. Wet Med. Dry Hist. Wet Med. Dry
Mean water market prices ($ / ML)
Murrumbidgee 64.5 25.0 123.8 188.0 64.4 26.6 122.0 259.1
Goulburn 26.3 10.9 50.0 84.5 26.1 13.0 51.2 134.7
NSW Murray (above) 37.0 12.5 85.7 140.1 37.5 12.5 87.4 243.6
NSW Murray (below) 70.2 19.1 159.6 256.1 71.0 19.9 159.6 505.5
SA Murray 70.2 19.1 159.6 256.1 71.0 19.9 159.6 505.5
Vic. Murray (above) 37.0 12.5 85.7 140.1 375 12.5 87.4 243.6
Vic. Murray (below) 70.2 19.1 159.6 256.1 71.0 19.9 159.6 505.5
Mean net annual trade volume (GL)
Murrumbidgee -54.7 -67.0 -58.4 -40.9 -54.7 -62.0 -59.2 -60.8
Goulburn -183.6 -164.5 -245.7 -194.0 -184.5 -143.5 -241.6 -255.2
NSW Murray (above) -85.7 -57.2 -93.0 9.5 -97.9 -94.4 -90.7 -42.1
NSW Murray (below) 34.0 9.3 63.1 6.4 38.2 -5.8 55.9 36.1
SA Murray 79.3 112.0 73.4 2.3 75.2 112.7 77.0 26.8
Vic. Murray (above) 129.6 124.3 119.8 68.1 146.0 141.7 1143 54.1
Vic. Murray (below) 81.1 43.2 140.8 153.2 71.7 51.4 144.4 241.1
Mean annual gross value of irrigation production ($m)

Murrumbidgee 1450 1468 1409 1184 1450 1467 1409 1268
Goulburn 780 786 772 728 781 785 772 744
NSW Murray (above) 419 430 394 316 419 430 394 309
NSW Murray (below) 358 360 353 294 358 360 353 331
SA Murray 1164 1166 1157 1058 1164 1166 1158 1141
Vic. Murray (above) 134 135 132 117 134 135 132 123
Vic. Murray (below) 1223 1228 1209 1026 1223 1228 1210 1166
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Figure C8: Percentage change in long-run mean crop area irrigated for selected climate scenarios relative to the
Historical scenario by southern MDB trading zone, for both flexible and fixed irrigation development.
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Figure C9: Simulated summer crop area planted (rice, cotton and other) versus available water in October for the total
southern MDB (1896-87 to 2021-22). Scatter points represent individual years within each climate scenario (a) Flexible
irrigation development (b) Fixed irrigation development.
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