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 8 

Abstract. Mountain glaciers are losing mass rapidly due to anthropogenic climate change. Projections of glacier evolution 9 

across the Andes under different warming scenarios have primarily been as part of global scale modelling frameworks, rather 10 

than dedicated, regionally optimised, simulations. These global-scale models use simplifications of ice flow physics that may 11 

be unsuitable for steep topography, such as that which occurs at mountain valley glaciers. More complex models are available, 12 

but with that complexity comes further sources of uncertainty. Here, we assess the sensitivity of the Parallel Ice Sheet Model 13 

to ice-flow parameters influencing the ice rheology and subglacial sliding characteristics. We find that the resistance of 14 

subglacial material has the most impact on modelled ice outputs (e.g., ice volume), followed by the exponent which relates 15 

basal shear stress to sliding, and the threshold velocity at which sliding occurs. The ice-flow rheology enhancement factors, 16 

the rate of subglacial water decay, and the maximum water thickness within a presumed subglacial drainage network, can 17 

either cause minor variations, or no effect at all, on ice outputs. Our study informs what parameters can potentially be negated 18 

in future parameter ensemble tests and provides direction on where further investigation is needed. 19 

 20 

1 Introduction 21 

Andean glaciers are a critical part of the region’s water tower system (Immerzeel et al., 2020), particularly during droughts 22 

(Drenkhan et al., 2015) and in upland rural areas (Buytaert et al., 2017; Rabatel et al., 2013). However, they are losing mass 23 

rapidly (Dussaillant et al., 2019), placing stress on water resources, and contributing to sea level rise. Continued global 24 

warming, intensified by regional elevation-dependent warming (Byrne et al., 2024; Pepin et al., 2015), and changing 25 

precipitation regimes (Cai et al., 2020; Masiokas et al., 2020; Potter et al., 2023) heighten the need for accurate glacier 26 

projections to inform water management and sea level rise assessments. 27 

Global-scale models of glaciers and ice caps (i.e., all land-based ice not stored in ice sheets) predict continued ice loss through 28 

to 2100 (Hock et al., 2019; Hugonnet et al., 2021; Rounce et al., 2020). While long-term sea level rise will be dominated by 29 

the Greenland and Antarctic Ice Sheets (Goelzer et al., 2020; Seroussi et al., 2024), glaciers and ice caps may contribute up to 30 

0.35m of sea level rise by 2100 (Edwards et al., 2021; Hock et al., 2019; Marzeion et al., 2020). These global-scale experiments 31 
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are designed to capture the envelope of plausible sea level rise contributions from glaciers under different emission scenarios 32 

(Fox-Kemper et al., 2023). However, global and regional scale projections of mountain glacier change are not only needed for 33 

sea level rise, but also for management of changing water resources, mountain glacier hazards, resources for tourism and 34 

recreation, and for ecological and biodiversity management.  35 

Glacier models used in intercomparison efforts such as GlacierMIP (Hock et al., 2019; Marzeion et al., 2020; Rounce et al., 36 

2023) provide insight at global and regional scales (Zekollari et al., 2025). However, their use may be limited for planning 37 

local resource management and mitigations due to: i) simplified ice-flow physics unsuited to steep topography (Egholm et al., 38 

2011); ii) reliance on downscaled global climate models (GCMs), which often poorly capture mountain climate (Núñez Mejía 39 

et al., 2023); and iii) simplified mass balance schemes, often reduced to positive degree-day models (PDD; Bolibar et al., 40 

2022). 41 

Here we attempt to address the first issue, by using a complex ice sheet model to assess uncertainties in the parameterisation 42 

of glacier ice flow physics in areas of steep mountain topography. We use the Parallel Ice Sheet Model (PISM; Winkelmann 43 

et al., 2011), a thermomechanically coupled shallow-ice/shallow-shelf model commonly applied to both ice sheets (Johnson 44 

et al., 2023; Payne et al., 2021; Seroussi et al., 2024) and mountain glaciers (e.g., Candaş et al., 2020; Martin et al., 2022; 45 

Žebre et al., 2021). PISM incorporates subglacial hydrology and basal sediment (till) deformation (Albrecht et al., 2020; 46 

Winkelmann et al., 2011), but the added complexity increases the number of uncertain parameters. Perturbed parameter 47 

ensembles are generally used to explore this type of uncertainty (e.g., Berdahl et al., 2021; Roe and Baker, 2014), however, 48 

the number of simulations tends to increase with the number of parameters used, leading to significant computation for 49 

computationally expensive models (Archer, 2024; Rougier, 2015). Therefore, a useful precursor to such efforts is a targeted 50 

sensitivity analysis to identify which parameters meaningfully influence model outputs. This can aid in excluding parameters 51 

from a full ensemble design that show low control over model output, saving computation resources and time. 52 

The aim of this study is to assess the sensitivity of modelled Andean glaciers to ice-flow parameters within PISM. We explore 53 

this parameter space through a suite of steady-state univariate and multivariate sensitivity experiments across selected Andean 54 

glacier catchments. We focus solely on parameters controlling internal ice deformation and glacier-bed interactions. 55 

 56 

2 Study area 57 

Mountain glaciers and ice caps in the Andes span 68º of latitude, from 12ºN in Columbia, to 56ºS in Chile and Argentina. 58 

Projections over Andean glaciers show they are likely to become significantly smaller, or entirely lost, in the future due to 59 

climatic warming (e.g., Zekollari et al., 2025). Rounce et al. (2023) estimates mass losses by 2100 for the Low Latitudes (RGI 60 

16) of 69 ± 25% to 98 ± 2%, and for the Southern Latitudes (RGI 17) 38 ± 15% to 68 ± 20% for the low and very high emission 61 
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scenarios RCP2.6 (mean projected global warming +1.6℃ by 2100) and RCP8.5 (+4.3℃), respectively. Under the more recent 62 

SSP scenarios, Rounce et al., (2023) projected slightly higher losses: from 76 ± 18% to 99 ± 3% in the Low Latitudes, and 63 

from 49 ± 19% to 74 ± 22% in the Southern Andes, under SSP1-2.6 (+1.8℃) and SSP5-8.5 (+4.4℃), respectively. More 64 

recently, Zekollari et al. (2025) detailing the committed loss of glaciers after equilibrating with global warming estimates of 65 

+1.5℃ and +4.0℃, the Southern Andes would lose a mean of 45% and 79% of their mass, and the Low Latitudes a mean of 66 

46% and 96% of their mass respectively. Regionally specific in Peru, Drenkhan et al. (2015) projects area losses between 67 

40.7% and 44.9% by 2060 under RCP2.6, and between 41.4% and 92.7% by 2100 under RCP8.5. 68 

The five PISM model domains used in this study encompass the mountain glaciers in the 1) Santa, 2) Vilcanota, 3) Kaka and 69 

Boopi, 4) Copiapó and 5) Mendoza, Maipo, and Rapel hydrological catchments (Fig. 1). The glaciers in these hydrological 70 

catchments are particularly important for their role as meltwater sources for downstream populations (Masiokas et al., 2020; 71 

Vuille et al., 2008). The chosen domains cover three different climatological zones: domains 1, 2, and 3 are within the tropical 72 

Andes, with a diurnal temperature variation that outweighs the annual temperature variation. This leads to glaciers being 73 

sensitive to changes in precipitation that impact the presence and distribution of snowfall across the glacier surface (Hardy et 74 

al., 1998; Kaser, 1999). Domain 4 lies within the desert Andes, with high snowline altitudes. This arid climate has short 75 

snowfall events that cause glaciers to lose mass primarily through sublimation (Fyffe et al., 2021; Masiokas et al., 2016). 76 

Lastly, domain 5 comprises three adjacent mountain hydrological catchments within the wet Andes that are sensitive to 77 

temperature changes, due to receiving substantial snowfall during the winter months (Masiokas et al., 2016), while the presence 78 

of glacial lakes enhances mass loss through calving and proglacial lake-driven melting (Wilson et al., 2018). 79 
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 80 

Figure 1: Chosen hydrological catchments and the five PISM domains across the South American Andean Mountains used in this 81 
sensitivity analysis. Red outlines show the model domains, focused on glacierized areas within each hydrological catchment. 82 
Hydrological catchment boundaries are from HydroSHEDS (Lehner et al., 2008). 83 

The Andes have been the focus of numerous studies examining glacier extent changes in response to both centennial (e.g., 84 

Carrivick et al., 2024; Emmer et al., 2021) and decadal scales (e.g., Dussaillant et al., 2019; Taylor et al., 2022). Global-scale 85 

studies using simplified two-dimensional flowline models (e.g., OGGM; Maussion et al., 2019) have modelled individual 86 

Andean glaciers as part of broader global modelling frameworks, which apply uniform modelling frameworks across diverse 87 

climatic and topographic regimes. Although these global frameworks can assimilate regional climate data, they do not 88 

specifically optimise for Andean glacier dynamics and are unable to account for highly heterogenous climatic regimes such as 89 

those of Andean glaciers. However, regional-scale glacier modelling specific to the Andes remains limited. Most physically 90 

based modelling efforts have been concentrated on the Patagonian Icefields, a setting distinct from the rest of the Andes, while 91 

other studies are primarily focused on modelling from the Last Glacial Maximum to present (e.g., Cuzzone et al., 2024; Martin 92 

et al., 2022; Wolff et al., 2023; Yan et al., 2022). To date, only one study has focused in detail on modelling Andean Mountain 93 

glaciers outside Patagonia, assessing their response to climate extremes, however, this study is restricted to just two glaciers 94 
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(Richardson et al., 2024). Consequently, parameter choices and process understanding for physically based modelling of 95 

Andean glaciers remain poorly constrained. 96 

 97 

3 Materials and methods 98 

3.1 Parallel Ice Sheet Model 99 

Here, we used the Parallel Ice Sheet Model (PISM v2.1) (Winkelmann et al., 2011) to conduct our numerical modelling. PISM 100 

is an open-source, three-dimensional, thermomechanically coupled, hybrid shallow ice, shallow shelf, approximation ice sheet 101 

numerical model. The parameter combinations of PISM can be calibrated to represent localised climate and glaciological 102 

conditions when sufficient observational constraints (e.g., mass balance data, surface velocity, past glacier extents) are known. 103 

Otherwise, default parameter values, which have primarily been tuned for the Greenland Ice Sheet, are set automatically if not 104 

specified. Key parameters we have chosen to change here are mentioned throughout the following sections and in Table 1. 105 

Table 1: Chosen glaciological model parameters for sensitivity analysis within PISM. Letters on the leftmost edge of the table 106 
correspond to the component letter within PISM that the chosen parameters cover, which is also explained in the main text. All 107 
other parameters not mentioned within this table are left at their default values, which can be found in PISM’s Configuration 108 
Parameters online manual (https://www.pism.io/docs/manual/parameters/index.html). 109 

 Parameter Default Min Max  Description 

E ESIA / ESSA 1 0.2 20 - Enhancement factor for SIA and SSA: ESIA and 

ESSA controls how easily the ice deforms. 

T C 1 0.1 12 mm/a Subglacial water decay rate: determines the 

amount of water discharge from a hypothetical 

layer of water beneath the glacier, conceptually 

this is presumed to be stored in sediment, but 

could also apply to subglacial cavities. 

 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  2 0.1 10 m Maximum subglacial water thickness: the 

amount of effective water thickness within the 

subglacial environment; all water above this is 

not retained. 

 ϕ 30 5 45 º Subglacial bed strength: a parameter in the 

Mohr-Coulomb criterion for yield stress, which 

is a shear strength parameter related to the 

geology of the bed. 

S q 0.25 0.05 0.95 - Sliding exponent: controls the relationship 

between basal shear stress and sliding velocity 

within the Zoet and Iverson (2020) slip law. 

 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  100 20 200 m/a Velocity threshold: the velocity above which 

sliding occurs at the base of the ice. 

 110 

3.1.1 Enhancement Factors (E Component) 111 
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We used PISM’s hybrid shallow ice shallow shelf approximation (hybrid SIA+SSA). This is the combination of the shallow-112 

ice (SIA; Hutter, 1983; Mangeney and Califano, 1998) and shallow-shelf approximations (SSA; Bueler and Brown, 2009; 113 

Weis et al., 1999), enabling PISM to represent both the vertical deformation and longitudinal stretching of the ice, along with 114 

basal sliding. This hybrid SIA+SSA has been applied in other valley-based glacial systems (Candaş et al., 2020; Golledge et 115 

al., 2012; Martin et al., 2022; Seguinot et al., 2018). 116 

The stress balance, and the resulting rate of ice deformation (𝜖̇ ), is described by the Glen-Paterson-Budd-Lilboutry-Duval flow 117 

law (Lliboutry and Duval, 1985). This is the default enthalpy-based flow law within PISM, shown in Eq. 1, 118 

𝜖̇ 𝑖𝑗 = 𝐸𝐴(𝑇, 𝜔)𝜏𝑛−1𝜏𝑖,𝑗 , 
(1) 

where 𝐸 is the enhancement factor, 𝐴 is the ice softness, 𝑇 is the ice temperature, 𝜔 is the liquid water fraction, 𝜏 is the stress 119 

imposed on the ice, and 𝑛 is the Glen’s flow law exponent. 𝐸 is implemented for both the SIA and SSA. 120 

For the sensitivity tests, we changed the parameterisation of 𝐸 for both the SIA and SSA. Many studies have varied ESIA with 121 

values between 1 and 6 (Candaş et al., 2020; Ely et al., 2024; Johnson et al., 2023; Zinck and Grinsted, 2022), and ESSA between 122 

0 and 1.5 (Martin et al., 2022; Seguinot et al., 2018; Yan et al., 2023). We varied both ESIA and ESSA at the same time between 123 

0.2 and 20 (see Table 1). 124 

 125 

3.1.2 Subglacial properties (T Component) 126 

In PISM, the subglacial hydrology and sliding scheme was originally developed for ice-sheet contexts and conceptualises the 127 

bed as a deformable layer, to represent subglacial ‘till’ or sediment, that can store water and influence basal resistance. The 128 

extent to which this subglacial sediment is under ice sheets is unknown, which is also the case for Andean glaciers, although 129 

thick layers of sediment are present in glacier forefields. However, the formulation for glacier sliding and hydrology does not 130 

require sediment to be present everywhere beneath the glacier. The effective pressure and sliding behaviour can equally 131 

represent hard-bedded conditions, where subglacial water storage may occur within bedrock cavities rather than within 132 

sediments. To note, while we use the term ‘till’ throughout this study for consistency with PISM terminology and previous 133 

studies, it should not be interpreted as implying continuous sediment cover beneath Andean glaciers. 134 

The yield stress of the basal material (𝜏𝑐) in PISM is calculated using the Mohr-Coulomb criterion, which incorporates the till 135 

friction angle till friction angle (ϕ), a parameter influenced by the underlying bed geology (Albrecht et al., 2020; Cuffey and 136 

Paterson, 2010). This relationship is partly governed by PISM’s subglacial hydrology model. The Mohr-Coulomb criterion 137 

used to compute yield stress is given in Eq. 2, 138 
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𝜏𝑐 = 𝑐0 + (𝑡𝑎𝑛𝜙)𝑁𝑡𝑖𝑙𝑙  
(2) 

 139 

Where 𝑐0 is the till cohesion that uses a default value of 0 (Schoof, 2006), and 𝑁𝑡𝑖𝑙𝑙  is the effective pressure at the base of the 140 

ice within the till layer. For every domain we applied a spatially uniform ϕ. Previously used values of ϕ have generally been 141 

within ranges of values 5-45º, derived from lab-based experiments of different till types (Cuffey and Paterson, 2010; Koloski 142 

et al., 1989). The default value in PISM is 30°, while in the sensitivity tests, we varied ϕ between 5° and 45° (see Table 1). 143 

Within Equation 2, 𝑁𝑡𝑖𝑙𝑙  is determined in part by the hydrology beneath the ice. The hydrological model used here is a non-144 

conserving model (Tulaczyk et al., 2000). This does not allow the conservation of any water above an assigned till water 145 

thickness (𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥). The thickness of the water layer stored within the till is determined by Eq. 3, 146 

𝜕𝑊𝑡𝑖𝑙𝑙

𝜕𝑡
=

𝑚

𝜌𝑤
− 𝐶 

(3) 

Where 𝑚 is the basal melt rate, 𝑝𝑤 is the density of fresh water (1000 kg m3), and 𝐶 is the till water decay rate that denotes 147 

how fast water is evacuated from the till water (Albrecht et al., 2020; Flowers, 2015). At all times within the model, 0 ≤148 

𝑊𝑡𝑖𝑙𝑙 ≤ 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥 must be satisfied, with any water above 𝑊𝑡𝑖𝑙𝑙

𝑚𝑎𝑥  being removed. 149 

C and 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  are tested in our sensitivity analysis through the T Component. The till water decay rate is varied between 0.1 150 

and 12 mm/a, while the maximum till water thickness is varied between 0.1 and 10 m (see Table 1). 151 

 152 

3.1.3 Basal sliding (S Component) 153 

In PISM, basal sliding is represented by relating the basal shear stress (𝜏𝑏) to both the ice velocity (u) and effective pressure 154 

(N). A velocity threshold (𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) marks when 𝜏𝑏 equals the yield stress (𝜏𝑐), and therefore when sliding occurs (Cuffey 155 

and Paterson, 2010). By default, within PISM we used the Zoet and Iverson (2020) slip law, which introduces a regularisation 156 

term that enables a smooth transition between the viscous-style Weertman sliding (Weertman, 1957), and the Coulomb-plastic 157 

behaviours (Aschwanden et al., 2013), without needing prior knowledge of bed type. The Zoet and Iverson (2020) slip law is 158 

expressed in PISM by Eq. 4, 159 

𝜏𝑏 = −𝜏𝑐
𝑢

(|𝑢|+𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
𝑞|𝑢|1−𝑞

 , 
(4) 

 160 

Zoet and Iverson (2020) in their equation parameterise 𝑞 = 1/𝑚 where 𝑚 = 5, whereas PISM’s default value of q is 0.25 (or 161 

where 𝑚 = 4). While the Zoet and Iverson (2020) slip law is relatively new in PISM, being introduced in v2.0, few PISM 162 
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studies have utilised it. Those modelling efforts that have used the Zoet and Iverson (2020) slip law, (e.g., the Community Ice 163 

Sheet Model or CESM; Lipscomb et al., 2019), have varied it between narrow ranges. These have been at 0.2 (Khan et al., 164 

2022; Moreno-Parada et al., 2023), 0.23 (Maier et al., 2022), or 0.33 (van den Akker et al., 2025; Hoffman et al., 2022; Joughin 165 

et al., 2024).  166 

Within our sensitivity analysis, q and 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , were tested through the S component. We varied q from 0.05 to 0.95 to 167 

maximise the coverage of potential parametrisations of q to the extremes. We also varied 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , a parameter that has seen 168 

some variation in other modelling studies (Bevan et al., 2023; Martin et al., 2022; Seguinot et al., 2014, 2018). We varied the 169 

𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 between 20 and 200 m/a (see Table 1). 170 

 171 

3.1.4 Surface mass balance 172 

We used PISM’s default positive degree day (PDD) temperature-index scheme (Calov and Greve, 2005) to generate ice within 173 

the domains. This required monthly mean air temperature and yearly precipitation (see Sect. 3.3). Within the PDD scheme, 174 

there is stochastic ‘white noise’ to simulate additional undetermined daily variability, as well as a daily temperature standard 175 

deviation that is set by default at 5℃ (Winkelmann et al., 2011). These can cause minor fluctuations in the climate, and thereby 176 

in the ice extent even under steady state conditions. We forced the model with a constant present-day climate (see Sect. 3.3), 177 

to allow glacial ice to reach steady state with its surrounding climate. Parameters that affect the PDD model component of 178 

PISM, such as degree day factors, were kept at their default values and not varied within this study due to these values being 179 

unknown and this study only being concerned with the internal ice model parameters. 180 

 181 

3.2 Model setup and parameter sensitivity analysis 182 

The five model domains simulated by PISM are shown in Fig. 1. Each domain had a 100 m horizontal grid resolution 183 

(dimensions in Table 2), with 50 vertical ice layers (quadratic spacing) and 10 bedrock layers. This resolution resolves the 184 

topography and flow characteristics while maintaining feasible wall-clock run times. All domains were initialised without 185 

prescribed ice thicknesses and run to steady state (~1,500 model years) under constant climate forcing (see Section 3.2). 186 

Table 2: PISM study domains, detailed with their grid x, y sizes at 100 m resolution, and the domain area along with the RGIv7 ice 187 
area of each domain. The location of each domain, and the hydrological catchments they partially cover, are shown in Fig. 1. 188 

 Domain x y Area (km2) Ice Area (km2) 

1) Santa, Peru 1600 2800 44,800 607 

2) Vilcanota, Peru 3400 1600 54,400 515 

3) Kaka and Boopi, Bolivia 1600 1600 25,600 240 

4) Copiapó, Chile 600 800 4,800 35 
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5) Mendoza, Maipo, and Rapel, Chile 1200 3600 43,200 1,303 

 189 

Our sensitivity analysis focused on internal ice-flow parameters. These parameters define the physical properties and processes 190 

governing ice behaviour, such as the shallow ice, and shallow shelf approximation (SIA/SSA) flow enhancement factor, basal 191 

sliding, and subglacial mechanics. We targeted parameters that: (i) have shown substantial influence on glacier modelling in 192 

previous studies; (ii) are commonly tested in sensitivity analyses; and (iii) remain poorly constrained by observations or past 193 

modelling. 194 

The analysis followed a two-stage approach (Fig. 2) to enable efficient identification of components that exert the greatest 195 

control over model outputs. This coarse screening (Stage 1) allowed subsequent parameter-specific tests (stage 2) to focus only 196 

on the most sensitive components governing ice flow. This aim of this is to reduce the dimensionality of the analysis and the 197 

computational cost of future ensemble experiments. This two-stage approach can be used by other sensitivity studies to 198 

facilitate more efficient sampling of key aspects of the model in question that causes the most effect on chosen outputs. 199 

In stage 1 (135 model simulations: 27 per domain), we group individual parameters into components impacting three key ice-200 

flow processes: enhancement factors (E), basal sliding (S), and subglacial properties (T). Parameter values spanned both 201 

commonly used and extended ranges to capture a broad spectrum of glacier responses. Each component was perturbed between 202 

its chosen      minimum, maximum, and default values (Table 1), first individually (with all other components fixed at default 203 

values) and then simultaneously, to generate the ensemble design for each domain. Components that showed negligible 204 

influence on outputs were discarded from further analysis. 205 
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 206 

Figure 2: Flow diagram of sensitivity experiment design detailing the staged approach. 207 

Stage 2 (180 model simulations: 36 per domain) comprised a detailed within-component analysis of only those components 208 

identified in Stage 1 as influential. Here, every individual parameter was perturbed one-at-time across their defined value 209 

ranges (min, max, default; Table 1), followed by simultaneous perturbation of all parameters within that component, rather 210 

than grouping them by component as in Stage 1. Parameter in each figure and table corresponds to a shortened name presented 211 

here; enhancement factor (E), till water decay rate (C), maximum till water thicknesses (Tm or 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥), till friction angle (Phi 212 

or ϕ), sliding exponent (q), velocity threshold (Uth or 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). 213 
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Model outputs, of ice volume, ice thickness, and basal velocity, were compared against the baseline simulation using the 214 

default values for all parameters. To quantify influence, results were averaged over the domain and Pearson correlation 215 

coefficients were calculated between these and the parameter values, along with p-values to assess statistical significance of 216 

their effect. This approach provided both a ranking of parameter sensitivity and an assessment of the robustness of their effects. 217 

 218 

3.3 Boundary conditions data 219 

Topography is a key initial condition within PISM. We used the ALOS 30 m DEM (Tadono et al., 2014), due to its accuracy 220 

over complex mountainous terrain (Talchabhadel et al., 2021), resampled to 100 m using a bilinear interpolation. Basal 221 

topography was derived by subtracting present-day ice thicknesses of Millan et al. (2022) from the ALOS DEM. Ice thickness 222 

was not directly inputted to the model for the sensitivity experiments. 223 

Geothermal heat flux is required to define and apply the temperature of the bed to the base of the ice. We used Davies (2013) 224 

which uses the relationship between basal heat flux to geology on a 2°×2° global grid. Due to the lack of regional specific 225 

geothermal heat flux estimates within our study areas and the coarse nature of the dataset, for each domain we assigned a 226 

single value based on the value from the grid cell containing the most glacial ice. 227 

Climate input is required for the PISM PDD scheme. For our present-day climate, we used the WorldClim 2.1 data (Fick and 228 

Hijmans, 2017). WorldClim 2.1 is a gridded climate data for the years 1970-2000 collected from weather stations here we use 229 

the average air temperature (K) and average total annual precipitation (mm yr⁻¹), resampled from a grid resolution of ~900 m 230 

to 100 m bilinearly. Due to air temperatures from WorldClim being based on the 30 arc second SRTM DEM, it underestimates 231 

temperatures across mountain peaks. To remedy this, we applied a lapse-rate correction of 6.5°C/km based on elevation 232 

differences between the WorldClim SRTM and resampled ALOS DEMs. Erroneous adjustments due to DEM artefacts were 233 

removed and interpolated across linearly. Ultimately, we are not concerned about the size and shape of the glaciers produced. 234 

The role of the climate forcing is simply to produce some ice from which we can understand model sensitivity from. 235 

 236 

4 Results and Discussion 237 

Here, we outline results from the Stage 1 component sensitivity experiments for simulated volume change, then for the 238 

subsequent Stage 2 parameter sensitivity experiments, for all domains. Aggregated domain results are shown here, with 239 

individual model simulation outputs (area, volume, and percentage changes for each domain) available in the Supplementary 240 

Information (SI): component sensitivity (SI Tables 1–5), subglacial parameter sensitivity (SI Tables 6–10), and sliding 241 

parameter sensitivity (SI Tables 11–15). Final time-slice outputs of ice thickness and ice velocities, along with their differences 242 
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with the default model simulation for their respective regions, are shown in SI Figures 1-40. Key examples of these are shown 243 

throughout which are also shown in the SI for ease of comparison. As the ice area was largely unaffected by parameter changes, 244 

they are shown in the sensitivity bar graphs for transparency, but only volume outputs are discussed in any detail, though area 245 

is shown in some figures for comparison. 246 

 247 

4.1 Stage 1 – Model component sensitivity analysis 248 

Stage 1 is used to determine which model component influences the ice metrics the most, to guide the more detailed Stage 2 249 

sensitivity analysis (Table 3; Fig. 3). We describe results for each component in turn here. 250 

When varying E component parameters (ESIA and ESSA) were varied between their minimum and maximum values (Table 1) 251 

resulted in ice volume changes of +5.4% to -9.9% from their defaults across all domains. These changes are reflected primarily 252 

in ice thickness (Fig. 4), with maximum E values producing thinner ice (mean: -5.4%) and increased basal velocities (mean: 253 

+4.8%), though the Vilcanota (#2) domain showed a velocity decrease of -11.9%. Minimum E values led to thicker ice (mean: 254 

+3.2%) and reduced velocities (mean: -9.1%). Pearson correlations between E and ice volume were weak and statistically 255 

insignificant across all domains (p > 0.53; Table 4). 256 

Table 3: Initial sensitivity analysis outputs detailing the default model simulation volume, and the maximum absolute percentage 257 
changes for volume for each domain across the ensemble when components were varied between their maximum and minimum 258 
values. 259 

Domain 

Volume (km3) 

Default Max Min 

Max abs 

change (%) 

Santa 10.1 35.2 8.8 247.2 

Vilcanota 3.1 5.1 2.5 64.1 

Kaka & Boopi 2.2 3.8 1.6 71.8 

Copiapó 1.1 1.9 0.6 68.5 

Mendoza, Maipo & Rapel 17.6 34.4 12.1 95.2 

 260 
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 261 

Figure 3: Initial sensitivity analysis detailing the area (grey) and volume (blue) absolute change percent due to changing all model 262 
component parameters together, for each of the five model domains. Blue and grey lines denote the default volume and area 263 
respectively for comparison. Component parameters are: E = enhancement factors, T = subglacial component, S = sliding 264 
component. See Fig. 1 for model domain locations.  Note the break in y-axis for ice volume in A) detailing the significant increase in 265 
volume, above +200%. 266 
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 267 

Figure 4: Example of the influence of the enhancement factors on simulated ice thickness in the Santa (#1) domain (Huascarán Ice 268 
Cap). Additional examples are provided in the Supplementary Information. Ice peripheral differences in ice thickness arise from 269 
internal variability in the PDD model, despite a temperature standard deviation of 5℃. Parameter values for ‘max’ and ‘min’ are 270 
listed in Table 1. 271 

Similar results - i.e., non-significant variations in modelled outputs - were reported using PISM in other mountain glacier 272 

settings (Candaş et al., 2020; Martin et al., 2022) and for ice caps (Schmidt et al., 2020). More substantial effects from the 273 

enhancement factors that impact ice rheology, have been observed in models of ice sheets (e.g., Lowry et al., 2020; Phipps et 274 

al., 2021; Pittard et al., 2022). Given the minimal impact of enhancement factors in this study, they were excluded from the 275 

Stage 2 sensitivity analysis.  276 

When the T component parameters (subglacial water decay rate, maximum subglacial water thickness and bed friction angle) 277 

were varied between their minimum and maximum values (Fig. 3; Table 1) resulted in volume changes of -40.5% to +23.6% 278 

from their defaults across all domains. Minimum T parameter values increased basal sliding velocities substantially: up to 279 

+213.4% in the Copiapó (#4) domain (SI Fig. 12), a mean of +62.4% across all domains, leading to a mean ice thickness 280 

reduction of -20.9%. In contrast, maximum T parameter values reduced mean basal velocities by -49.2%, resulting in a mean 281 

thickness increase of +22.5% (Fig. 5). The resultant difference in the ice velocities and ice thicknesses can be seen in the shift 282 
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of the ice divide, being primarily constrained to the glacier valley, to being more diffuse with minimal T component values, 283 

and being significant muted with maximum T component values. 284 

 285 

Figure 5: An example of the influence of the subglacial component chosen parameters on the output of ice basal velocity in Vilcanota 286 
(#2) domain (Quelccaya Ice Cap). Remaining examples are shown in the Supplementary Information. Increased values of the chosen 287 
parameters generate reduced basal ice velocities, while decreasing values increase them. This can also lead to changes in ice divides 288 
as seen in T_min, compared to T_max. Values that correspond to ‘max’ and ‘min’ parameter values are found in Table 1. 289 

When the S component parameters (sliding exponent and velocity threshold) were varied between their minimum and 290 

maximum values (Table 1) resulted in ice volume changes of -43.2% to +41.2% (Fig. 3) from their defaults across all domains. 291 

Minimum S parameter values reduced basal velocities by a mean of -24.4% across all domains (-79.5% in the Copiapó 292 

domain), resulting in thicker ice (mean: +15.5%). Conversely, maximum values increased basal velocities by a mean of +47.7% 293 

(+235% in the Copiapó domain), leading to thinner ice with a mean of -17.3%. The larger percentage volume changes of the 294 

Copiapó domain reflect its low ice cover as small changes to the already small volume of ice (1.1 km3) yields large relative 295 

differences. 296 
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 297 

Figure 6: Example of the influence of sliding component parameters on basal ice velocity in the Kaka & Boopi (#3) domain 298 
(Ancohuma Ice Caps). Additional examples are provided in the Supplementary Information. Increased parameter values enhance 299 
basal velocities, while decreased values reduce them. Variations amplify or suppress sliding patterns already present in the default 300 
simulation. ‘Max’ and ‘min’ parameter values are listed in Table 1. 301 

Collectively varying all parameters of the E, T, and S components between default, minimum, and maximum values (Table 1) 302 

produced a maximum mean ice volume increase of +109.3% across all five domains (Santa domain max: +247.2%), driven by 303 

the {E_min, T_max, S_min} combination (Fig. 3). The second highest mean increase of +89.3% (Santa domain max: +221.3%) 304 

resulted from {E_default, T_max, S_min}. Averaging across all combinations that include T_max or T_min produced mean 305 

ice volume changes of +33.6% and -22.6%, respectively, while those that include S_max or S_min produced changes of 306 

+38.6% and -23.2% respectively. Pearson correlation analysis (Table 4) confirms a strong and significant correlations 307 

(p ≤ 0.05) for the T and S components and their effects on simulated ice volume in almost all domains. 308 

Table 4: Pearson correlation statistics for all domains (n = 27 simulations per domain, 135 simulations overall) to 309 

understand the impact of model components on simulated ice volume. A value closer to zero (0) indicates a lower 310 

influence on the simulated volume output. A positive or negative number indicates that when the component value is 311 

varied it causes a gain or loss of simulated ice volume. These are then averaged, using their absolute values to show the 312 

overall influence across all domains. * = p ≤ 0.05, ** = p ≤ 0.01. 313 

Domain E T S 

Pearson correlation Volume Volume Volume 
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Santa -0.16 0.47* -0.39* 

Vilcanota -0.18 -0.36 0.51 

Kaka & Boopi -0.17 0.47* -0.46* 

Copiapó -0.17 -0.46* 0.47* 

Mendoza, Maipo & Rapel -0.13 -0.49** 0.45* 

Average 0.16 0.45 0.46 

Given its limited influence on simulated ice volume, the enhancement factors (E) with ESIA and ESSA parameters, is excluded 314 

from the individual parameter sensitivity analysis of Stage 2. The subglacial (T) and sliding (S) components demonstrated 315 

significant impacts through both univariate and multivariate perturbations and were included in the Stage 2 sensitivity 316 

experiments (Sect. 4.2). 317 

 318 

4.2 Stage 2 – Individual parameter sensitivity analysis 319 

4.2.1 Subglacial model parameters (T Component) 320 

The T component parameter tests investigated the subglacial water decay rate (C), the maximum thickness of subglacial water 321 

(𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥), and basal friction angle (ϕ). Summary statistics for the T component tests are presented in Table 5 and Fig. 7. Among 322 

all domains when the parameters were varied, the Copiapó domain, being the smallest, exhibited the largest change in simulated 323 

ice volume (-40.5%). The second largest change (+28.3%) occurred in the Mendoza, Maipo and Rapel domain, the largest and 324 

most ice-rich domain. 325 

Table 5: Overall, subglacial sensitivity analysis outputs detailing the default model simulation volume, and the maximum absolute 326 
percentage changes for volume for each domain across all the model simulation when components were varied between their 327 
maximum and minimum values. 328 

Domain 

Volume (km3) 

Default Max Min 

Max abs 

change (%) 

Santa 10.1 12.5 8.95 23.6 

Vilcanota 3.1 3.6 2.6 17.2 

Kaka & Boopi 2.2 2.7 1.8 23.6 

Copiapó 1.1 1.4 0.7 40.5 

Mendoza, Maipo & Rapel 17.6 21.8 12.6 28.3 
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 329 

Figure 7: T sensitivity analysis detailing the area (grey) and volume (blue) absolute percentage changes due to changing the model 330 
component parameters all together, for each of the five model domains. Blue and grey lines denote the default volume and area 331 
respectively for comparison. Where there is no bar present for the component parameter, there was no change (0%). Subglacial 332 
parameters are, C = basal water decay rate, Tm = 𝑊𝑡𝑖𝑙𝑙

𝑚𝑎𝑥, Phi = ϕ. See Fig. 1 for domain locations. 333 
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Varying the subglacial water decay rate (C) between its minimum and maximum values (Table 1) resulted in ice volume 334 

changes of -1.4% to +8.6% respectively across most domains. No change was observed in the Copiapó domain, likely due the 335 

small size of its glacial ice, or due to PISMs simplified hydrology model not able to affect the small glaciers due to the model 336 

resolution. Ice thickness and basal velocity changes across all domains were minor or negligible (e.g., no change in the Copiapó 337 

domain, Fig. SI 25). Minimum C values slightly reduced ice thicknesses (mean: -1.0%) and increased velocities (mean: +1.6%, 338 

-7.5% in the Vilcanota domain). Maximum C values increased thickness (mean: +5.1%) and decreased velocities (mean: -339 

14.6%), reflecting the larger deviation of the maximum (12 mm/a) from the default (1 mm/a) relative to the minimum (0.1 340 

mm/a). 341 

When 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  was varied between its minimum and maximum values (Table 1), it resulted in ice volume changes of between -342 

1.0% to +7.7% across all domains (Fig. 7). No changes were seen across the Copiapo domain. Minimum 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  saw minimal 343 

reductions in ice thickness (mean: -0.2%) and increases in velocity changes (mean: +3.3%), while maximum 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  provided 344 

slightly increased ice thickness (mean: +2.5%) and reduced ice velocity (-6.6%) across all domains (Fig. 8). A stronger 345 

reduction of -13.1% in ice velocity was identified in the Vilcanota domain with minimum 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  values, inferred to be related 346 

to the domain geometry or resolution effects within this region. 347 

 348 
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Figure 8: An example of the influence of the 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥 (Tm in Fig. panels) parameter on the output of ice basal velocity in the Mendoza, 349 

Maipo, and Rapel (#5) domain (Volcán Marmolejo). Remaining examples are shown in the Supplementary Information. Increased 350 
values the Tm parameter generally sees no, or very little changes in basal ice velocities. Values that correspond to ‘max’ and ‘min’ 351 
parameter values are found in Table 1. 352 

The parameters 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  and C had minimal, to no, impact on simulated ice outputs across all domains (Fig. 7). Similar minor 353 

effects of 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  over other valley glacier modelling efforts were reported by Candaş et al. (2020) and Žebre et al., (2021), 354 

although they saw greater sensitivity in their output than in our study due to 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  being varied in conjunction with the till 355 

effective fraction overburden (δ). No PISM-based studies to our knowledge have assessed sensitivity to C for valley glaciers. 356 

However, C has been shown to have an increased influence over ice sheets settings. Albrecht et al. (2020) details that increasing 357 

C from 1 to 10 mm yr⁻¹ can cause PISM to simulate an additional 11 m sea level equivalent (SLE) of meltwater from the 358 

Antarctic Ice Sheet over multiple glacial cycle timescales. This increasing influence over ice sheets is likely due to the greater 359 

role of subglacial hydrology in driving glacial motion and ice streaming (Kazmierczak et al., 2022; Verjans and Robel, 2024).          360 

While subglacial hydrology does affect valley glaciers (Mair et al., 2002), they can effect glacier motion on diurnal time scales 361 

(Nienow et al., 2005) which would make modelling their interaction difficult.. Our results indicate limited impact from these 362 

specific parameters in PISM, that are likely due to either, an insufficient model resolution, the basal topography not being 363 

sufficient to majorly affect basal sliding, or that the PISM hydrology is too simplistic to accurately represent its effect over 364 

mountain glaciers. Neither parameter significantly affected valley glacier simulations in our PISM ensemble. These parameters 365 

can likely be excluded from future valley glacier sensitivity analyses. 366 

When ϕ was varied between its minimum and maximum values (Table 1), simulated ice volumes were saw changes between 367 

–40.5% to +23.4% across the domains, respectively. Minimum values of ϕ led to substantial reductions in ice thickness (mean: 368 

-24.5%) due to increases in ice velocity (mean: +81.9%), while maximum ϕ values led to increases in ice thickness (mean: 369 

+19.3%) and reductions in ice velocities (mean: -23.3%) (Fig. 9). The most extreme differences were seen in the Copiapó 370 

domain, due to the region incurring the smallest glacier area, and any changes can lead to larger relative (%) changes. 371 
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 372 

Figure 9: An example of the influence of the ϕ (Phi in Fig. panels) parameter on the output of ice basal velocity in the Santa (#1) 373 
domain (Huascaran Ice Cap). Remaining examples are shown in the Supplementary Information. Increased values of the ϕ 374 
parameter see a reduction in basal velocities, while the opposite is seen for decreased values. Values of ‘max’ and ‘min’ parameter 375 
values are in Table 1. 376 

Among the T component parameters, ϕ accounted for the greatest variance in simulated ice volume (Table 7), with a consistent 377 

influence across all domains (Fig. 7). Due to ϕ representing how resistant the subglacial sediment is to shear deformation, 378 

lower values represent wet fine sandy sediments promoting more basal motion, while high values represent coarser dry gravels, 379 

or bedrock, reducing basal motion. This therefore led to decreased subglacial sliding, with higher values of ϕ leading to thicker 380 

ice (see Phi_max in Fig. 9), while lower values of ϕ increasing basal velocities leading to thinner ice (see Phi_min in Fig. 9). 381 

These influences over the ice basal velocities also yielded changes in the ice divides and flow regimes that can lead to 382 

subsequent changes in the ice thicknesses and ice velocity dynamics across the domain (see Min – Default in Fig 9). While ϕ 383 

has not been explicitly varied in previous valley glacier studies, to our knowledge, when modelling ice sheets ϕ is a key control 384 

on ice volume and subsequent ice dynamics (Albrecht et al., 2020; Koldtoft et al., 2021; Lowry et al., 2020). For example, 385 

lower ϕ values saw a reduction in modelled LGM volumes of the Antarctic Ice Sheet leading to accelerated retreat, whereas 386 

higher ϕ values tended to overestimate present-day ice sheet thicknesses (Albrecht et al., 2020; Lowry et al., 2020). Our 387 

findings highlight its importance in mountain glacier settings. Though a uniform ϕ was used here, it likely varies with 388 
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catchment-specific geology (Bareither et al., 2008; Clarke, 2018), suggesting future studies should tune ϕ regionally to improve 389 

accuracy in ice dynamics and volume simulations. 390 

When all T component parameters were varied between their minimum, default, and maximum values, simulated ice volume 391 

differed by up to +40.5% relative to the default simulation s. Across all domains, ice volumes cluster into three distinct groups 392 

cantered on the minimum, default, and maximum ϕ values, most clearly seen in the Copiapó (#4) and the Mendoza, Maipo 393 

and Rapel (#5) domains (Fig. 7). While ϕ exerts dominant control over ice volumes, C and 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥cause only minor variations 394 

within these groups. The highest volumes occurred when ϕ and other subglacial parameters were set to their maximum values 395 

{All_max}. Pearson correlations (Table 6) confirm the strong overwhelming influence of ϕ on simulated ice outputs, with an 396 

average coefficient of 0.94 across all domains. Moreover, ϕ was the only subglacial parameter with a 397 

statistically significant effect (p ≤ 0.01), underscoring its primary role in controlling 398 

model outputs in PISM. 399 

Table 6: Pearson correlation statistics for all five model domains (n = 27 simulations per domain; 135 total) showing the influence 400 
of subglacial model parameters on simulated ice volume. Explanation of Pearson correlation values shown in Table 4. ** = p ≤ 0.01. 401 

Domain C 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  ϕ 

Pearson correlation Volume Volume Volume 

Santa 0.36 0.11 0.88** 

Vilcanota 0.26 0.12 0.93** 

Kaka & Boopi 0.18 0.12 0.95** 

Copiapó 0.00 0.00 1.00** 

Mendoza, Maipo & Rapel 0.09 -0.04 0.96** 

Average 0.18 0.08 0.94 

Across both univariate and multivariate parameter tests, ϕ consistently exerted the strongest influence on model outputs among 402 

the subglacial parameters. This is due to its role in the Mohr–Coulomb criterion, which governs the pseudo-plastic sliding law 403 

and modulates basal resistance (Cuffey and Paterson, 2010). Higher ϕ values increase basal resistance, slowing ice flow and 404 

leading to thicker ice, thereby raising total ice volume while having limited effect on ice extent. This relationship is reinforced 405 

by the ‘all max’ scenario, which produced the thickest and highest volume ice across nearly all domains. 406 

 407 

4.2.2 Sliding model parameters (S Component) 408 

The S component tests focus on two parameters: the sliding exponent (q) and the velocity threshold (𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑). Summary 409 

statistics for these tests are presented in Table 7 and Fig. 10. The PISM domains of Copiapó and Mendoza, Maipo and Rapel, 410 

representing the smallest and largest glaciers respectively, display the most pronounced responses to parameter variation, with 411 

maximum ice volume changes of 44.1% and 30.0%, respectively.  412 
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Table 7: Sliding sensitivity analysis outputs detailing the default model simulation area and volume, and the maximum absolute 413 
percentage changes for ice volume for each domain across all the simulations when components were varied between their maximum 414 
and minimum values. 415 

Domain 

Volume (km3) 

Default  Max  Min  

Max abs 

change (%) 

Santa 10.1 11.0 9.0 11.4 

Vilcanota 3.1 3.3 2.6 14.9 

Kaka & Boopi 2.2 2.6 1.7 21.4 

Copiapó 1.1 1.6 0.6 44.1 

Mendoza, Maipo & Rapel 17.6 22.5 12.3 30.0 
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 416 
Figure 10: Sliding sensitivity analysis detailing the area (grey) and volume (blue) changes due to changing the model component 417 
parameters all together, for each of the five model domains. Blue and grey lines denote the default volume and area respectively for 418 
comparison. See Fig. 1 for domain locations. Note the change in y-axis in D), due to larger volume changes occurring in the Copiapo 419 
catchment, the catchment with the smallest ice area. 420 

When 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  was varied between its minimum and maximum values (Table 1) produced ice volume differences of +17.1% 421 

to -7.2% respectively, with an absolute average difference of 6.5%. Across all domains minimum 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  saw increased ice 422 
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thicknesses (mean: +9.1%) and basal velocities (mean: -19.2%) (Fig. 11). Maximum 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  saw reduced ice thicknesses 423 

(mean: -3.7%) along with increased basal ice velocities (mean: +7.8%). 424 

 425 

Figure 11: An example of the influence of the 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  (Uth in Fig. panel) parameter on the output of ice basal velocity in the 426 
Vilcanota (#2) domain (Quelccaya Ice Cap). Remaining examples are shown in the Supplementary Information. An increase in the 427 

𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  parameter sees increased basal velocities, while the opposite is seen when values are decreased. Values that correspond 428 
to ‘max’ and ‘min’ parameter values are found in Table 1. 429 

Variations of the 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , which controls the onset of basal sliding, leads to when the 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is set to lower values, ice 430 

flow velocities are decreased, increasing ice thickness and volume. However, while overall flow patterns remain very similar, 431 

their intensity shifts with varied 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  values. As can be seen in Fig. 11, with decreased 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  values overall mean 432 

velocities decreased, but small localised areas of increased velocities (~10 to 20 m yr-1) are seen where in the default run saw 433 

lower velocities occurred. When the 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is increased, overall mean velocity increased, with areas of already faster 434 

flowing ice saw an increase in velocity (~20 m yr-1), with locations of localised slower velocities remaining the same as those 435 

in the default. Despite this influence, 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is rarely tested in mountain glacier modelling, with most studies using a fixed 436 

100 m yr⁻¹ value (Martin et al., 2022; Seguinot et al., 2014, 2018). Our results, spanning 20 to 200 m yr⁻¹, show that 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  437 

meaningfully affects modelled dynamics and should be included in future sensitivity analyses. 438 
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When q was varied between its minimum and maximum values (Table 1), it produced a difference in the ice volume between 439 

+39.6% and -42.3%, with an absolute average difference of 20.4%. The two largest differences in ice volume detailed before 440 

were all seen in the smallest domain of Copiapó (-42.3%), the second highest difference is seen in Mendoza, Maipo, and Rapel 441 

domain (-27.7%), both when q is set to its maximum value. Across all domains when q was set to its minimum, there was an 442 

increase in ice thickness (mean: +18.9%) and a decrease in ice velocity (mean: -33.6%), when set to its maximum there was a 443 

decrease in ice thickness (mean: -21.7% and an increase in ice velocity (mean: +75.5%) (Fig. 12). 444 

 445 

Figure 12: An example of the influence of the sliding exponent (q) parameter on the output of ice basal velocity in the Kaka & Boopi 446 
(#3) domain (Ancohuma ice caps). Remaining examples are shown in the Supplementary Information. An increase or decrease in 447 
values of the q parameter see almost no effect in basal velocities. Values that correspond to ‘max’ and ‘min’ parameter values are 448 
found in Table 1. 449 

Variations of q within PISM exert a clear influence on simulated ice dynamics, due to its role in controlling the non-linearity 450 

of the basal sliding law (Zoet and Iverson, 2020). Higher q values suppress fast-flowing regions (e.g., >25 m yr⁻¹) but enhance 451 

sliding in slower-flowing regions, producing a more diffuse velocity field (see q_max in Fig. 12). In contrast, lower q values 452 

concentrate flow into narrow corridors, altering ice divides and increasing ice thickness in surrounding slower-flow regions 453 

by limiting basal sliding (see q_min in Fig. 12). Among PISM studies, q is the most frequently varied sliding parameter, 454 

however, this in within the context of using the default Coulomb sliding model. Using the Coulomb sliding model Candaş et 455 
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al. (2020) over valley glaciers found that varying q altered ice volume by +22.6% at q = 0 and -26.4% at q = 1. In ice sheet 456 

contexts, effects are mixed with Albrecht et al. (2020) reporting lower q reduced velocity and increased Antarctic volume at 457 

the LGM by up to ±3 m SLE. Over Greenland, Aschwanden et al. (2019) shows that the variance of q parameterization of 0.25 458 

to 1.0 can lead to uncertainties on SLE contributions of 26-53% by 2100, 5-38% by 2200, and 2-33% by 2300. While the Zoet 459 

and Iverson (2020) slip law has been not used by other PISM modelling studies, no study to have used the slip law within ice 460 

sheet models (e.g., CISM; van den Akker et al., 2025) varied the parameterisation of the sliding exponent extensively. Our 461 

findings here support the previous conclusion that q significantly affects modelled ice volumes, particularly in regions 462 

dominated by valley-confined dynamic flow (see Section 4.2.2). The results, at least for q are the first to be presented using 463 

the Zoet and Iverson (2020) slip law. We therefore recommend that future valley glacier modelling studies, especially those 464 

focused on mass change, include q in their sensitivity analyses. 465 

When q and 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are varied together between their default, minimum, and maximum values, the largest ice volume 466 

difference from the default simulation reaches -44.1%, observed in the Copiapo catchment (Fig. 10). Excluding this smallest 467 

domain, the maximum difference is -30.0% in the Mendoza, Maipo and R domain. While q alone exerts the strongest influence, 468 

combining both parameters amplifies their effects {All_max}. This is particularly evident when both are set to their minimum 469 

or maximum values, resulting in greater or lesser increases in ice volume than when varied individually. 470 

The Pearson correlation analysis (Table 8) confirms q as the dominant control on sliding-related sensitivity, with strong 471 

correlations across nearly all domains except in the Santa catchment. Although the number of combined simulations is limited, 472 

𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  still produces noticeable changes in simulated outputs (Fig. 11), but its influence remains secondary to q when both 473 

are varied simultaneously. This is likely because they both alter ice velocities, making it easier or more difficult for sliding to 474 

occur. This supports that these two parameters should continue to be investigated by future model efforts over mountain 475 

glaciers. 476 

Table 8: Pearson correlation statistics for all five model domains (n = 9 simulations per domain; 45 total) showing the influence of 477 
sliding model parameters on simulated ice volume. Explanation of Pearson correlation values shown in Table 4. ** = p ≤ 0.01. 478 

Domain q 𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
Pearson correlation Volume Volume 

Santa 0.13 0.16 

Vilcanota -0.90** -0.25 

Kaka & Boopi -0.94** -0.24 

Copiapó -0.94** -0.17 

Mendoza, Maipo & Rapel -0.93** -0.24 

Average -0.72 -0.15 

 479 

4.3 Implications and recommendations for future work 480 
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The findings here using PISM suggest the less influential parameters mention previously can be excluded from future 481 

sensitivity ensembles or parameter optimisation simulations, at least for Andean Mountain glaciers under climates close to 482 

present day. This aligns with findings from other PISM-based studies in other contexts (e.g., Albrecht et al., 2020; Candaş et 483 

al., 2020; Žebre et al., 2021), which similarly report minimal differences in modelled outputs when ESIA, ESSA, q, and C are 484 

varied within reasonable bounds. Their exclusion offers the potential to streamline future modelling efforts on their parameter 485 

perturbation selection, reducing computational demands and enabling more efficient ensemble designs. This enables 486 

researchers to allocate computational resources toward exploring more influential parameters in greater depth or across broader 487 

ranges. Further, some parameters in PISM have historically been left as ‘model defaults’ and unchanged, based on physical 488 

assumptions or field data derived from non-valley glacier environments (or continental scale ice studies), limiting their 489 

applicability. Additionally, many parameters have not been explored in-detail within PISM for valley glaciers which, with the 490 

reduction in potential parameters to be perturbed, can now be focused on. For example, future work could examine the impact 491 

of subglacial hydrology model choices, such as the difference between mass-conserving routing models and the non-492 

conserving null model used here on valley glacier dynamics. 493 

 494 

Results from this study demonstrate that ice flow parameters influence simulated ice volume, while for ice area it is mainly 495 

unaffected. For applications related to water resources, such as runoff or meltwater estimates, understanding the internal ice 496 

physics and associated parameter sensitivities on ice volume is essential to understand how much ice (or water) remains in the 497 

future. However, studies that focus on glacier area, or are lacking robust ice volume constraints, should prioritise sensitivity 498 

analysis for climatic parameters: in particular, those using PDD models for transient simulations will likely find that climatic 499 

parameters exert the strongest control over both ice area and volume. 500 

 501 

5 Conclusion 502 

This study investigated the influence of internal ice flow parameters within PISM over valley glaciers across our five Andean 503 

domains (8 hydrological catchments) in South America. We examined parameters previously tested in smaller-scale studies, 504 

and others identified as influential in different glacial environments. By applying these tests across multiple domains of varying 505 

sizes, we evaluated whether sensitivity differed with glacier scale. While the smallest (Copiapó) and largest (Mendoza, Maipo 506 

and Rapel) model domains, with the least and most ice respectively, exhibited the most pronounced volume differences, the 507 

overall response to parameter perturbations was relatively consistent across all domains. 508 

Of the components assessed, the enhancement factors showed the least sensitivity, producing the least difference in ice volume. 509 

Within the subglacial component, the parameters C and 𝑊𝑡𝑖𝑙𝑙
𝑚𝑎𝑥  saw negligible impact on modelled ice outputs. We therefore 510 
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suggest that further testing of these parameters is unnecessary for similar valley glacier modelling applications in PISM, 511 

especially under climate and glacier conditions close to present day. 512 

The sliding component parameters of the velocity threshold (𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) and sliding exponent (q), exhibited moderate influence 513 

over ice volume. While both impacted ice thickness and velocity, q had the dominant influence when the sliding component 514 

parameters were perturbed together. Within the till component, the greatest overall control on simulated ice volume came from 515 

the till friction angle (ϕ). This saw the largest differences produced in ice thickness and basal velocities. This underscores the 516 

dominant role of basal conditions in valley glacier dynamics within PISM and a parameter that should see further investigation 517 

within modelling studies. 518 

Unlike most previous PISM sensitivity studies, which have focused on ice sheets or limited mountain glacier domains, this 519 

study systematically examined the influence of internal ice dynamics on valley glaciers in the Andes. Our findings reinforce 520 

the need for detailed investigation of subglacial-related parameters, especially basal resistance (ϕ). We also detail continued 521 

support for the investigation of the sliding exponent (q) within the Zoet and Iverson (2020) slip law, which was recently 522 

implemented into PISM and has not been varied before this study. We also recommend that future studies explore the role of 523 

subglacial hydrology models, such as the choice between mass-conserving and non-conserving schemes, and their potential 524 

influence on modelled glacier behaviour, and just how this influence may be affected by model resolution. 525 

This work represents the first stage in the glacier modelling workflow of the Deplete and Retreat project. The insights gained 526 

here will directly inform the design of a Latin Hypercube ensemble by eliminating parameters with negligible impact, thereby 527 

refining the efficiency and robustness of subsequent simulations. Our results can inform future sensitivity analyses and 528 

optimisation studies for glacier and ice sheet models, enabling researchers to prioritise parameters with substantial impacts on 529 

model outputs and avoid testing those with minimal influence. This efficiency can help conserve computational resources 530 

while guiding more targeted investigations into parameter effects on modelled ice outputs. 531 

 532 

Supplementary Information. Extra information on ice metrics can be found within the Supplementary Information, along with 533 

extra figures that detail ice outputs from each domain. An example of the scripts used to conduct the modelling are available 534 
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