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Abstract 15 

The spectral dependence of aerosol absorption, characterized by the absorption 16 

Ångström exponent (AAE), strongly influences radiative effects, yet the relative 17 

importance of controlling factors remains poorly quantified. We integrate multisource 18 

observations with an interpretable machine-learning framework (Shapley Additive 19 

Explanations, SHAP) to disentangle the roles of chemical composition and particle size 20 

in shaping AAE and to evaluate radiative impacts. Field observation in Beijing reveal 21 

that near-surface AAE is predominantly influenced by higher fine mineral dust and 22 

water-soluble inorganic ions fractions. Multi-year columnar data identify dust loading 23 

as the dominant factor, followed by carbonaceous aerosols. The fine-mode radius 24 

accounts for 29% of size parameters cumulative importance and ranks closely with 25 

black carbon. SHAP diagnostics highlight that columnar AAE contributes to radiative 26 

forcing at the top of the atmosphere (TOA) comparably to single scattering albedo 27 

(SSA), while its impact is clearly weaker at the bottom of the atmosphere and in the 28 

atmosphere. These findings help clarify AAE determinants and reduce uncertainties in 29 

aerosol radiative effect assessments. 30 

  31 
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1 Introduction 32 

Light-absorbing aerosols (LAAs), primarily black carbon (BC), brown carbon 33 

(BrC), and mineral dust, significantly influence regional and global climate by 34 

absorbing solar radiation (Bahadur et al., 2012; Cappa et al., 2016; Kok et al., 2017; 35 

Nishant et al., 2019). For instance, BC contributed a net positive effective radiative 36 

forcing of 0.11 W·m-2 during 1750–2019, with a wide uncertainty range from –0.20 to 37 

+0.42 W·m–2 (Intergovernmental Panel On Climate Change (Ipcc), 2023), reflecting 38 

limited observational constraints on aerosol optical/microphysical properties and their 39 

inaccurate representation in models (Gliß et al., 2021; Lee et al., 2016). A practical 40 

diagnostic for the spectral shape of absorption is the Absorption Ångström Exponent 41 

(AAE) (Ångström, 1929; Lewis et al., 2008). For pure BC, AAE is theoretically close 42 

to 1.0, but observations show a range of 0.6–1.6 (Kirchstetter et al., 2004; Lack and 43 

Cappa, 2010; Gyawali et al., 2012; Chakrabarty et al., 2013; Wang et al., 2021). BrC 44 

and mineral dust exhibit relatively stronger absorption in the ultraviolet and visible 45 

spectral wavelengths, typically yielding AAE values greater than 2.0 (Russell et al., 46 

2010; Park et al., 2018; Zhang et al., 2020; Cuesta-Mosquera et al., 2024). Because 47 

AAE encodes source and process information that governs aerosol absorption from 48 

ultraviolet to the near-infrared wavelength range, tighter constraints on AAE can help 49 

reduce uncertainties in aerosol radiative effects (Cazorla et al., 2013; Lack and 50 

Langridge, 2013; Sand et al., 2021). 51 
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AAE varies with particle size distribution, chemical composition, and mixing state  52 

(Scarnato et al., 2013; Li et al., 2016; Schuster et al., 2016a; Sotiropoulou et al., 2025). 53 

For instance, AAE may decrease as BC cores grow or as aggregates become more 54 

compact during aging processes (Liu et al., 2018). Recent numerical simulation further 55 

indicates that secondary organic coatings can increase AAE, with sensitivity to coating 56 

thickness (Zhang et al., 2025). In contrast, photochemical bleaching lowers BrC 57 

ultraviolet absorption and AAE (Wang et al., 2019; Li et al., 2025). Heterogeneous 58 

aging of long-range-transported dust may enhance absorption, also affecting AAE (Tian 59 

et al., 2018). The magnitudes and signs of these effects depend on location, season, and 60 

processing history, complicating both measurements and modeling and propagating to 61 

radiative forcing uncertainty (Sand et al., 2021; Li et al., 2022; Ponczek et al., 2022). 62 

Studying the impact of individual factors on AAE is relatively straightforward. 63 

Previous studies have already examined the effects of particle size, chemical 64 

composition, and mixing state on AAE in isolation (Wu et al., 2015; Schuster et al., 65 

2016b; Li et al., 2024). However, quantitatively attributing the relative contributions of 66 

particle size and chemical composition to AAE remains a challenging task due to 67 

nonlinearity and collinearity among predictors. For example, observations show that 68 

composition appears dominant when the shape of size distribution is quasi-stationary 69 

(Utry et al., 2014), whereas Mie-theory studies highlight the role of the imaginary 70 

refractive index of organics over size in explaining absorption changes (Yang et al., 71 

2025). Although these studies effectively highlight the roles of particle size and 72 

https://doi.org/10.5194/egusphere-2025-6118
Preprint. Discussion started: 9 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

5 

 

chemical composition, they lack quantitative assessments of their relative importance. 73 

The Shapley Additive exPlanations (SHAP) method offers a principled framework 74 

for feature attribution in machine learning predictions and has been widely adopted in 75 

atmospheric sciences, such as boundary-layer height inversion, ozone formation and 76 

cloud-condensation-nuclei studies (Peng et al., 2023; Tao et al., 2024; Wang et al., 77 

2025a). SHAP analysis has also been applied to aerosol absorption studies to precisely 78 

quantify the relative contribution of various chromophores to BrC absorption, 79 

providing a mechanistic understanding of its key drivers (Wang et al., 2024). Its 80 

potential to predict AAE and quantify the relative contributions of individual factors 81 

remains unexplored. Addressing this gap would offer an interpretable, data-driven 82 

perspective on aerosol spectral absorption. 83 

This study aims to quantify the relative importance of chemical composition and 84 

particle size influencing AAE and to elucidate the critical role of AAE in radiative 85 

effects. We applied machine learning methods for columnar AAE (AAEcol), and 86 

assessed how AAEcol influences aerosol direct radiative forcing (ADRF) and aerosol 87 

radiative forcing efficiency (ARFE). During the modeling process, an ensemble of 88 

models was initially trained, after which the optimal model was selected to predict 89 

AAEcol, ADRF, and ARFE, with the SHAP algorithm used for interpretative analysis.  90 

2 Methods 91 

2.1 Field Campaign and Data Processing 92 
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An intensive observation campaign focusing on aerosol properties was conducted 93 

in urban Beijing, China, from 16 December 2023 to 15 January 2024. Online and offline 94 

instruments were deployed on the rooftop of the Institute of Atmospheric Physics, 95 

Chinese Academy of Sciences (Building #3; 39.98°N, 116.39°E), approximately 45 m 96 

above ground level. All online instruments were housed in a temperature-controlled 97 

room maintained at ~20 °C to ensure measurement stability, and sampling lines were 98 

equipped with Nafion dryers to minimize the influence of ambient humidity. 99 

2.1.1 In Situ Online Aerosol Observations  100 

Aerosol absorption coefficients (babs,λ) at 375, 532, and 870 nm were measured 101 

using photoacoustic extinctiometers (PAX, DMT Inc., USA). The PAX measures 102 

aerosol light absorption using the photoacoustic technique, in which absorbed laser 103 

energy is converted into periodic heating of the surrounding gas, generating an acoustic 104 

pressure wave in an acoustic resonator that is detected by a sensitive microphone (Truex 105 

and Anderson, 1979). The light absorption (𝑏𝑎𝑏𝑠,𝑝𝑎𝑥) can be calculated as: 106 

𝑏𝑎𝑏𝑠,𝑝𝑎𝑥 =
𝑃𝑚𝑖𝑐 × 𝐴𝑟𝑒𝑠 × 𝜋2 × 𝑓𝑟𝑒𝑠

𝑃𝐿 × (𝛾 − 1) × 𝑄
(1) 107 

where 𝑃𝑚𝑖𝑐  and 𝑃𝐿  are the pressure of the microphone and the laser power, 108 

respectively; 𝐴𝑟𝑒𝑠, 𝑓𝑟𝑒𝑠 and 𝑄 indicate the cross-sectional area, resonance frequency, 109 

and quality factor of the resonator; 𝛾 is the isobaric and isosteric specific heat ratio. 110 

Then the babs,λ is obtained by subtracting the background absorption measured with 111 

particle-free air from 𝑏𝑎𝑏𝑠,𝑝𝑎𝑥. In addition, the PAX measures aerosol scattering with 112 

an integrated wide-angle reciprocal nephelometer. 113 
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Prior to deployment, each PAX was calibrated following the procedure described 114 

in Wu et al., 2015: (i) the scattering channel was calibrated using high-concentration 115 

ammonium sulfate aerosol by regressing the extinction coefficient (bext) derived from 116 

laser power attenuation against the instrument-recorded scattering coefficient (bsca). 117 

The scattering calibration factor was then adjusted by applying the regression slope as 118 

a multiplicative correction; (ii) the absorption channel was calibrated using high-119 

concentration Aquadag aerosol by regressing (bext - bsca) against the instrument-120 

recorded photoacoustic absorption. The absorption calibration factor was then updated 121 

by dividing it by the regression slope. 122 

The near-surface aerosol absorption Ångström exponent (AAEsfc) was calculated 123 

as: 124 

𝐴𝐴𝐸𝑠𝑓𝑐 = −
log(𝑏𝑎𝑏𝑠,𝜆1

) − log(𝑏𝑎𝑏𝑠,𝜆2
)

log(𝜆1) − log(𝜆2)
(2) 125 

where λ1 = 375 nm, λ2 = 870 nm. Hourly PM2.5 (particle matters with an aerodynamic 126 

diameter ≤ 2.5 μm) mass concentrations were obtained from the China National 127 

Environmental Monitoring Network for the Beijing urban site. These datasets were 128 

used to calculate mass absorption efficiency (MAE) of PM2.5: 129 

𝑀𝐴𝐸𝜆 =
𝑏𝑎𝑏𝑠,𝜆

𝑃𝑀2.5

(3) 130 

Size distributions were measured with a scanning mobility particle sizer (SMPS, 131 

Model 3082, TSI Inc., 8.8–310.6 nm, Stokes diameter) and an aerodynamic particle 132 

sizer (APS, Model 3321, TSI Inc., 0.54–19.8 μm, aerodynamic diameter), with SMPS 133 

data converted to aerodynamic diameter (Text S1) (Shang et al., 2018). To ensure 134 
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measurement accuracy, the flow systems of the SMPS and APS were periodically 135 

checked and calibrated by the manufacturer (TSI Inc.) through regular return-service 136 

calibration. In addition, hourly meteorological parameters (wind speed and direction, 137 

temperature, and relative humidity) were obtained from the 47 m meteorological tower 138 

at the Institute of Atmospheric Physics.  139 

2.1.2 Offline Aerosol Sampling  140 

Offline PM2.5 samples were collected on quartz-fiber filters (90 mm diameter; 141 

Whatman 1855-090). Prior to sampling, quartz-fiber filters were pre-cleaned to 142 

minimize filter background. Briefly, filter cassettes were rinsed with absolute ethanol 143 

and air-dried, and aluminum-foil liners cut to the filter size were pre-baked at 550 °C 144 

for 3 h to remove residual carbon. The quartz filters were sequentially soaked in 145 

ultrapure water (5 min × 3 cycles, followed by 2 h × 2 cycles), oven-dried at 150 °C for 146 

1 h, and then prebaked at 550 °C for 5 h to reduce the influence of adsorbed organic 147 

and inorganic materials. After cooling, the filters were wrapped in prebaked aluminum 148 

foil and conditioned for 48 h in a constant temperature and humidity environment prior 149 

to gravimetric determination. Then the pre-sampling filter mass was measured using an 150 

electronic microbalance (BSA124S-CW, Sartorius; readability ±0.1 mg). Sampling was 151 

conducted using a medium-volume air sampler (Model 2030, Laoshan Electronic 152 

Instrument Co., Ltd.) operated at 100 L·min⁻¹ and equipped with a PM2.5 inlet. The inlet 153 

was installed at approximately 2 m above ground level. Daytime samples were collected 154 

from 09:00 to 20:30, and nighttime samples from 21:00 to 08:30 the following day. 155 
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After sampling, all filters were analyzed for major chemical compositions, 156 

including water-soluble inorganic ions (Na+, K+, NH4
+, Ca2+, Mg2+, Cl-, NO3

-, and SO4
2-) 157 

measured by ion chromatography (881 Compact IC Pro, Metrohm; and ICS-1500, 158 

Dionex Inc.), metallic elements (Al, Ca, Mg, Fe, and Ti) determined by inductively 159 

coupled plasma–atomic emission spectrometry (ICP-AES; iCAP 7400, Thermo), and 160 

organic carbon (OC), and elemental carbon (EC) quantified using the thermal/optical 161 

carbon analyzer (DRI Model 2015, USA) based on the thermal/optical reflectance 162 

(TOR) method (Chow et al., 2007). The chemical analysis process is described in detail 163 

in Supplementary Text S2. 164 

PM2.5 was reconstructed as the sum of organic matter (OM=1.6×OC) (Guinot et 165 

al., 2007), EC, non-dust water-soluble ions (nd-WSII, and fine mineral dust (FMD) 166 

derived from crustal elements (Malm et al., 1994; Tian et al., 2023), showing good 167 

agreement with measured PM2.5 (r = 0.82). Here, nd-WSII was defined as the sum of 168 

K+, NH4
+, NO3

-, and SO4
2, while Na+, Ca2+, Mg2+, and Cl- were excluded. Ca2+ and 169 

Mg2+ were treated as dust-related species, Na+ was excluded due to generally elevated 170 

blanks associated with quartz-fiber filters and glassware, and Cl- was excluded given 171 

its strong association with Mg2+ (r = 0.77, Table S1). The FMD was defined as follows: 172 

[𝐹𝑀𝐷] = 2.20[𝐴𝑙] + 2.49[𝑆𝑖] + 1.63[𝐶𝑎] + 2.42[𝐹𝑒] + 1.94[𝑇𝑖] (4) 173 

where [Si] = 1.5 [Al]. 174 

2.2 Multiple Linear Regression 175 

The influence of particle size and chemical composition on AAEsfc was assessed 176 
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using a standardized multiple linear regression:  177 

𝐴𝐴𝐸𝑠𝑓𝑐
̂ = 𝑎 + b × FMD̂ + c × nd − WSIÎ + d × D𝑆𝑀𝑃𝑆̂ + e × D𝐴𝑃𝑆̂ (5) 178 

where 𝐴𝐴𝐸𝑠𝑓𝑐
̂   denotes the standardized AAEsfc; 𝑎  represents the intercept term, 179 

encompassing EC, OM, and other potential influencing factors not explicitly accounted 180 

for; b, c, d, and e are regression coefficients; FMD̂, nd − WSIÎ , D𝑆𝑀𝑃𝑆
̂ , and D𝐴𝑃𝑆̂ 181 

are standardized variables of FMD fraction, nd-WSII fraction, and mean diameters from 182 

SMPS and APS, respectively. Offline chemical composition data were temporally 183 

matched to the corresponding online measurements based on sampling periods. Due to 184 

power outage on 27 December 2023 and 3 January 2024, daytime data for 27 December 185 

and both daytime and nighttime data for 3 January were unavailable.  186 

2.3 AERONET Data  187 

We used data from the Beijing Aerosol Robotic Network (AERONET) site (39.98° 188 

N, 116.38° E). Level 2.0 quality-assured Version 3 inversion products were selected. 189 

Key parameters include aerosol absorption optical depth (AAOD) at 440, 675, 870, and 190 

1020 nm to calculate columnar AAE (AAEcol): 191 

𝐴𝐴𝑂𝐷𝜆 = k × 𝜆−𝐴𝐴𝐸𝑐𝑜𝑙 (6) 192 

where k  is a constant. In addition, aerosol size-related parameters were obtained, 193 

including volume size distributions for radii in the 0.05–15.00 μm range, mean radii of 194 

fine-mode and coarse-mode particles (Rfine, Rcoarse), as well as volume concentrations 195 

of fine-mode (0.05–0.60 μm, volfine) (Sinyuk et al., 2020) and total particles (voltotal). 196 

The fine-mode fraction (FMF) was then calculated as: 197 
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𝐹𝑀𝐹 =
𝑣𝑜𝑙𝑓𝑖𝑛𝑒

vol𝑡𝑜𝑡𝑎𝑙

(7) 198 

To investigate the influence of chemical composition on AAEcol, we used the 199 

chemical composition dataset derived from AERONET inversions (Zhang et al., 2024), 200 

including black carbon (BC), brown carbon (BrC), coarse-mode absorbing soluble 201 

matter (CAI, representing coarse absorbing dust), coarse-mode non-absorbing soluble 202 

matter (CNAI, representing coarse non-absorbing dust and aged carbonaceous aerosols), 203 

and fine-mode non-absorbing soluble matter (FNAI, representing fine non-absorbing 204 

dust and organic carbon) (Zhang et al., 2024). 205 

To further assess the radiative impacts of aerosols, we also employed AERONET 206 

shortwave instantaneous aerosol direct radiative forcing (ADRF) and aerosol radiative 207 

forcing efficiency (ARFE) data, where ARFE is defined as ADRF per unit aerosol 208 

optical depth (AOD) at 550 nm, reported at the top of the atmosphere (TOA), bottom 209 

of the atmosphere (BOA), and in the atmosphere (ATM) (Holben et al., 1998).  210 

2.4 Shapley Additive Explanations (SHAP) 211 

To quantify how particle size and chemical composition control the AAEcol, we 212 

trained and compared three ensemble tree–based regressors: Extreme Gradient 213 

Boosting (XGBoost), Random Forest (RF), and Categorical Boosting (CatBoost). Each 214 

model was trained using seven predictor variables, including five chemical 215 

compositions (BrC, BC, CAI, CNAI, and FNAI), and four size parameters (Rfine, Rcoarse, 216 

volfine, and volume concentrations of coare-mode (volcoarse)). Model performance was 217 

evaluated using a consistent training–testing split and quantified by the coefficient of 218 
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determination (R²), root mean square error (RMSE), and mean absolute error (MAE). 219 

The CatBoost model in our case was subsequently adopted for further interpretation 220 

(Fig. S7). SHapley Additive exPlanations (SHAP) analysis was applied to decompose 221 

the model output into additive feature contributions, enabling quantitative assessment 222 

of the relative contribution and sensitivity of individual aerosol composition and size 223 

parameters in determining. Predicted-versus-observed diagnostics are shown in 224 

Supplementary Fig. S7. 225 

Similarly, to evaluate aerosol radiative impacts, XGBoost, RF, and CatBoost 226 

models also were trained using distinct predictor sets for different radiative metrics. For 227 

aerosol direct radiative forcing (ADRF), five optical properties (AOD, single scattering 228 

albedo (SSA), asymmetry parameter (g), surface albedo (SA), and AAEcol) were used 229 

as inputs. For radiative forcing efficiency (ARFE), the target definition (ARFE = 230 

ADRF/AOD) was kept unchanged; however, AOD was included during model fitting 231 

together with SSA, g, SA, and AAEcol so that the models could learn any residual 232 

nonlinearity and interactions involving AOD. Performance was again quantified by R², 233 

RMSE, and MAE on a consistent split. CatBoost in our case was retained as the best-234 

performing model across TOA, BOA, and ATM. Predicted and observed comparisons 235 

are provided in Supplementary Fig. S8-S9. 236 

To attribute ARFE variations while controlling for AOD, we employed SHAP with 237 

a scenario-based conditioning approach. Specifically, we recomputed SHAP values on 238 

the held-out test set after fixing AOD to four levels (25th, 50th, 75th percentiles, and 239 
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mean), computed from the training set to avoid information leakage, while leaving all 240 

other predictors unchanged. This yields SHAP attributions for SSA, g, SA, and AAEcol 241 

conditional on AOD at representative states. (The 50th percentile case is shown in the 242 

main text, others in Supplementary). For ADRF, SHAP was computed in the standard 243 

manner using all five predictors (AOD, SSA, g, SA, AAE）without conditioning. 244 

3 Results and Discussion 245 

3.1 Aerosol Characteristics During the Field Campaign 246 

During the campaign, aerosol absorption decreased systematically with 247 

wavelength (375, 532, and 870 nm) (Fig. S2d), demonstrating typical wavelength-248 

dependent characteristics. The corresponding mass absorption efficiencies were 249 

relatively low (0.49 ± 0.24, 0.21 ± 0.08, and 0.12 ± 0.04 m²·g⁻¹), reflecting the 250 

dominance of nd-WSII, which accounted for 42.9% of PM2.5 mass (Fig. 1a). Fig. 1a 251 

also showed that variations in near-surface AAE (AAEsfc) were closely linked to 252 

changes in aerosol chemical composition mass fraction. Periods with elevated FMD 253 

fractions generally coincided with higher AAEsfc, whereas intervals dominated by nd-254 

WSII corresponded to lower values. The frequency distribution further indicates that 255 

AAEsfc ranged from 0.90 to 3.0, and was most frequently 1.10–1.50 (mean 1.28 ± 0.39; 256 

Fig. 1b). Such elevated values likely resulted from winter heating emissions (Tian et al., 257 

2019; Yan et al., 2017) and mineral dust contributions (Fig. 1a), both known to raise 258 

AAE (Liu et al., 2018). 259 
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Both absorption coefficients and AAEsfc exhibited pronounced diurnal variability. 260 

Absorption coefficients were consistently higher absorption at night and a peak around 261 

23:00 (Fig. S2), driven by reduced tropospheric boundary layer height, lower afternoon 262 

temperatures and wind speeds (Fig. S3), and enhanced emissions from nighttime traffic 263 

and heating(Guo et al., 2016; Zhao et al., 2019). AAEsfc showed a clear night-high and 264 

day-low pattern, consistent with the evolution of particle size distributions. Fine-mode 265 

number concentrations derived from scanning mobility particle sizer (SMPS) increased 266 

during the morning rush hours and nighttime residential activity (Fig. 1c). By contrast, 267 

coarse-mode diameters from aerodynamic particle sizer spectrometer (APS) were larger 268 

in the early morning and decreased during the day (Fig. 1d). These results demonstrate 269 

that AAEsfc was co-regulated by both composition and size, providing the observational 270 

evidence for the subsequent machine-learning analysis to quantify their relative 271 

contributions and radiative implications. 272 

 273 
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Figure 1. Aerosol absorption characteristics during the campaign. (a) Time series 274 

of mean particle diameters derived from SMPS and APS, mass fractions of organic 275 

matter (OM), elemental carbon (EC), non-dust water-soluble inorganic ions (nd-WSII), 276 

and fine mineral dust (FMD), together with daily averaged near-surface AAE (AAEsfc). 277 

(b) Frequency distribution of AAEsfc. (c–d) Diurnal variations of aerosol particle 278 

number size distributions from SMPS (c) and APS (d). 279 

3.2 Influence of Composition and Size on Near-surface AAE 280 

The EC mass fraction showed no correlation with AAEsfc (r = 0.09, p = 0.49; Fig. 281 

2a), which can be attributed to the weak wavelength dependence of EC absorption 282 

(Samset et al., 2018) and its relatively small mass contribution (~4%) (Fig. 2a). 283 

Similarly, the OM mass fraction is not significantly correlated with AAEsfc (r = -0.11, 284 

p = 0.40; Fig. 2a). In contrast to study dominated by biomass burning, where light-285 

absorbing organic carbon can account for > 50% of the mass fraction and strongly 286 

enhance AAE (Wang et al., 2021). During the Beijing campaign, however, OM 287 

contributed only ~19% of total PM2.5 mass and BrC fractions were relatively low. 288 

Although BrC exhibits intrinsically high AAE values (Laskin et al., 2015; Moosmüller 289 

et al., 2011), its impact was diminished in the mixed aerosol matrix due to the influence 290 

of other dominant compositions. 291 

We observed a statistically significant negative correlation between AAEsfc and 292 

carbonaceous aerosol AAE (AAECA) (Fig. 2b), indicating that the non-carbonaceous 293 

aerosol had a significantly stronger role in shaping the absorption spectral dependence 294 
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under complex pollution conditions. Due to nitrogen dioxide (NO₂) concentrations were 295 

elevated at night (Fig. S4), which can interfere with PAX instruments, particularly at 296 

shorter wavelengths (Arnott et al., 2000; Gyawali et al., 2012). Therefore, we restrict 297 

the analysis here to daytime data (Fig S5). This pattern therefore cannot be ascribed 298 

simply to inter-instrument discrepancies. 299 

AAEsfc exhibited a significant positive correlation with the mass fraction of FMD 300 

(r = 0.79, p < 0.01) and a negative correlation with nd-WSII (r = –0.78, p < 0.01) (Fig. 301 

2a). The AAEsfc enhancement associated with FMD can be attributed to metal oxides 302 

such as hematite and goethite, which strongly absorb in the UV wavelengths and 303 

steepen the spectral dependence (Bi et al., 2016). By contrast, nd-WSII acted as non-304 

absorbing diluents, suppressing the overall wavelength dependence. Although the 305 

"lensing effect" of nd-WSII can enhance the AAECA (Cappa et al., 2012; Zhang et al., 306 

2025), due to the very low contribution of carbonaceous components to total PM2.5 mass, 307 

preventing any observable positive correlation between AAEsfc and the nd-WSII mass 308 

fraction. 309 

Particle size also played a critical role. AAEsfc was negatively associated with the 310 

fine-mode mean diameter from SMPS (DSMPS, r = –0.58; Fig. 2c) and positively 311 

associated with the coarse-mode mean diameter from APS (DAPS, r = 0.58; Fig. 2d). 312 

Standardized multiple regression corroborated these effects, yielding coefficients of –313 

0.02 for smaller particles and 0.44 for larger particles. Regression coefficients for 314 

composition were likewise consistent with the bivariate analysis: FMD had a positive 315 
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effect on AAEsfc (coefficient is 0.35), whereas nd-WSII had a negative effect 316 

(coefficient is –0.17). Particle size covaried with composition: DAPS was positively 317 

correlated with the FMD mass fraction (r = 0.64) and negatively with nd-WSII (r = –318 

0.64), while DSMPS was strongly positively correlated with nd-WSII (r = 0.89) and 319 

negatively with FMD (r = –0.87) (Fig. S6). Together, these relationships indicate that 320 

larger particles coincide with higher FMD and lower nd-WSII, enhancing AAEsfc, 321 

whereas smaller particles favor inorganic salts and reduced dust contributions, lowering 322 

AAEsfc. Overall, AAEsfc was not governed by carbonaceous aerosols alone but rather 323 

by the coupled influence of mineral dust, inorganic matter, and particle size 324 

distributions. 325 

 326 

Figure 2. Relationships of near-surface absorption Ångström exponent (AAEsfc) 327 

with chemical composition and particle size. (a) Scatter plots of chemical mass 328 

concentration fraction and total aerosol AAEsfc. (b) Relationship between AAEsfc and 329 
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carbonaceous aerosol AAE (AAECA), with symbol size representing the non-dust 330 

water-soluble ions (nd-WSII) fraction and color denoting the fine mineral dust (FMD) 331 

fraction. (c–d) Correlations of AAEsfc with mean particle diameters derived from SMPS 332 

(c) and APS (d), respectively. Shaded colors indicate probability density. 333 

3.3 Quantitative Contributions of Composition and Size to Columnar AAE 334 

The relationships between mass fractions of chemical composition and AAEcol 335 

were studied using AERONET data (Fig. 3). The AAEcol (1.47±0.56) was also 336 

suggested to be greater than that derived from the surface field campaign (Fig. 1), 337 

partially due to the vertical variation in aerosol absorption (Guan et al., 2024). The 338 

CNAI and FNAI mass fractions varied little and exhibited no significant correlations 339 

with AAEcol (r = –0.03 and 0.03, p > 0.1), indicating a negligible role in setting the 340 

absorption spectral dependence. In contrast, BC, BrC, and CAI displayed clear 341 

associations. Higher AAEcol (>1.5) were associated with marked increases in BrC and 342 

CAI, whereas lower AAEcol (<1.5) corresponded to relatively higher BC contributions. 343 

Correlation analysis is consistent with these patterns: AAEcol was negatively correlated 344 

with BC (r = –0.19, p < 0.01), in line with its weak wavelength dependence, but 345 

positively correlated with BrC (r = 0.19, p < 0.01) and CAI (r = 0.31, p < 0.01), 346 

underscoring the strong wavelength dependence of BrC and dust. These findings were 347 

similarly to our surface campaign, particularly regarding dust's amplifying effect on 348 

AAEcol. 349 
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 350 

Figure 3. Relationships between columnar absorption Ångström exponent (AAEcol) 351 

and major aerosol chemical compositions. (a) Mass fractions of fine-mode non-352 

absorbing soluble matter (FNAI), coarse-mode non-absorbing soluble matter (CNAI), 353 

coarse-mode absorbing soluble matter (CAI, representing dust), brown carbon (BrC), 354 

and black carbon (BC) across different AAEcol bins. (b-f) Correlations between AAEcol 355 

and the mass fractions of BC, BrC, CAI, CNAI, and FNAI, respectively; shaded colors 356 

denote probability density. 357 
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 358 

Figure 4. Relationships between columnar absorption Ångström exponent (AAE 359 

col) and aerosol size distribution characteristics. (a) Volume size distributions 360 

grouped by AAEcol bins. (b) Fine-mode fraction (FMF) by AAEcol bins, with horizontal 361 

lines indicating means. (c–d) Correlations of AAEcol with effective radius of fine-mode 362 

(Rfine) and coarse-mode (Rcoarse) particles, respectively. 363 

The impacts of aerosol size distribution on AAEcol were clearly reflected (Fig. 4). 364 

With AAEcol increasing, the peaks of both fine and coarse modes shifted to smaller sizes, 365 

indicating an overall refinement of the size distribution. The Rfine and Rcoarse were both 366 

negatively correlated with AAEcol (r = –0.27 and –0.26, p < 0.01), demonstrating that 367 

reductions in particle size in both modes enhanced the spectral dependence. 368 

Interestingly, FMF decreased with increasing AAEcol, suggesting that coarse-mode 369 

particles retained a substantial volumetric contribution even under high AAEcol 370 

conditions.  371 
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 372 

Figure 5. SHAP interpretation of the machine-learning model for columnar AAE. 373 

(a) Attribution of chemical compositions and particle size parameters to columnar AAE. 374 

Each horizontal bar represents the mean absolute SHAP value of a feature, indicating 375 

its overall impact on the model output; the color gradient shows the effect of feature 376 

values on columnar AAE, with red indicating a positive influence and blue indicating a 377 

negative influence. Features are ranked by importance. (b-c) SHAP dependence plots 378 

corresponding to CAI. (d) SHAP dependence plots corresponding to BrC. 379 

Machine learning analysis further quantified relative contributions, as illustrated 380 

in Fig. 5a. It is found that showed that CAI had the strongest explanatory power, 381 

accounting for ~19% of the model performance, confirming the dominant role of dust 382 

in amplifying spectral absorption. BrC was second (18.5%) and BC was third (13.9%), 383 
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together with CAI explaining ~50% of model performance. Among the size-related 384 

predictors, Rfine alone accounted for about one quarter (~29%) of the cumulative 385 

importance of all size metrics, making it the most influential size parameter. Its 386 

importance was also clearly higher than CNAI and FNAI, indicating that the mean 387 

radius of fine-mode particles is the key size control on AAEcol. During the prediction 388 

process, it is observed that higher values of BrC, CAI, and volume concentrations of 389 

coare-mode (volcoarse) corresponded to higher SHAP values and higher values of other 390 

predictors corresponded to smaller SHAP values. These responses are fully consistent 391 

with the correlations between AAEcol and these parameters (Fig. 3b–d; Fig. 4c-d). 392 

Collectively, these results demonstrated that AAEcol is not governed by BC or BrC alone; 393 

it is primarily modulated by dust and secondarily by particle-size structure (size metrics 394 

together ~35%), underscoring the need to account for both composition and size when 395 

evaluating spectral absorption. 396 

To further investigate the interaction effects of major parameters on AAEcol 397 

prediction, we selected CAI, BrC, and BC, the three most influential predictors by 398 

SHAP, to analyze their interactions (Fig. 5b-5f). When CAI loading was below 10 399 

mg·m⁻2, BrC suppressed the positive impact of CAI loading and progressively drove it 400 

toward a negative contribution. When CAI loading exceeded 10 mg·m⁻2, lower BrC is 401 

more likely than higher BrC to sustain or enhance the positive marginal effect of CAI, 402 

although the magnitude is weaker than in the CAI loading < 10 mg·m⁻2 regime. For 403 

CAI loading in the range 0–4, higher BC yielded a positive marginal effect of CAI on 404 
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AAEcol, whereas lowed BC yielded a negative one. Once CAI loading is greater than 4 405 

mg·m⁻2, this relationship reverses, with higher BC more likely to make further increases 406 

in CAI contribute negatively to AAEcol. As BrC increases, BC progressively reduces 407 

the positive and negative contributions of BrC to AAEcol. These interactions indicate 408 

that models of aerosol spectral absorption should explicitly represent the mutual 409 

constraints among CAI, BrC, and BC to better identify and quantify AAE drivers. 410 

3.4 Radiative Forcing and Efficiency Responses to Columnar AAE in Beijing 411 

Joint analysis of the boxplots and SHAP diagnostics revealed a robust, layer-412 

dependent coupling between the AAEcol and ADRF. As AAEcol increased from 0–1 to 413 

2–4.5, cooling at the TOA intensifies, atmospheric heating weakened, and cooling at 414 

the BOA was alleviated (Fig. 6a-6c), reflecting a transition from BC-dominated, low- 415 

SSA conditions to high-SSA regimes influenced by BrC and mineral dust. SHAP 416 

method confirmed that AAEcol is the third strongest driver (~16%) after AOD (~56%), 417 

and comparably to SSA (~18%) at TOA and consistently shifts ADRF toward more 418 

negative values (Fig. 6d). At BOA, AAEcol contributes only ~4%. BOA cooling is 419 

primarily regulated by AOD (~65.0%) and SSA (~16 %) (Fig. 6e). In the ATM, AOD 420 

and SSA jointly dominated, but AAEcol still contributed comparably to surface albedo 421 

(SA) (both ~12%) (Fig. 6f), underscoring its role in vertically redistributing radiative 422 

energy. Mechanistically, higher AAEcol is associated with BrC and dust, which exhibit 423 

higher SSA but lower mass absorption efficiencies (MAE), thereby enhancing 424 

backscattering and solar escape (more negative TOA forcing), reducing absorption 425 
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(weaker atmospheric heating), and producing a net transmission effect that mitigates 426 

BOA cooling. 427 

 428 

Figure 6. Role of columnar absorption Ångström exponent (AAEcol) in regulating 429 

aerosol direct radiative forcing (ADRF). (a–c) Box plots of ADRF at the top of the 430 

atmosphere (a), bottom (b), and in the atmosphere (c) as a function of AAEcol. (d–f) 431 

SHAP analysis quantifies the relative contributions of aerosol optical depth (AOD), 432 

single scattering albedo (SSA), asymmetry parameter (g), surface albedo (SA) and 433 

AAEcol in driving ADRF variations at the top of the atmosphere (d), at the bottom of 434 

the atmosphere (e), and in the atmosphere (f). The mean absolute SHAP values 435 
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(numbers in parentheses) indicate the relative contribution of each predictor to the 436 

model output. 437 

 438 

Figure 7. Role of columnar absorption Ångström exponent (AAEcol) in regulating 439 

aerosol radiative forcing efficiency (ARFE). (a–c) Box plots of ARFE at the top of 440 

the atmosphere (a), bottom (b), and in the atmosphere (c) as a function of AAEcol. (d–441 

f) SHAP analysis with AOD fixed at its median (50th percentile) quantifies the relative 442 

contributions of single scattering albedo (SSA), asymmetry parameter (g), surface 443 

albedo (SA) and AAEcol in driving ARFE variations at the top of the atmosphere (d), 444 

bottom (e), and in the atmosphere (f). The mean absolute SHAP values (numbers in 445 
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parentheses) indicate the relative contribution of each predictor to the model output. 446 

To better show columnar AAE’s impact on ADRF, we introduced the ARFE, 447 

which removes the scaling by aerosol loading and highlights intrinsic optical controls. 448 

At TOA, AAEcol was the dominant driver of cooling efficiency based on mean |SHAP| 449 

(~40.0%), exceeding the asymmetry factor (g), SSA, and SA even when AOD was 450 

conditioned at 25th (Fig. S10), 50th (Fig. 7), 75th percentiles (Fig. S11), or mean (Fig. 451 

S12). Larger AAEcol was associated with more negative TOA ARFE, consistent with 452 

stronger shortwave backscattering by BrC and dust (Fig. 7d). At BOA, ARFE was 453 

governed primarily by SSA (~50%), followed by g and SA, with AAEcol contributing 454 

more modestly (~8%), increases in SSA and g tended to make ARFE less negative (Fig. 455 

7e), indicative of enhanced forward scattering and greater transmittance for a fixed 456 

AOD. In the ATM, SSA dominated the heating-efficiency (>50%), with AAEcol and 457 

SSA providing secondary control (both ~17%), while g played a minor role (Fig. 7f). 458 

Higher AAEcol is linked to lower atmospheric heating efficiency, reflecting a shift 459 

toward aerosol types with weaker mass absorption than BC, and higher SSA further 460 

suppresses in-column absorption. 461 

4 Conclusions 462 

LAAs exert a strong influence on the Earth’s radiation budget, yet the spectral 463 

dependence of their absorption, commonly summarized by the AAE, remains poorly 464 

constrained in urban regions. Here we combined in situ observation with long-term 465 
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AERONET column data and an interpretable machine-learning framework to 466 

disentangle the drivers of the AAE and to clarify its radiative implications.  467 

Near the surface in wintertime Beijing, AAE variability co-varied primarily with 468 

enhanced fractions of fine mineral dust and water-soluble inorganic ions, underscoring 469 

that non-carbonaceous species can substantially modulate local absorption spectra in 470 

addition to BC and BrC. At the column level, SHAP diagnostics identified CAI as the 471 

leading driver of columnar AAE, followed by BrC and BC. Among particle size metrics, 472 

the fine-mode effective radius emerged as the most influential variable and accounted 473 

for about 29% of the cumulative importance of all size parameters, whereas non-474 

absorbing composition (coarse and fine non-absorbing dust and non-absorbing 475 

carbonaceous aerosols) played only a minor role. 476 

The radiative analysis shows that columnar AAE is a key regulator of ADRF at the 477 

TOA. Columnar AAE explained about 16% of the variance in TOA ADRF, comparable 478 

to the contribution from SSA, and became the leading predictor of TOA ARFE, 479 

accounting for roughly 40% of its variability and systematically enhancing TOA 480 

cooling efficiency. By contrast, the direct influence of AAE on ADRF and ARFE in the 481 

ATM and at the BOA was clearly weaker, where SSA and loading-related quantities 482 

remained dominant.  483 

The findings of our study demonstrate the multifactorial control of AAE by 484 

composition and size and highlight its pivotal role in partitioning radiative forcing 485 

vertically among TOA, ATM, and BOA, especially at the TOA. Consequently, 486 
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accurately constraining AAE and its drivers is essential for a realistic representation of 487 

aerosol radiation interactions in regional and global models. 488 

Data and code availability 489 

The data that support the findings of this study are available in the Zenodo data 490 

repository (https://doi.org/10.5281/zenodo.17852818, Wang et al., 2025b). The 491 

AERONET data is freely available on the AERNOET website 492 

(https://aeronet.gsfc.nasa.gov/). The aerosol chemical composition derived from 493 

AERONET inversion data is available from https://doi.org/10.1175/BAMS-D-23-494 

0260.1. The code scripts are also available in the Zenodo data repository 495 

(https://doi.org/10.5281/zenodo.17852818, Wang et al., 2025b). 496 
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