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Abstract. The Greenland ice sheet (GrIS) is a major contributor to global sea level rise. A significant portion of the GrIS’ 13 

contribution can be attributed to increased ice surface melting, which is strongly controlled by ice albedo, a property that 14 

regulates the amount of absorbed solar radiation that leads to surface melting. Yet, we lack a comprehensive understanding of 15 

the complex and nonlinear relationships ice albedo has with its environment and is, therefore, often simplified or crudely 16 

parameterized in climate models. However, an accurate representation of future ice albedo evolution is essential for reducing 17 

uncertainties in sea level rise projections. This study presents PIXAL, a physics-informed explainable machine learning 18 

architecture that significantly outperforms the Modèle Atmosphérique Régional (MAR), a state-of-the-art regional climate 19 

model, in modeling ice albedo on the southwestern GrIS. PIXAL is based on an Extreme Gradient Boosting (XGBoost) model 20 

and is trained on a suite of modeled topographic, atmospheric, radiative, and glaciologic variables from MAR to capture the 21 

complex and nonlinear relationships with ice albedo observations obtained from the Moderate Resolution Imaging 22 

Spectroradiometer (MODIS). Performance metrics show that PIXAL achieves an R2 of 0.563, a structural similarity index 23 

measure (SSIM) of 0.620, a mean squared error (MSE) of 0.005, and a mean absolute percentage error (MAPE) of 14.699%, 24 

compared to MAR’s R2 of 0.062, SSIM of 0.112, MSE of 0.032, and MAPE of 46.202%. Explainable artificial intelligence 25 

analysis reveals that topographic features, specifically ice sheet surface height and slope, are the most important drivers of ice 26 

albedo variability due to their relationships with ice exposure duration and the effectiveness in accumulating meltwater and 27 

light-absorbing constituents (LACs) on flat ice surfaces. Near-surface air temperature and runoff further significantly impact 28 

ice albedo variability by affecting the ice metamorphic state and accumulation of meltwater and LACs. These findings 29 

highlight that understanding the complex physical processes underlying ice albedo variability is essential for accurate climate 30 

modeling and sea level rise predictions. PIXAL represents a crucial advancement in ice albedo modeling and paves the way 31 

for improved representation of ice sheets in Earth system models. 32 

1 Introduction 33 

A significant portion of the acceleration of the global mean sea level rise over the last few decades has been attributed to 34 

increased surface melting from the Greenland ice sheet (GrIS) (Aschwanden et al., 2019). Climate models project a 35 

contribution to global mean sea level rise of 9 to 18 cm from the GrIS by 2100 for the Shared Socioeconomic Pathway SSP5-36 

8.5 (Fox-Kemper et al., 2021; Riahi et al., 2017). The large uncertainty in this projection contributes to the hindrance of 37 
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accurate and effective mitigation of the implications of sea level change on coastal communities. A large portion of the 38 

uncertainty stems from an incomplete understanding of the physical processes that control ice surface melting on the GrIS and 39 

their linkages to atmospheric and oceanic processes (van den Broeke et al., 2017). Specifically, we lack an understanding of 40 

the spatiotemporal variability of ice albedo, which plays a crucial role in modulating ice surface melt processes (Antwerpen et 41 

al., 2022). 42 

 43 

Ice is exposed on the GrIS during the summer melting season (June-August) when increased insolation and increased 44 

atmospheric temperature induce melting of the winter snowpack overlying the ice. Snow melt generally occurs in the ablation 45 

zone at lower elevations near the ice sheet margin. Here, the surface mass balance is negative, with the ablation of snow and 46 

ice (melting, evaporation, and sublimation) being larger than the accumulation (snowfall, rainfall, and refreezing), resulting in 47 

a net surface mass loss. Ice melt is strongly controlled by the broadband ice surface albedo, which represents the ratio of 48 

reflected (upward) solar radiation flux to incoming (downward) solar radiation flux, weighted by wavelength (visible to near-49 

infrared). For ice, the broadband albedo ranges from ~0.1 to ~0.7 (Klein and Stroeve, 2002; Liang, 2001; Tedstone et al., 2020; 50 

Warren and Wiscombe, 1980; Wiscombe and Warren, 1980) while the typical albedo of snow is ~0.7-0.8. The incoming solar 51 

radiation that is not reflected by the ice is, instead, absorbed. Because of its lower albedo, a considerably higher amount of 52 

incoming solar radiation can be absorbed by ice than by snow. The absorbed radiation heats the surface and shallow subsurface 53 

ice and snow layers and induces melting. Meltwater from snow and ice has a low albedo of ~0.1 and when mixed with ice and 54 

snow therefore further decreases the albedo, promoting additional melting. This is referred to as the meltwater-albedo feedback 55 

(Stroeve, 2001). Under future, warmer atmospheric conditions, snowmelt over the GrIS is expected to increase (Yue et al., 56 

2021). Therefore, the snowline is expected to retreat earlier and further inland, increasing the low-albedo ice areas and 57 

accelerating surface melting and sea level rise (Ryan et al., 2019). 58 

 59 

Ice albedo on the GrIS is a highly complex property that is controlled by many factors. The metamorphic state of the surface 60 

and shallow subsurface of the ice, determined by ice grain size, density, porosity, specific surface area, and the size and shape 61 

of englacial air bubbles, plays a key role in the scattering, absorption, and reflectance of incoming solar radiation (Flanner and 62 

Zender, 2006). Moreover, meltwater and rainwater can pond on the ice surface and infiltrate shallow subsurface cavities in the 63 

ice, promoting absorption of incoming solar radiation during low cloud-cover days (Tedstone et al., 2020). Solar radiation 64 

heats the meltwater and promotes ice melting at the water-ice interface, increasing the presence of meltwater and further 65 

darkening the ice sheet. The presence of light-absorbing constituents (LACs), including black carbon, mineral dust, algae, and 66 

cryoconite, can significantly lower ice albedo (Goelles and Bøggild, 2017; Hofer et al., 2017; MacGregor et al., 2020; 67 

McCutcheon et al., 2021; Williamson et al., 2020). A considerable fraction of LACs that affect GrIS ice albedo are aerosols 68 

from distant and local sources (Flanner et al., 2021; Goelles and Bøggild, 2017). Natural sources, including North American, 69 

Siberian, and Greenlandic wildfires, emit black carbon particles that have been found on the GrIS (Calì Quaglia et al., 2022; 70 

Keegan et al., 2014). Greenlandic wildfires can deposit up to 30% of their emissions onto the ice sheet (Evangeliou et al., 71 

2019). Asian and African deserts (Újvári et al., 2022), Icelandic volcanoes (Meinander et al., 2016; Moroni et al., 2018), and 72 

Greenlandic ice-free areas (Amino et al., 2021; Nagatsuka et al., 2021) also release dust particles that have been found on the 73 

ice sheet. Further, anthropogenic sources, including transportation, industrial, and residential, emit aerosols (Bond et al., 2013), 74 

which can be transported across large distances by atmospheric circulations and deposited on the GrIS (Khan et al., 2023; 75 

Thomas et al., 2017; Ward et al., 2018). LACs accumulate on the GrIS surface throughout the year and as the snowpack melts 76 

during the melting season, LACs can be left behind on the ice and cause darkening while the melted snowpack is flushed out. 77 

Additionally, dust accumulated on the GrIS during the last ~15,000 years is melted at the ice surface in the ablation zone, 78 

increasing the dust concentration (MacGregor et al., 2020; Wientjes et al., 2012). Moreover, mineral dust provides nutrients 79 

for ice algae (McCutcheon et al., 2021). Algal blooms cause a considerable lowering of ice albedo and accelerate surface 80 

melting (Cook et al., 2020; Stibal et al., 2017; Wang et al., 2020; Williamson et al., 2020). In areas with heterogeneous ice 81 
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surfaces, ice roughness and crevasses are also known to significantly influence ice albedo (Cathles et al., 2011). Lastly, a broad 82 

swath of environmental and radiative conditions, including temperature, atmospheric composition and circulation, and solar 83 

zenith angle, affect the metamorphic state of the ice and the accumulation of LACs and thus play an essential role in controlling 84 

ice albedo (Flanner et al., 2021; Hofer et al., 2017; Tedesco et al., 2016). 85 

 86 

The development of a comprehensive and predictive ice albedo model is hindered by a lack of understanding of the drivers of 87 

ice albedo, which can lead to underestimates of surface melting and sea level rise (Antwerpen et al., 2022). Typically, Earth 88 

system models (ESMs) prescribe constant and uniform values for ice albedo in the visible and near-infrared wavelength regions 89 

(van Kampenhout et al., 2020). Recent ice albedo modeling efforts show improved capabilities in representing ice albedo in 90 

ESMs and regional climate models (RCMs). For example, through recent improvements, the Snow, Ice, and Aerosol Radiative 91 

model (SNICAR), a multi-layer heterogeneous snow albedo radiative transfer model, can now account for the influence of 92 

LACs on snow and ice albedo (Flanner et al., 2021; Whicker et al., 2022). SNICAR is currently used in the Energy Exascale 93 

Earth System Model (E3SM) and has improved ice albedo and surface melt estimates (Whicker-Clarke et al., 2024). However, 94 

due to limitations in quantifying concentrations of individual LACs on the GrIS, the use of SNICAR poses limitations in 95 

predicting ice albedo beyond the observational period. The RCM Regional Atmospheric Climate Model (RACMO) approaches 96 

this limitation by estimating ice albedo on the GrIS with the 2000-2015 mean broadband ice albedo observations from the 97 

Moderate Resolution Imaging Spectroradiometer (MODIS) (van Dalum et al., 2020). While these estimates provide a high ice 98 

albedo accuracy during the observation and evaluation period, future changes in environmental and surface conditions on the 99 

GrIS may decrease the accuracy of the albedo estimates. Therefore, RACMO may not necessarily employ an accurate 100 

representation of ice albedo for end-of-century surface melt projections. The RCM Modèle Atmosphérique Régional (MAR) 101 

prescribes ice albedo as a function of accumulated runoff and ice sheet slope, which leads to an overestimation of ice albedo 102 

and potential underestimation of meltwater production (Antwerpen et al., 2022). While this model configuration can account 103 

for some future changes in environmental and surface conditions, it does not incorporate essential dependencies of ice albedo 104 

to environmental variables and, therefore, does not accurately capture the physical processes that underlie ice albedo 105 

variability. 106 

 107 

These considerable efforts played important roles in advancing our understanding of ice albedo modeling. Yet, a 108 

comprehensive, accurate, and predictive ice albedo model has not yet been developed. Here, we present PIXAL, a Physics-109 

Informed eXplainable machine learning architecture for ice ALbedo modeling. PIXAL is based on an eXtreme Gradient 110 

Boosting (XGBoost) model (Chen and Guestrin, 2016) and accurately models and predicts ice albedo on the southwestern 111 

GrIS. We extract essential information from the suite of environmental variables modeled by MAR that have previously not 112 

been used for ice albedo modeling and train PIXAL to capture the complex and nonlinear relationships between the 113 

environment modeled by MAR and the MODIS-derived ice albedo observations. Additionally, we elucidate important 114 

environmental drivers of ice albedo by employing SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017), an 115 

explainable artificial intelligence method. Through this work, we address limitations of ESMs and RCMs in modeling ice 116 

albedo on the southwestern GrIS. This includes the dark ice zone, where LACs have a dominant role in controlling ice albedo 117 

(Ryan et al., 2018). However, we show that ice albedo modeling improvements can be made even without directly accounting 118 

for LACs. Moreover, an improved understanding of the environmental and physical processes underlying ice albedo variability 119 

is vital for robust model developments and ice albedo predictions that are stable against uncertain changes in future 120 

environmental conditions. 121 
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2 Data 122 

2.1 MAR 123 

We use the Modèle Atmosphérique Régional (MAR) v3.12, an RCM developed to simulate the coupled surface-atmosphere 124 

system over polar regions (Fettweis et al., 2017; Gallée, 1997; Lefebre et al., 2003; Ridder and Schayes, 1997). We run MAR 125 

over the GrIS and force the lateral boundaries and ocean surface with 6-h ERA5 reanalysis output (Hersbach et al., 2020), 126 

from the European Centre for Medium-Range Weather Forecasts (ECMWF). The atmosphere component of MAR is described 127 

by (Gallée and Schayes, 1994) and the surface component is represented by the Soil Ice Snow Vegetation Atmosphere Transfer 128 

(SISVAT) scheme (Ridder and Schayes, 1997). The SISVAT scheme includes the Crocus snow model (Brun et al., 1992), 129 

which simulates a predefined number of snow, ice, or firn layers with variable thickness and allows energy and mass transport 130 

between each layer. Ice albedo (𝛼) is calculated as a function of the model-predicted runoff from melt and rainwater 131 

accumulated over the preceding day as: 132 

𝛼 =  0.5 + 0.05 ⋅  
1

𝑒
√𝑟𝑢𝑛𝑜𝑓𝑓

50

,    (1) 133 

In MAR, the ice albedo varies exponentially between a maximum of 0.55 when no surface water is present on the ice surface 134 

and a minimum of 0.5 when large amounts of runoff (>> 50 mmWE) are present (Zuo and Oerlemans, 1996). The cumulative 135 

runoff is negatively corrected for the ice slope, with steeper ice slopes holding less runoff. MARv3.5.2 is validated over the 136 

GrIS (Fettweis et al., 2017) with updates to MARv.311 (Fettweis et al., 2021). Updates to MARv3.12 regarding the base of 137 

the snowpack temperature and rainfall to snowfall conversion are provided in (Antwerpen et al., 2022). 138 

 139 

We use MAR to produce daily output of topographic, atmospheric, radiative, and glaciologic variables at its native spatial 140 

resolution of 6.5 km: albedo (-), near-surface air temperature (°C; average height is 2m), runoff of melt and rain water 141 

(mmWE/day), shortwave upward radiation (W/m2), shortwave downward radiation (W/m2), longwave upward radiation 142 

(W/m2), longwave downward radiation (W/m2), sensible heat flux (W/m2), latent heat flux (W/m2), cloud cover (down) (-), 143 

cloud cover (middle) (-), cloud cover (up) (-), cloud optical depth (-), average ice density of the top 1 m (kg/m3), zonal wind 144 

(m/s), meridional wind (m/s), sublimation (mmWE/day), average liquid water content of the top 1 m (kg/kg), snowfall 145 

(mmWE/day), rainfall (mmWE/day), surface height (m), surface slope (degrees), surface aspect (azimuth degrees). 146 

 147 

We select a subset of the MAR output that covers the exposed ice in southwest GrIS during June, July, and August (JJA) in 148 

2000-2021. This period encompasses the GrIS melt season when surface albedo has the largest impact on surface melting 149 

(Alexander et al., 2014). Following Antwerpen et al. (2022), we distinguish exposed bare ice from snow in MAR as cells 150 

where 1) snow is absent and 2) the average ice density of the top 1 m is higher than 907 kg/m3. While ice in MAR has a density 151 

of 920 kg/m3, a thin layer of fresh snowfall with a density of 300 kg/m3 can lower the average density of the top 1 m to slightly 152 

below that of ice without significantly affecting its albedo (Warren et al., 2006). Moreover, using the average ice density 153 

ensures ice lenses are not erroneously detected as bare ice. We further constrain ice in MAR to be located below the long-term 154 

average equilibrium line altitude (ELA) of 1679 m a.s.l., which represents the 95th percentile value of all sorted elevation 155 

values with a negative SMB during JJA of 2000-2021, which denotes the ablation zone. 156 

2.2 MODIS 157 

We collect daily MOD10A1 broadband albedo images (Hall et al., 2016) over the GrIS from the Moderate Resolution Imaging 158 

Spectroradiometer (MODIS) for JJA in 2000-2021 at 500 m spatial resolution with Google Earth Engine (Gorelick et al., 159 

2017). We also collect daily MOD09GA v6 band 2 (841-876 nm) surface reflectance images (Vermote and Wolfe, 2015). This 160 
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product has been corrected for atmospheric conditions, including aerosols, gasses, and Rayleigh scattering. We remove cloud-161 

obstructed pixels using daily MOD10A1 v6 cloud mask images. We average and co-locate the MODIS data to the MAR 162 

projection and resolution to allow for a pixel-by-pixel analysis. 163 

 164 

We distinguish exposed bare ice from snow in the MODIS imagery by applying an upper threshold of 0.6 to band 2 of the 165 

MOD09GA product (Shimada et al., 2016). We further constrain ice exposure below the long-term average ELA of 1679 m 166 

a.s.l. using the static ice mask and digital elevation model (DEM) from the Greenland Ice Mapping Project (GIMP) (Howat et 167 

al., 2014). While this may yield a conservative estimate of the ELA during warm high-melt years, we ensure no anomalously 168 

high-elevation ablation or cloudy cells erroneously detected as ice are included. The upper threshold of 0.6 may cause some 169 

firn to be erroneously detected as ice. Moreover, a thin layer of fresh snowfall over ice may not result in a reflectance value 170 

over 0.6 in band 2 of the MOD09GA product and will, therefore, be identified as ice. However, the broadband albedo may 171 

increase due to the thin snow layer. Further, low-albedo outcrops, cloud shadows, and meltwater ponding may decrease the 172 

apparent ice albedo within one pixel. 173 

3 Methods 174 

First, we use two linear regression approaches to show baseline improvements to the ice albedo originally modeled by MAR. 175 

Next, we use XGBoost to develop PIXAL, an optimized ice albedo model, and SHAP to elucidate the drivers of ice albedo. 176 

The methods are described in more detail in Sect.3.1 to 3.3. We train the ice albedo models on cloud-free MODIS-derived ice 177 

albedo observations since MODIS is not able to detect ice albedo conditions through clouds. For a fair comparison, we limit 178 

our analysis to the co-located data points where cloud-free ice conditions are simultaneously modeled by MAR and observed 179 

by MODIS. We evaluate the performance of the ice albedo models through a comparison with the test data set (the last 2 years 180 

of the 2000-2021 period) of MODIS-derived ice albedo observations. We calculate the coefficient of determination (R2) to 181 

measure how well the models predict ice albedo compared to the MODIS observations. We also determine the mean squared 182 

error (MSE) and mean absolute percentage error (MAPE) to measure the amount of error in the ice albedo models. The MAPE 183 

provides a relative measure in percentages of the error of a prediction (de Myttenaere et al., 2016). Lastly, we calculate the 184 

structural similarity index measure (SSIM). The SSIM is a performance metric from the field of computer vision developed to 185 

determine the similarity between two images (Wang et al., 2004). The SSIM value we report in Sect. 4 is the mean of the SSIM 186 

values between the daily images of the modeled and predicted ice albedo values from the test data set. The SSIM ranges 187 

between -1 and 1, where 1 denotes a perfect similarity, -1 denotes perfect anti-similarity, and 0 indicates no similarity between 188 

the two images. While we show in Sect. 4 that the XGBoost model shows optimal performance in modeling ice albedo, we 189 

also tested a random forest (RF) and a high-performance symbolic regression (PySR), i.e. equation discovery. The RF is 190 

described in Sect. 3.2. The PySR is a supervised ML model that aims to find an interpretable symbolic expression that optimizes 191 

the simulation of a target variable (Cranmer, 2023). PySR uses a multi-population evolutionary algorithm, consisting of a 192 

unique evolve-simplify-optimize loop designed to optimize unknown scalar constants in new empirical expressions. The 193 

configurations for the RF and PySR are described in Appendix A. 194 

3.1 Linear regression 195 

The first baseline ice albedo model consists of updating the slope (0.05) and intercept (0.5) coefficients used in MAR by 196 

training the original ice albedo equation (Eq. (1)) on the MODIS-derived ice albedo using linear regression. For the second 197 

baseline ice albedo model, we create a linear regression of the form: 198 

𝛼(𝑥1, . . . , 𝑥𝑛)  =  ꞵ
0

+ ꞵ
1

𝑥1+. . . +ꞵ
𝑛

𝑥𝑛,    (2) 199 
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where 𝑥1, . . . , 𝑥𝑛 denote the MAR-based variables (or features) and ꞵ
0
,...,ꞵ

𝑛
 denote the coefficients. Again, we train the linear 200 

regression on the MODIS-derived ice albedo. We use the seven MAR features that have the most impact on ice albedo: near-201 

surface temperature, runoff, shortwave downward radiation, meridional wind, surface height, surface slope, surface aspect. 202 

The features are determined from the XGBoost and SHapley Additive exPlanations (SHAP) analyses, described in Sect. 3.2, 203 

3.3, and 5. 204 

3.2 XGBoost 205 

Classic linear regression tools generally do not fully capture complex relationships between real-world properties, which are 206 

often dynamic and nonlinear. We, therefore, employ the machine learning method XGBoost (Chen and Guestrin, 2016) to 207 

learn the nonlinear relationships between observed ice albedo and the environmental drivers of ice albedo modeled by MAR. 208 

XGBoost is an extension of the basic decision tree, a learning algorithm for classification and regression tasks. Decision trees 209 

are supervised models that predict a target variable through simple threshold decisions on every variable in the input dataset. 210 

Threshold decisions are made at each tree node, splitting the input data and the prediction of the target variable into two 211 

branches that each connect to a threshold decision at the next node. Through each sequence of nodes and branches, a target 212 

prediction can be made from a new set of input data. However, individual decision trees do not generalize data well and are 213 

prone to overfitting. Averaging the target predictions of an ensemble of trees, such as in an RF architecture, can mitigate this 214 

instability. 215 

 216 

XGBoost is a scalable tree-boosting algorithm that uses a gradient descent algorithm to build an ensemble of parallel decision 217 

trees based on subsets of the dataset (Chen and Guestrin, 2016). To minimize the prediction error, each decision tree in the 218 

ensemble is built iteratively using targeted outcomes based on the gradient of the previous prediction error residuals. The final 219 

prediction is the weighted average of the individual trees. XGBoost has seen successful applications in Earth and climate-220 

related studies in prediction (Fan et al., 2018; Huang et al., 2021; Ibrahem Ahmed Osman et al., 2021; Ma et al., 2020), image 221 

classification (Colkesen and Ozturk, 2022; Nkiruka et al., 2021), reconstruction of remote sensing data gaps (Tan et al., 2021), 222 

and risk assessment (Ma et al., 2021). 223 

 224 

The predictor dataset consists of the MAR features (Sect. 2.1). We standardize the data to ensure no feature bias is present due 225 

to different feature value ranges. We exclude albedo (AL2), cloud cover (CD, CM, and CU), and cloud optical depth (COD) 226 

as input features because we include only cloud-free data points in both MAR and MODIS. To ensure snow, meltwater 227 

ponding, cloud shadows, and outcrops erroneously identified as ice are not included in training the XGBoost, we constrain the 228 

predictant albedo values from MODIS to be within the 2𝜎 standard deviation range (0.165-0.671). We apply an 80-10-10 229 

training-validation-testing split on our data stack, consisting of 5,384,250 data points spread over 22 years with 92 days in 230 

each year and with 14 environmental features from MAR (described in Sect. 2.1). The test data set consists of the last two 231 

years (2020 and 2021) of the data to avoid data leakage in the first years. We construct a regression tree ensemble with a 232 

Pseudo-Huber loss function, which is less sensitive to outliers than the commonly used squared error loss (Huber, 1964). We 233 

use an exact greedy tree construction algorithm for split finding to minimize the loss and a gbtree booster, which, each iteration, 234 

builds the next tree and gives higher weights to misclassified points in the previous tree. We perform the hyper-parameter 235 

search using Optuna (Akiba et al., 2019) and find the XGBoost configuration that yields optimal 236 

performance using an MSE evaluation against the validation dataset. The configuration 237 

includes a maximum tree depth (21), learning rate (0.07), number of boosted trees (500), 238 

gamma (2.38 ∙ 10-8), minimum child weight (10), subsample ratio (0.92), column subsample ratio (0.79), alpha (L1 239 

regularization; 0.74), and lambda (L2 regularization; 0.33). 240 
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3.3 Shapley additive explanations 241 

Machine learning models and their outcomes often lack interpretability, leading to complexities in their reliability assessment. 242 

This challenge is addressed by a set of explainable AI tools and algorithms developed for understanding and interpreting ML 243 

models that are regarded as inherently uninterpretable. We use SHAP (Lundberg and Lee, 2017), an explainable AI tool rooted 244 

in the field of cooperative game theory, to explain and interpret our XGBoost model output and understand the roles of the 245 

environmental properties, or features, in the input dataset in driving variability in ice albedo. The importance value of each 246 

feature in the dataset, the SHAP value, is determined by iteratively training the XGBoost model on subsets of features. In each 247 

iteration, a feature is systematically added or removed from the training dataset. The SHAP value of each feature is calculated 248 

based on the difference in the predicted value between the model variations before and after adding or removing a feature. To 249 

fully capture the additive SHAP value of all features, the model is trained on all possible feature subsets and a weighted average 250 

of SHAP values for all model variations is determined. Positive SHAP values drive a positive change to the model prediction 251 

with respect to the mean prediction and vice versa. Missing values have a zero SHAP value and, therefore, do not affect the 252 

model prediction, making SHAP insensitive to data sparsity. 253 

 254 

Significant successes have been made with SHAP in explaining machine learning models developed for the Earth and climate 255 

studies related to classification (Descals et al., 2023; Temenos et al., 2023), predictions (Batunacun et al., 2021; Dikshit and 256 

Pradhan, 2021; Ghafarian et al., 2022; Silva et al., 2022; Tang et al., 2022), and process understanding (Ishfaque et al., 2022). 257 

Moreover, SHAP has seen uses in classifying Antarctic sea ice imagery (Koo et al., 2023), interpreting sea-level projections 258 

(Rohmer et al., 2022), and studying the freeze-thaw cycle on the Tibetan plateau (Li et al., 2024). However, SHAP applications 259 

in the cryosphere sciences are still limited. To our knowledge, this work is the first application of SHAP to ice albedo. 260 

4 Results 261 

MAR tends to have low performance in predicting ice albedo when evaluated against MODIS (Fig. 1; reds) with a low 262 

coefficient of determination (R2 = 0.062), mean squared error (MSE = 0.032), mean absolute percentage error (MAPE = 263 

46.202%), and structural similarity index measure (SSIM = 0.112). The MAR albedo shows little variability with a mean of 264 

0.56 ± 0.04, an overestimation compared to the MODIS-derived ice albedo observations, which have a mean of 0.42 ± 0.11. 265 

4.1 Linear regression 266 

The two baseline linear regression approaches, described in Sect. 3.1, show an improvement over the ice albedo modeled with 267 

MAR, with slightly better performance metrics when evaluated against the MODIS-derived ice albedo. The improved slope 268 

(0.35) and intercept (0.20) compared to the MAR ice albedo equation (Eq. (1) and Sect. 2.1) result in a factor 2-3 improvement 269 

of the R2 = 0.092, MSE = 0.009 and MAPE = 22.385% (Fig. 1a; purples). However, a slight reduction is seen for the SSIM = 270 

0.103. While the updated MAR equation provides a mean ice albedo of 0.42 ± 0.03, similar to the mean MODIS-derived ice 271 

albedo, it shows a too-low variability and generally underestimates the MODIS-observed ice albedo. 272 

 273 

The ice albedo derived from the linear regression with runoff, surface slope, and the additional features mentioned in Sect. 3.1 274 

shows a moderate improvement on the test set with regard to MAR, with R2 = 0.202, MSE = 0.008, MAPE = 20.309%, and 275 

SSIM = 0.285 (Fig. 1b; greens). Adding additional features beyond the seven most important ones did not achieve better 276 

performance. The additional features we tested are: meltwater production (ME, mmWE/day), longwave downward radiation 277 

(LWD, W/m2), surface atmospheric pressure (SP, hPa), ice density (RO1, kg/m3), liquid water content (WA1, kg/kg), snowfall 278 
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(SF, mmWE/day), and rainfall (RF, mmWE/day). The linear regression-derived ice albedo has a mean of 0.42 ± 0.05 but still 279 

generally underestimates the MODIS-derived ice albedo. The spread in the linear regression-derived albedo values is larger 280 

than for MAR and the updated MAR equation. However, the large variability seen in the MODIS-derived ice albedo is not 281 

achieved with the linear regression. 282 

 283 
Figure 1: Scatter plot for JJA in 2020-2021 between MODIS-derived ice albedo (x-axis) and ice albedo modeled with MAR (a,b,c; 284 

red) and ice albedo modeled with a) the updated slope and intercept coefficients of the MAR ice albedo equation (Eq. (1)) (purple), 285 

b) linear regression with additional features (green), c) and XGBoost (blue). The dashed line represents the 1:1 line. 286 

 287 

4.2 XGBoost 288 

The ice albedo modeled with XGBoost shows major improvements on the test set in all performance metrics with R2 = 0.568, 289 

MSE = 0.005, MAPE = 14.646%, and SSIM = 0.624. The XGBoost-modeled ice albedo has a mean of 0.42 ± 0.08, and exhibits 290 

a variability similar to the MODIS-derived ice albedo. XGBoost represents ice albedo values between 0.4 and 0.6 well but 291 

slightly overestimates low-albedo values (Fig. 1c; blues). 292 

 293 

Figure 2a shows the mean MODIS-derived ice albedo for JJA in 2020-2021. The ice albedo modeled by XGBoost (Fig. 2b) 294 

below 66 °N shows a similar decreasing pattern in ice albedo from the snowline to the ice sheet margin as observed with 295 

MODIS. Above 66 °N, the XGBoost-modeled ice albedo exhibits a bimodal distribution, similar to MODIS, with high values 296 

near the ice margin and near the snow line. Low albedo values are found in between the margin and snow line, which represent 297 

the dark ice zone. Compared to the MODIS-derived ice albedo, the XGBoost slightly underestimates albedo at the snowline 298 

near Jakobshavn Glacier at 69-70 °N and slightly overestimates albedo in some areas near the ice margin in the central and 299 

southern regions (Fig. 2c). Generally, the XGBoost provides a higher spatial ice albedo variability across the study area than 300 

MAR (Fig. 2d). 301 

https://doi.org/10.5194/egusphere-2025-6143
Preprint. Discussion started: 17 February 2026
c© Author(s) 2026. CC BY 4.0 License.



9 

 

 302 
Figure 2: Mean ice albedo for JJA in 2020-2021 for a) MODIS, b) XGBoost, c) difference MODIS-XGBoost, and d) MAR. 303 

 304 

Additionally, XGBoost provides considerable improvements in temporal ice albedo modeling compared to the ice albedo from 305 

MAR. Figure 3 shows the ice albedo during JJA averaged over 2020 and 2021. XGBoost (Fig. 3; blue line) shows close daily 306 

alignment with the MODIS-derived ice albedos (Fig. 3: green line) throughout the melting season. Especially in July and 307 

August, when larger ice areas are exposed compared to earlier in the melting season (Fig. 3; black line) (Antwerpen et al., 308 
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2022; Noël et al., 2019). In the first half of June, when ice exposure is low, XGBoost slightly underestimates the MODIS-309 

derived ice albedo while still outperforming MAR (Fig. 3; red line). Generally, XGBoost slightly underestimates high-albedo 310 

values and slightly overestimates low-albedo values. The peak albedo values (> 0.6) from MAR represent data points with 311 

fresh snow or firn cover that have been misidentified as ice. Anomalously high albedo values can occur, especially during low 312 

ice exposure days, due to a skewed average when only a few data points are available. 313 

 314 
Figure 3:  Daily mean ice albedo across the southwestern GrIS for JJA averaged over 2020 and 2021 (test set) for MAR (red), MODIS 315 

(green), and XGBoost (blue). The black line indicates the mean number of ice albedo data points per day. 316 

 317 

4.3 Model performance evaluation 318 

The performance metrics of all our ice albedo model configurations evaluated against the MODIS-derived ice albedo 319 

observations are shown in Fig. 4. The correlations between the ice albedo modeled with RF and with PySR and the ice albedo 320 

observed with MODIS are shown in Figs. A1 and A2. The ML architectures (XGBoost, RF, and PySR) perform considerably 321 

better than the non-ML architectures (MAR, updated MAR equation, and linear regression), showcasing the superiority of ML 322 

in modeling ice albedo. While the symbolic regression method used in the PySR architecture can provide explicit insights into 323 

the developed ice albedo model, it shows a considerably lower performance than the XGBoost. We, therefore, do not use the 324 

symbolic regression insights from PySR in this study as they still have low predictive power. The RF architecture shows 325 

considerable improvement over MAR. However, the XGBoost model shows optimal performance with the highest R2 and 326 

SSIM scores and the lowest MSE and MAPE scores. 327 
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 328 
Figure 4: Performance metrics of ice albedo models vs MODIS-derived albedo. For visualization purposes, MSE is multiplied by 10 329 

and MAPE is divided by 100. For MSE and MAPE, lower scores represent a better performance. For R2 and SSIM, higher scores 330 

represent a better performance. 331 

 332 

4.4 SHAP analysis 333 

Our PIXAL algorithm includes two parts: a predictive model, based on XGBoost, and an explainable AI component to reveal 334 

the drivers of ice albedo that can be used to gain insights into potential MAR model improvement. The SHAP values of the 335 

seven most important MAR-based features are listed in Fig. 5. The importance of each feature in controlling ice albedo is 336 

determined by the magnitude of its impact on the final ice albedo prediction from XGBoost (SHAP value), with respect to the 337 

mean ice albedo prediction (0.42). In other words, the SHAP value shows how much the ice albedo prediction increases or 338 

decreases due to each individual feature relative to the mean ice albedo. The features are ordered by the mean absolute SHAP 339 

values, which emphasizes the average impact and gives less weight to high-magnitude SHAP values. The topographic features 340 

of surface height and slope are primary drivers of ice albedo and environmental, radiative, and atmospheric features are 341 

secondary drivers. 342 
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 343 
Figure 5:  SHAP values for the seven most important MAR features. The SHAP value represents the impact a feature has on the ice 344 

albedo prediction, relative to the mean ice albedo prediction. A feature with a positive SHAP value indicates that the feature increases 345 

the ice albedo prediction and vice versa. The features are sorted by their mean absolute SHAP values in ascending order. Red 346 

indicates high feature values and blue indicates low feature values. 347 

 348 

5 Discussion 349 

5.1 Drivers of ice albedo 350 

Surface height exhibits a nonlinear relationship with its SHAP values (Fig. 6a-c). The SHAP values show the strong impact of 351 

surface height on albedo, ranging from -0.05 to 0.1, with the lowest albedo values present at low elevations near the ice margin 352 

and high albedo values present at high elevations near the snow line. These findings are in line with previous studies on ice 353 

albedo drivers (Feng et al., 2024; Moustafa et al., 2015). As the melting season commences and temperatures rise, snowmelt 354 

first occurs at the ice margin, exposing the underlying ice. The snowline then retreats to higher elevations, resulting in lower-355 

elevation ice experiencing longer exposure. Longer ice exposure can result in a lower albedo as it allows for more accumulation 356 

of LACs from local and distant sources. Algal blooms are also given more time to grow and spread if uninterrupted by snowfall 357 

events. Snowmelt events at higher elevations may add to the LAC concentrations at lower elevations when meltwater is 358 

transported toward the ice margin and LACs may remain behind on the ice surface. Higher ice sheet elevations are generally 359 

further from local LAC sources, such as moraines, dunes, dry proglacial floodplains, ground transport, and industry, reducing 360 

the potential for LAC deposition. Furthermore, englacial Holocene dust mostly melts out at lower elevations due to the flow 361 

configuration of the GrIS, adding to the LAC concentration and albedo darkening at low elevations (MacGregor et al., 2020; 362 

Wientjes et al., 2012). A large low-albedo region is present at ~800-1100 m a.s.l. above 66 °N, representing the dark ice zone 363 

where the highest concentrations of LACs are found (Shimada et al., 2016; Wang et al., 2020). Moreover, at low elevations, 364 

older, denser ice is exposed, which has fewer and smaller englacial air bubbles, reducing the albedo. 365 

 366 
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Conversely, longer ice exposure can cause an increase in albedo. Ice erodes as it is exposed to the environment in strong 367 

incoming shortwave radiation conditions, affecting the metamorphic state and creating a porous weathering crust with a low 368 

density (Munro, 1990). During conditions with low amounts of meltwater, a weathering crust has many interfaces between the 369 

ice and air, allowing for light scattering with a high angle, which increases albedo (Jonsell et al., 2003). The relationship 370 

between albedo and surface height will likely change in the future with increasing temperatures, expanding the melting season 371 

and causing earlier ice exposure, as well as later snow-covering. Therefore, ice is exposed for longer periods, potentially 372 

exacerbating the processes related to ice metamorphism and LAC accumulation, lowering the albedo. These processes will 373 

also occur more frequently and for longer periods at higher elevations as the snowline rises with increasing temperature. 374 
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 375 
Figure 6: Feature values, SHAP values (impact of feature values on ice albedo), and the feature and SHAP value correlation for 376 

surface height (a-c), slope (d-f), near-surface air temperature (g-i), and runoff (j-l). The maps show the average over JJA in 2020-377 

2021. Note the larger range of SHAP values for surface height in b, compared to the SHAP value range used in e, h, and k. 378 
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 379 

The surface slope and its SHAP values have a linear and positive relationship, with SHAP values ranging between -0.05 and 380 

0.05 (Fig. 6d-f). A flat ice surface, typically found at higher elevations and the dark ice zone, correlates to low albedo values. 381 

Higher albedo values are found on steeper ice surface slopes at the ice margin. This relationship likely represents the potential 382 

for meltwater and LACs to accumulate more efficiently on flat ice surfaces (Wientjes and Oerlemans, 2010; Zuo and 383 

Oerlemans, 1996). The positive relationship between surface slope and albedo is at odds with the results from Feng et al. 384 

(2024), who find that darker ice is found on steeper ice slopes. However, this relationship mostly holds for the southeastern 385 

GrIS while the link between slope and albedo is less strong for the southwestern GrIS. 386 

 387 

While surface aspect is shown as an important driver of ice albedo in Fig. 5, this is due to the large impact of a few extreme 388 

feature values on ice albedo (Fig. A3). The common west-facing aspect angle (250-300°) does not affect ice albedo much on 389 

the southwestern GrIS (Fig. A3c). Some of the southwest-facing ice surfaces (300-360°) show a lower albedo, potentially due 390 

to increased algal bloom activity in response to increased solar radiation. However, we find no significant relationship between 391 

shortwave downward radiation and ice albedo or aspect (Fig. A4). Additionally, the 6.5 km resolution is likely not sufficient 392 

to represent the spatial variability of the aspect and its effects on ice albedo. 393 

 394 

The topographic features in MAR do not change with time. Potential changes in the relationships between topographic features 395 

and ice albedo may, therefore, not be fully captured by MAR. Nonetheless, during the early Holocene (~12-7 ka), the most 396 

recent period with warmer-than-present temperatures in Greenland (Badgeley et al., 2020), maximum ice margin retreat rates 397 

of the southwestern GrIS were ~35 m/y (Briner et al., 2020). Assuming similar present-day retreat rates, the estimate of ice 398 

margin retreat at the end of this century would be ~2,660 m, which only constitutes ~40% of one 6.5 km grid cell in MAR. 399 

We, therefore, assume that the physical configuration of the GrIS will not change significantly by 2100 and that the static 400 

topographic features in MAR are sufficiently accurate for the purposes of this study. 401 

 402 

There is a strong negative linear relationship (-0.009/°C; R2 = 0.884) between near-surface air temperature and its SHAP values 403 

(Fig. 6g-i). High temperatures are generally found at the ice sheet margin, while low temperatures are found at higher 404 

elevations. Temperatures below 0 °C can cause refreezing of meltwater in the shallow subsurface ice layers and superficial 405 

meltwater ponds and streams, increasing the albedo. Conversely, temperatures above 0 °C can cause thin, freshly fallen snow 406 

layers to melt and expose the lower-albedo ice underneath. High temperatures generally promote biological growth of algal 407 

blooms (Uetake et al., 2010), decreasing the albedo. Moreover, high temperatures are mostly found near the ice margin, where 408 

there is closer proximity to local LAC sources and, thus, a higher likelihood of LAC deposition, including bioavailable 409 

nutrients, which further promotes algae growth. 410 

 411 

Runoff has a strong negative near-linear relationship with ice albedo, for SHAP values for runoff below ~25 mmWE/day, 412 

which can be partly explained by the dependence of runoff on near-surface temperature. In this range, runoff promotes ice 413 

albedo decrease through the accumulation of meltwater in ponds and streams and by filling up shallow microcavities in the 414 

upper ice layers. Runoff and decreasing ice albedo are further enhanced by the positive meltwater-albedo feedback. At runoff 415 

values of ~25 mmWE/day, maximum albedo reduction is achieved and almost no further ice albedo decrease is observed (Fig. 416 

6l). The cutoff of 25 mmWE/day may signify a saturated ice surface and sub-surface where no more meltwater can be retained, 417 

causing any additional meltwater to run off to lower elevations. Moreover, increased runoff and meltwater production on the 418 

upper ice layers can cause increased melt-out of englacial Holocene dust and the development of cryoconite holes, further 419 

lowering the albedo. 420 

 421 
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The additional features listed in Fig. 5 are shown as important features because they are ordered by their absolute mean SHAP 422 

values, which gives more weight to the average impact of the feature and de-emphasizes high-impact SHAP values. However, 423 

these features do not show a high impact on ice albedo and are, therefore, not discussed here. 424 

5.2 Limitations 425 

Some MAR features can be biased due to potential dependencies on the inaccurately modeled ice albedo in MAR. This bias 426 

could be propagated to the PIXAL output. A solution to reduce this bias would be an iterative approach of embedding PIXAL 427 

in MAR, rerunning MAR, and updating PIXAL with the updated MAR output. This process can be repeated until a desired 428 

accuracy and error reduction is achieved. However, this method is outside the scope of this paper and we hope to apply it in a 429 

future publication. 430 

 431 

Our results reveal relationships between ice albedo and environmental ice sheet conditions. Several of these drivers may 432 

account for some processes related to LAC-driven ice sheet darkening. However, PIXAL is trained on the available 433 

topographic, atmospheric, radiative, and glaciologic features in MAR and can, thus, only learn physical processes that can be 434 

inferred from these features. Additionally, other physical processes may not be fully captured by PIXAL, including the 435 

biological activity of algae, deposition of black carbon, dust, and ash released by deserts, local dried-up flood plains, forest 436 

fires, volcanic eruptions, anthropogenic emissions, and the melt-out of englacial Holocene dust. Positive feedback systems 437 

related to LACs, which could accelerate ice albedo darkening, may, therefore, also be missed. 438 

 439 

Moreover, we use modeled estimates of the environmental features which poses limitations to the trustworthiness of the derived 440 

results. While MAR is a state-of-the-art regional climate model that has been validated over the GrIS (Fettweis et al., 2017), 441 

it still exhibits some biases, especially on albedo. Similarly, while MODIS has outstanding capabilities in measuring albedo, 442 

it has limitations related to atmospheric corrections, a fundamental reflectance data processing step. To account for radiance, 443 

reflectance, and transmittance effects due to atmospheric aerosol loading, a radiative transfer model is applied (Vermote et al., 444 

2002). However, a per-pixel analysis of MODIS observations is infeasible due to computational costs (Vermote et al., 1997). 445 

Therefore, a simplified approach is applied using a look-up table for different aerosol loadings and sun-view geometries, 446 

potentially leading to inaccurate corrections. Moreover, NASA’s Terra 10:30 AM overpass time could incur a bias towards 447 

higher albedo measurements because the darkening effect of meltwater production will occur mostly in strong incoming 448 

radiation and high-temperature conditions during the afternoon. The relationships we find between the MAR features and the 449 

MODIS-derived ice albedo might, therefore, in part arise from model imperfections and measurement biases. 450 

 451 

While we train PIXAL only on the southwestern GrIS ice albedo, many physical processes are generalizable and hold in other 452 

glaciated areas, e.g., the relationship between temperature, ice melting, and ice albedo change. However, some processes may 453 

be specific to the southwestern GrIS, such as the dependency of ice albedo on surface height, slope, and aspect. Moreover, 454 

processes relating to LAC deposition are likely specific to the southwestern GrIS as these are dependent on the LAC source 455 

location, atmospheric circulation patterns for transport, and topographical characteristics of the ice. 456 

 457 

PIXAL is intended for both hindcasting and forecasting purposes. Because of the unknown effects of climate change on the 458 

environmental conditions on and near Greenland, a changing distribution of environmental feature values is expected for the 459 

rest of the century, e.g. more frequent high temperatures. Out-of-distribution values for input features generally pose a problem 460 

for the stability of ML models. However, the current spread of values in our large dataset (~6𝜎) accounts for most of the 461 

expected extreme values. While these extreme values may become more common toward the end of the century, PIXAL is 462 

trained on and familiar with these values. We, therefore, do not expect significant issues relating to out-of-distribution values 463 
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in forecasts. Except for surface height, with ice exposure likely occurring at higher and unprecedented elevations with 464 

continued atmospheric warming during the rest of the century. 465 

6 Conclusions 466 

We explored a suite of linear and nonlinear regression architectures to develop PIXAL and improve ice albedo estimates on 467 

the southwestern Greenland ice sheet. Our findings highlight XGBoost as the best-performing architecture, which outperforms 468 

a state-of-the-art regional climate model, MAR, in modeling ice albedo. The performance metrics as evaluated against the 469 

MODIS-derived ice albedo observations improved substantially compared to MAR with an increased R2 from 0.062 to 0.563, 470 

an increased SSIM from 0.112 to 0.620, a decreased MSE from 0.032 to 0.005, and a decreased MAPE from 46.202% to 471 

14.699%. We find that the most important drivers of ice albedo are the topographic features, specifically the ice sheet surface 472 

height and slope. Surface height has a nonlinear impact on albedo, but low albedo values are generally found at lower 473 

elevations, likely due to the longer ice exposure which induces increased accumulation of LACs, melting out of englacial 474 

Holocene dust, and algal bloom activity. The ice at lower elevations is generally older and denser and has fewer and smaller 475 

englacial air bubbles, further reducing the albedo. We find low ice albedo values on flat ice surfaces where meltwater and 476 

LACs are more likely to accumulate. A steep ice surface less efficiently retains meltwater and LACs and, therefore, has a 477 

higher potential for increased albedo. Additionally, we found that near-surface air temperature and runoff as strong drivers of 478 

ice albedo. Temperatures below 0 °C can increase ice albedo by refreezing meltwater, while temperatures above 0 °C can 479 

decrease ice albedo by melting thin snow layers and promoting algal bloom activity. Runoff can cause a decrease in ice albedo 480 

up to runoff values of ~25 mmWE/day. Above this threshold, the upper ice layers are likely saturated with meltwater and the 481 

albedo does not decrease further. An explicit understanding of the emission, transport, and deposition of LACs onto the GrIS 482 

and other glaciated areas is essential for further improvements to PIXAL and general ice albedo modeling. PIXAL paves the 483 

way for a new generation of climate models that are more adept at modeling ice albedo and ice sheet melting. This work 484 

provides a significant step forward in ice sheet modeling for Earth system models and provides new insights on ice albedo and 485 

its drivers, the short and long-term future of the GrIS, and global and local sea level change. 486 

  487 
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Appendix A 772 

Model parameters for Random Forest 773 

We perform a hyper-parameter search and find the Random Forest configuration with the best performance using a mean 774 

squared error loss function and bootstrap sampling. The configuration includes number of trees in the forest (75), minimum 775 

number of samples needed to split a node (15), minimum number of samples needed at each leaf node (8), method to determine 776 

the number of considered features for the best split (square root of number of features), maximum tree depth (25). 777 

  778 

Model parameters for PySR 779 

The PySR architecture uses a Random Forest model for feature selection to build the symbolic expression. We set the 780 

maximum number of features to seven, which yields the following set: near-surface temperature, runoff, shortwave downward 781 

radiation, meridional wind, surface height, surface slope, surface aspect. We choose a range of potential operators 𝑂𝑛
(𝑥,𝑦)

 with 782 

varying complexity 𝑛 applied to (𝑥, 𝑦) ∈  ℜ2: 783 

 784 

𝑂3
(𝑥,𝑦)

 =  [𝑥 + 𝑦, 𝑥 − 𝑦, −𝑥, 𝑥 ⋅ 𝑦, 𝑥2] 785 

𝑂6
(𝑥,𝑦)

 =  [𝑥/𝑦, |𝑥|, √𝑥, 𝑥3] 786 

𝑂9
(𝑥,𝑦)

 =  [𝑒𝑥, 𝑙𝑛(𝑥), 𝑙𝑜𝑔2(𝑥), 𝑙𝑜𝑔10(𝑥), 𝑠𝑖𝑛(𝑥), 𝑐𝑜𝑠(𝑥), 𝑡𝑎𝑛(𝑥), 𝑠𝑖𝑛ℎ(𝑥), 𝑐𝑜𝑠ℎ(𝑥), 𝑡𝑎𝑛ℎ(𝑥)] 787 

𝑂27
(𝑥,𝑦)

 =  [𝑥𝑦 , 𝑡𝑎𝑛(𝑥), 𝑎𝑠𝑖𝑛ℎ(𝑥), 𝑎𝑐𝑜𝑠ℎ(𝑥), 𝑎𝑡𝑎𝑛ℎ(𝑥)] 789 

 788 

Operators with low complexity are preferred by the PySR algorithm in building the symbolic expression and we set the 790 

maximum complexity to 70. The best results are obtained when we use 10,000 random samples from the training data set (JJA 791 

in 2000-2019) and restrict the model to run for 400 iterations or 18 hours, whichever occurs first. Other parameters include a 792 

population size of 400, each with 100 samples, and 400 mutations to run, per 10 samples, per iteration. 793 
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 794 
Figure A1: Correlation between MODIS-derived ice albedo (x-axis) and ice albedo modeled with MAR (reds) and ice albedo modeled 795 

with Random Forest (oranges). The dashed line represents the 1:1 line. 796 

 797 

 798 
Figure A2: Correlation between MODIS-derived ice albedo (x-axis) and ice albedo modeled with MAR (reds) and ice albedo modeled 799 

with PySR (green-blues). The dashed line represents the 1:1 line. 800 

 801 
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 802 
Figure A3: a) aspect, b) SHAP values for aspect, and c) their correlation. The maps show the average over JJA in 2020-2021. 803 

 804 

 805 
Figure A4: a) shortwave downward radiation, b) SHAP values for shortwave downward radiation, and c) their correlation. The 806 

maps show the average over JJA in 2020-2021. 807 

 808 
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