



1      **Interpretable Machine Learning Quantifies Composition and Size**

2      **Controls on Aerosol Spectral Absorption**

3

4      **Wenfang Wang<sup>1</sup>, Pengfei Tian<sup>1,2\*</sup>, Shuhua Zeng<sup>1</sup>, Yifei Zhang<sup>1</sup>, Zeren Yu<sup>1</sup>, Chen**

5      **Cui<sup>1</sup>, Yunfei Wu<sup>3</sup>, Min Chen<sup>1\*</sup>, Lei Zhang<sup>1,2</sup>**

6      <sup>1</sup> Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College  
7      of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.

8      <sup>2</sup> Collaborative Innovation Center for Western Ecological Safety, Lanzhou University,  
9      Lanzhou 730000, China.

10     <sup>3</sup> State Key Laboratory of Atmospheric Environment and Extreme Meteorology,  
11     Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,  
12     China.

13     Corresponding author: P. Tian (tianpf@lzu.edu.cn) and M. Chen (chenmin@lzu.edu.cn)

14



## 15 Abstract

16 The spectral dependence of aerosol absorption, characterized by the absorption  
17 Ångström exponent (AAE), strongly influences radiative effects, yet the relative  
18 importance of controlling factors remains poorly quantified. We integrate multisource  
19 observations with an interpretable machine-learning framework (Shapley Additive  
20 Explanations, SHAP) to disentangle the roles of chemical composition and particle size  
21 in shaping AAE and to evaluate radiative impacts. Field observation in Beijing reveal  
22 that near-surface AAE is predominantly influenced by higher fine mineral dust and  
23 water-soluble inorganic ions fractions. Multi-year columnar data identify dust loading  
24 as the dominant factor, followed by carbonaceous aerosols. The fine-mode radius  
25 accounts for 29% of size parameters cumulative importance and ranks closely with  
26 black carbon. SHAP diagnostics highlight that columnar AAE contributes to radiative  
27 forcing at the top of the atmosphere (TOA) comparably to single scattering albedo  
28 (SSA), while its impact is clearly weaker at the bottom of the atmosphere and in the  
29 atmosphere. These findings help clarify AAE determinants and reduce uncertainties in  
30 aerosol radiative effect assessments.

31



## 32 1 Introduction

33 Light-absorbing aerosols (LAAs), primarily black carbon (BC), brown carbon  
34 (BrC), and mineral dust, significantly influence regional and global climate by  
35 absorbing solar radiation (Bahadur et al., 2012; Cappa et al., 2016; Kok et al., 2017;  
36 Nishant et al., 2019). For instance, BC contributed a net positive effective radiative  
37 forcing of  $0.11 \text{ W}\cdot\text{m}^{-2}$  during 1750–2019, with a wide uncertainty range from  $-0.20$  to  
38  $+0.42 \text{ W}\cdot\text{m}^{-2}$  (Intergovernmental Panel On Climate Change (Ipcc), 2023), reflecting  
39 limited observational constraints on aerosol optical/microphysical properties and their  
40 inaccurate representation in models (Gliß et al., 2021; Lee et al., 2016). A practical  
41 diagnostic for the spectral shape of absorption is the Absorption Ångström Exponent  
42 (AAE) (Ångström, 1929; Lewis et al., 2008). For pure BC, AAE is theoretically close  
43 to 1.0, but observations show a range of 0.6–1.6 (Kirchstetter et al., 2004; Lack and  
44 Cappa, 2010; Gyawali et al., 2012; Chakrabarty et al., 2013; Wang et al., 2021). BrC  
45 and mineral dust exhibit relatively stronger absorption in the ultraviolet and visible  
46 spectral wavelengths, typically yielding AAE values greater than 2.0 (Russell et al.,  
47 2010; Park et al., 2018; Zhang et al., 2020; Cuesta-Mosquera et al., 2024). Because  
48 AAE encodes source and process information that governs aerosol absorption from  
49 ultraviolet to the near-infrared wavelength range, tighter constraints on AAE can help  
50 reduce uncertainties in aerosol radiative effects (Cazorla et al., 2013; Lack and  
51 Langridge, 2013; Sand et al., 2021).



52 AAE varies with particle size distribution, chemical composition, and mixing state  
53 (Scarnato et al., 2013; Li et al., 2016; Schuster et al., 2016a; Sotiropoulou et al., 2025).  
54 For instance, AAE may decrease as BC cores grow or as aggregates become more  
55 compact during aging processes (Liu et al., 2018). Recent numerical simulation further  
56 indicates that secondary organic coatings can increase AAE, with sensitivity to coating  
57 thickness (Zhang et al., 2025). In contrast, photochemical bleaching lowers BrC  
58 ultraviolet absorption and AAE (Wang et al., 2019; Li et al., 2025). Heterogeneous  
59 aging of long-range-transported dust may enhance absorption, also affecting AAE (Tian  
60 et al., 2018). The magnitudes and signs of these effects depend on location, season, and  
61 processing history, complicating both measurements and modeling and propagating to  
62 radiative forcing uncertainty (Sand et al., 2021; Li et al., 2022; Ponczek et al., 2022).

63 Studying the impact of individual factors on AAE is relatively straightforward.  
64 Previous studies have already examined the effects of particle size, chemical  
65 composition, and mixing state on AAE in isolation (Wu et al., 2015; Schuster et al.,  
66 2016b; Li et al., 2024). However, quantitatively attributing the relative contributions of  
67 particle size and chemical composition to AAE remains a challenging task due to  
68 nonlinearity and collinearity among predictors. For example, observations show that  
69 composition appears dominant when the shape of size distribution is quasi-stationary  
70 (Utry et al., 2014), whereas Mie-theory studies highlight the role of the imaginary  
71 refractive index of organics over size in explaining absorption changes (Yang et al.,  
72 2025). Although these studies effectively highlight the roles of particle size and



73 chemical composition, they lack quantitative assessments of their relative importance.

74 The Shapley Additive exPlanations (SHAP) method offers a principled framework  
75 for feature attribution in machine learning predictions and has been widely adopted in  
76 atmospheric sciences, such as boundary-layer height inversion, ozone formation and  
77 cloud-condensation-nuclei studies (Peng et al., 2023; Tao et al., 2024; Wang et al.,  
78 2025a). SHAP analysis has also been applied to aerosol absorption studies to precisely  
79 quantify the relative contribution of various chromophores to BrC absorption,  
80 providing a mechanistic understanding of its key drivers (Wang et al., 2024). Its  
81 potential to predict AAE and quantify the relative contributions of individual factors  
82 remains unexplored. Addressing this gap would offer an interpretable, data-driven  
83 perspective on aerosol spectral absorption.

84 This study aims to quantify the relative importance of chemical composition and  
85 particle size influencing AAE and to elucidate the critical role of AAE in radiative  
86 effects. We applied machine learning methods for columnar AAE ( $AAE_{col}$ ), and  
87 assessed how  $AAE_{col}$  influences aerosol direct radiative forcing (ADRF) and aerosol  
88 radiative forcing efficiency (ARFE). During the modeling process, an ensemble of  
89 models was initially trained, after which the optimal model was selected to predict  
90 AAE<sub>col</sub>, ADRF, and ARFE, with the SHAP algorithm used for interpretative analysis.

## 91 **2 Methods**

### 92 **2.1 Field Campaign and Data Processing**



93        An intensive observation campaign focusing on aerosol properties was conducted  
94        in urban Beijing, China, from 16 December 2023 to 15 January 2024. Online and offline  
95        instruments were deployed on the rooftop of the Institute of Atmospheric Physics,  
96        Chinese Academy of Sciences (Building #3; 39.98°N, 116.39°E), approximately 45 m  
97        above ground level. All online instruments were housed in a temperature-controlled  
98        room maintained at ~20 °C to ensure measurement stability, and sampling lines were  
99        equipped with Nafion dryers to minimize the influence of ambient humidity.

100        **2.1.1 In Situ Online Aerosol Observations**

101        Aerosol absorption coefficients ( $b_{abs,\lambda}$ ) at 375, 532, and 870 nm were measured  
102        using photoacoustic extinctionometers (PAX, DMT Inc., USA). The PAX measures  
103        aerosol light absorption using the photoacoustic technique, in which absorbed laser  
104        energy is converted into periodic heating of the surrounding gas, generating an acoustic  
105        pressure wave in an acoustic resonator that is detected by a sensitive microphone (Truex  
106        and Anderson, 1979). The light absorption ( $b_{abs,pax}$ ) can be calculated as:

$$107 \quad b_{abs,pax} = \frac{P_{mic} \times A_{res} \times \pi^2 \times f_{res}}{P_L \times (\gamma - 1) \times Q} \quad (1)$$

108        where  $P_{mic}$  and  $P_L$  are the pressure of the microphone and the laser power,  
109        respectively;  $A_{res}$ ,  $f_{res}$  and  $Q$  indicate the cross-sectional area, resonance frequency,  
110        and quality factor of the resonator;  $\gamma$  is the isobaric and isosteric specific heat ratio.  
111        Then the  $b_{abs,\lambda}$  is obtained by subtracting the background absorption measured with  
112        particle-free air from  $b_{abs,pax}$ . In addition, the PAX measures aerosol scattering with  
113        an integrated wide-angle reciprocal nephelometer.



114        Prior to deployment, each PAX was calibrated following the procedure described  
115        in Wu et al., 2015: (i) the scattering channel was calibrated using high-concentration  
116        ammonium sulfate aerosol by regressing the extinction coefficient ( $b_{ext}$ ) derived from  
117        laser power attenuation against the instrument-recorded scattering coefficient ( $b_{sca}$ ).  
118        The scattering calibration factor was then adjusted by applying the regression slope as  
119        a multiplicative correction; (ii) the absorption channel was calibrated using high-  
120        concentration Aquadag aerosol by regressing ( $b_{ext} - b_{sca}$ ) against the instrument-  
121        recorded photoacoustic absorption. The absorption calibration factor was then updated  
122        by dividing it by the regression slope.

123        The near-surface aerosol absorption Ångström exponent (AAE<sub>sfc</sub>) was calculated  
124        as:

$$125 \quad AAE_{sfc} = -\frac{\log(b_{abs,\lambda_1}) - \log(b_{abs,\lambda_2})}{\log(\lambda_1) - \log(\lambda_2)} \quad (2)$$

126        where  $\lambda_1 = 375$  nm,  $\lambda_2 = 870$  nm. Hourly PM<sub>2.5</sub> (particle matters with an aerodynamic  
127        diameter  $\leq 2.5 \mu\text{m}$ ) mass concentrations were obtained from the China National  
128        Environmental Monitoring Network for the Beijing urban site. These datasets were  
129        used to calculate mass absorption efficiency (MAE) of PM<sub>2.5</sub>:

$$130 \quad MAE_\lambda = \frac{b_{abs,\lambda}}{PM_{2.5}} \quad (3)$$

131        Size distributions were measured with a scanning mobility particle sizer (SMPS,  
132        Model 3082, TSI Inc., 8.8–310.6 nm, Stokes diameter) and an aerodynamic particle  
133        sizer (APS, Model 3321, TSI Inc., 0.54–19.8  $\mu\text{m}$ , aerodynamic diameter), with SMPS  
134        data converted to aerodynamic diameter (Text S1) (Shang et al., 2018). To ensure



135 measurement accuracy, the flow systems of the SMPS and APS were periodically  
136 checked and calibrated by the manufacturer (TSI Inc.) through regular return-service  
137 calibration. In addition, hourly meteorological parameters (wind speed and direction,  
138 temperature, and relative humidity) were obtained from the 47 m meteorological tower  
139 at the Institute of Atmospheric Physics.

140 **2.1.2 Offline Aerosol Sampling**

141 Offline PM<sub>2.5</sub> samples were collected on quartz-fiber filters (90 mm diameter;  
142 Whatman 1855-090). Prior to sampling, quartz-fiber filters were pre-cleaned to  
143 minimize filter background. Briefly, filter cassettes were rinsed with absolute ethanol  
144 and air-dried, and aluminum-foil liners cut to the filter size were pre-baked at 550 °C  
145 for 3 h to remove residual carbon. The quartz filters were sequentially soaked in  
146 ultrapure water (5 min × 3 cycles, followed by 2 h × 2 cycles), oven-dried at 150 °C for  
147 1 h, and then prebaked at 550 °C for 5 h to reduce the influence of adsorbed organic  
148 and inorganic materials. After cooling, the filters were wrapped in prebaked aluminum  
149 foil and conditioned for 48 h in a constant temperature and humidity environment prior  
150 to gravimetric determination. Then the pre-sampling filter mass was measured using an  
151 electronic microbalance (BSA124S-CW, Sartorius; readability ±0.1 mg). Sampling was  
152 conducted using a medium-volume air sampler (Model 2030, Laoshan Electronic  
153 Instrument Co., Ltd.) operated at 100 L·min<sup>-1</sup> and equipped with a PM<sub>2.5</sub> inlet. The inlet  
154 was installed at approximately 2 m above ground level. Daytime samples were collected  
155 from 09:00 to 20:30, and nighttime samples from 21:00 to 08:30 the following day.



156 After sampling, all filters were analyzed for major chemical compositions,  
157 including water-soluble inorganic ions ( $\text{Na}^+$ ,  $\text{K}^+$ ,  $\text{NH}_4^+$ ,  $\text{Ca}^{2+}$ ,  $\text{Mg}^{2+}$ ,  $\text{Cl}^-$ ,  $\text{NO}_3^-$ , and  $\text{SO}_4^{2-}$ )  
158 measured by ion chromatography (881 Compact IC Pro, Metrohm; and ICS-1500,  
159 Dionex Inc.), metallic elements (Al, Ca, Mg, Fe, and Ti) determined by inductively  
160 coupled plasma–atomic emission spectrometry (ICP-AES; iCAP 7400, Thermo), and  
161 organic carbon (OC), and elemental carbon (EC) quantified using the thermal/optical  
162 carbon analyzer (DRI Model 2015, USA) based on the thermal/optical reflectance  
163 (TOR) method (Chow et al., 2007). The chemical analysis process is described in detail  
164 in Supplementary Text S2.

165  $\text{PM}_{2.5}$  was reconstructed as the sum of organic matter (OM=1.6×OC) (Guinot et  
166 al., 2007), EC, non-dust water-soluble ions (nd-WSII, and fine mineral dust (FMD)  
167 derived from crustal elements (Malm et al., 1994; Tian et al., 2023), showing good  
168 agreement with measured  $\text{PM}_{2.5}$  ( $r = 0.82$ ). Here, nd-WSII was defined as the sum of  
169  $\text{K}^+$ ,  $\text{NH}_4^+$ ,  $\text{NO}_3^-$ , and  $\text{SO}_4^{2-}$ , while  $\text{Na}^+$ ,  $\text{Ca}^{2+}$ ,  $\text{Mg}^{2+}$ , and  $\text{Cl}^-$  were excluded.  $\text{Ca}^{2+}$  and  
170  $\text{Mg}^{2+}$  were treated as dust-related species,  $\text{Na}^+$  was excluded due to generally elevated  
171 blanks associated with quartz-fiber filters and glassware, and  $\text{Cl}^-$  was excluded given  
172 its strong association with  $\text{Mg}^{2+}$  ( $r = 0.77$ , Table S1). The FMD was defined as follows:

$$173 [FMD] = 2.20[\text{Al}] + 2.49[\text{Si}] + 1.63[\text{Ca}] + 2.42[\text{Fe}] + 1.94[\text{Ti}] \quad (4)$$

174 where  $[\text{Si}] = 1.5 [\text{Al}]$ .

## 175 2.2 Multiple Linear Regression

176 The influence of particle size and chemical composition on  $\text{AAE}_{\text{sfc}}$  was assessed



177 using a standardized multiple linear regression:

178  $\widehat{AAE}_{sfc} = a + b \times \widehat{FMD} + c \times \widehat{nd-WSII} + d \times \widehat{D_{SMPS}} + e \times \widehat{D_{APS}}$  (5)

179 where  $\widehat{AAE}_{sfc}$  denotes the standardized AAE<sub>sfc</sub>;  $a$  represents the intercept term,  
180 encompassing EC, OM, and other potential influencing factors not explicitly accounted  
181 for;  $b$ ,  $c$ ,  $d$ , and  $e$  are regression coefficients;  $\widehat{FMD}$ ,  $\widehat{nd-WSII}$ ,  $\widehat{D_{SMPS}}$ , and  $\widehat{D_{APS}}$   
182 are standardized variables of FMD fraction, nd-WSII fraction, and mean diameters from  
183 SMPS and APS, respectively. Offline chemical composition data were temporally  
184 matched to the corresponding online measurements based on sampling periods. Due to  
185 power outage on 27 December 2023 and 3 January 2024, daytime data for 27 December  
186 and both daytime and nighttime data for 3 January were unavailable.

187 **2.3 AERONET Data**

188 We used data from the Beijing Aerosol Robotic Network (AERONET) site ( $39.98^\circ$   
189 N,  $116.38^\circ$  E). Level 2.0 quality-assured Version 3 inversion products were selected.  
190 Key parameters include aerosol absorption optical depth (AAOD) at 440, 675, 870, and  
191 1020 nm to calculate columnar AAE (AAE<sub>col</sub>):

192  $AAOD_\lambda = k \times \lambda^{-AAE_{col}}$  (6)

193 where  $k$  is a constant. In addition, aerosol size-related parameters were obtained,  
194 including volume size distributions for radii in the  $0.05$ – $15.00$   $\mu\text{m}$  range, mean radii of  
195 fine-mode and coarse-mode particles ( $R_{\text{fine}}$ ,  $R_{\text{coarse}}$ ), as well as volume concentrations  
196 of fine-mode ( $0.05$ – $0.60$   $\mu\text{m}$ ,  $\text{vol}_{\text{fine}}$ ) (Sinyuk et al., 2020) and total particles ( $\text{vol}_{\text{total}}$ ).

197 The fine-mode fraction (FMF) was then calculated as:



198

$$FMF = \frac{vol_{fine}}{vol_{total}} \quad (7)$$

199

To investigate the influence of chemical composition on  $AAE_{col}$ , we used the  
200 chemical composition dataset derived from AERONET inversions (Zhang et al., 2024),  
201 including black carbon (BC), brown carbon (BrC), coarse-mode absorbing soluble  
202 matter (CAI, representing coarse absorbing dust), coarse-mode non-absorbing soluble  
203 matter (CNAI, representing coarse non-absorbing dust and aged carbonaceous aerosols),  
204 and fine-mode non-absorbing soluble matter (FNAI, representing fine non-absorbing  
205 dust and organic carbon) (Zhang et al., 2024).

206

To further assess the radiative impacts of aerosols, we also employed AERONET  
207 shortwave instantaneous aerosol direct radiative forcing (ADRF) and aerosol radiative  
208 forcing efficiency (ARFE) data, where ARFE is defined as ADRF per unit aerosol  
209 optical depth (AOD) at 550 nm, reported at the top of the atmosphere (TOA), bottom  
210 of the atmosphere (BOA), and in the atmosphere (ATM) (Holben et al., 1998).

211

## 2.4 Shapley Additive Explanations (SHAP)

212

To quantify how particle size and chemical composition control the  $AAE_{col}$ , we  
213 trained and compared three ensemble tree-based regressors: Extreme Gradient  
214 Boosting (XGBoost), Random Forest (RF), and Categorical Boosting (CatBoost). Each  
215 model was trained using seven predictor variables, including five chemical  
216 compositions (BrC, BC, CAI, CNAI, and FNAI), and four size parameters ( $R_{fine}$ ,  $R_{coarse}$ ,  
217  $vol_{fine}$ , and volume concentrations of coarse-mode ( $vol_{coarse}$ )). Model performance was  
218 evaluated using a consistent training–testing split and quantified by the coefficient of



219 determination ( $R^2$ ), root mean square error (RMSE), and mean absolute error (MAE).

220 The CatBoost model in our case was subsequently adopted for further interpretation

221 (Fig. S7). SHapley Additive exPlanations (SHAP) analysis was applied to decompose

222 the model output into additive feature contributions, enabling quantitative assessment

223 of the relative contribution and sensitivity of individual aerosol composition and size

224 parameters in determining. Predicted-versus-observed diagnostics are shown in

225 Supplementary Fig. S7.

226 Similarly, to evaluate aerosol radiative impacts, XGBoost, RF, and CatBoost

227 models also were trained using distinct predictor sets for different radiative metrics. For

228 aerosol direct radiative forcing (ADRF), five optical properties (AOD, single scattering

229 albedo (SSA), asymmetry parameter (g), surface albedo (SA), and  $AAE_{col}$ ) were used

230 as inputs. For radiative forcing efficiency (ARFE), the target definition ( $ARFE =$

231  $ADRF/AOD$ ) was kept unchanged; however, AOD was included during model fitting

232 together with SSA, g, SA, and  $AAE_{col}$  so that the models could learn any residual

233 nonlinearity and interactions involving AOD. Performance was again quantified by  $R^2$ ,

234 RMSE, and MAE on a consistent split. CatBoost in our case was retained as the best-

235 performing model across TOA, BOA, and ATM. Predicted and observed comparisons

236 are provided in Supplementary Fig. S8-S9.

237 To attribute ARFE variations while controlling for AOD, we employed SHAP with

238 a scenario-based conditioning approach. Specifically, we recomputed SHAP values on

239 the held-out test set after fixing AOD to four levels (25th, 50th, 75th percentiles, and



240 mean), computed from the training set to avoid information leakage, while leaving all  
241 other predictors unchanged. This yields SHAP attributions for SSA, g, SA, and  $AAE_{col}$   
242 conditional on AOD at representative states. (The 50th percentile case is shown in the  
243 main text, others in Supplementary). For ADRF, SHAP was computed in the standard  
244 manner using all five predictors (AOD, SSA, g, SA,  $AAE$ ) without conditioning.

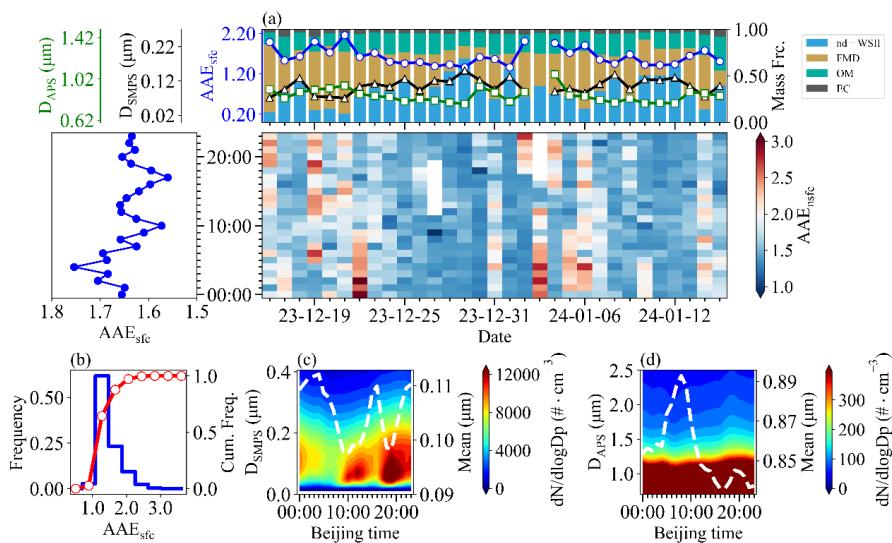
### 245 **3 Results and Discussion**

#### 246 **3.1 Aerosol Characteristics During the Field Campaign**

247 During the campaign, aerosol absorption decreased systematically with  
248 wavelength (375, 532, and 870 nm) (Fig. S2d), demonstrating typical wavelength-  
249 dependent characteristics. The corresponding mass absorption efficiencies were  
250 relatively low ( $0.49 \pm 0.24$ ,  $0.21 \pm 0.08$ , and  $0.12 \pm 0.04 \text{ m}^2 \cdot \text{g}^{-1}$ ), reflecting the  
251 dominance of nd-WSII, which accounted for 42.9% of  $\text{PM}_{2.5}$  mass (Fig. 1a). Fig. 1a  
252 also showed that variations in near-surface  $AAE$  ( $AAE_{sfc}$ ) were closely linked to  
253 changes in aerosol chemical composition mass fraction. Periods with elevated FMD  
254 fractions generally coincided with higher  $AAE_{sfc}$ , whereas intervals dominated by nd-  
255 WSII corresponded to lower values. The frequency distribution further indicates that  
256  $AAE_{sfc}$  ranged from 0.90 to 3.0, and was most frequently 1.10–1.50 (mean  $1.28 \pm 0.39$ ;  
257 Fig. 1b). Such elevated values likely resulted from winter heating emissions (Tian et al.,  
258 2019; Yan et al., 2017) and mineral dust contributions (Fig. 1a), both known to raise  
259  $AAE$  (Liu et al., 2018).



260 Both absorption coefficients and  $\text{AAE}_{\text{sfc}}$  exhibited pronounced diurnal variability.  
261 Absorption coefficients were consistently higher absorption at night and a peak around  
262 23:00 (Fig. S2), driven by reduced tropospheric boundary layer height, lower afternoon  
263 temperatures and wind speeds (Fig. S3), and enhanced emissions from nighttime traffic  
264 and heating(Guo et al., 2016; Zhao et al., 2019).  $\text{AAE}_{\text{sfc}}$  showed a clear night-high and  
265 day-low pattern, consistent with the evolution of particle size distributions. Fine-mode  
266 number concentrations derived from scanning mobility particle sizer (SMPS) increased  
267 during the morning rush hours and nighttime residential activity (Fig. 1c). By contrast,  
268 coarse-mode diameters from aerodynamic particle sizer spectrometer (APS) were larger  
269 in the early morning and decreased during the day (Fig. 1d). These results demonstrate  
270 that  $\text{AAE}_{\text{sfc}}$  was co-regulated by both composition and size, providing the observational  
271 evidence for the subsequent machine-learning analysis to quantify their relative  
272 contributions and radiative implications.



273



274 **Figure 1. Aerosol absorption characteristics during the campaign.** (a) Time series  
275 of mean particle diameters derived from SMPS and APS, mass fractions of organic  
276 matter (OM), elemental carbon (EC), non-dust water-soluble inorganic ions (nd-WSII),  
277 and fine mineral dust (FMD), together with daily averaged near-surface AAE (AAE<sub>sfc</sub>).  
278 (b) Frequency distribution of AAE<sub>sfc</sub>. (c-d) Diurnal variations of aerosol particle  
279 number size distributions from SMPS (c) and APS (d).

280 **3.2 Influence of Composition and Size on Near-surface AAE**

281 The EC mass fraction showed no correlation with AAE<sub>sfc</sub> ( $r = 0.09$ ,  $p = 0.49$ ; Fig.  
282 2a), which can be attributed to the weak wavelength dependence of EC absorption  
283 (Samset et al., 2018) and its relatively small mass contribution (~4%) (Fig. 2a).  
284 Similarly, the OM mass fraction is not significantly correlated with AAE<sub>sfc</sub> ( $r = -0.11$ ,  
285  $p = 0.40$ ; Fig. 2a). In contrast to study dominated by biomass burning, where light-  
286 absorbing organic carbon can account for > 50% of the mass fraction and strongly  
287 enhance AAE (Wang et al., 2021). During the Beijing campaign, however, OM  
288 contributed only ~19% of total PM<sub>2.5</sub> mass and BrC fractions were relatively low.  
289 Although BrC exhibits intrinsically high AAE values (Laskin et al., 2015; Moosmüller  
290 et al., 2011), its impact was diminished in the mixed aerosol matrix due to the influence  
291 of other dominant compositions.

292 We observed a statistically significant negative correlation between AAE<sub>sfc</sub> and  
293 carbonaceous aerosol AAE (AAE<sub>CA</sub>) (Fig. 2b), indicating that the non-carbonaceous  
294 aerosol had a significantly stronger role in shaping the absorption spectral dependence



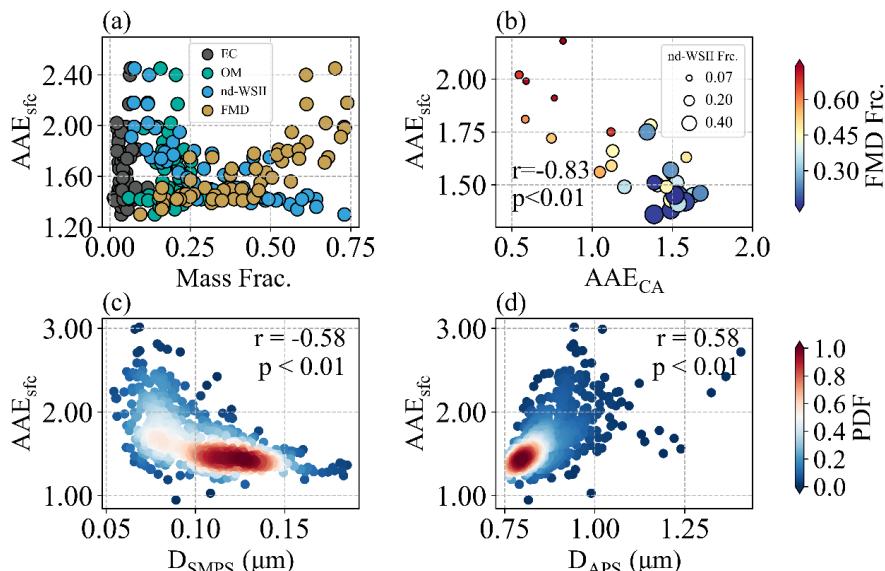
295 under complex pollution conditions. Due to nitrogen dioxide ( $\text{NO}_2$ ) concentrations were  
296 elevated at night (Fig. S4), which can interfere with PAX instruments, particularly at  
297 shorter wavelengths (Arnott et al., 2000; Gyawali et al., 2012). Therefore, we restrict  
298 the analysis here to daytime data (Fig S5). This pattern therefore cannot be ascribed  
299 simply to inter-instrument discrepancies.

300 AAE<sub>sfc</sub> exhibited a significant positive correlation with the mass fraction of FMD  
301 ( $r = 0.79, p < 0.01$ ) and a negative correlation with nd-WSII ( $r = -0.78, p < 0.01$ ) (Fig.  
302 2a). The AAE<sub>sfc</sub> enhancement associated with FMD can be attributed to metal oxides  
303 such as hematite and goethite, which strongly absorb in the UV wavelengths and  
304 steepen the spectral dependence (Bi et al., 2016). By contrast, nd-WSII acted as non-  
305 absorbing diluents, suppressing the overall wavelength dependence. Although the  
306 "lensing effect" of nd-WSII can enhance the AAE<sub>CA</sub> (Cappa et al., 2012; Zhang et al.,  
307 2025), due to the very low contribution of carbonaceous components to total PM<sub>2.5</sub> mass,  
308 preventing any observable positive correlation between AAE<sub>sfc</sub> and the nd-WSII mass  
309 fraction.

310 Particle size also played a critical role. AAE<sub>sfc</sub> was negatively associated with the  
311 fine-mode mean diameter from SMPS ( $D_{\text{SMPS}}$ ,  $r = -0.58$ ; Fig. 2c) and positively  
312 associated with the coarse-mode mean diameter from APS ( $D_{\text{APS}}$ ,  $r = 0.58$ ; Fig. 2d).  
313 Standardized multiple regression corroborated these effects, yielding coefficients of –  
314 0.02 for smaller particles and 0.44 for larger particles. Regression coefficients for  
315 composition were likewise consistent with the bivariate analysis: FMD had a positive



316 effect on  $\text{AAE}_{\text{sfc}}$  (coefficient is 0.35), whereas nd-WSII had a negative effect  
317 (coefficient is  $-0.17$ ). Particle size covaried with composition:  $D_{\text{APS}}$  was positively  
318 correlated with the FMD mass fraction ( $r = 0.64$ ) and negatively with nd-WSII ( $r = -$   
319 0.64), while  $D_{\text{SMPS}}$  was strongly positively correlated with nd-WSII ( $r = 0.89$ ) and  
320 negatively with FMD ( $r = -0.87$ ) (Fig. S6). Together, these relationships indicate that  
321 larger particles coincide with higher FMD and lower nd-WSII, enhancing  $\text{AAE}_{\text{sfc}}$ ,  
322 whereas smaller particles favor inorganic salts and reduced dust contributions, lowering  
323  $\text{AAE}_{\text{sfc}}$ . Overall,  $\text{AAE}_{\text{sfc}}$  was not governed by carbonaceous aerosols alone but rather  
324 by the coupled influence of mineral dust, inorganic matter, and particle size  
325 distributions.



326

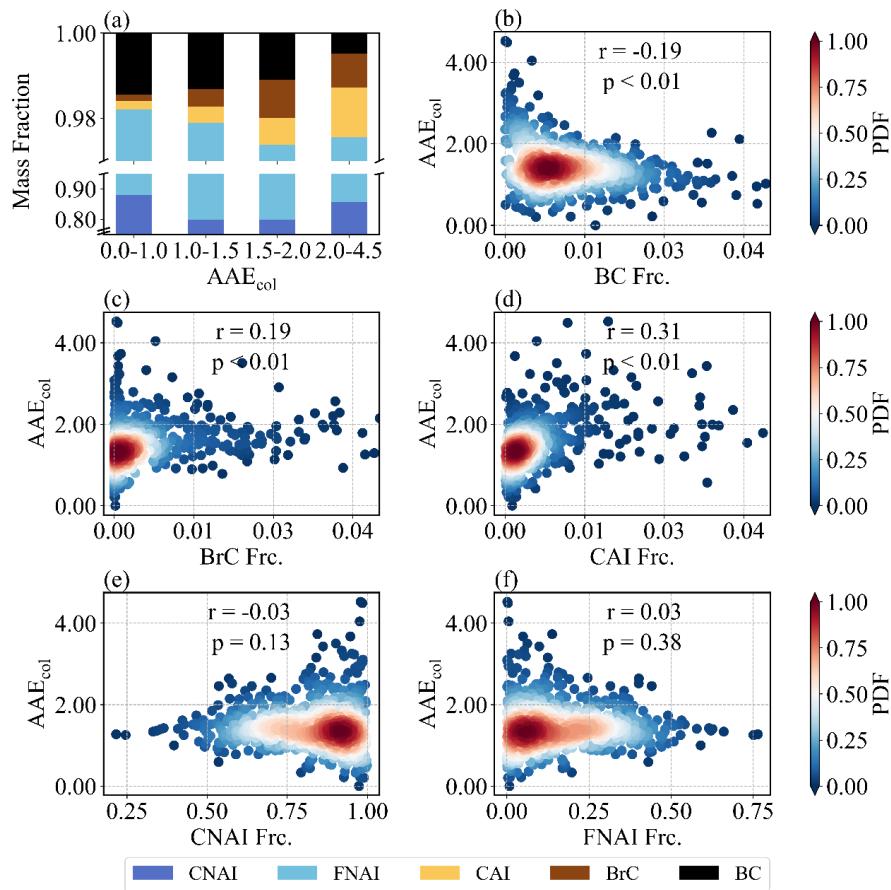
327 **Figure 2. Relationships of near-surface absorption Ångström exponent ( $\text{AAE}_{\text{sfc}}$ )**  
328 **with chemical composition and particle size.** (a) Scatter plots of chemical mass  
329 concentration fraction and total aerosol  $\text{AAE}_{\text{sfc}}$ . (b) Relationship between  $\text{AAE}_{\text{sfc}}$  and



330 carbonaceous aerosol AAE ( $AAE_{CA}$ ), with symbol size representing the non-dust  
331 water-soluble ions (nd-WSII) fraction and color denoting the fine mineral dust (FMD)  
332 fraction. (c–d) Correlations of  $AAE_{sfc}$  with mean particle diameters derived from SMPS  
333 (c) and APS (d), respectively. Shaded colors indicate probability density.

### 334 **3.3 Quantitative Contributions of Composition and Size to Columnar AAE**

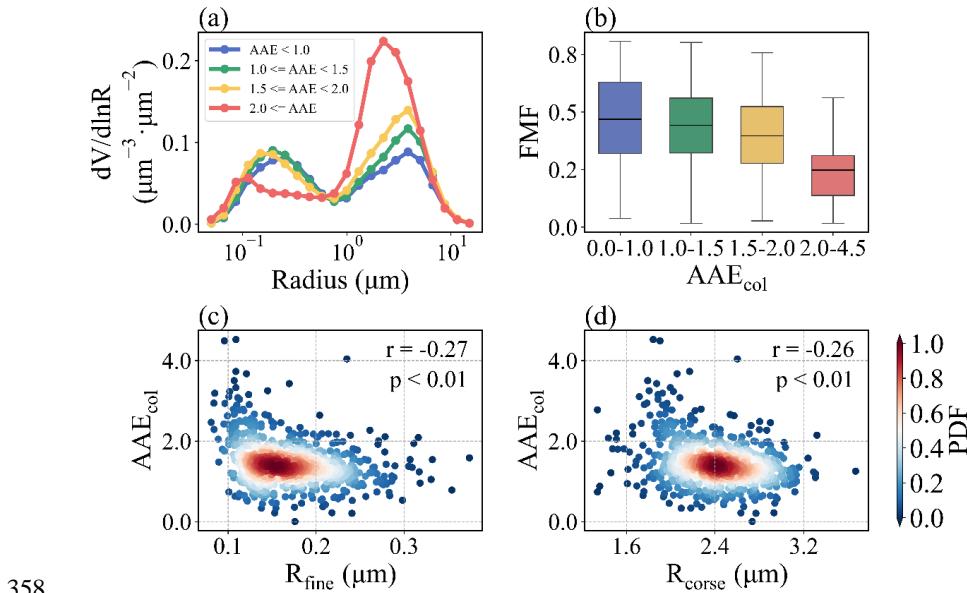
335 The relationships between mass fractions of chemical composition and  $AAE_{col}$   
336 were studied using AERONET data (Fig. 3). The  $AAE_{col}$  ( $1.47 \pm 0.56$ ) was also  
337 suggested to be greater than that derived from the surface field campaign (Fig. 1),  
338 partially due to the vertical variation in aerosol absorption (Guan et al., 2024). The  
339 CNAI and FNAI mass fractions varied little and exhibited no significant correlations  
340 with  $AAE_{col}$  ( $r = -0.03$  and  $0.03$ ,  $p > 0.1$ ), indicating a negligible role in setting the  
341 absorption spectral dependence. In contrast, BC, BrC, and CAI displayed clear  
342 associations. Higher  $AAE_{col}$  ( $>1.5$ ) were associated with marked increases in BrC and  
343 CAI, whereas lower  $AAE_{col}$  ( $<1.5$ ) corresponded to relatively higher BC contributions.  
344 Correlation analysis is consistent with these patterns:  $AAE_{col}$  was negatively correlated  
345 with BC ( $r = -0.19$ ,  $p < 0.01$ ), in line with its weak wavelength dependence, but  
346 positively correlated with BrC ( $r = 0.19$ ,  $p < 0.01$ ) and CAI ( $r = 0.31$ ,  $p < 0.01$ ),  
347 underscoring the strong wavelength dependence of BrC and dust. These findings were  
348 similarly to our surface campaign, particularly regarding dust's amplifying effect on  
349  $AAE_{col}$ .



350

351 **Figure 3. Relationships between columnar absorption Ångström exponent ( $AAE_{col}$ )**

352 **and major aerosol chemical compositions.** (a) Mass fractions of fine-mode non-  
353 absorbing soluble matter (FNAI), coarse-mode non-absorbing soluble matter (CNAI),  
354 coarse-mode absorbing soluble matter (CAI, representing dust), brown carbon (BrC),  
355 and black carbon (BC) across different  $AAE_{col}$  bins. (b-f) Correlations between  $AAE_{col}$   
356 and the mass fractions of BC, BrC, CAI, CNAI, and FNAI, respectively; shaded colors  
357 denote probability density.

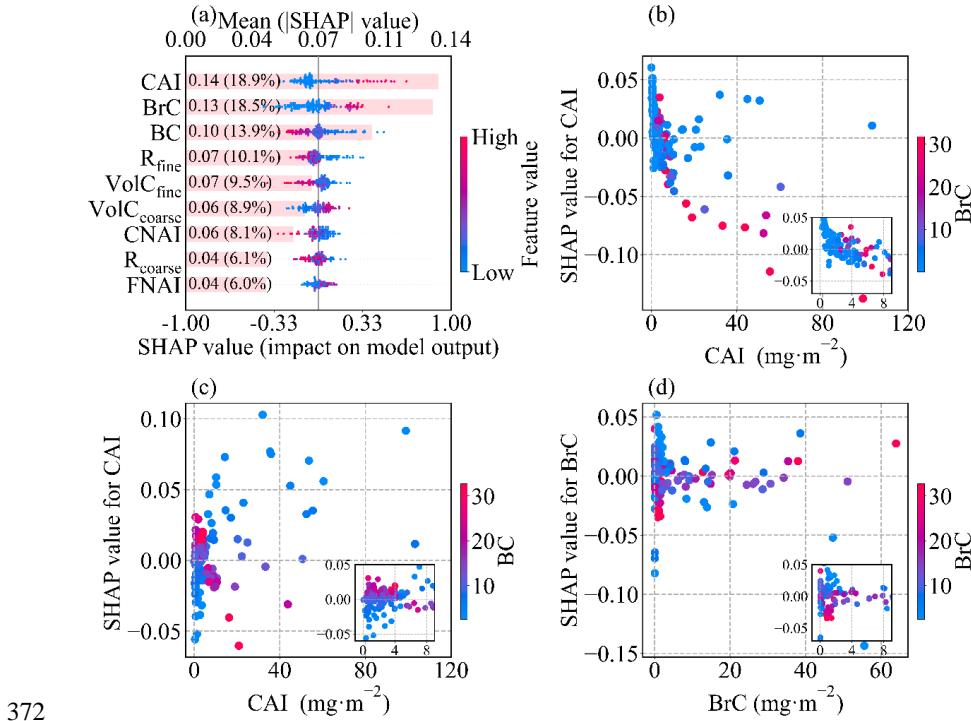


358

359 **Figure 4. Relationships between columnar absorption Ångström exponent (AAE**  
360 **<sub>col</sub>) and aerosol size distribution characteristics.** (a) Volume size distributions  
361 grouped by  $\text{AAE}_{\text{col}}$  bins. (b) Fine-mode fraction (FMF) by  $\text{AAE}_{\text{col}}$  bins, with horizontal  
362 lines indicating means. (c–d) Correlations of  $\text{AAE}_{\text{col}}$  with effective radius of fine-mode  
363 ( $R_{\text{fine}}$ ) and coarse-mode ( $R_{\text{coarse}}$ ) particles, respectively.

364 The impacts of aerosol size distribution on  $\text{AAE}_{\text{col}}$  were clearly reflected (Fig. 4).

365 With  $\text{AAE}_{\text{col}}$  increasing, the peaks of both fine and coarse modes shifted to smaller sizes,  
366 indicating an overall refinement of the size distribution. The  $R_{\text{fine}}$  and  $R_{\text{coarse}}$  were both  
367 negatively correlated with  $\text{AAE}_{\text{col}}$  ( $r = -0.27$  and  $-0.26$ ,  $p < 0.01$ ), demonstrating that  
368 reductions in particle size in both modes enhanced the spectral dependence.  
369 Interestingly, FMF decreased with increasing  $\text{AAE}_{\text{col}}$ , suggesting that coarse-mode  
370 particles retained a substantial volumetric contribution even under high  $\text{AAE}_{\text{col}}$   
371 conditions.



372

373 **Figure 5. SHAP interpretation of the machine-learning model for columnar AAE.**

374 (a) Attribution of chemical compositions and particle size parameters to columnar AAE.

375 Each horizontal bar represents the mean absolute SHAP value of a feature, indicating

376 its overall impact on the model output; the color gradient shows the effect of feature

377 values on columnar AAE, with red indicating a positive influence and blue indicating a

378 negative influence. Features are ranked by importance. (b-c) SHAP dependence plots

379 corresponding to CAI. (d) SHAP dependence plots corresponding to BrC.

380 Machine learning analysis further quantified relative contributions, as illustrated

381 in Fig. 5a. It is found that showed that CAI had the strongest explanatory power,

382 accounting for ~19% of the model performance, confirming the dominant role of dust

383 in amplifying spectral absorption. BrC was second (18.5%) and BC was third (13.9%),



384 together with CAI explaining ~50% of model performance. Among the size-related  
385 predictors,  $R_{fine}$  alone accounted for about one quarter (~29%) of the cumulative  
386 importance of all size metrics, making it the most influential size parameter. Its  
387 importance was also clearly higher than CNAI and FNAI, indicating that the mean  
388 radius of fine-mode particles is the key size control on  $AAE_{col}$ . During the prediction  
389 process, it is observed that higher values of BrC, CAI, and volume concentrations of  
390 coarse-mode ( $vol_{coarse}$ ) corresponded to higher SHAP values and higher values of other  
391 predictors corresponded to smaller SHAP values. These responses are fully consistent  
392 with the correlations between  $AAE_{col}$  and these parameters (Fig. 3b–d; Fig. 4c-d).  
393 Collectively, these results demonstrated that  $AAE_{col}$  is not governed by BC or BrC alone;  
394 it is primarily modulated by dust and secondarily by particle-size structure (size metrics  
395 together ~35%), underscoring the need to account for both composition and size when  
396 evaluating spectral absorption.

397 To further investigate the interaction effects of major parameters on  $AAE_{col}$   
398 prediction, we selected CAI, BrC, and BC, the three most influential predictors by  
399 SHAP, to analyze their interactions (Fig. 5b-5f). When CAI loading was below  $10\text{ mg}\cdot\text{m}^{-2}$ , BrC suppressed the positive impact of CAI loading and progressively drove it  
400 toward a negative contribution. When CAI loading exceeded  $10\text{ mg}\cdot\text{m}^{-2}$ , lower BrC is  
401 more likely than higher BrC to sustain or enhance the positive marginal effect of CAI,  
402 although the magnitude is weaker than in the CAI loading  $< 10\text{ mg}\cdot\text{m}^{-2}$  regime. For  
403 CAI loading in the range 0–4, higher BC yielded a positive marginal effect of CAI on



405 AAE<sub>col</sub>, whereas lowed BC yielded a negative one. Once CAI loading is greater than 4  
406 mg·m<sup>-2</sup>, this relationship reverses, with higher BC more likely to make further increases  
407 in CAI contribute negatively to AAE<sub>col</sub>. As BrC increases, BC progressively reduces  
408 the positive and negative contributions of BrC to AAE<sub>col</sub>. These interactions indicate  
409 that models of aerosol spectral absorption should explicitly represent the mutual  
410 constraints among CAI, BrC, and BC to better identify and quantify AAE drivers.

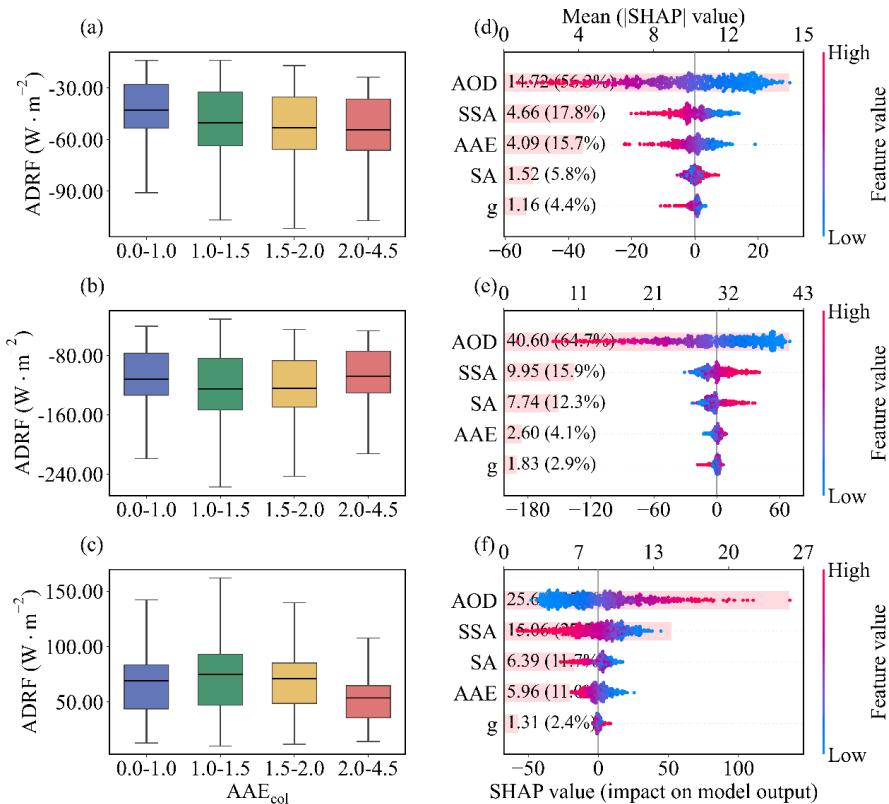
#### 411 **3.4 Radiative Forcing and Efficiency Responses to Columnar AAE in Beijing**

412 Joint analysis of the boxplots and SHAP diagnostics revealed a robust, layer-  
413 dependent coupling between the AAE<sub>col</sub> and ADRF. As AAE<sub>col</sub> increased from 0–1 to  
414 2–4.5, cooling at the TOA intensifies, atmospheric heating weakened, and cooling at  
415 the BOA was alleviated (Fig. 6a–6c), reflecting a transition from BC-dominated, low-  
416 SSA conditions to high-SSA regimes influenced by BrC and mineral dust. SHAP  
417 method confirmed that AAE<sub>col</sub> is the third strongest driver (~16%) after AOD (~56%),  
418 and comparably to SSA (~18%) at TOA and consistently shifts ADRF toward more  
419 negative values (Fig. 6d). At BOA, AAE<sub>col</sub> contributes only ~4%. BOA cooling is  
420 primarily regulated by AOD (~65.0%) and SSA (~16 %) (Fig. 6e). In the ATM, AOD  
421 and SSA jointly dominated, but AAE<sub>col</sub> still contributed comparably to surface albedo  
422 (SA) (both ~12%) (Fig. 6f), underscoring its role in vertically redistributing radiative  
423 energy. Mechanistically, higher AAE<sub>col</sub> is associated with BrC and dust, which exhibit  
424 higher SSA but lower mass absorption efficiencies (MAE), thereby enhancing  
425 backscattering and solar escape (more negative TOA forcing), reducing absorption



426 (weaker atmospheric heating), and producing a net transmission effect that mitigates

427 BOA cooling.

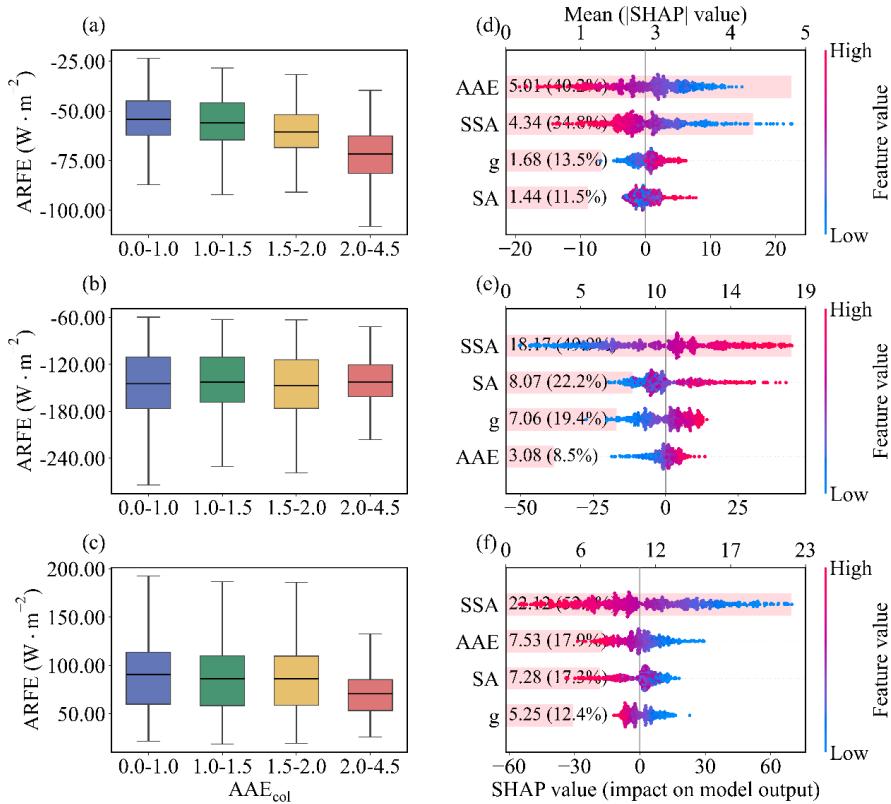


429 **Figure 6. Role of columnar absorption Ångström exponent (AAE<sub>col</sub>) in regulating**  
430 **aerosol direct radiative forcing (ADRF).** (a–c) Box plots of ADRF at the top of the  
431 atmosphere (a), bottom (b), and in the atmosphere (c) as a function of AAE<sub>col</sub>. (d–f)  
432 SHAP analysis quantifies the relative contributions of aerosol optical depth (AOD),  
433 single scattering albedo (SSA), asymmetry parameter (g), surface albedo (SA) and  
434 AAE<sub>col</sub> in driving ADRF variations at the top of the atmosphere (d), at the bottom of  
435 the atmosphere (e), and in the atmosphere (f). The mean absolute SHAP values



436 (numbers in parentheses) indicate the relative contribution of each predictor to the

437 model output.



438

439 **Figure 7. Role of columnar absorption Ångström exponent (AAE<sub>col</sub>) in regulating**  
440 **aerosol radiative forcing efficiency (ARFE).** (a–c) Box plots of ARFE at the top of  
441 the atmosphere (a), bottom (b), and in the atmosphere (c) as a function of AAE<sub>col</sub>. (d–  
442 f) SHAP analysis with AOD fixed at its median (50th percentile) quantifies the relative  
443 contributions of single scattering albedo (SSA), asymmetry parameter (g), surface  
444 albedo (SA) and AAE<sub>col</sub> in driving ARFE variations at the top of the atmosphere (d),  
445 bottom (e), and in the atmosphere (f). The mean absolute SHAP values (numbers in



446 parentheses) indicate the relative contribution of each predictor to the model output.

447 To better show columnar AAE's impact on ADRF, we introduced the ARFE,

448 which removes the scaling by aerosol loading and highlights intrinsic optical controls.

449 At TOA,  $\text{AAE}_{\text{col}}$  was the dominant driver of cooling efficiency based on mean  $|\text{SHAP}|$

450 ( $\sim 40.0\%$ ), exceeding the asymmetry factor ( $g$ ), SSA, and SA even when AOD was

451 conditioned at 25th (Fig. S10), 50th (Fig. 7), 75th percentiles (Fig. S11), or mean (Fig.

452 S12). Larger  $\text{AAE}_{\text{col}}$  was associated with more negative TOA ARFE, consistent with

453 stronger shortwave backscattering by BrC and dust (Fig. 7d). At BOA, ARFE was

454 governed primarily by SSA ( $\sim 50\%$ ), followed by  $g$  and SA, with  $\text{AAE}_{\text{col}}$  contributing

455 more modestly ( $\sim 8\%$ ), increases in SSA and  $g$  tended to make ARFE less negative (Fig.

456 7e), indicative of enhanced forward scattering and greater transmittance for a fixed

457 AOD. In the ATM, SSA dominated the heating-efficiency ( $>50\%$ ), with  $\text{AAE}_{\text{col}}$  and

458 SSA providing secondary control (both  $\sim 17\%$ ), while  $g$  played a minor role (Fig. 7f).

459 Higher  $\text{AAE}_{\text{col}}$  is linked to lower atmospheric heating efficiency, reflecting a shift

460 toward aerosol types with weaker mass absorption than BC, and higher SSA further

461 suppresses in-column absorption.

## 462 4 Conclusions

463 LAAs exert a strong influence on the Earth's radiation budget, yet the spectral

464 dependence of their absorption, commonly summarized by the AAE, remains poorly

465 constrained in urban regions. Here we combined in situ observation with long-term



466 AERONET column data and an interpretable machine-learning framework to  
467 disentangle the drivers of the AAE and to clarify its radiative implications.

468 Near the surface in wintertime Beijing, AAE variability co-varied primarily with  
469 enhanced fractions of fine mineral dust and water-soluble inorganic ions, underscoring  
470 that non-carbonaceous species can substantially modulate local absorption spectra in  
471 addition to BC and BrC. At the column level, SHAP diagnostics identified CAI as the  
472 leading driver of columnar AAE, followed by BrC and BC. Among particle size metrics,  
473 the fine-mode effective radius emerged as the most influential variable and accounted  
474 for about 29% of the cumulative importance of all size parameters, whereas non-  
475 absorbing composition (coarse and fine non-absorbing dust and non-absorbing  
476 carbonaceous aerosols) played only a minor role.

477 The radiative analysis shows that columnar AAE is a key regulator of ADRF at the  
478 TOA. Columnar AAE explained about 16% of the variance in TOA ADRF, comparable  
479 to the contribution from SSA, and became the leading predictor of TOA ARFE,  
480 accounting for roughly 40% of its variability and systematically enhancing TOA  
481 cooling efficiency. By contrast, the direct influence of AAE on ADRF and ARFE in the  
482 ATM and at the BOA was clearly weaker, where SSA and loading-related quantities  
483 remained dominant.

484 The findings of our study demonstrate the multifactorial control of AAE by  
485 composition and size and highlight its pivotal role in partitioning radiative forcing  
486 vertically among TOA, ATM, and BOA, especially at the TOA. Consequently,



487 accurately constraining AAE and its drivers is essential for a realistic representation of  
488 aerosol radiation interactions in regional and global models.

489 **Data and code availability**

490 The data that support the findings of this study are available in the Zenodo data  
491 repository (<https://doi.org/10.5281/zenodo.17852818>, Wang et al., 2025b). The  
492 AERONET data is freely available on the AERNOET website  
493 (<https://aeronet.gsfc.nasa.gov/>). The aerosol chemical composition derived from  
494 AERONET inversion data is available from <https://doi.org/10.1175/BAMS-D-23-0260.1>. The code scripts are also available in the Zenodo data repository  
495 (<https://doi.org/10.5281/zenodo.17852818>, Wang et al., 2025b).

497 **Acknowledgments**

498 We thank the AERONET PI at the Beijing site for their efforts in establishing and  
499 maintaining the site. We are also grateful to Prof. Yunfei Wu for providing access to the  
500 experimental facilities at the Institute of Atmospheric Physics, Chinese Academy of  
501 Sciences. We also thank the Lanzhou University Supercomputing Center for providing  
502 computational support.

503 **Financial supports**

504 This research was supported by the National Natural Science Foundation of China



505 (42475080), the Gansu Province Graduate Innovation Funding Project (2025CXZX-  
506 177) and the Fundamental Research Funds for the Central Universities (lzujbky-2024-  
507 ey04).

#### 508 **Author contribution**

509 PT designed the study. PT and WW received the funding. WW, PT, SZ, ZY and  
510 MC analyzed the data and led the writing. WW, YZ, YW and PT conducted the field  
511 campaign. WW, PT, SZ, YZ, ZY, CC, YW, MC and LZ contributed to discussion, review,  
512 and edit the manuscript.

#### 513 **Competing interests**

514 The authors declare that they have no conflict of interest.

#### 515 **References**

516 Ångström, A.: On the Atmospheric Transmission of Sun Radiation and on Dust in the  
517 Air, Geografiska Annaler, 11, 156–166,  
518 <https://doi.org/10.1080/20014422.1929.11880498>, 1929.  
519 Arnott, W. P., Moosmüller, H., and Walker, J. W.: Nitrogen dioxide and kerosene-flame  
520 soot calibration of photoacoustic instruments for measurement of light absorption  
521 by aerosols, Review of Scientific Instruments, 71, 4545–4552,  
522 <https://doi.org/10.1063/1.1322585>, 2000.



523 Bahadur, R., Praveen, P. S., Xu, Y., and Ramanathan, V.: Solar absorption by elemental  
524 and brown carbon determined from spectral observations, Proc. Natl. Acad. Sci.  
525 U.S.A., 109, 17366–17371, <https://doi.org/10.1073/pnas.1205910109>, 2012.

526 Bi, J., Huang, J., Holben, B., and Zhang, G.: Comparison of key absorption and optical  
527 properties between pure and transported anthropogenic dust over East and Central  
528 Asia, Atmos. Chem. Phys., 16, 15501–15516, <https://doi.org/10.5194/acp-16-15501-2016>, 2016.

530 Cappa, C., Kotamarthi, R., Selacek, A., Flynn, C., Lewis, E., McComiskey, A., and  
531 Riemer, N.: Absorbing Aerosols Workshop Report, January 20–21, 2016,  
532 <https://doi.org/10.2172/1471231>, 2016.

533 Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S.,  
534 Davidovits, P., Hakala, J., Hayden, K. L., Jobson, B. T., Kolesar, K. R., Lack, D.  
535 A., Lerner, B. M., Li, S.-M., Mellon, D., Nuaaman, I., Olfert, J. S., Petäjä, T.,  
536 Quinn, P. K., Song, C., Subramanian, R., Williams, E. J., and Zaveri, R. A.:  
537 Radiative Absorption Enhancements Due to the Mixing State of Atmospheric  
538 Black Carbon, Science, 337, 1078–1081, <https://doi.org/10.1126/science.1223447>,  
539 2012.

540 Cazorla, A., Bahadur, R., Suski, K. J., Cahill, J. F., Chand, D., Schmid, B., Ramanathan,  
541 V., and Prather, K. A.: Relating aerosol absorption due to soot, organic carbon,  
542 and dust to emission sources determined from in-situ chemical measurements,  
543 Atmos. Chem. Phys., 13, 9337–9350, <https://doi.org/10.5194/acp-13-9337-2013>,



544 2013.

545 Chakrabarty, R. K., Arnold, I. J., Francisco, D. M., Hatchett, B., Hosseinpour, F., Loria,

546 M., Pokharel, A., and Woody, B. M.: Black and brown carbon fractal aggregates

547 from combustion of two fuels widely used in Asian rituals, *Journal of Quantitative*

548 *Spectroscopy and Radiative Transfer*, 122, 25–30,

549 <https://doi.org/10.1016/j.jqsrt.2012.12.011>, 2013.

550 Chow, J. C., Watson, J. G., Chen, L.-W. A., Chang, M. C. O., Robinson, N. F., Trimble,

551 D., and Kohl, S.: The IMPROVE\_A Temperature Protocol for Thermal/Optical

552 Carbon Analysis: Maintaining Consistency with a Long-Term Database, *Journal*

553 of the Air & Waste Management Association, 57, 1014–1023,

554 <https://doi.org/10.3155/1047-3289.57.9.1014>, 2007.

555 Cuesta-Mosquera, A., Glojek, K., Močnik, G., Drinovec, L., Gregorič, A., Rigler, M.,

556 Ogrin, M., Romshoo, B., Weinhold, K., Merkel, M., Van Pinxteren, D., Herrmann,

557 H., Wiedensohler, A., Pöhlker, M., and Müller, T.: Optical properties and simple

558 forcing efficiency of the organic aerosols and black carbon emitted by residential

559 wood burning in rural central Europe, *Atmos. Chem. Phys.*, 24, 2583–2605,

560 <https://doi.org/10.5194/acp-24-2583-2024>, 2024.

561 Gliß, J., Mortier, A., Schulz, M., Andrews, E., Balkanski, Y., Bauer, S. E., Benedictow,

562 A. M. K., Bian, H., Checa-Garcia, R., Chin, M., Ginoux, P., Griesfeller, J. J.,

563 Heckel, A., Kipling, Z., Kirkevåg, A., Kokkola, H., Laj, P., Le Sager, P., Lund, M.

564 T., Lund Myhre, C., Matsui, H., Myhre, G., Neubauer, D., Van Noije, T., North, P.,



565        Olivié, D. J. L., Rémy, S., Sogacheva, L., Takemura, T., Tsigaridis, K., and Tsyro,  
566        S. G.: AeroCom phase III multi-model evaluation of the aerosol life cycle and  
567        optical properties using ground- and space-based remote sensing as well as surface  
568        in situ observations, *Atmos. Chem. Phys.*, 21, 87–128,  
569        <https://doi.org/10.5194/acp-21-87-2021>, 2021.

570        Guan, X., Tian, P., Wang, W., Zhang, M., Song, X., Zhang, Z., and Zhang, L.: More  
571        Accurate Quantification of Direct Aerosol Radiative Effects Using Vertical  
572        Profiles of Single-Scattering Albedo Derived From Tethered Balloon Observations,  
573        *JGR Atmospheres*, 129, e2023JD040605, <https://doi.org/10.1029/2023JD040605>,  
574        2024.

575        Guinot, B., Cachier, H., and Oikonomou, K.: Geochemical perspectives from a new  
576        aerosol chemical mass closure, *Atmos. Chem. Phys.*, 7, 1657–1670,  
577        <https://doi.org/10.5194/acp-7-1657-2007>, 2007.

578        Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., He, J., Lou, M., Yan, Y., Bian,  
579        L., and Zhai, P.: The climatology of planetary boundary layer height in China  
580        derived from radiosonde and reanalysis data, *Atmos. Chem. Phys.*, 16, 13309–  
581        13319, <https://doi.org/10.5194/acp-16-13309-2016>, 2016.

582        Gyawali, M., Arnott, W. P., Zaveri, R. A., Song, C., Moosmüller, H., Liu, L.,  
583        Mishchenko, M. I., Chen, L.-W. A., Green, M. C., Watson, J. G., and Chow, J. C.:  
584        Photoacoustic optical properties at UV, VIS, and near IR wavelengths for  
585        laboratory generated and winter time ambient urban aerosols, *Atmos. Chem. Phys.*,



586 12, 2587–2601, <https://doi.org/10.5194/acp-12-2587-2012>, 2012.

587 Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E.,

588 Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and

589 Smirnov, A.: AERONET—A Federated Instrument Network and Data Archive for

590 Aerosol Characterization, Remote Sensing of Environment, 66, 1–16,

591 [https://doi.org/10.1016/S0034-4257\(98\)00031-5](https://doi.org/10.1016/S0034-4257(98)00031-5), 1998.

592 Intergovernmental Panel On Climate Change (Ipcc): Climate Change 2021 – The

593 Physical Science Basis: Working Group I Contribution to the Sixth Assessment

594 Report of the Intergovernmental Panel on Climate Change, 1st ed., Cambridge

595 University Press, <https://doi.org/10.1017/9781009157896>, 2023.

596 Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral

597 dependence of light absorption by aerosols is affected by organic carbon, J.

598 Geophys. Res., 109, 2004JD004999, <https://doi.org/10.1029/2004JD004999>,

599 2004.

600 Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L., Ward, D. S.,

601 Albani, S., and Haustein, K.: Smaller desert dust cooling effect estimated from

602 analysis of dust size and abundance, Nature Geosci., 10, 274–278,

603 <https://doi.org/10.1038/ngeo2912>, 2017.

604 Lack, D. A. and Cappa, C. D.: Impact of brown and clear carbon on light absorption

605 enhancement, single scatter albedo and absorption wavelength dependence of

606 black carbon, Atmos. Chem. Phys., 10, 4207–4220, <https://doi.org/10.5194/acp->



607 10-4207-2010, 2010.

608 Lack, D. A. and Langridge, J. M.: On the attribution of black and brown carbon light  
609 absorption using the Ångström exponent, *Atmos. Chem. Phys.*, 13, 10535–10543,  
610 <https://doi.org/10.5194/acp-13-10535-2013>, 2013.

611 Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon,  
612 *Chem. Rev.*, 115, 4335–4382, <https://doi.org/10.1021/cr5006167>, 2015.

613 Lee, L. A., Reddington, C. L., and Carslaw, K. S.: On the relationship between aerosol  
614 model uncertainty and radiative forcing uncertainty, *Proc. Natl. Acad. Sci. U.S.A.*,  
615 113, 5820–5827, <https://doi.org/10.1073/pnas.1507050113>, 2016.

616 Lewis, K., Arnott, W. P., Moosmüller, H., and Wold, C. E.: Strong spectral variation of  
617 biomass smoke light absorption and single scattering albedo observed with a novel  
618 dual-wavelength photoacoustic instrument, *J. Geophys. Res.*, 113, 2007JD009699,  
619 <https://doi.org/10.1029/2007JD009699>, 2008.

620 Li, J., Liu, C., Yin, Y., and Kumar, K. R.: Numerical investigation on the Ångström  
621 exponent of black carbon aerosol, *JGR Atmospheres*, 121, 3506–3518,  
622 <https://doi.org/10.1002/2015JD024718>, 2016.

623 Li, J., Carlson, B. E., Yung, Y. L., Lv, D., Hansen, J., Penner, J. E., Liao, H.,  
624 Ramaswamy, V., Kahn, R. A., Zhang, P., Dubovik, O., Ding, A., Lacis, A. A.,  
625 Zhang, L., and Dong, Y.: Scattering and absorbing aerosols in the climate system,  
626 *Nat Rev Earth Environ*, 3, 363–379, <https://doi.org/10.1038/s43017-022-00296-7>,  
627 2022.



628 Li, W., Riemer, N., Xu, L., Wang, Y., Adachi, K., Shi, Z., Zhang, D., Zheng, Z., and  
629 Laskin, A.: Microphysical properties of atmospheric soot and organic particles:  
630 measurements, modeling, and impacts, *npj Clim Atmos Sci*, 7, 65,  
631 <https://doi.org/10.1038/s41612-024-00610-8>, 2024.

632 Li, Y., Fu, T.-M., Yu, J. Z., Zhang, A., Yu, X., Ye, J., Zhu, L., Shen, H., Wang, C., Yang,  
633 X., Tao, S., Chen, Q., Li, Y., Li, L., Che, H., and Heald, C. L.: Nitrogen dominates  
634 global atmospheric organic aerosol absorption, *Science*, 387, 989–995,  
635 <https://doi.org/10.1126/science.adr4473>, 2025.

636 Liu, C., Chung, C. E., Yin, Y., and Schnaiter, M.: The absorption Ångström exponent  
637 of black carbon: from numerical aspects, *Atmos. Chem. Phys.*, 18, 6259–6273,  
638 <https://doi.org/10.5194/acp-18-6259-2018>, 2018.

639 Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and  
640 seasonal trends in particle concentration and optical extinction in the United States,  
641 *J. Geophys. Res.*, 99, 1347–1370, <https://doi.org/10.1029/93JD02916>, 1994.

642 Moosmüller, H., Chakrabarty, R. K., Ehlers, K. M., and Arnott, W. P.: Absorption  
643 Ångström coefficient, brown carbon, and aerosols: basic concepts, bulk matter,  
644 and spherical particles, *Atmos. Chem. Phys.*, 11, 1217–1225,  
645 <https://doi.org/10.5194/acp-11-1217-2011>, 2011.

646 Nishant, N., Sherwood, S. C., and Geoffroy, O.: Aerosol-induced modification of  
647 organised convection and top-of-atmosphere radiation, *npj Clim Atmos Sci*, 2, 33,  
648 <https://doi.org/10.1038/s41612-019-0089-1>, 2019.



649 Park, S., Son, S.-C., and Lee, S.: Characterization, sources, and light absorption of fine  
650 organic aerosols during summer and winter at an urban site, *Atmospheric Research*,  
651 213, 370–380, <https://doi.org/10.1016/j.atmosres.2018.06.017>, 2018.

652 Peng, K., Xin, J., Zhu, X., Wang, X., Cao, X., Ma, Y., Ren, X., Zhao, D., Cao, J., and  
653 Wang, Z.: Machine learning model to accurately estimate the planetary boundary  
654 layer height of Beijing urban area with ERA5 data, *Atmospheric Research*, 293,  
655 106925, <https://doi.org/10.1016/j.atmosres.2023.106925>, 2023.

656 Ponczek, M., Franco, M. A., Carbone, S., Rizzo, L. V., Monteiro Dos Santos, D., Morais,  
657 F. G., Duarte, A., Barbosa, H. M. J., and Artaxo, P.: Linking the chemical  
658 composition and optical properties of biomass burning aerosols in Amazonia,  
659 *Environ. Sci.: Atmos.*, 2, 252–269, <https://doi.org/10.1039/D1EA00055A>, 2022.

660 Russell, P. B., Bergstrom, R. W., Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez,  
661 J. L., Livingston, J. M., Redemann, J., Dubovik, O., and Strawa, A.: Absorption  
662 Angstrom Exponent in AERONET and related data as an indicator of aerosol  
663 composition, *Atmos. Chem. Phys.*, 10, 1155–1169, <https://doi.org/10.5194/acp-10-1155-2010>, 2010.

664 Samset, B. H., Stjern, C. W., Andrews, E., Kahn, R. A., Myhre, G., Schulz, M., and  
665 Schuster, G. L.: Aerosol Absorption: Progress Towards Global and Regional  
666 Constraints, *Curr Clim Change Rep.*, 4, 65–83, <https://doi.org/10.1007/s40641-018-0091-4>, 2018.

667 Sand, M., Samset, B. H., Myhre, G., Gliß, J., Bauer, S. E., Bian, H., Chin, M., Checa-  
668



670 Garcia, R., Ginoux, P., Kipling, Z., Kirkevåg, A., Kokkola, H., Le Sager, P., Lund,  
671 M. T., Matsui, H., Van Noije, T., Olivié, D. J. L., Remy, S., Schulz, M., Stier, P.,  
672 Stjern, C. W., Takemura, T., Tsigaridis, K., Tsyro, S. G., and Watson-Parris, D.:  
673 Aerosol absorption in global models from AeroCom phase III, *Atmos. Chem.  
674 Phys.*, 21, 15929–15947, <https://doi.org/10.5194/acp-21-15929-2021>, 2021.

675 Scarnato, B. V., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W.: Effects of internal  
676 mixing and aggregate morphology on optical properties of black carbon using a  
677 discrete dipole approximation model, *Atmos. Chem. Phys.*, 13, 5089–5101,  
678 <https://doi.org/10.5194/acp-13-5089-2013>, 2013.

679 Schuster, G. L., Dubovik, O., and Arola, A.: Remote sensing of soot carbon – Part 1:  
680 Distinguishing different absorbing aerosol species, *Atmos. Chem. Phys.*, 16,  
681 1565–1585, <https://doi.org/10.5194/acp-16-1565-2016>, 2016a.

682 Schuster, G. L., Dubovik, O., Arola, A., Eck, T. F., and Holben, B. N.: Remote sensing  
683 of soot carbon – Part 2: Understanding the absorption Ångström exponent, *Atmos.  
684 Chem. Phys.*, 16, 1587–1602, <https://doi.org/10.5194/acp-16-1587-2016>, 2016b.

685 Shang, D., Hu, M., Zheng, J., Qin, Y., Du, Z., Li, M., Fang, J., Peng, J., Wu, Y., Lu, S.,  
686 and Guo, S.: Particle number size distribution and new particle formation under  
687 the influence of biomass burning at a high altitude background site at Mt. Yulong  
688 (3410 m), China, *Atmos. Chem. Phys.*, 18, 15687–15703,  
689 <https://doi.org/10.5194/acp-18-15687-2018>, 2018.

690 Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J.



691 S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol  
692 retrieval algorithm, associated uncertainties and comparisons to Version 2, *Atmos.*  
693 *Meas. Tech.*, 13, 3375–3411, <https://doi.org/10.5194/amt-13-3375-2020>, 2020.

694 Sotiropoulou, R. E. P., Kaskaoutis, D. G., Kalkavouras, P., Grivas, G., Petrinoli, K.,  
695 Garas, S. K., Liakakou, E., Tagaris, E., and Mihalopoulos, N.: Spatial variability  
696 of carbonaceous aerosols and absorption characteristics between urban  
697 background and residential sites during wintertime at a major Mediterranean city  
698 (Athens; Greece), *Atmospheric Research*, 323, 108163,  
699 <https://doi.org/10.1016/j.atmosres.2025.108163>, 2025.

700 Tao, C., Peng, Y., Zhang, Q., Zhang, Y., Gong, B., Wang, Q., and Wang, W.: Diagnosing  
701 ozone–NO<sub>x</sub> –VOC–aerosol sensitivity and uncovering causes of urban–  
702 nonurban discrepancies in Shandong, China, using transformer-based estimations,  
703 *Atmos. Chem. Phys.*, 24, 4177–4192, <https://doi.org/10.5194/acp-24-4177-2024>,  
704 2024.

705 Tian, J., Wang, Q., Ni, H., Wang, M., Zhou, Y., Han, Y., Shen, Z., Pongpiachan, S.,  
706 Zhang, N., Zhao, Z., Zhang, Q., Zhang, Y., Long, X., and Cao, J.: Emission  
707 Characteristics of Primary Brown Carbon Absorption From Biomass and Coal  
708 Burning: Development of an Optical Emission Inventory for China, *JGR*  
709 *Atmospheres*, 124, 1879–1893, <https://doi.org/10.1029/2018JD029352>, 2019.

710 Tian, P., Zhang, L., Ma, J., Tang, K., Xu, L., Wang, Y., Cao, X., Liang, J., Ji, Y., Jiang,  
711 J. H., Yung, Y. L., and Zhang, R.: Radiative absorption enhancement of dust mixed



712 with anthropogenic pollution over East Asia, *Atmos. Chem. Phys.*, 18, 7815–7825,

713 <https://doi.org/10.5194/acp-18-7815-2018>, 2018.

714 Tian, P., Zhang, N., Li, J., Fan, X., Guan, X., Lu, Y., Shi, J., Chang, Y., and Zhang, L.:  
715 Potential influence of fine aerosol chemistry on the optical properties in a semi-  
716 arid region, *Environmental Research*, 216, 114678,  
717 <https://doi.org/10.1016/j.envres.2022.114678>, 2023.

718 Truex, T. J. and Anderson, J. E.: Mass monitoring of carbonaceous aerosols with a  
719 spectrophone, *Atmospheric Environment* (1967), 13, 507–509,  
720 [https://doi.org/10.1016/0004-6981\(79\)90143-4](https://doi.org/10.1016/0004-6981(79)90143-4), 1979.

721 Utry, N., Ajtai, T., Filep, Á., Pintér, M., Török, Zs., Bozóki, Z., and Szabó, G.:  
722 Correlations between absorption Angström exponent (AAE) of wintertime  
723 ambient urban aerosol and its physical and chemical properties, *Atmospheric  
724 Environment*, 91, 52–59, <https://doi.org/10.1016/j.atmosenv.2014.03.047>, 2014.

725 Wang, N., Wang, Y., Lu, C., Zhu, B., Yan, X., Sun, Y., Xu, J., Zhang, J., and Shen, Z.:  
726 Interpretable ensemble learning unveils main aerosol optical properties in  
727 predicting cloud condensation nuclei number concentration, *npj Clim Atmos Sci*,  
728 8, 302, <https://doi.org/10.1038/s41612-025-01181-y>, 2025a.

729 Wang, Q., Ye, J., Wang, Y., Zhang, T., Ran, W., Wu, Y., Tian, J., Li, L., Zhou, Y., Hang  
730 Ho, S. S., Dang, B., Zhang, Q., Zhang, R., Chen, Y., Zhu, C., and Cao, J.:  
731 Wintertime Optical Properties of Primary and Secondary Brown Carbon at a  
732 Regional Site in the North China Plain, *Environ. Sci. Technol.*, 53, 12389–12397,



733 https://doi.org/10.1021/acs.est.9b03406, 2019.

734 Wang, Q., Liu, H., Ye, J., Tian, J., Zhang, T., Zhang, Y., Liu, S., and Cao, J.: Estimating  
735 Absorption Ångström Exponent of Black Carbon Aerosol by Coupling  
736 Multiwavelength Absorption with Chemical Composition, *Environ. Sci. Technol.*  
737 Lett.

738 Lett., 8, 121–127, https://doi.org/10.1021/acs.estlett.0c00829, 2021.

739 Wang, W., Tian, P., and Wu, Y.: Interpretable Machine Learning Quantifies  
740 Composition and Size Controls on Aerosol Spectral Absorption,  
https://doi.org/10.5281/ZENODO.17852818, 2025b.

741 Wang, Y., Huang, R.-J., Zhong, H., Wang, T., Yang, L., Yuan, W., Xu, W., and An, Z.:  
742 Predictions of the Optical Properties of Brown Carbon Aerosol by Machine  
743 Learning with Typical Chromophores, *Environ. Sci. Technol.*, 58, 20588–20597,  
744 https://doi.org/10.1021/acs.est.4c09031, 2024.

745 Wu, Y., Yan, P., Tian, P., Tao, J., Li, L., Chen, J., Zhang, Y., Cao, N., Chen, C., and  
746 Zhang, R.: Spectral Light Absorption of Ambient Aerosols in Urban Beijing during  
747 Summer: An Intercomparison of Measurements from a Range of Instruments,  
748 *Aerosol Air Qual. Res.*, 15, 1178–1187, https://doi.org/10.4209/aaqr.2014.09.0224,  
749 2015.

750 Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., Sullivan, A. P., Collett, J.  
751 L., Zhao, B., Wang, S., He, K., and Gustafsson, Ö.: Important fossil source  
752 contribution to brown carbon in Beijing during winter, *Sci Rep.*, 7, 43182,  
753 https://doi.org/10.1038/srep43182, 2017.



754 Yang, Z., Wang, Q., Wang, Q., Ma, N., Tian, J., Zhou, Y., Xu, G., Gao, M., Zhou, X.,  
755 Zhang, Y., Ran, W., Yang, N., Tao, J., Hong, J., Wu, Y., Cao, J., Su, H., and Cheng,  
756 Y.: Laboratory studies on the optical, physical, and chemical properties of fresh  
757 and aged biomass burning aerosols, <https://doi.org/10.5194/egusphere-2025-1020>,  
758 25 April 2025.

759 Zhang, X., Mao, M., Yin, Y., and Tang, S.: The absorption Ångstrom exponent of black  
760 carbon with brown coatings: effects of aerosol microphysics and parameterization,  
761 *Atmos. Chem. Phys.*, 20, 9701–9711, <https://doi.org/10.5194/acp-20-9701-2020>,  
762 2020.

763 Zhang, X., Li, L., Che, H., Dubovik, O., Derimian, Y., Holben, B., Gupta, P., Eck, T. F.,  
764 Lind, E. S., Toledano, C., Xia, X., Zheng, Y., Gui, K., and Zhang, X.: Aerosol  
765 Components Derived from Global AERONET Measurements by GRASP: A New  
766 Value-Added Aerosol Component Global Dataset and Its Application, *Bulletin of  
767 the American Meteorological Society*, 105, E1822–E1848,  
768 <https://doi.org/10.1175/BAMS-D-23-0260.1>, 2024.

769 Zhang, Z., Wang, Y., Chen, X., Xu, L., Zheng, Z., Ching, J., Zhu, S., Liu, D., and Li,  
770 W.: Absorption enhancement and shielding effect of brown organic coating on  
771 black carbon aerosols, *npj Clim Atmos Sci.*, 8, 102,  
772 <https://doi.org/10.1038/s41612-025-00989-y>, 2025.

773 Zhao, S., Hu, B., Du, C., Tang, L., Ma, Y., Liu, H., Zou, J., Liu, Z., Wei, J., and Wang,  
774 Y.: Aerosol optical characteristics and radiative forcing in urban Beijing,



775 Atmospheric Environment, 212, 41–53,

776 <https://doi.org/10.1016/j.atmosenv.2019.05.034>, 2019.

777