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Abstract.

We present HyperGas, an open-source Python package for the retrieval and estimation of atmospheric greenhouse gas con-
centration enhancements and plume emission rates using data from hyperspectral imagers such as the PRecursore IperSpettrale
della Missione Applicativa (PRISMA), the Environmental Mapping and Analysis Program (EnMAP), and the Earth Surface
Mineral Dust Source Investigation (EMIT). The software is designed for compatibility with any three-dimensional hyperspec-
tral radiance dataset. HyperGas supports multiple retrieval algorithms, including matched filter and lognormal matched filter,
and offers two emission rate estimation methods: the integrated mass enhancement and cross-sectional flux approaches. The
software provides a scalable batch-processing framework that supports data workflows from radiances to emission rates and an
interactive graphical user interface that enables visualization of gas plumes. Built on high-level data structures such as xarray
and CSV, HyperGas simplifies metadata handling and facilitates robust analysis and visualization. The package provides a
robust foundation for community use and expansion. This toolkit aims to advance atmospheric monitoring capabilities and

support both research and operational applications of greenhouse gas monitoring.

1 Introduction

Greenhouse gases such as carbon dioxide (CO3) and methane are the primary drivers of anthropogenic climate change, con-
tributing to global warming and altering the Earth’s energy balance (Intergovernmental Panel on Climate Change (IPCC),
2023). Monitoring these gases at facility-scale is increasingly important for identifying emission sources, supporting and ver-
ifying mitigation efforts, and informing climate policy. Spaceborne hyperspectral imagers (HSI), with their ability to capture
hundreds of narrow, contiguous spectral bands, have been demonstrated to enable the detection and quantification of large
methane and CO5 emission plumes from individual facilities (Guanter et al., 2021; Jacob et al., 2022; Cusworth et al., 2023;
Thorpe et al., 2023; Borger et al., 2025; Zhang et al., 2025). However, as no operational greenhouse gas products exist for these

missions, such analyses have so far been limited to a few specialized research groups. Furthermore, the analysis requires several
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steps that can diverge between different analysis groups. To broaden access and facilitate wider scientific use, we introduce an
open-source framework for greenhouse gas analysis from HSI data.

Hyperspectral imagers have become a powerful tool for a wide range of remote sensing applications (Qian, 2021). HSIs
were originally designed to characterize Earth’s surface features such as mineral distributions. They have high spatial and
spectral resolution that also enables the detection of greenhouse gases, most notably CO5 and methane, under favorable con-
ditions (Thorpe et al., 2023). Their fine spectral resolution (~10 nm) allows for more accurate detection and quantification
of atmospheric greenhouse gases compared to multispectral imaging (~100 nm; e.g., Sentinel-2 and Landsat) but is still
limited compared to area mappers such as Global Observing SATellite (GOSAT) and TROPOspheric Monitoring Instrument
(TROPOMI) that allow the precise estimation of background gas concentrations (e.g., Jacob et al., 2022). Over the past two
decades, advancements in imaging spectrometer technologies have led to a surge in the availability and quality of spaceborne
HSI data. From early missions like Earth Observing-1 (EO-1)/Hyperion (Pearlman et al., 2001) to newer platforms such as
GaoFen-5 (Liu et al., 2019), the PRecursore IperSpettrale della Missione Applicativa (PRISMA; Loizzo et al., 2018; Cogliati
et al., 2021), the Environmental Mapping and Analysis Programme (EnMAP; Guanter et al., 2015; Storch et al., 2023), the
Earth Surface Mineral Dust Source Investigation (EMIT; Green et al., 2020, 2023), and the Carbon Mapper Coalition satellites
(Tanager-series; Duren et al., 2025), there has been a steady improvement in spatial, spectral, and temporal resolutions. These
instruments have been applied to detect methane and CO- emitters around the world (Guanter et al., 2021; Thorpe et al., 2023;
Han et al., 2024; Zhang et al., 2025). With upcoming missions like the Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME; Rast et al., 2021) and the Surface Biology and Geology mission (SBG; Cawse-Nicholson et al., 2021),

researchers and analysts will soon have access to an unprecedented volume of high-resolution hyperspectral data.

Existing open-source tools, such as maglc (https://github.com/markusfoote/mag1c/) and emit-ghg (https://github.com/emit-sds/

emit-ghg), are restricted to a single HSI or data format. To overcome these limitations, we introduce HyperGas, an open-source
Python package designed to streamline the analysis of greenhouse gases from different HSI data. HyperGas provides modu-
lar tools and default settings to guide users through each stage of the analysis pipeline, from gas concentration enhancement
retrieval to emission quantification, using an optimized and extendable architecture that facilitates additions from the user com-
munity. The package supports both automated batch processing and interactive exploration through a graphical user interface,
enabling flexibility across a wide range of use cases and expertise levels. For advanced users, HyperGas offers a high degree of
customization, allowing for the integration of novel algorithms and processing strategies. In this paper, we present the design
principles behind HyperGas, demonstrate its capabilities through a number of real-world case studies involving methane and

COs, and outline how it can serve as a foundation for reproducible, scalable greenhouse gas analysis using HSI data.

2 Software description

We have designed the HyperGas package for Level 1 (L1, radiance) to Level 4 (L4, e.g., emission rate estimates) products,

including the following steps described in Sect. 2.1-2.4 (Figure 1):

1. Data preparation (L1; Section 2.1)
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55 2. Greenhouse gas retrieval (L2; Section 2.2)
3. Plume detection and segmentation (Defined here as L3; Section 2.3)

4. Emission estimation (L4; Section 2.4)

N
/ HyperGas

AX with watermask

denoised AX

auto AX mask

\

N

Figure 1. Workflow of the HyperGas package (L1-L4). The input consists of L1 calibrated radiance at sensor sampling. Greenhouse gas
retrieval produces L2 concentration enhancements (AX), which are automatically denoised for plume detection and masking. The plume

data (L3) is then used to estimate emissions (L.4) with the integrated mass enhancement (IME) and cross-sectional flux (CSF) methods.

We describe the user interface in Section 2.5. The HyperGas framework supports a wide range of hyperspectral satellite

data and aircraft observations, as long as they contain radiance data for retrieving greenhouse gases. For existing L2 data, the
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package can also be employed to only perform plume detection, segmentation, and emission estimation. Several additional
data inputs are used in HyperGas. Due to the significant differences in surface albedo and thereby radiance levels over land
and water (Funk et al., 2001; Foote et al., 2020), the retrieval process incorporates a water mask to separately process land
and water pixels, as described in Sections 2.1.2 and 2.2. Additionally, wind reanalysis data (Section 2.1.3) are essential for

estimating greenhouse gas emission rates from plume imagery, as outlined in Section 2.4.
2.1 Data preparation
2.1.1 L1 radiance data

HyperGas v1.0 initially focuses on processing L1 radiance data from three HSIs (PRISMA, EnMAP, and EMIT) but can be
expanded for other hyperspectral data products such as aircraft observations. These three instruments cover key absorption
bands of methane (weak and strong absorption windows around 1700 and 2300 nm) and CO5 (1928-2200 nm) within their
relevant spectral ranges, enabling targeted gas detection (Foote et al., 2021). Table 1 provides a summary of key characteristics

of the hyperspectral satellite instruments.

Table 1. Description of hyperspectral satellite instruments.

Instrument Launch date  Nadir pixel size =~ Coverage Spectral resolution *  Overpass time

EnMAP 2022-04-01 30m 30 x 30km? ~7.4nm Sun-Synchronous Low Earth Orbit
with an equator crossing times of 11:00

EMIT 2022-07-14 60 m 80 km width  ~7.4 nm ISS orbit with variable overpass time

PRISMA 2019-03-22  30m 30 x 30km? ~10nm Sun-Synchronous Low Earth Orbit

with an equator crossing times of 10:30

*Typical average spectral resolution in the shortwave infrared (SWIR) range.

For PRISMA, the L1 data are obtained from the PRISMA Portal (https://prisma.asi.it/); for EnMAP, these come from
the EOWEB GeoPortal (https://eoweb.dlr.de/); and for EMIT, users can download L1 data from NASA Earthdata (https:
//search.earthdata.nasa.gov/). No pre-treatment is applied to the L1 data. Because HSI file formats vary across different prod-
ucts, we have integrated multiple HSI readers into another Python package named Safpy (Raspaud et al., 2025), ensuring a
standardized data-loading interface of the three-dimensional xarray.DataArray (bands, y, x) format (Hoyer and
Hamman, 2017). This makes it easy to support new HSI data.

PRISMA Level 1 data lacks geolocation details, such as rational polynomial coefficients (RPCs) or a geometric lookup table
(LUT), which are typically used for precise image positioning, or georeferencing. Therefore, we manually correct the offset
for L2-L4 products using Ground Control Points (GCPs) that are visually identified from distinct features on Earth’s surface
(e.g., road intersections), while RPCs and LUTs are applied for ENAMAP and EMIT data, respectively.
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2.1.2 Water mask

We classify pixels as land or water by using 10-m integrated data from both OpenStreetMap (OSM) and ESA WorldCover
databases (Kennedy et al., 2024). ESA WorldCover data primarily encompass Canada, Alaska, and Russia, while Open-
StreetMap data covers the remaining global regions. Both datasets are combined to create a global dataset. The implemented
water mask identifies both coastal waters and major inland water bodies.

HyperGas also supports two other datasets available through the cartopy feature interface (https://cartopy.readthedocs.
io/stable/matplotlib/feature_interface.html): the Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG)
database and the 10-m Natural Earth dataset. The water mask is used in the clustering of pixels to separately apply a retrieval
for land and water pixels (Section 2.2.1). Figure 2 compares the water masks around the Caspian Sea as well as a K-means
clustering approach that further disaggregates the scene (Section 2.2.1). The OSM and ESA WorldCover datasets effectively
differentiate between land and water, whereas the GSHHG dataset misclassifies some sea areas as land, and the Natural Earth

dataset omits inland water bodies. These differences in masking can lead to variations in retrieval results (see Sect. 2.2.1).
2.1.3 Wind data

Wind speed and direction control greenhouse gas transport in the atmosphere, thus they are important input data for plume
determination and emission quantification. The default wind product used in the analysis is the European Centre for Medium-
Range Weather Forecasts Reanalysis 5 (ERAS, 0.25° x 0.25°) 10-m hourly wind data (Hersbach et al., 2020; Carver and
Merose, 2023). The GEOS Forward Processing (GEOS-FP, 0.25° latitude x 0.3125° longitude) 10-m wind data is also sup-
ported.

2.2 Greenhouse gas retrieval
2.2.1 Matched filter

To determine the amount of gas (e.g., methane or CO3) above the background in the atmospheric column at a specific location,
we apply a mathematical method known as the linear matched filter. This approach has been successfully applied to satellite
and aircraft observations (Thompson et al., 2015; Foote et al., 2021; Thorpe et al., 2023; Roger et al., 2024). By default, we
exclude water bands (1358-1453 nm and 1814-1961 nm) which can affect the retrieval of methane and CO5. The modeled

spectrum affected by the gas absorption (x,,) is defined according to the Beer-Lambert law:

Lo = a:,.e_kAX (D)

where x,. is the reference spectrum and k is a unit absorption spectrum. The strong absorption windows of 2100-2450 nm
for methane and 1930-2200 nm for CO- are selected for calculating the gas column enhancement (AX). The matched filter

method treats the background spectral signature as a Gaussian distribution (A") with a mean vector g and covariance matrix X.
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Figure 2. EMIT pixel clusters derived from (a) OpenStreetMap (OSM) and ESA WorldCover databases, (b) the Global Self-consistent,
Hierarchical, High-resolution Geography database (GSHHG), (c) the Natural Earth dataset, and (d) k-means clustering. Water pixels are
assigned a value of zero (yellow), while land pixels are assigned values greater than or equal to one, with specific classifications determined
using the k-means clustering method. In the case of the GSHHG dataset, all pixels are classified as land but are shown as transparent with

the EMIT scene outlined in yellow for comparison against the ESRI World Imagery. Source: Esri | Powered by Esri.

The radiance spectrum (L) considers two scenarios: a null hypothesis H representing background conditions, and an alter-

native hypothesis [{; indicating the presence of enhanced gas concentrations (Thompson et al., 2015).

Hy:L~N(p,X);Hy: L~ N(p+AXtEY) (2)

The target signature ¢ is defined as the product of the background mean radiance (p) and the negative gas absorption
coefficient (k). To derive k, we apply a radiative transfer model (Gloudemans et al., 2008), incorporating the instrument’s
spectral response function characterized by its central wavelength and FWHM (Thompson et al., 2015). The atmosphere is
divided into vertical layers with a thickness of 1 km up to an altitude of 25 km, 2.5 km between 25 and 50 km, and 5 km above

50 km altitude. We use the seasonal Air Force Geophysical Laboratory (AFGL) atmospheric constituent profiles and simulate
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various gas enhancement scenarios in the lowermost atmospheric layer (0-1 km) using the forward model. For methane, we
evaluate enhancements from 0 to 6400 ppb in geometric progression (doubling from 100 ppb), while CO- enhancements range
from 0 to 160 ppm (doubling from 2.5 ppm), reflecting the broader dynamic range and higher background concentration of
CO; compared to methane. The k value for each band is determined through linear regression between the natural logarithm of
the simulated radiance and gas enhancement values. The optimal estimate of the enhancement factor A X is obtained through

maximum likelihood estimation:

(t—p)"'S(L—p)
(t—p)"S"(t—p)

Optical aberrations can cause variations in central wavelength and spectral resolution among detectors within the same array

AX =

3

(Guanter et al., 2009), leading to non-uniformity across data-cube columns in the across-track direction. Therefore, the matched
filter is implemented separately for each along-track column. We apply the matched filter to each cluster (Fig. 2) separately to
account for differences in background signals (e.g., land versus water pixels). The algorithm is applied through the Spectral
Python (SPy, https:// github.com/spectralpython/spectral) package, which supports the matched filter method. Figure 3 shows
the retrieved methane enhancements (AXCH,) associated with methane leaks in Azerbaijan, derived using different water
masks. The GSHHG mask, which treats all pixels as land, produces overestimated methane retrievals with higher noise levels
(Fig. 3b). Results obtained with Natural Earth data are similar to those from the default OSM and ESA WorldCover masks,
though Natural Earth fails to effectively differentiate inland/coastal water pixels (Fig. 3c).

Previous studies on aircraft observations suggest that applying the matched filter to clustered pixels can reduce background
noise such as the albedo effect caused by roads and building infrastructures (Funk et al., 2001; Thorpe et al., 2013). We first
apply the principal component analysis (PCA) to reduce the dimension of the data space. Then we use the k-means algorithm
to classify all pixels into clusters. Users can adjust the kmeans.nclusters argument to test the sensitivity (Funk et al.,
2001). The k-means clustering approach tends to underestimate methane enhancements, presumably due to the reduced pixel
count allocated to each cluster (Fig. 3d). We have also tested the cluster-tuned matched filter in urban areas (Appendix Figure
Al), however, the results are still noisy, making it challenging to differentiate plumes from the background. The improved
retrieval performance of previous airborne imaging spectrometers is likely related to their higher spatial resolution (3—8 m)
and narrower swath width (~5 km) compared with HSIs, which also leads to longer observed plumes within a single scene.
Therefore, HyperGas does not rely on the k-means method but instead applies land and water masks derived from the OSM

and ESA WorldCover datasets.
2.2.2 Lognormal matched filter

One limitation of the matched filter is the linear approximation, which could lead to underestimated enhancements in large
plumes (Schaum, 2021; Pei et al., 2023). Therefore, HyperGas provides the lognormal matched filter method which applies
logarithms to both sides of Eq. (1):
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Figure 3. Retrieved methane enhancements from the EMIT observation over Azerbaijan on April 21, 2024, based on matched filter analysis

applied to each pixel cluster as defined in Fig. 2.

In(zm,) =In(x,) — kAX “)

This addresses the limitation of the first-order Taylor expansion, which assumes weak absorption that can be approximated
as linear, whereas in regions of strong methane enhancement the absorption departs from this linear behavior. Then the optimal

estimate of AX is derived as below:

(L—p) )
— )

T

-’
— )T (K
where f is the mean log background radiance, 3 is the covariance matrix of the log background radiance, and L is the

log radiance spectrum. Figure 4 compares the results obtained using the matched filter and the lognormal matched filter. The
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methane enhancement differences can reach up to 50 ppb, potentially impacting subsequent emission rate quantification. Since
the lognormal matched filter only supports positive radiances and may increase background noise, HyperGas defaults to the
matched filter and uses the lognormal matched filter for large methane emissions (e.g., > 10 t h~! as discussed in Pei et al.
(2023)). Because the CO5 data are noisier than the methane data, HyperGas does not automatically switch to the lognormal

matched filter for CO».
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Figure 4. Retrieved methane enhancements from the EMIT observation over Azerbaijan on April 21, 2024, using (a) the matched filter
method and (b) the lognormal matched filter method. Panel (c) shows the difference between the two retrievals. Water pixels are masked

using the OSM and ESA WorldCover data sets. Background imagery source: Esri | Powered by Esri.

2.3 Plume detection

For plume detection, we perform the matched filter over the entire near-infrared window (1300-2500 nm, Roger et al., 2024),
instead of only over the strong methane (2100-2450 nm) and CO> (1928-2200 nm) absorption windows, to mitigate the
background noise in (for example) urban areas. This includes the additional methane absorption features around 1700 nm as
well as additional background wavelengths without sensitivity to methane. Then, we apply a Chambolle total variation (TV)
denoising filter (Chambolle, 2004) to reduce noise and obtain a smoother AX field. This technique reduces noise by minimizing
the total variation of the image, which refers to the integral of the gradient magnitude, while preserving sharp features such
as edges. Unlike traditional smoothing methods such as median filtering, TV denoising effectively suppresses noise while
preserving meaningful structures, making it more suitable for retaining localized methane enhancements. Because different
scenes detected by different instruments have different noise levels, we calibrate the denoisers for each scene and instrument
using J-Invariance (Batson and Royer, 2019). The denoised A X field is only used for generating plume masks because of its
differing magnitude, while the emission rate calculation relies on AX data retrieved from strong absorption windows without
denoising. Figure 5a shows an example of the denoised AXCHy, field for the scene from Fig. 3a.

We derive gas plume masks using a semi-supervised method that starts by applying a watershed technique to the denoised

fields (Fig. 5b) with the fobac Python package. This method has been applied to track convective clouds (Heikenfeld et al.,
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Figure 5. Plume mask creation process for one of the plumes from Fig. 3a. (a) The denoised Methane enhancement (AXCHy) field obtained
by applying the Chambolle total variance denoising (TV) filter to AXCH4 within the 1300~2500 nm window. The white star is the identified
source location for the western plume. (b) The initial plume masks derived from the watershed algorithm for the western plume. White
dots indicate high-AXCH, locations, while rectangles represent the minimum rotated rectangles for each mask. Orange rectangles denote
masks with azimuth differences less than 30°, and gray rectangles correspond to other potential plumes. (c) The final AXCH4 plume mask.

Background imagery source: Esri | Powered by Esri.

2019), NO; plumes in TROPOMI observations (Zhang et al., 2023), and methane plumes in hyperspectral observations (Zhang
et al., 2025). It treats pixel values as a topographic surface and separates them into different basins. We use a threshold of two
standard deviations about the mean to identify localized high-enhancement features. We then use a threshold of three standard
deviations to further separate features that were connected using the lower threshold (Fig. 5b; Rast et al., 2021). Once features
are determined, the watershed expands outward from the features until it reaches the lower threshold (2nd standard deviation).
We dilate these masks by 180 m and merge overlapping masks. Emission sources are manually identified based on wind data
and ESRI imagery, the mask containing the emission source is then used as the source’s plume mask. Figure 5S¢ demonstrates
the mask determined for one of the identified methane emission plumes in the scene. To ensure plumes originate from the same
source, we limit the azimuth difference of the oriented envelope (minimum rotated rectangle) to less than 30° relative to that of
the first plume mask containing the source (e.g., orange rectangles in Fig. 5b), assuming minimal wind direction changes near
the source. If a plume is truncated as a result, HyperGas allows users to increase the dilation and azimuth difference to obtain
a more appropriate plume mask (e.g., the eastern plume in Fig. 5a). Non-detects are classified when no plume mask is detected
near the source of interest. Users can inspect the masked plumes through the graphical user interface (Sect. 2.5.2) to evaluate
correlation with additional data fields such as albedo and RGB imagery to ensure the identified plume is not an artifact (e.g.,

smoke).
2.4 Emission estimation

Since the matched filter assumes plume signals are sparse (i.e., present in only a small fraction of pixels), we exclude pixels

within identified plume masks when computing p and 3, so that background statistics are estimated only from non-plume

10
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pixels and the sparsity assumption remains valid. The retrieval is then rerun to generate the final emission rate products. This
two-step reprocessing approach reduces bias in background radiance estimates and typically yields higher methane emission
rates.

Two widely used methods for estimating source emission rates from plume observations are the integrated mass enhancement
(IME) method (Varon et al., 2018), which relates the total plume mass enhancement to the emission rate through a wind-
speed-dependent parameterization, and the cross-sectional flux (CSF) method (Varon et al., 2018; Kuhlmann et al., 2024),
which estimates the source rate as the product of methane enhancement and wind speed integrated across the plume width
perpendicular to the wind direction. Both methods are available in HyperGas and described below, including the calibration of

the required effective wind speed.
2.4.1 Estimation methods

We apply the IME method as the default method to estimate gas emission rates (Q) in kg h—!):

_ IME - Uegr 1ME

@ L

(6)

where IME is the total gas mass enhancement (kg) within the plume mask, L (m) is the square root of the plume area, and
Ues vk 1s the effective wind speed (m/s). The total gas mass enhancement is calculated by summing the product of the column

mass enhancement (A(), kg m~2) and the area of each pixel (m?). The column mass enhancement A(Q is derived from AX:

_ Mx

AQ AL

QAX (N

where My and M, are the molar masses (kg mol~1) of gas X and dry air (28.96 x 1073 kg mol~1), and €2, is the column
of dry air (kg m~?2). Q, is defined as the ratio of surface pressure, obtained from GEOS-FP or ERAS5 reanalysis data, to the
acceleration of gravity.

In addition to the IME method using the full plume mask, HyperGas supports IME estimates with maximum fetch lim-
its (IME-limit), which are particularly useful for characterizing elongated plumes (Duren et al., 2019; Thorpe et al., 2023;
CarbonMapper, 2025).

Another method to calculate the emission rate is the CSF method. This method is especially useful if gaps in the detected
plume, for example, caused by low albedo, make the estimate based on the total IME less reliable. Here, the source rate is

estimated as the product of the cross-plume gas enhancement integral and a different effective wind speed (Uegr,csF):

b
Q= Ueff,CSF/AQ(I,y) dy ¥

a
Here, the x-axis aligns with the wind direction, while the y-axis is oriented perpendicular to it. The integral is evaluated

between the plume boundaries [a, b], as defined by the cross section in the plume mask. The centerline is defined by fitting
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a weighted cubic polynomial through the plume enhancement field, where weights correspond to gas enhancements. Fitting
is performed in a coordinate system rotated to align with the principal plume direction (source to enhancement-weighted
centroid), with ridge regularization (o« = 0.1) to ensure smooth solutions. This plume-aligned cubic fit improves the quadratic
method in ddeq (Kuhlmann et al., 2024) by better capturing plume curvature. Cross-sectional lines are positioned at equal
arc-length intervals along the centerline. Each line is oriented perpendicular to the local centerline tangent where it intersects
the plume mask. The spacing between CSF sections is set to 2.5 xpixel resolution, rather than 1xpixel resolution, to reduce

overlap between adjacent sections and ensure sufficient independence of sampled data.
2.4.2 'Wind calibrations

For both the IME and CSF, an effective wind speed is required, which needs to be related to the model’s wind speed parameters.
To calibrate Ueg 1vE and Uegr,csr against the domain-averaged 10 m wind speeds (Uyo), we have used five 3-hour large-eddy
simulations (LES) performed using the Weather Research and Forecasting model (WRF-LES) at 25 m spatial resolution and 30
s temporal resolution (Varon et al., 2018; Maasakkers et al., 2022). For EnEMAP and PRISMA, which have a spatial resolution
of ~ 30 m, we use the original 25 m data. For EMIT, which has a coarser resolution of ~ 60 m, the data are resampled to 50
m. Simulations are conducted for two source types: a point source (e.g., oil and gas leaks or underground coal mine ventilation
shafts; Sadavarte et al., 2021) and a 275 x 275 m? area source (e.g., landfills; Maasakkers et al., 2022). Emission rates are
randomly scaled from 1-30 t h—! for methane (Zhang et al., 2025) and 0.5-30 kt h—! for CO, (Cusworth et al., 2023). The
first simulation hour is used for turbulence spin-up, and the last two hours are used in the wind calibration.

To incorporate realistic backgrounds, we overlay LES plumes onto cropped measured L2 scenes free of detected gas plumes
for each imager. Backgrounds are drawn from three representative surface types: bright and homogeneous (Xinjiang, China),
bright and heterogeneous (Anna Creek, Australia), and dark and heterogeneous (Madrid, Spain). For each simulated plume,
Ueg ivE is computed as Q L/IME, where () is known, and L/IME is calculated from the plume mask. Despite differences
in background complexity, the denoising step enables robust plume detection (Fig. 6d—f), and calibration coefficients are
consistent across scenes (Fig. 6g—i). We therefore combine all 3600 cases to derive final calibration parameters for methane
and CO, (Table 2 and 3).

We evaluate the mean magnitude of Uy from three LES-derived wind products for the wind calibration: at-site, in-plume,
and 6 x6 km? domain-averaged. At-site wind calibration is suitable for controlled releases with co-located wind measurements
(Sherwin et al., 2023, 2024), whereas in-plume and domain-averaged products are better suited for applications relying on
reanalysis wind speed data. Figure 6g—i shows that calibration results are similar across the three wind products. Accordingly,
HyperGas defaults to the domain-averaged calibration for typical use cases involving reanalysis winds. While HyperGas allows
users to input custom wind speeds, they must adjust the calibration settings in the configuration file to match their inputs if

those products have different characteristics than the ones used here.
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Figure 6. (a—c) Methane enhancement fields from point-source large eddy simulations over three EMIT scenes: bright and homogeneous,

bright and heterogeneous, and dark and heterogeneous. (d—f) Corresponding denoised methane fields for the scenes shown in (a—c), with

plume mask outlines shown in white. (g—i) Wind calibration results using three wind speed samplings: at-site values, in-plume estimates, and

domain-averaged values.
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Table 2. Wind calibration settings used by default in the IME and CSF methods for methane, based on domain-averaged wind fields.

Method Instrument Source Type Slope Intercept R?
IME EMIT point 0.35 043 0.95
EnMAP point 0.32 045 0.95
PRISMA point 0.31 043 0.93
EMIT area 0.39 0.63 0.89
EnMAP area 0.37 0.68 0.85
PRISMA area 0.37 0.69 0.77
CSF EMIT point 1.12 0.00 091
EnMAP point 1.15 0.00 0.90
PRISMA point 1.13 0.00 0.88
EMIT area 1.22 0.00 0.89
EnMAP area 1.30 0.00 0.87
PRISMA area 1.29 0.00 0.84
Table 3. Similar to Table 2 but for CO-.
Method Instrument Source Type Slope Intercept R?
IME EMIT point 0.34 044 0.94
EnMAP point 0.31 046 0.94
PRISMA point 0.32 044 094
CSF EMIT point 1.10 0.00 0.90
EnMAP point 1.15 0.00 0.90
PRISMA point 1.13 0.00 0.88

2.4.3 Emission uncertainty quantification

Our estimation of emission uncertainty for both the IME and CSF method accounts for three sources of uncertainty: wind speed

error, retrieval random error, and wind calibration uncertainty (Varon et al., 2019, 2020; Maasakkers et al., 2022). Wind speed

error is quantified by applying a relative error of 50% for wind speeds below 3 m/s and a fixed error of 1.5 m s~! for wind

speeds exceeding 3 m/s (Varon et al., 2018; Zhang et al., 2025). To evaluate retrieval random error, we apply the same plume

mask shape to non-plume areas across the scene, avoiding any overlap with the original plume location, and then calculate the

standard deviation of the resulting emission rates (Varon et al., 2019; Zhang et al., 2025). Wind calibration error is the final

source of uncertainty in our estimation. For point sources, the average U, ¢ fit residual is incorporated by adding it to the fitted

U,y equation, so that the fitting’s typical deviation is propagated into the uncertainty calculation. The area-source calibration

method assumes a uniform methane emission distribution over a 275 x 275 m? region, even though actual emission patterns
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may be more complex (Maasakkers et al., 2022). To evaluate the uncertainty associated with this assumption, we apply the
point-source calibration instead and examine the resulting variations in emission rates. The total uncertainty is defined as the

square root of the sum of the squares of the individual uncertainties.

2.4.4 Plume fetch limits and controlled releases
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Figure 7. (a—c) Point-source IME calibrations for EMIT, EnMAP, and PRISMA. Colors indicate different fetch limits. (d—f) Same as (a—c),
but using the CSF method.

Figure 7 shows wind calibrations for the IME and CSF methods across different plume length limits. Since Carbon Mapper
applies a 2.5 km fetch limit (CarbonMapper, 2025), We have performed a sensitivity test using two thresholds: 1 km and 2.5 km
(as used by for example Carbon Mapper). The IME method with a 1 km plume limit has a significantly higher calibration slope
compared to other configurations (Fig. 7a—c). The response of calibration slopes to decreasing fetch limits differs between the
IME and CSF methods (Fig. 7d—f). This divergence reflects fundamental differences in methodology: restricting the fetch limit
to 1 km reduces the number of plume pixels available for integration in the IME method, resulting in lower emission estimates
when the shortened plume length cannot compensate for the reduced total gas mass enhancement. Conversely, the CSF method,
which relies on cross-sectional measurements, may not sample broadly enough to produce a representative emission rate. Then,

we split the final two hours of simulation data into calibration and validation subsets to assess whether applying fetch limits
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would improve performance during validation. However, the slopes between the true emission rates and the calibrated estimates
remained approximately 1 across all fetch limits, indicating no improvement.

We also validated our default IME estimates using 19 Stanford controlled releases conducted in 2024 and 2025 (Reuland
et al., 2025; Reuland and Brandt, 2025). Because all plume lengths were under 1 km, which could be short for reliable CSF
estimation, we do not perform CSF validation for these data. This also means any differences between the IME and IME fetch
estimates are purely caused by different wind calibration coefficients and not by different sampling of the plumes. Figure 8
shows that the results do not differ significantly across the various fetch limits. HyperGas currently defaults to wind calibration
without any fetch limitation. In the future, controlled release experiments involving elongated plumes may support IME cali-
bration in two key ways: (1) evaluating the accuracy of different fetch limits, and (2) enabling wind calibration directly using

measured Uyg data, which can then be applied to other cases with available wind observations.
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Figure 8. Quantification performance of methane-emission estimates using the IME method under different fetch limits (none, 2500 m, and
1000 m) with calibrations shown in Fig. 7a—c. (a) Controlled releases observed by both EnMAP and PRISMA. (b) EnMAP only. (c) PRISMA
only. Regression lines are fitted with Ordinary Least Squares (OLS). Estimation errors are derived from HyperGas outputs. The release-rate
errors are estimated as the standard deviation of mean emission rates released over consecutive time windows starting 1-5 minutes before
and ending at the overpass time (i.e., [T—1 min, T], [T-2 min, T], ..., [T-5 min, T]). For clarity, scatter points for the fetch-limited results

are shown without error bars.

2.5 User interface

In addition to accessing functions via the Python API, HyperGas users can use Python batch processing scripts and an interac-

tive application to efficiently process data from L1 to L4.
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2.5.1 Batch processing

The general data processing workflow is outlined below:

— 12b_process.py and 12b_plot.py: Generate L2 products, visualizations, and a summary HTML file that lets

users compare different scenes by toggling layers.

App: Add plume markers interactively using the graphical user interface (see Sect. 2.5.2).

13b_process.py: Produce L3 and L4 products, figures, and HTML files. This step can also be performed within the
app.

(optional) 12b_reprocess.py and 13b_reprocess.py: Rerun the retrieval and emission rate estimates by ex-

cluding the plume pixels from each column of observations.

The variables included in the L2-L3 products are listed in Appendix Table B1. The L4 CSV file contains key plume-
level information, including location, overpass time, wind conditions sampled from reanalysis products at the source location,
emission rate and associated uncertainty, IME/CSF metrics, and additional details (For a full description, see the HyperGas

User Guide: https://hypergas.readthedocs.io/).
2.5.2 Interactive app

The emission rate calculation process begins with identifying plume source locations using HTML files generated by the script
12b_plot.py. This script embeds multiple L2B figures into a single HTML file, including key visualizations such as albedo,
raw and denoised gas retrievals, plume masks, and wind vectors. By default, the interface displays only the denoised gas field
for each observation group, allowing direct comparison of plume characteristics, especially changes in plume direction due
to wind across different observation days. Users can then interactively add plume markers through a Streamlit-based web
application that dynamically renders HTML content and executes embedded Python code. Because plume source locations
may differ between observations, users must place markers individually for each L2B file. The selected marker positions are
saved in the GeoJSON format to ensure accurate spatial referencing.

Once all marker files are ready, the 13b_process . py script automatically generates plume-level NetCDF files and com-
putes emission rates for all cases. For a more streamlined and case-specific workflow, users can use the "Emission" page of the
application, which provides a customizable interface for entering relevant parameters, such as site name, sector, wind speed,
and surface pressure. Upon submission, the app generates a comprehensive output, displaying the final plume visualization and

a corresponding L4 summary table on the same page (Fig. 9).

3 Applications

HyperGas currently supports the detection, retrieval, and quantification of methane and COg plume emissions across various

sectors. In the following sections, we present several examples of methane and CO, plumes observed in different contexts.
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Figure 9. Example overview from the interactive application. (a) Methane plume overlaid on an ESRI basemap. Source: Esri | Powered by
Esri. The emission source is marked with a yellow circle. Wind direction and speed based on ERAS are indicated by the white arrow and
text. (b) Overview of IME results. The title displays the satellite overpass time, source location, estimated emission rate, and associated
uncertainty. Wind data from ERAS and GEOS-FP are also shown. (c) Emission rates along individual CSF lines, shown in white in panel

(b). The mean CSF emission rate and uncertainty are shown in the title.
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320 3.1 Methane emissions

Figure 10 shows methane plumes from three sectors: oil & gas operations (Baku, Azerbaijan), coal mining (Shanxi, China),
and solid waste management (Pirana landfill, Gujarat, India). Figure 10a—b presents multiple plumes captured in a single
observation, while Fig. 10c—d shows plumes from the same landfill site detected by both EnMAP and PRISMA. All plumes
follow the ERAS wind directions, while the source locations are either near the facilities or the deposited waste. In the case of
325 the second oil and gas plume, the plume is truncated due to the dark surface and shows a curved shape. This required manual

adjustments to the plume detection settings, specifically increasing the azimuth difference threshold from 30° to 60°.
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Figure 10. Methane plumes detected from various sectors using (a—b) EMIT, (c) EnMAP, and (d) PRISMA. Instrument and satellite overpass
time are shown in white text at the top of each panel. Plume source locations are marked by yellow circles, with plume numbers annotated
when multiple plumes are present in a single panel. ERAS wind direction is indicated in the lower right corner of each image. (e¢) Methane

emission estimates for the cases, derived using the IME and CSF methods. Background imagery source: Esri | Powered by Esri.
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Figure 10e compares the IME and CSF estimates for the four cases. While the average CSF estimates tend to be higher,
particularly for short plumes, both methods are consistent within their respective uncertainty ranges. The agreement between
EnMAP and PRISMA measurements at the Pirana landfill indicates that multiple hyperspectral satellite datasets can be effec-
tively integrated to analyze temporal patterns in landfill methane emissions, as previously described by Zhang et al. (2025).
These findings highlight the potential for hyperspectral remote sensing to contribute to global methane monitoring and mitiga-

tion efforts.

3.2 Carbon dioxide emissions
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Figure 11. CO; plumes from power plants detected by (a) EMIT, (b) EnMAP, and (c) PRISMA. Instrument names and satellite overpass
times are labeled in white text at the top of each panel. Yellow circles are identified plume source locations. Background ESRI imagery
reproduced with permission as granted on Esri’s website for noncommercial scholarly use Esri et al. (2022). (d) Emission rate estimates

derived using the IME and CSF methods. Background imagery source: Esri | Powered by Esri.
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In addition to methane, HyperGas also supports quantifying CO5 emission rates. Figure 11a—c show COs plumes from three
power plants: James H. Miller Jr. (AL, USA), Rockport (IN, USA), and Stanwell Power Station (Stanwell, Australia). The
estimated emission rates range from 0.5 to 2 kt h—!. On average, CSF estimates tend to be higher, particularly for the compact
plume observed at the Stanwell Power Station and James H. Miller Jr (Fig. 11d). This discrepancy may arise from plume
simulations that assume surface-level sources and use only Uy to represent wind speed, whereas the actual CO» emissions are
released as hot, buoyant plumes at heights greater than 10 m. Consequently, using U as a proxy may result in inaccurate wind
speed calibrations for our observations, which could potentially affect emission estimates. Future refinements could involve
CO,-specific simulations to improve this calibration. Nevertheless, both IME and CSF estimates remain within their respective

uncertainty bounds.

4 Conclusions

As hyperspectral satellite and airborne data become increasingly available, we have introduced the open-source package Hyper-
Gas, designed for retrieving atmospheric greenhouse gas enhancements, detecting, and quantifying greenhouse gas emissions.
HyperGas provides modular tools and default settings to guide users through each stage of the analysis using an optimized and
extendable workflow. We demonstrated how batch processing scripts and an interactive app enable both streamlined analysis
and user-friendly interaction. For advanced users and developers, HyperGas offers the flexibility to implement custom algo-
rithms at each step of the pipeline. This release enhances the standard matched filter retrieval by incorporating a lognormal
matched filter and precise land/water masking. Users can further improve retrieval performance by applying their own pixel
classification schemes and gas absorption coefficients, including aerosol scattering corrections (Feng et al., 2024).

We have also shown the integration of the open-source Python package robac, originally developed for cloud tracking, to
detect emission sources. Combined with a calibrated Chambolle total variation denoising (TV) filter, HyperGas generates
plume masks that assist users in placing plume markers at source locations consistent with high-resolution visual imagery with
the help of an interactive app.

For emission quantification, the package includes two established approaches, the integrated mass enhancement (IME) and
the cross-sectional flux (CSF), along with default wind calibration settings. Users can assess uncertainties on the quantified
emission rates, compare methods, and can modify the configuration for wind calibration routines. Further validation with
additional methane controlled release experiments and hourly U.S. Environmental Protection Agency (EPA) CO, emission
reports is recommended to determine the most appropriate method for various observational scenarios.

This initial release (HypeGas v1.0) provides robust functionality that can serve as the foundation for several additional

features that can be developed in the future, including:

1. Automatic co-registration of PRISMA data (De Luca et al., 2024) to correct spatial misalignment between PRISMA

imagery and actual Earth surface features.
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2. Integration of the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS; Krings
et al., 2011; Thorpe et al., 2014; Borchardt et al., 2021) method for gas retrievals.

3. Extension to additional trace gases, such as nitrogen dioxide (NOs; Borger et al., 2025).

4. Addition of additional plume quantification approaches, such as the linear integrate mass enhancement method (Hakkarainen
etal., 2025).

5. Support for upcoming global hyperspectral missions, including the Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME; Rast et al., 2021) and the Surface Biology and Geology mission (SBG; Cawse-Nicholson et al.,
2021).

The main goal of HyperGas is to build a consistent and transparent system for quantifying anthropogenic emissions using
hyperspectral observations. We welcome community contributions to expand its capabilities and to establish HyperGas as a

foundation for ongoing methodological and scientific advancements.

Code and data availability. The HyperGas source code is publicly available in a GitHub repository distributed under the Apache-2.0 license
at https://github.com/SRON-ESG/HyperGas, and is archived and synchronized with Zenodo (https://doi.org/10.5281/zenodo.18154956;
Zhang, 2026a). The latest version of HyperGas can be installed using conda with the command conda install -c conda-forge
hypergas. Notebooks for reproducing this work, along with the associated input data, are deposited on Zenodo (https://doi.org/10.5281/
zenodo.17854157 and https://doi.org/10.5281/zenodo.18162026; Zhang, 2026b, c). The ERAS and GEOS-FP 10-m hourly wind data used
in the analysis are also archived on Zenodo (https://doi.org/10.5281/zenodo.18166595; Zhang, 2026d). The original wind data products are
provided by the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/; Hersbach et al., 2023) and the Global Modeling and
Assimilation Office (https://gmao.gsfc.nasa.gov/GMAO_products/; GMAO and NASA).
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Figure Al. Retrieved methane enhancement using (a) the matched filter and (b) the cluster-tuned matched filter; (c) corresponding enhance-

ment histograms; and (d) clusters applied in panel (b). The same scene is used in Fig. 10d.
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Table B1. HyperGas L2-L3 products table.

Product Name Description
Level
(format)
L2 ch4, co2 Retrieved gas enhancement using the base spectral windows
(NetCDF) (2110-2450 nm for methane and 1930-2200 nm for COx)
ch4_comb, Retrieved gas enhancement using the full near-infrared spectral range
co2_comb (1300-2500 nm)
ch4_denoise, Denoised ch4 and co?2 fields
co2_denoise
ch4_comb_denoise, = Denoised ch4_comb and co2_comb fields
co2_comb_denoise
ch4_mask, Automatically generated plume masks (0: background pixels; >0: plume pixels)
co2_mask
radiance_2100 Top of the Atmosphere (TOA) radiance at 2100 nm, useful for assessing albedo effects
rgb RGB array for visualization
segmentation Water/land mask (0: ocean/lake; 1: land) or cluster map
sp Surface pressure
ul0 10-meter U-component wind from ERAS and GEOS-FP
v10 10-meter V-component wind from ERAS5 and GEOS-FP
L3 ch4, co2, ul0, v10, Subset of L2 variables restricted to plume pixels
(NetCDF) and sp (as defined by the plume mask)
References

Batson, J. and Royer, L.: Noise2Self: Blind Denoising by Self-Supervision, in: Proceedings of the 36th International Conference on Machine
Learning, pp. 524-533, PMLR, ISSN 2640-3498, 2019.

Borchardt, J., Gerilowski, K., Krautwurst, S., Bovensmann, H., Thorpe, A. K., Thompson, D. R., Frankenberg, C., Miller, C. E., Duren,
R. M., and Burrows, J. P.: Detection and Quantification of CH4 Plumes Using the WEM-DOAS Retrieval on AVIRIS-NG Hyperspectral
Data, Atmospheric Measurement Techniques, 14, 1267-1291, https://doi.org/10.5194/amt-14-1267-2021, 2021.

Borger, C., Beirle, S., Butz, A., Scheidweiler, L. O., and Wagner, T.: High-Resolution Observations of NO, and CO, Emission Plumes from
EnMAP Satellite Measurements, Environmental Research Letters, 20, 044 034, https://doi.org/10.1088/1748-9326/adcOb1, 2025.

CarbonMapper: Retrieved from https://data.carbonmapper.org, 2025.

24



https://doi.org/10.5194/egusphere-2025-6127
Preprint. Discussion started: 11 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Carver, R. W. and Merose, A.: ARCO-ERAS: An Analysis-Ready Cloud-Optimized Reanalysis Dataset, in: 103rd AMS Annual Meeting,
AMS, 2023.

405 Cawse-Nicholson, K., Townsend, P. A., Schimel, D., Assiri, A. M., Blake, P. L., Buongiorno, M. F., Campbell, P., Carmon, N., Casey,
K. A., Correa-Pabén, R. E., Dahlin, K. M., Dashti, H., Dennison, P. E., Dierssen, H., Erickson, A., Fisher, J. B., Frouin, R., Gatebe, C. K.,
Gholizadeh, H., Gierach, M., Glenn, N. F., Goodman, J. A., Griffith, D. M., Guild, L., Hakkenberg, C. R., Hochberg, E. J., Holmes, T. R. H.,
Hu, C., Hulley, G., Huemmirich, K. F,, Kudela, R. M., Kokaly, R. F., Lee, C. M., Martin, R., Miller, C. E., Moses, W. J., Muller-Karger,
F. E., Ortiz, J. D., Otis, D. B., Pahlevan, N., Painter, T. H., Pavlick, R., Poulter, B., Qi, Y., Realmuto, V. J., Roberts, D., Schaepman, M. E.,

410 Schneider, F. D., Schwandner, F. M., Serbin, S. P., Shiklomanov, A. N., Stavros, E. N., Thompson, D. R., Torres-Perez, J. L., Turpie, K. R.,
Tzortziou, M., Ustin, S., Yu, Q., Yusup, Y., and Zhang, Q.: NASA’s Surface Biology and Geology Designated Observable: A Perspective
on Surface Imaging Algorithms, Remote Sensing of Environment, 257, 112 349, https://doi.org/10.1016/j.rse.2021.112349, 2021.

Chambolle, A.: An Algorithm for Total Variation Minimization and Applications, Journal of Mathematical Imaging and Vision, 20, 89-97,
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e, 2004.

415 Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., Genesio, L., Guanter, L., Damm, A.,
Pérez-Lopez, S., Scheffler, D., Tagliabue, G., Panigada, C., Rascher, U., Dowling, T. P. F.,, Giardino, C., and Colombo, R.: The
PRISMA Imaging Spectroscopy Mission: Overview and First Performance Analysis, Remote Sensing of Environment, 262, 112499,
https://doi.org/10.1016/j.rse.2021.112499, 2021.

Cusworth, D. H., Thorpe, A. K., Miller, C. E., Ayasse, A. K., Jiorle, R., Duren, R. M., Nassar, R., Mastrogiacomo, J.-P., and Nelson, R. R.:

420 Two Years of Satellite-Based Carbon Dioxide Emission Quantification at the World’s Largest Coal-Fired Power Plants, Atmospheric
Chemistry and Physics, 23, 14 577-14 591, https://doi.org/10.5194/acp-23-14577-2023, 2023.

De Luca, G., Carotenuto, F., Genesio, L., Pepe, M., Toscano, P., Boschetti, M., Miglietta, F., and Gioli, B.: Improving PRISMA Hyperspectral
Spatial Resolution and Geolocation by Using Sentinel-2: Development and Test of an Operational Procedure in Urban and Rural Areas,
ISPRS Journal of Photogrammetry and Remote Sensing, 215, 112—135, https://doi.org/10.1016/].isprsjprs.2024.07.003, 2024.

425 Duren, R., Cusworth, D., Ayasse, A., Howell, K., Diamond, A., Scarpelli, T., Kim, J., O’neill, K., Lai-Norling, J., Thorpe, A., Zandbergen,
S. R., Shaw, L., Keremedjiev, M., Guido, J., Giuliano, P., Goldstein, M., Nallapu, R., Barentsen, G., Thompson, D. R., Roth, K., Jensen,
D., Eastwood, M., Reuland, F., Adams, T., Brandt, A., Kort, E. A., Mason, J., and Green, R. O.: The Carbon Mapper Emissions Monitoring
System, EGUsphere, pp. 1-41, https://doi.org/10.5194/egusphere-2025-2275, 2025.

Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M., Yadav, V., Bue, B. D., Thompson, D. R., Conley, S., Colombi, N. K.,

430 Frankenberg, C., McCubbin, 1. B., Eastwood, M. L., Falk, M., Herner, J. D., Croes, B. E., Green, R. O., and Miller, C. E.: California’s
Methane Super-Emitters, Nature, 575, 180—184, https://doi.org/10.1038/s41586-019-1720-3, 2019.

Esri, Maxar, Geographics, E., and the GIS User Community: ESRI World Imagery, https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery:
2022.
Feng, C., Chen, S., Zeng, Z.-C., Luo, Y., Natraj, V.,, and Yung, Y. L.: Aerosol-Calibrated Matched Filter Method for Re-

435 trievals of Methane Point Source Emissions Over the Los Angeles Basin, Earth and Space Science, 11, e2024EA003519,
https://doi.org/10.1029/2024EA003519, 2024.

Foote, M. D., Dennison, P. E., Thorpe, A. K., Thompson, D. R., Jongaramrungruang, S., Frankenberg, C., and Joshi, S. C.: Fast and Accurate
Retrieval of Methane Concentration From Imaging Spectrometer Data Using Sparsity Prior, IEEE Transactions on Geoscience and Remote

Sensing, 58, 6480-6492, https://doi.org/10.1109/TGRS.2020.2976888, 2020.

25



440

445

450

455

460

465

470

475

https://doi.org/10.5194/egusphere-2025-6127
Preprint. Discussion started: 11 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Foote, M. D., Dennison, P. E., Sullivan, P. R., O’Neill, K. B., Thorpe, A. K., Thompson, D. R., Cusworth, D. H., Duren, R., and Joshi,
S. C.: Impact of Scene-Specific Enhancement Spectra on Matched Filter Greenhouse Gas Retrievals from Imaging Spectroscopy, Remote
Sensing of Environment, 264, 112 574, https://doi.org/10.1016/j.rse.2021.112574, 2021.

Funk, C., Theiler, J., Roberts, D., and Borel, C.: Clustering to Improve Matched Filter Detection of Weak Gas Plumes in Hyperspectral
Thermal Imagery, IEEE Transactions on Geoscience and Remote Sensing, 39, 1410-1420, https://doi.org/10.1109/36.934073, 2001.

Gloudemans, A. M. S., Schrijver, H., Hasekamp, O. P., and Aben, I.: Error Analysis for CO and CH4 Total Column Retrievals from SCIA-
MACHY 2.3 Mm Spectra, Atmospheric Chemistry and Physics, 8, 3999—-4017, https://doi.org/10.5194/acp-8-3999-2008, 2008.

GMAO and NASA: GMAO Data Products.

Green, R. O., Mahowald, N., Ung, C., Thompson, D. R., Bator, L., Bennet, M., Bernas, M., Blackway, N., Bradley, C., Cha, J., Clark, P., Clark,
R., Cloud, D., Diaz, E., Ben Dor, E., Duren, R., Eastwood, M., Ehlmann, B. L., Fuentes, L., Ginoux, P., Gross, J., He, Y., Kalashnikova, O.,
Kert, W., Keymeulen, D., Klimesh, M., Ku, D., Kwong-Fu, H., Liggett, E., Li, L., Lundeen, S., Makowski, M. D., Mazer, A., Miller, R.,
Mouroulis, P., Oaida, B., Okin, G. S., Ortega, A., Oyake, A., Nguyen, H., Pace, T., Painter, T. H., Pempejian, J., Garcia-Pando, C. P., Pham,
T., Phillips, B., Pollock, R., Purcell, R., Realmuto, V., Schoolcraft, J., Sen, A., Shin, S., Shaw, L., Soriano, M., Swayze, G., Thingvold, E.,
Vaid, A., and Zan, J.: The Earth Surface Mineral Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission, in: 2020
IEEE Aerospace Conference, pp. 1-15, ISSN 1095-323X, https://doi.org/10.1109/AER047225.2020.9172731, 2020.

Green, R. O., Mahowald, N., Thompson, D. R., Ung, C., Brodrick, P., Pollock, R., Bennett, M., Lundeen, S., Joyce, M., Olson-Duvall, W.,
Oaida, B., Bradley, C., Diaz, E., Clark, R., Vannan, S., Swayze, G., Kokaly, R., Ginoux, P., Miller, R., Okin, G., Garcia-Pando, C. P.,
Ehlmann, B., Kalashnikova, O., Painter, T. H., Realmuto, V., Chadwick, D., Ben-Dor, E., Pearlshtien, D. H., Guanter, L., Phillips, B.,
Reath, K., Thorpe, A., Shaw, L., Keebler, A., Ochoa, F., Grant, K., Sen, A., Duren, R., Obiso, V., Gongalves-Ageitos, M., and Huang,
Y.: Performance and Early Results from the Earth Surface Mineral Dust Source Investigation (EMIT) Imaging Spectroscopy Mission, in:
2023 IEEE Aerospace Conference, pp. 1-10, ISSN 1095-323X, https://doi.org/10.1109/AER055745.2023.10115851, 2023.

Guanter, L., Segl, K., Sang, B., Alonso, L., Kaufmann, H., and Moreno, J.: Scene-Based Spectral Calibration Assessment of High Spectral
Resolution Imaging Spectrometers, Optics Express, 17, 11 594-11 606, https://doi.org/10.1364/0E.17.011594, 2009.

Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Hollstein, A., Rossner, G., Chlebek, C., Straif, C.,
Fischer, S., Schrader, S., Storch, T., Heiden, U., Mueller, A., Bachmann, M., Miihle, H., Miiller, R., Habermeyer, M., Ohndorf, A., Hill,
J., Buddenbaum, H., Hostert, P., Van der Linden, S., Leitdo, P. J., Rabe, A., Doerffer, R., Krasemann, H., Xi, H., Mauser, W., Hank, T.,
Locherer, M., Rast, M., Staenz, K., and Sang, B.: The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation, Remote
Sensing, 7, 8830-8857, https://doi.org/10.3390/rs70708830, 2015.

Guanter, L., Irakulis-Loitxate, 1., Gorrofio, J., Sdnchez-Garcia, E., Cusworth, D. H., Varon, D. J., Cogliati, S., and Colombo, R.: Map-
ping Methane Point Emissions with the PRISMA Spaceborne Imaging Spectrometer, Remote Sensing of Environment, 265, 112671,
https://doi.org/10.1016/j.rse.2021.112671, 2021.

Hakkarainen, J., lalongo, I., Varon, D. J.,, Kuhlmann, G., and Krol, M. C.: Linear Integrated Mass Enhancement: A Method
for Estimating Hotspot Emission Rates from Space-Based Plume Observations, Remote Sensing of Environment, 319, 114623,
https://doi.org/10.1016/j.rse.2025.114623, 2025.

Han, G., Pei, Z., Shi, T., Mao, H., Li, S., Mao, F., Ma, X., Zhang, X., and Gong, W.: Unveiling Unprecedented Methane Hotspots
in China’s Leading Coal Production Hub: A Satellite Mapping Revelation, Geophysical Research Letters, 51, €2024GL109 065,
https://doi.org/10.1029/2024GL109065, 2024.

26



480

485

490

495

500

505

510

https://doi.org/10.5194/egusphere-2025-6127
Preprint. Discussion started: 11 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: Tobac 1.2: Towards
a Flexible Framework for Tracking and Analysis of Clouds in Diverse Datasets, Geoscientific Model Development, 12, 4551-4570,
https://doi.org/10.5194/gmd-12-4551-2019, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hordnyi, A., Mufioz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D., Dia-
mantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H6Im, E., Janiskov4,
M., Keeley, S., Laloyaux, P., Lopez, P.,, Lupu, C., Radnoti, G., Rosnay, P., Rozum, 1., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The
ERAS Global Reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Hordnyi, A., Mufioz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, L.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 Hourly Data on Single Levels from 1940 to Present,
https://doi.org/10.24381/cds.adbb2d47, 2023.

Hoyer, S. and Hamman, J. J.: Xarray: N-D Labeled Arrays and Datasets in Python, Journal of Open Research Software, 5, 10,
https://doi.org/10.5334/jors. 148, 2017.

Intergovernmental Panel on Climate Change (IPCC): Climate Change 2021 — The Physical Science Basis: Working Group I Contribu-
tion to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781009157896, 2023.

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E., Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever, J., Ott,
L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J. R., and Duren, R. M.: Quantifying Methane Emissions from the Global Scale
down to Point Sources Using Satellite Observations of Atmospheric Methane, Atmospheric Chemistry and Physics, 22, 9617-9646,
https://doi.org/10.5194/acp-22-9617-2022, 2022.

Kennedy, J. H., Smale, J., Johnston, A., Kristenson, H., Player, A., cirrusasf, Herrmann, J., Williams, F., Rine, J., and Logan, T.:
ASFHyP3/Ast-Tools: ASF Tools v0.7.2, Zenodo, https://doi.org/10.5281/zenodo.10845708, 2024.

Krings, T., Gerilowski, K., Buchwitz, M., Reuter, M., Tretner, A., Erzinger, J., Heinze, D., Pfliiger, U., Burrows, J. P, and Bovens-
mann, H.: MAMAP - a New Spectrometer System for Column-Averaged Methane and Carbon Dioxide Observations from Aircraft:
Retrieval Algorithm and First Inversions for Point Source Emission Rates, Atmospheric Measurement Techniques, 4, 1735-1758,
https://doi.org/10.5194/amt-4-1735-2011, 2011.

Kuhlmann, G., Koene, E., Meier, S., Santaren, D., Broquet, G., Chevallier, F., Hakkarainen, J., Nurmela, J., Amorés, L., Tamminen, J., and
Brunner, D.: The Ddeq Python Library for Point Source Quantification from Remote Sensing Images (Version 1.0), Geoscientific Model
Development, 17, 4773—-4789, https://doi.org/10.5194/gmd-17-4773-2024, 2024.

Liu, Y.-N., Sun, D.-X., Hu, X.-N., Ye, X., Li, Y.-D., Liu, S.-F., Cao, K.-Q., Chai, M.-Y., Zhou, W.-Y.-N., Zhang, J., Zhang, Y., Sun, W.-W., and
Jiao, L.-L.: The Advanced Hyperspectral Imager: Aboard China’s GaoFen-5 Satellite, IEEE Geoscience and Remote Sensing Magazine,
7,23-32, https://doi.org/10.1109/MGRS.2019.2927687, 2019.

Loizzo, R., Guarini, R., Longo, F., Scopa, T., Formaro, R., Facchinetti, C., and Varacalli, G.: Prisma: The Italian Hyperspectral Mis-
sion, in: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 175-178, ISSN 2153-7003,
https://doi.org/10.1109/IGARSS.2018.8518512, 2018.

Maasakkers, J. D., Varon, D. J., Elfarsdéttir, A., McKeever, J., Jervis, D., Mahapatra, G., Pandey, S., Lorente, A., Borsdorff, T., Foorthuis,
L. R., Schuit, B. J., Tol, P, van Kempen, T. A., van Hees, R., and Aben, I.: Using Satellites to Uncover Large Methane Emissions from
Landfills, Science Advances, 8, eabn9683, https://doi.org/10.1126/sciadv.abn9683, 2022.

27



515

520

525

530

535

540

545

550

https://doi.org/10.5194/egusphere-2025-6127
Preprint. Discussion started: 11 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Pearlman, J., Carman, S., Segal, C., Jarecke, P., Clancy, P., and Browne, W.: Overview of the Hyperion Imaging Spectrometer for the NASA
EO-1 Mission, in: IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and
Remote Sensing Symposium (Cat. No.01CH37217), vol. 7, pp. 3036-3038 vol.7, https://doi.org/10.1109/IGARSS.2001.978246, 2001.

Pei, Z., Han, G., Mao, H., Chen, C., Shi, T., Yang, K., Ma, X., and Gong, W.: Improving Quantification of Methane Point Source Emissions
from Imaging Spectroscopy, Remote Sensing of Environment, 295, 113 652, https://doi.org/10.1016/j.rse.2023.113652, 2023.

Qian, S.-E.: Hyperspectral Satellites, Evolution, and Development History, IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 14, 7032-7056, https://doi.org/10.1109/JSTARS.2021.3090256, 2021.

Raspaud, M., Hoese, D., Lahtinen, P., Holl, G., Proud, S., Finkensieper, S., Meraner, A., Dybbroe, A., Strandgren, J., yukaribbba, Lahtinen,
P, Feltz, J., BENRO, Joro, S., Zhang, X., de Buyl, P., Youva, Ghiggi, G., Roberts, W., Rasmussen, L. @., ClementLaplace, Samain, O.,
mherbertson, Zhu, Y., Méndez, J. H. B., IsotrOpy, seenno, rdaruwala, and bkremmli: Pytroll/Satpy: Version 0.59.0 (2025/11/07), Zenodo,
https://doi.org/10.5281/zenodo.17552484, 2025.

Rast, M., Nieke, J., Adams, J., Isola, C., and Gascon, F.: Copernicus Hyperspectral Imaging Mission for the Environment
(Chime), in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 108-111, ISSN 2153-7003,
https://doi.org/10.1109/IGARSS47720.2021.9553319, 2021.

Reuland, F. and Brandt, A.: Large-Scale Controlled Methane Releases for Satellite-Based Detection and Emission Quantification of Point-
Sources, Ph.D. thesis, 2025.

Reuland, F., Adams, T., Galvin, K., Kort, E. A., and Brandt, A. R.: Large-Scale Controlled Methane Releases for Satellite-Based Detection
and Emission Quantification of Point-Sources, https://doi.org/10.25740/gh001qt3946, 2025.

Roger, J., Guanter, L., Gorrofio, J., and Irakulis-Loitxate, I.: Exploiting the Entire Near-Infrared Spectral Range to Improve the De-
tection of Methane Plumes with High-Resolution Imaging Spectrometers, Atmospheric Measurement Techniques, 17, 1333-1346,
https://doi.org/10.5194/amt-17-1333-2024, 2024.

Sadavarte, P., Pandey, S., Maasakkers, J. D., Lorente, A., Borsdorff, T., Denier van der Gon, H., Houweling, S., and Aben, I.: Methane
Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations, Environmental Science &
Technology, 55, 16 573-16 580, https://doi.org/10.1021/acs.est.1c03976, 2021.

Schaum, A.: A Uniformly Most Powerful Detector of Gas Plumes against a Cluttered Background, Remote Sensing of Environment, 260,
112 443, https://doi.org/10.1016/j.rse.2021.112443, 2021.

Sherwin, E. D., Rutherford, J. S., Chen, Y., Aminfard, S., Kort, E. A., Jackson, R. B., and Brandt, A. R.: Single-Blind Vali-
dation of Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions, Scientific Reports, 13, 3836,
https://doi.org/10.1038/s41598-023-30761-2, 2023.

Sherwin, E. D., El Abbadi, S. H., Burdeau, P. M., Zhang, Z., Chen, Z., Rutherford, J. S., Chen, Y., and Brandt, A. R.: Single-
Blind Test of Nine Methane-Sensing Satellite Systems from Three Continents, Atmospheric Measurement Techniques, 17, 765-782,
https://doi.org/10.5194/amt-17-765-2024, 2024.

Storch, T., Honold, H.-P., Chabrillat, S., Habermeyer, M., Tucker, P., Brell, M., Ohndorf, A., Wirth, K., Betz, M., Kuchler, M., Miihle, H.,
Carmona, E., Baur, S., Miicke, M., Low, S., Schulze, D., Zimmermann, S., Lenzen, C., Wiesner, S., Aida, S., Kahle, R., Willburger, P.,
Hartung, S., Dietrich, D., Plesia, N., Tegler, M., Schork, K., Alonso, K., Marshall, D., Gerasch, B., Schwind, P., Pato, M., Schneider, M.,
de los Reyes, R., Langheinrich, M., Wenzel, J., Bachmann, M., Holzwarth, S., Pinnel, N., Guanter, L., Segl, K., Scheffler, D., Foerster,
S., Bohn, N., Bracher, A., Soppa, M. A., Gascon, F., Green, R., Kokaly, R., Moreno, J., Ong, C., Sornig, M., Wernitz, R., Bagschik, K.,

28



555

560

565

570

575

580

585

https://doi.org/10.5194/egusphere-2025-6127
Preprint. Discussion started: 11 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Reintsema, D., La Porta, L., Schickling, A., and Fischer, S.: The EnMAP Imaging Spectroscopy Mission towards Operations, Remote
Sensing of Environment, 294, 113 632, https://doi.org/10.1016/j.rse.2023.113632, 2023.

Thompson, D. R., Leifer, I., Bovensmann, H., Eastwood, M., Fladeland, M., Frankenberg, C., Gerilowski, K., Green, R. O., Kratwurst, S.,
Krings, T., Luna, B., and Thorpe, A. K.: Real-Time Remote Detection and Measurement for Airborne Imaging Spectroscopy: A Case
Study with Methane, Atmospheric Measurement Techniques, 8, 4383-4397, https://doi.org/10.5194/amt-8-4383-2015, 2015.

Thorpe, A. K., Roberts, D. A., Bradley, E. S., Funk, C. C., Dennison, P. E., and Leifer, I.: High Resolution Mapping of Methane Emissions
from Marine and Terrestrial Sources Using a Cluster-Tuned Matched Filter Technique and Imaging Spectrometry, Remote Sensing of
Environment, 134, 305-318, https://doi.org/10.1016/j.rse.2013.03.018, 2013.

Thorpe, A. K., Frankenberg, C., and Roberts, D. A.: Retrieval Techniques for Airborne Imaging of Methane Concentrations Us-
ing High Spatial and Moderate Spectral Resolution: Application to AVIRIS, Atmospheric Measurement Techniques, 7, 491-506,
https://doi.org/10.5194/amt-7-491-2014, 2014.

Thorpe, A. K., Green, R. O., Thompson, D. R., Brodrick, P. G., Chapman, J. W., Elder, C. D., Irakulis-Loitxate, 1., Cusworth, D. H., Ayasse,
A. K., Duren, R. M., Frankenberg, C., Guanter, L., Worden, J. R., Dennison, P. E., Roberts, D. A., Chadwick, K. D., Eastwood, M. L.,
Fahlen, J. E., and Miller, C. E.: Attribution of Individual Methane and Carbon Dioxide Emission Sources Using EMIT Observations from
Space, Science Advances, 9, eadh2391, https://doi.org/10.1126/sciadv.adh2391, 2023.

Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., and Huang, Y.: Quantifying Methane Point Sources
from Fine-Scale Satellite Observations of Atmospheric Methane Plumes, Atmospheric Measurement Techniques, 11, 5673-5686,
https://doi.org/10.5194/amt-11-5673-2018, 2018.

Varon, D. J., McKeever, J., Jervis, D., Maasakkers, J. D., Pandey, S., Houweling, S., Aben, 1., Scarpelli, T., and Jacob, D. J.: Satellite
Discovery of Anomalously Large Methane Point Sources From Oil/Gas Production, Geophysical Research Letters, 46, 13 507-13 516,
https://doi.org/10.1029/2019GL083798, 2019.

Varon, D. J., Jacob, D. J., Jervis, D., and McKeever, J.: Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with
GHGSat-D Satellite Observations, Environmental Science & Technology, 54, 10246-10 253, https://doi.org/10.1021/acs.est.0c01213,
2020.

Zhang, X.: SRON-ESG/HyperGas: Version 0.3.5 (2026/01/05), Zenodo, https://doi.org/10.5281/zenodo.18154957, 2026a.

Zhang, X.: Dataset for "HyperGas1.0: A Python Package for Analyzing Hyperspectral Data for Greenhouse Gases from Retrieval to Emission
Rate Quantification", https://doi.org/10.5281/zenodo.18162027, 2026b.

Zhang, X.: Zxdawn/HyperGas-GMD: Version 0.6 (2026/01/06), Zenodo, https://doi.org/10.5281/zenodo.18162804, 2026c.

Zhang, X.: Wind Dataset for "HyperGas1.0: A Python Package for Analyzing Hyperspectral Data for Greenhouse Gases from Retrieval to
Emission Rate Quantification", https://doi.org/10.5281/zenodo.18166596, 2026d.

Zhang, X., van der A, R., Ding, J., Eskes, H., van Geffen, J., Yin, Y., Anema, J., Vagasky, C., L. Lapierre, J., and Kuang, X.: Spaceborne Ob-
servations of Lightning NO; in the Arctic, Environmental Science & Technology, 57, 2322-2332, https://doi.org/10.1021/acs.est.2c07988,
2023.

Zhang, X., Maasakkers, J. D., Roger, J., Guanter, L., Sharma, S., Lama, S., Tol, P, Varon, D. J., Cusworth, D. H., Howell, K., Thorpe, A. K.,
Brodrick, P. G., and Aben, I.: Global Identification of Solid Waste Methane Super Emitters Using Hyperspectral Satellites, Environmental
Science & Technology, 59, 18 134-18 145, https://doi.org/10.1021/acs.est.4c14196, 2025.

29



