

1 **Mechanisms of air-sea CO₂ exchange in the central Baltic Sea**

2 **Yuanxu Dong^{1,2}, Christa A. Marandino¹, Ryo Dobashi³, David Ho³, Gregor Rehder⁴, Henry**
3 **C. Bittig⁴, Josefine Karnatz¹, Bita Sabbaghzadeh⁴, Helen Czerski⁵, Anja Engel¹**

4 ¹Marine Biogeochemistry Research Division, GEOMAR Helmholtz Centre for Ocean Research
5 Kiel, Kiel, Germany

6 ²Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany

7 ³Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii, USA

8 ⁴Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

9 ⁵Department of Mechanical Engineering, University College London, London, UK

10 *Correspondence to:* Yuanxu Dong (ydong@geomar.de)

11

12 **Abstract** Air-sea gas exchange regulates the cycling of climate-relevant gases such as carbon
13 dioxide (CO₂), yet large uncertainties remain in its quantification. The gas transfer velocity (K), a
14 key parameter for estimating CO₂ flux, is usually expressed as a function of wind speed (U_{10N}).
15 This approach overlooks the role of fetch and surfactants, which can substantially affect K .
16 However, no field study has systematically quantified their combined effects under fetch-limited
17 and surfactant-abundant ocean conditions. To fill this research gap, we conducted air-sea gas
18 exchange studies during a cruise in the central Baltic Sea, a system with high surfactant levels and
19 a short fetch. We report independent determinations of K using eddy covariance (EC) and dual-
20 tracer techniques, together with direct measurements of natural surfactants and modelled wave
21 parameters. Both methods yield consistent results; however, EC-based CO₂ transfer velocities are
22 on average 33% lower than those reported in the open ocean in previous EC studies. Sea-state-
23 dependent parameterisations indicate that limited fetch reduces K by 8%, while elevated surfactant
24 concentrations may have contributed to the additional 25% reduction. We developed an updated
25 parameterization that includes wind stress, sea state, and surfactants. When applied to
26 climatological forcing, it yields a 40% stronger seasonal cycle of CO₂ flux in the Baltic Sea than
27 obtained with the conventional U_{10N} -based parameterization. These findings highlight the need to
28 move beyond U_{10N} in the parameterization of K and estimation of regional fluxes, especially when
29 evaluating the potential of marine carbon dioxide removal (mCDR) in coastal seas.

30 **Short summary** Air-sea gas exchange regulates the Earth's climate. However, the description of
31 the kinetic exchange process only uses wind speed, neglecting other drivers. In this study, we
32 investigate how fetch and natural surfactants modulate the air-sea carbon dioxide exchange.
33 Measurements from the central Baltic Sea show that limited fetch and elevated surfactants
34 significantly suppress this exchange. A new parameterization is provided, improving regional
35 carbon budgets and evaluations of climate solutions.

36

37 **1. Introduction**

38 The ocean is a major sink of carbon dioxide (CO_2) emitted by human activities, substantially
39 mitigating climate change (Friedlingstein et al., 2025). In the context of increasing climate change,
40 the ocean is considered a tool for solutions in addition to its natural role, through marine-based
41 carbon dioxide removal (mCDR) (Doney et al., 2024). The accurate quantification of global ocean
42 carbon flux and the regional mCDR efficiency is essential for climate predictions. Air-sea CO_2
43 flux is often estimated using the bulk formula:

$$44 \quad F = K_{660} \left(\frac{Sc}{660} \right)^{-n} (\alpha_w f\text{CO}_{2w} - \alpha_i f\text{CO}_{2a}) \quad (1)$$

45 where F (e.g., $\text{mmol m}^{-2} \text{ day}^{-1}$) is the air-sea CO_2 flux, K_{660} (cm h^{-1}) is the gas transfer velocity
46 normalized to a Schmidt number (Sc) of 660, corresponding to CO_2 in seawater at 20°C . The value
47 of the exponent n is between 1/2 and 2/3 (Jähne et al., 1987), and is often assumed to be 1/2 in the
48 ocean environment (Wanninkhof et al., 2009). CO_2 solubilities (e.g., $\text{mol L}^{-1} \text{ atm}^{-1}$) at the base of
49 the mass boundary layer and at the air-sea interface are α_w and α_i , respectively. CO_2 fugacity ($f\text{CO}_2$,
50 μatm) at these locations are $f\text{CO}_{2w}$ and $f\text{CO}_{2a}$. Sc and α depend on water temperature and salinity
51 (Wanninkhof, 2014; Weiss, 1974). Notably, if both the CO_2 flux and $f\text{CO}_2$ are known, K_{660} can be
52 derived.

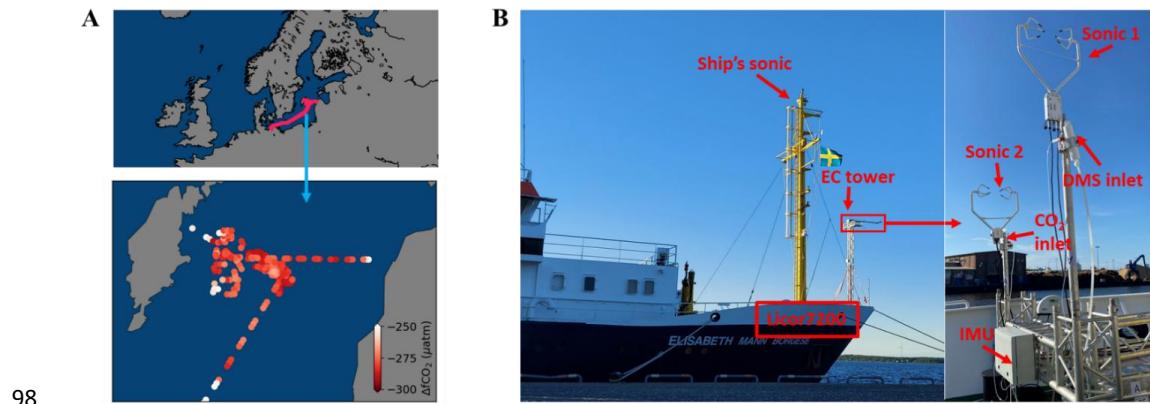
53 Equation 1 highlights the central role of K_{660} as the kinetic forcing parameter in air-sea CO_2
54 exchange. K_{660} is directly driven by near-surface turbulence, and affected by many factors near-
55 surface processes (Garbe et al., 2014). On a global scale, wind forcing has a dominant effect on
56 gas transfer velocity, and other factors, such as friction velocity, waves, and bubbles, are strongly
57 linked with wind speed (Wanninkhof et al., 2009). Thus, the readily available 10-meter neutral

58 height wind speed (U_{10N}) is often used as a sole variable for the parameterization of K_{660} (e.g., Ho
59 et al., 2006; Nightingale et al., 2000; Wanninkhof, 2014). However, wind is not the only factor
60 driving gas exchange, as other factors that are not fully linked with the wind speed can substantially
61 influence this exchange at regional scales, particularly in the coastal ocean (Upstill-Goddard,
62 2006). Existing U_{10N} -based K_{660} formulations in the Baltic Sea yield controversial results (e.g.,
63 Gutiérrez-Loza et al., 2022; Kuss et al., 2004), highlighting the lack of mechanistic understanding
64 of air-sea gas exchange.

65 Surfactants are surface-active compounds, molecules, or biomolecules. They are ubiquitous in the
66 ocean and often highly concentrated in coastal waters through biological production and terrestrial
67 inputs (Mustaffa et al., 2020; Sabbaghzadeh et al., 2017; Wurl et al., 2011), suppressing gas
68 exchange by damping surface turbulence and forming an additional diffusion barrier (McKenna
69 and McGillis, 2004; Pereira et al., 2016). In contrast, wave breaking enhances gas transfer,
70 especially for low-soluble gases, by introducing bubbles as an exchange pathway in addition to
71 the interfacial exchange route (Bell et al., 2017; Blomquist et al., 2017; Dong et al., 2025; Woolf,
72 1997). Wave breaking is strongly impacted by the fetch, the distance over which wind acts on the
73 water surface, as limited fetch suppresses wave breaking and bubble generation (Fairall et al., 2006;
74 Kunz and Jähne, 2018; Ocampo-Torres and Donelan, 1995; Prytherch and Yelland, 2021; Woolf,
75 2005). Understanding how these mechanisms influence air-sea gas exchange is essential for
76 regional (coastal) carbon budgets and for developing robust monitoring, reporting, and verification
77 (MRV) frameworks to support mCDR strategies (e.g., Ho et al., 2023).

78 The Baltic Sea, with its high primary productivity (Schmidt and Schneider, 2011) in summer and
79 limited fetch, provides an ideal natural laboratory to investigate the combined effects of surfactants
80 and fetch on air-sea gas exchange. We therefore conducted a comprehensive gas exchange
81 experiment in the central Baltic Sea to quantify the impact of factors additional to wind speed on
82 gas exchange.

83 2. Methods


84 2.1 CenBASE cruise

85 The Central Baltic Air-Sea Exchange Experiment (CenBASE; EMB 295) was conducted in
86 summer 2022, immediately after the phytoplankton bloom season, to capture strong air-sea gas

87 exchange signals (Parard et al., 2016; Bittig et al., 2024). The research cruise on the *R/V Elisabeth*
88 *Mann Borgese* (EMB) departed from Rostock, Germany, on 2 July and returned on 18 July, with
89 the primary study area located in the Gotland Basin (Fig. 1A).

90 Eddy covariance (EC) CO₂ flux observations (Section 2.2) and the dual-tracer experiment (see
91 Appendix A1) were performed simultaneously to determine gas transfer velocities, representing
92 the second successful joint deployment of these two approaches after GasEx-98 (Ho and
93 Wanninkhof, 2016; McGillis et al., 2001). Surfactant samples were collected from both the
94 microlayer and underlying water (see Appendix A2). Wave parameters were extracted from the
95 ERA5 hourly reanalysis data product (0.5° × 0.5°) (Hersbach et al., 2020) based on the cruise
96 track's spatiotemporal coordinates. Additional measurements included $f\text{CO}_2$, sea surface
97 properties, and meteorological variables to support the analysis.

99 **Figure 1: CenBASE cruise tracks and the ship-based eddy covariance (EC) system.** Left panel: Cruise
100 tracks in the central Baltic Sea, color-coded by air-sea CO₂ fugacity differences ($\Delta f\text{CO}_2$). Middle panel:
101 Research vessel EMB during the CenBASE cruise; a custom-built EC tower is mounted at the bow. Right
102 panel: Instruments mounted on top of the tower, including sonic anemometers, a motion sensor (IMU), and
103 the CO₂ inlet. Additional setup details are provided in Section 2.

104

105 2.2 Eddy covariance CO₂ flux measurements

106 The EC technique allows for direct measurements of air-sea CO₂ flux using the following equation:

107

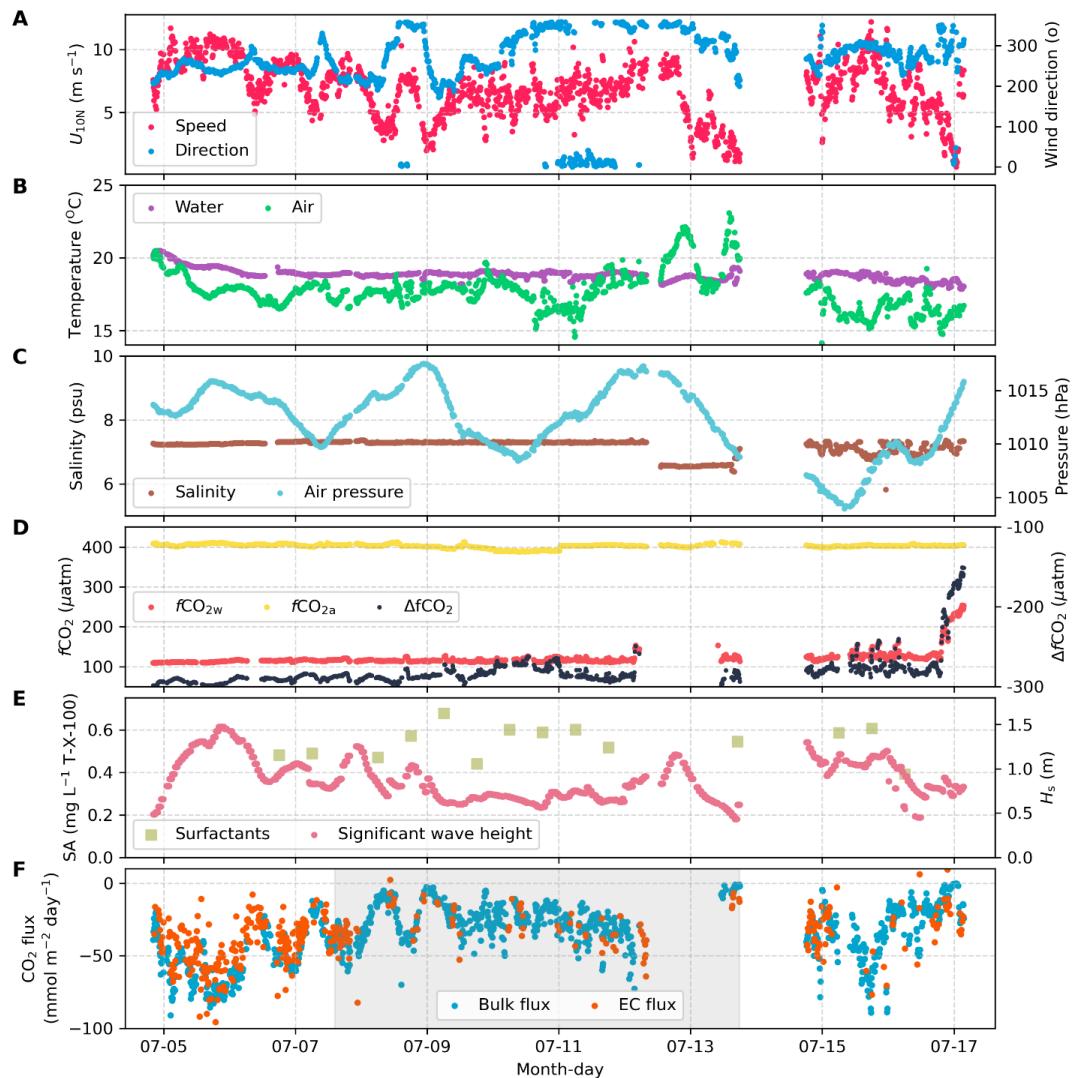
$$F = \rho \overline{w'c'} \quad (2)$$

108 where ρ is the mean mole density of dry air (e.g., in mole m^{-3}), w is the vertical wind velocity (in
109 m s^{-1}), and c is the dry air mole fraction of CO_2 (in ppm or $\mu\text{mol mol}^{-1}$). The primes denote the
110 fluctuations from the mean, and the overbar indicates time averaging. Due to the dynamic nature
111 of the marginal sea environment, a 10-minute averaging interval was chosen, shorter than the 20-
112 30 minutes typically used in the open ocean (e.g., Blomquist et al., 2017). The CO_2 transfer
113 velocity ($K_{660\text{-CO}_2}$) is derived by combining Equations 1 and 2. The EC momentum flux is similarly
114 calculated as $\rho \overline{w'u'}$, where u is the horizontal wind component. The friction velocity (u_*) is then
115 derived as the square root of the momentum flux magnitude.

116 Most components of the EC system were mounted on a custom-built tower at the bow of the ship
117 to minimize the flow distortion (Fig. 1B). The tower extended 5 m above the deck, reaching a
118 height of 14 m above mean sea level (MSL). A three-dimensional (3D) sonic anemometer
119 (CSAT3B, *Campbell Scientific*) was installed on the starboard arm to measure the wind
120 fluctuations, with a backup unit on the port side (CSAT3). An Inertial Measurement Unit (IMU,
121 *SBG Systems*), housed in a meteorological box at the top of the tower, recorded ship motion. The
122 IMU was positioned 66 cm from the starboard sonic and 173 cm aft of it. CO_2 fluctuations were
123 measured using a LI-7200 gas analyzer. The sampled air was dried with a Nafion dryer operating
124 in ‘reflux’ mode (Perma Pure LLC, 2024). Air was drawn from the port-side inlet through a \sim 10-
125 m Teflon tube (3/8" inner diameter) at a stable flow rate of $33.2 \pm 0.3 \text{ L min}^{-1}$. The 20-Hz signal
126 from the sonic anemometer, IMU, and LI-7200 were logged by a datalogger (CR6, *Campbell
127 Scientific*).

128 Data processing and quality control procedures followed those described in Dong et al. (2021).
129 Briefly, motion corrections were applied to the wind (Edson et al., 1998) and CO_2 signals (Miller
130 et al., 2010) to remove contamination from ship motion. A nitrogen puff test revealed a 0.3 s e-
131 fold response time, which is used to correct the high-frequency attenuation (Blomquist et al., 2014).
132 The time delay (\sim 2.5 s) between the inlet and the gas analyzer was assessed via the maximum
133 covariance method. Flow distortion was minimized by mounting the EC tower arms beyond the
134 ship's hull.

135 **2.3 Auxiliary observations**


136 The partial pressure of CO₂ in surface water was measured at 1-minute intervals using the Mobile
137 Equilibrator Sensor System (MESS) paired with two off-axis integrated cavity output laser
138 spectrometers (oa-ICOS, Los Gatos Instruments) (Sabbaghzadeh et al., 2021). Seawater was
139 continuously drawn from the ship's inlet at a depth of ~3.3 m. Atmospheric CO₂ was measured
140 daily using an air inlet mounted on the ship's foremast at 13.5 m above MSL. These air CO₂ data
141 are compared to the absolute CO₂ values measured by the EC gas analyzer (LI-7200, LI-COR, Inc.)
142 to generate the 10-min time series of atmospheric CO₂. Sensor calibration was performed almost
143 daily using standard gases from the Central Analytical Laboratories of the European Integrated
144 Carbon Observation System (ICOS RI). Mean wind measurements were obtained from a sonic
145 anemometer mounted 17 m above MSL on the ship's foremast to minimize flow distortion
146 (O'Sullivan et al., 2013). Residual distortion was corrected using the ERA5 reanalysis wind
147 product and nearby station records (see Appendix A3). Atmospheric pressure and temperature at
148 ~13.5 m MSL were recorded by the onboard weather station. Surface seawater temperature and
149 salinity were monitored by the ship's underway system and calibrated against CTD (conductivity,
150 temperature, and depth) casts.

151 In addition, wave parameters were extracted from the ERA5 analysis wave product according to
152 the open ocean EC cruise tracks (see Yang et al., 2022) and the CenBASE cruise. The COARE
153 model is used to estimate the bulk u_* (Edson et al., 2013). For the open ocean scenario, the
154 environmental variables from the corresponding cruises are used as inputs for the COARE model
155 (Yang et al., 2022). The environmental parameters observed during the CenBASE cruise are used
156 for the Baltic Sea u_* estimate in the COARE model.

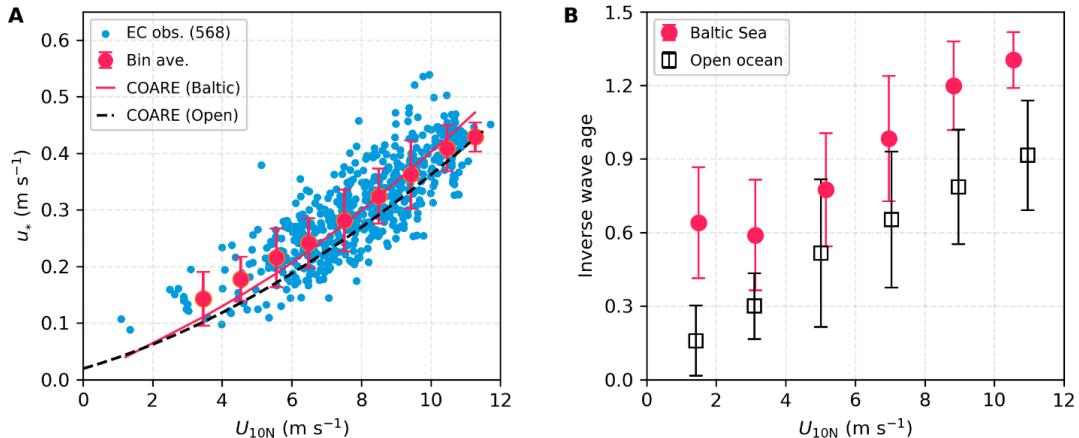
157 **3. Results**

158 **3.1 Environmental variables and the CO₂ flux**

159 During CenBASE, winds predominantly originated from the west to north sector (Fig. 2A), with
160 an effective fetch of approximately 50-300 km in the main study area (Fig. A1, Appendix). The
161 wind speed ranged from 1 to 12 m s⁻¹ (Fig. 2A). Water depth across the central Baltic Sea study

162

163 **Figure 2: Ten-minute averages of environmental variables and air-sea CO₂ flux.** **A:** Neutral 10-meter
164 wind speed (U_{10N} , red) and wind direction (blue). **B:** Surface seawater temperature (purple) and air
165 temperature (green). **C:** Seawater salinity (brown) and sea-level air pressure (light-blue). **D:** CO₂ fugacity
166 in surface seawater (red) and atmosphere (yellow), and their difference ($\Delta f\text{CO}_2$, black). **E:** Surface
167 microlayer surfactant activity (SA, light green squares) and significant wave height extracted from ERA5
168 (H_s , red); **F:** Bulk CO₂ flux estimates (blue, based on K_{660} parameterisation from Ho et al., 2006) and EC
169 CO₂ flux observations (orange). The dual-tracer tracing period is indicated by the light gray shading. Data
170 are missing from 12-14 July due to a medical event and a temporary shortage of liquid nitrogen, which
171 required the vessel to leave the primary study area.



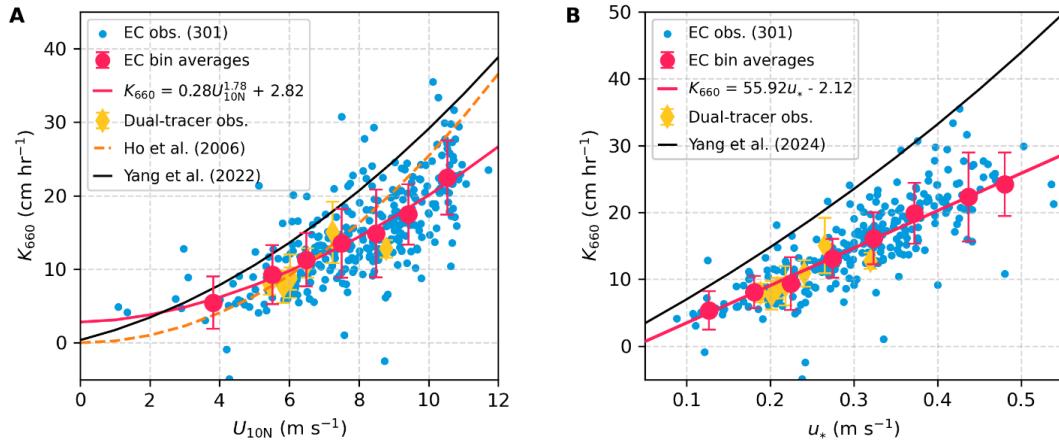
172 site ranged from ~50 to 250 m. Surface water was generally warmer than the overlying air (Fig.
173 2B), resulting in an unstable boundary layer. Surface salinity remained consistent at approximately
174 7.3 throughout the study region (Fig. 2C). The cruise took place shortly after a summer
175 phytoplankton bloom, resulting in remarkably low sea surface $f\text{CO}_2$ (~120 μatm ; Fig. 2D).
176 Atmospheric $f\text{CO}_2$ remained constant at ~403 μatm , creating a strong air-sea gradient ($\Delta f\text{CO}_2 \approx -$
177 280 μatm on average; Fig. 2D) that generates strong ocean CO_2 uptake signals.

178 Surface microlayer surfactant activity (SA), expressed as Triton-X-100 equivalents, was relatively
179 constant at $0.54 \pm 0.08 \text{ mg L}^{-1}$ (Fig. 2E), significantly higher than typical open-ocean values (0.1-
180 0.2 mg L^{-1} ; Mustaffa et al., 2020; Sabbaghzadeh et al., 2017). Modeled significant wave height
181 (H_s) remained below 1.5 m (Fig. 2E), lower than expected for comparable wind speeds in the open
182 ocean (Fig. A2). Bulk CO_2 fluxes estimated from the measured $\Delta f\text{CO}_2$ and an open-ocean dual-
183 tracer K_{660} parameterisation (Ho et al., 2006) were higher than observed EC fluxes under high
184 wind speeds and lower than observed EC fluxes under low wind speeds (Fig. 2F and Fig. A3).
185 During the tracer-tracking period (8-14 July), frequent ship heading changes reduced EC flux
186 quality, leading to most valid EC measurements from outside this period (Fig. 2F, light-gray
187 shading). Nevertheless, as both EC and dual-tracer were collected in the same study area, the K
188 from both methods can be reasonably considered simultaneous measurements.

189 **3.2 Friction velocity**

190 The friction velocity is a key parameter characterizing near-surface turbulence. Observed u_* values
191 during CenBASE were 10% higher than in the open ocean at the same wind speeds (Fig. 3A),
192 likely reflecting fetch-related differences. The wave field in the central Baltic Sea is much younger
193 than the open ocean, with wave age ~60% lower at the same wind speed (Fig. 3B). The waves are
194 shorter and steeper relative to the open ocean (Fig. A2). This wave field enhances sea surface
195 roughness and elevates u_* relative to the open sea. u_* predicted by the COARE3.6 model, when
196 forced with observed environmental and extracted wave parameters during CenBASE, broadly
197 agrees with measurements (Fig. 3A). This supports that the COARE model remains largely
198 applicable to fetch-limited marine environments when wave information is incorporated in the
199 model, although largely developed from open-ocean observations (Edson et al., 2013). Given that
200 u_* is an indicator of surface wind-induced turbulence, this elevated u_* is expected to enhance CO_2
201 transfer velocity (see Section 3.4).

202 **Figure 3: Friction velocity (u_*) and inverse wave age in the Baltic Sea (CenBASE) and open ocean. A:**
 203 u_* derived from EC air-sea momentum fluxes versus 10-meter neutral wind speed (U_{10N}). Blue dots: 10-
 204 min u_* observations during CenBASE (568 points), with red points corresponding to bin averages (per 1 m
 205 s⁻¹). Red line: u_* simulated by COARE3.6 using the Baltic Sea environmental data; Black-dashed line:
 206 COARE3.6 simulations in the open ocean. **B:** Inverse wave age (U_{10N}/ C_p) in the Baltic Sea (red dots) and
 207 open ocean (black squares). Error bars denote ± 1 standard deviation (STD) of bin averages. The hourly
 208 wave parameters can be found in Fig. A2 in the Appendix.
 209


210

211 3.3 Gas transfer velocities from EC and DT

212 The CO₂ transfer velocity ($K_{660\text{CO}_2}$) was derived from EC air-sea CO₂ flux and $\Delta f\text{CO}_2$ observations
 213 using Equation 1. After quality control, 301 valid 10-min $K_{660\text{CO}_2}$ data points were retained (Fig.
 214 4). The large $|\Delta f\text{CO}_2|$ (~280 μatm) ensured accurate $K_{660\text{CO}_2}$ derivations, with hourly uncertainties
 215 of ~20% (Fig. A4), substantially lower than typical cruise-based uncertainties (e.g., ~30% during
 216 the HiWinGS cruise; Blomquist et al., 2017). The cool skin correction (reduces $\Delta f\text{CO}_2$ by ~2 μatm ;
 217 Woolf et al., 2016) is negligible relative to the observed $\Delta f\text{CO}_2$ and was therefore ignored. K_{660}
 218 from the DT experiment is summarized in Appendix A2. The EC dataset offers high temporal
 219 resolution (~10 min), enabling investigation of small-scale processes influencing gas exchange.
 220 The EC observations span a broad range of wind speeds (1 to 12 m s⁻¹, Fig. 4A), providing a robust
 221 constraint of $K_{660\text{CO}_2}$ under low-to-moderate wind conditions. In contrast, DT-derived K_{660}
 222 represents daily averages, in which short-term extremes (i.e., low and high wind conditions) are

223 smoothed, resulting in seven observations concentrated at U_{10N} of 5-9 m s⁻¹ (Fig. 4A). Within this
 224 wind range, DT- and EC-derived K_{660} values agree well (Fig. 4).

225
 226 **Figure 4: Gas transfer velocity ($K_{660\text{-CO}_2}$) in the central Baltic Sea during the CenBASE cruise. A:**
 227 Relationships between K_{660} and U_{10N} . **B:** Relationships between K_{660} and observed u_* . Blue dots in both
 228 panels represent 10-min $K_{660\text{-CO}_2}$ ($N = 301$), with red dots denoting bin averages (1 m s⁻¹ U_{10N} bins or 0.05
 229 m s⁻¹ u_* bins) ± 1 STD. Red lines indicate fit to the bins, with R^2 of 0.48 for the fit with U_{10N} and 0.59 with
 230 u_* . Yellow diamonds show dual-tracer (DT) transfer velocities ($K_{660\text{-}_3\text{He/SF}_6}$) measured concurrently with EC
 231 (Dobashi et al., submitted). The orange line in panel A denotes the open ocean DT-based parameterisation
 232 from Ho et al. (2006). The black lines in panels A and B correspond to the open-ocean EC-based
 233 parameterizations of Yang et al. (2022; U_{10N} -dependent) and Yang et al. (2024; u_* and sea-state dependent),
 234 respectively.

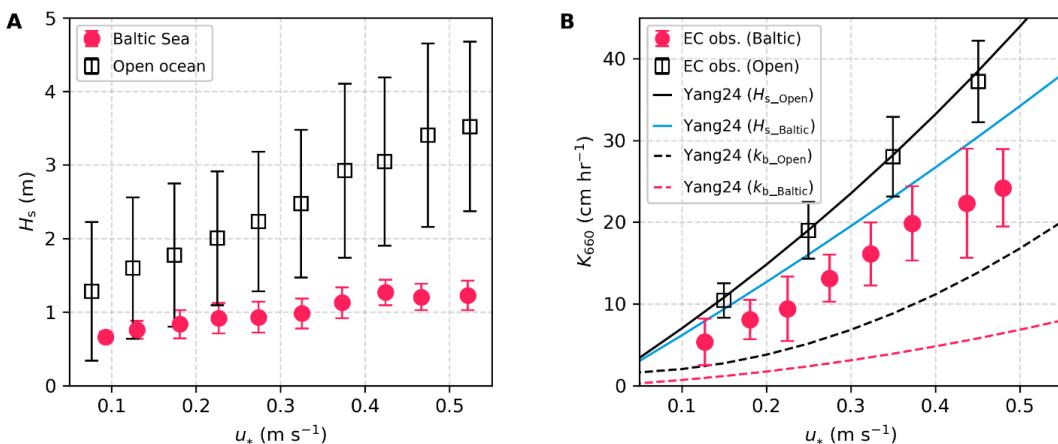
235
 236 DT-derived K_{660} values during CenBASE also mostly match the open-ocean DT-based
 237 parameterization of Ho et al. (2006) under equivalent wind speeds (orange dashed line in Fig. 4A).
 238 However, EC-derived $K_{660\text{-CO}_2}$ values deviate systematically from this open-ocean relationship
 239 (Ho et al., 2006), being higher at low wind speeds (1-7 m s⁻¹, +12%) and lower at high wind speeds
 240 (7-12 m s⁻¹, -18%) (Fig. 4A). This divergence does not contradict the agreement between the DT-
 241 and EC-based K_{660} observations, as this agreement falls within the 5-9 m s⁻¹ range (where the DT
 242 data concentrate). Fitting $K_{660\text{-CO}_2}$ with U_{10N} reveals a weaker wind speed dependence than the
 243 open sea DT-based parameterisation (Fig. 4A). It is worth noting that including a constant term in
 244 the $K_{660\text{-CO}_2}$ - U_{10N} fitting function (i.e., $K_{660\text{-CO}_2} = aU_{10N}^b + c$, $R^2 = 0.48$) improves the fit

245 compared to a purely power-law form (i.e., $K_{660_CO_2} = aU_{10N}^b$, $R^2 = 0.42$) (Fig. A5), suggesting a
246 non-zero CO₂ exchange ($\sim 3 \text{ cm hr}^{-1}$) under calm conditions. This is unsurprising since the chemical
247 enhancement (Cole & Caraco, 1998; Fairall et al., 2022) and likely buoyancy flux sustain CO₂
248 transfer at low winds (McGillis et al., 2004; Wanninkhof et al., 2009).

249 Notably, the DT data collected during CenBASE provide only limited constraints at wind speeds
250 below 5 m s^{-1} and above 9 m s^{-1} , and the K_{660} - U_{10N} relationship derived from these data is sensitive
251 to the chosen functional form (Fig. A5). Moreover, the DT-based open ocean K_{660} estimates are
252 lower than the EC CO₂-based estimates over the wind speed range observed during CenBASE (Fig.
253 4A), likely reflecting differences in methodology. Because the CenBASE DT data have been
254 interpreted in detail by Dobashi et al. (submitted), and, more importantly, because the EC
255 measurements resolve finer-scale processes and ensure methodological consistency, the
256 subsequent section focuses on comparing EC CO₂ observations in the Baltic Sea with the EC CO₂
257 observations in the open ocean.

258 **3.4 Suppression of air-sea CO₂ exchange**

259 The EC-derived $K_{660_CO_2}$ during CenBASE was generally lower than open-ocean EC CO₂ transfer
260 velocities (Yang et al., 2022; 2024) (Figs. 4A and 4B), indicating a substantial suppression of CO₂
261 exchange in the Baltic Sea. To explain this reduction, we partition the total gas transfer velocity
262 (K_{660}) into interfacial (K_{i660}) and bubble-mediated (K_{b660}) components (i.e., $K_{660} = K_{i660} + K_{b660}$).
263 K_{i660} is primarily driven by wind stress or u_* , whereas K_b depends on both the wind forcing and
264 sea state. A machine-learning analysis of 15 open ocean datasets identified the significant wave
265 height (H_s , including both windsea and swell) as a key proxy for sea state that strongly affects
266 $K_{660_CO_2}$ (Yang et al., 2024). Following this separation framework and the open ocean EC data
267 analysis (Yang et al., 2024), the K_{660} can be expressed as (Fig. 4B, black line):


$$268 \quad K_{660} = K_{i660} + K_{b660} = 55u_* + 10u_*H_s \quad (3)$$

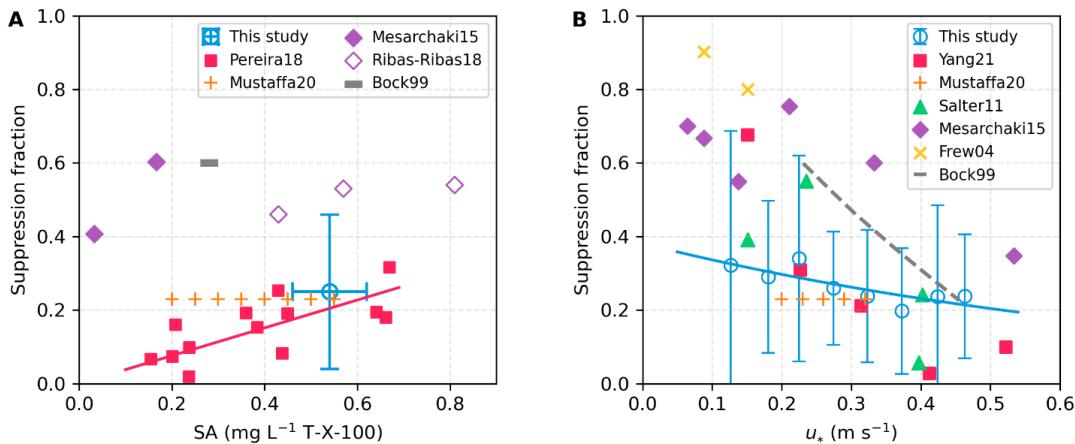
269 Because K_b depends on solubility, normalizing it using the Schmidt number (i.e., converting K_b to
270 K_{b660}) may not be strictly appropriate. However, the sensitivities of the CO₂ transfer velocity to $Sc^{-1/2}$ and α^{-1}
271 are nearly identical (see Fig. A1 in Dong et al., 2025). Therefore, normalization using
272 either Sc or α produces almost the same gas transfer velocities. For simplicity and consistency, we
273 adopt the Sc -based normalization in this study. Applying Equation 3 to the equivalent wind speeds

274 observed during CenBASE yields on average values of $K_{i660} = 15.1 \text{ cm hr}^{-1}$, $K_{b660} = 7.0 \text{ cm hr}^{-1}$,
 275 and $K_{660} = 22.1 \text{ cm hr}^{-1}$. In contrast, the observed EC K_{660} during CenBASE was on average 14.9
 276 cm hr^{-1} , 33% (7.2 cm hr^{-1}) lower than the open ocean K_{660} estimate (i.e., 22.1 cm hr^{-1}).

277 Equation 3 implies a linear dependence of $K_{660\text{-CO}_2}$ on u_* . Regression of the observed $K_{660\text{-CO}_2}$
 278 against u_* indeed yields an approximately linear relationship (Fig. 4B), consistent with prior
 279 findings at low-to-moderate winds (Landwehr et al., 2018; Yang et al., 2022). Additionally, the
 280 $K_{660\text{-CO}_2}$ - u_* fit ($R^2 = 0.59$) outperforms the $K_{660\text{-CO}_2}$ - U_{10N} fit ($R^2 = 0.48$), confirming that u_* better
 281 captures variability in gas transfer velocity than U_{10N} (Jähne et al., 1987; Landwehr et al., 2018;
 282 Yang et al., 2022). As shown in Fig. 3A, the observed u_* during CenBASE was ~10% higher than
 283 open-ocean values under equivalent wind speeds, implying a ~10% enhancement in $K_{660\text{-CO}_2}$ due
 284 to fetch-related increases in shear stress (Vickers and Mahrt, 1997). It is important to note that the
 285 observed 33% reduction in $K_{660\text{-CO}_2}$ includes this enhancement, suggesting that CO_2 exchange was
 286 suppressed even more, by ~43% (9.2 cm h^{-1}) relative to open-ocean conditions.

287

288 **Figure 5: Comparison of significant wave height (H_s) and $K_{660\text{-CO}_2}$ between the Baltic Sea and the**
 289 **open ocean. A:** H_s in the Baltic Sea during CenBASE (red dots) and in the open ocean (black squares),
 290 with error bars representing $\pm 1 \text{ STD}$. The data are extracted from ERA5 according to the EC cruise tracks
 291 (Yang et al., 2022). **B:** $K_{660\text{-CO}_2}$ observations in the Baltic Sea during CenBASE (red dots, the same as the
 292 red dots in Fig. 4B) and in the open ocean (black squares, Yang et al., 2022). The black solid and blue lines
 293 correspond to the parameterised $K_{660\text{-CO}_2}$ (Equation 3; Yang et al., 2024) using the open ocean and the Baltic
 294 Sea H_s , respectively. The black and red dashed lines denote the parameterized bubble-mediated transfer
 295 component (K_b ; Equation 3) using the open ocean and the Baltic Sea H_s .


296 According to Equation 3, K_b is linearly dependent on H_s . Due to the limited fetch, the H_s during
297 CenBASE was 57% lower than in the open ocean at the equivalent u_* (Fig. 5A, Table 1), and this
298 reduction is expected to cause a comparable decrease in K_b . Using the extracted H_s values from
299 ERA5 for CenBASE, the parameterized K_{b660} decreases on average from 7.0 cm hr^{-1} to 4.0 cm hr^{-1} ,
300 corresponding to an 18% suppression on the total $K_{660\text{-CO}_2}$ (Fig. 5B; Table 1), explaining about
301 half of the observed suppression during CenBASE.

302 Surfactants inhibit both interfacial (e.g., Frew, 1997) and bubble-mediated gas exchange (e.g.,
303 Woolf, 1993), and their concentrations in the Baltic Sea are substantially higher than in the open
304 ocean. We assume that all residual suppression of $K_{660\text{-CO}_2}$ during CenBASE, which cannot be
305 explained by fetch effects, is caused by surfactants. Under this assumption, the residual 25%
306 suppression (i.e., 5.4 cm hr^{-1} ; Fig. 5B and Table 1) reflects the impact of elevated surfactant levels.
307 This effect is not captured by the Yang et al. (2024) parameterization, which is based primarily on
308 open-ocean observations characterized by low surfactant concentrations (Wurl et al., 2011; Fig.
309 A6).

310 The resulting suppression fraction (sf) is consistent in magnitude with previous field-based
311 estimates (Fig. 6; Mustaffa et al., 2020; Salter et al., 2011; Yang et al., 2021) within uncertainty
312 (see Section 3.5). The constrained sf is generally smaller than laboratory-derived values (Fig. 6A),
313 likely due to challenges in extrapolating laboratory conditions to the field. Notably, previous
314 studies report conflicting relationships between sf and surfactant concentration. Some show
315 increasing sf with increasing concentration (Mesarchaki et al., 2015; Pereira et al., 2018; Ribas-
316 Ribas et al., 2018), whereas others identify a threshold concentration above which sf shows little
317 change (Mustaffa et al., 2020; Schmidt and Schneider, 2011) (Fig. 6A). Because surfactant
318 concentrations were nearly constant during CenBASE, we cannot assess this relationship here.

319 Several studies also show that sf decreases with wind speed (Fig. 6B; Bock et al., 1999; Mesarchaki
320 et al., 2015; Salter et al., 2011; Yang et al., 2021), and the sf constrained here aligns well with
321 these findings, especially those from field observations. Fitting sf as a function of u_* yields a
322 correction factor (i.e., $1 - sf$) that can be applied to Equation 3 to account for surfactant effects,
323 generating the updated parameterization:

$$324 \quad K_{660} = (1 - 0.38e^{-1.25u_*})(55u_* + 10u_*H_s) \quad (4)$$

325

326 **Figure 6: Surfactant-induced suppression fraction on K_{660} (sf) from this study and previous work. A:**
 327 sf as a function of surfactant concentration under low-moderate wind speeds. The blue circle shows the
 328 mean constrained sf from this study; horizontal and vertical error bars denote the standard deviation of
 329 observed SA and the associated uncertainty of the constrained sf . Red squares indicate sf from wave-tank
 330 experiments with natural Atlantic seawater at wind speeds <13 m s⁻¹ (Pereira et al., 2018), with the red line
 331 showing the linear fit ($sf = 38 \times SA$). Orange pluses show sf constrained from field K_{660} observations using
 332 the chamber technique with natural surfactant (Mustaffa et al., 2020). Diamonds (filled/unfilled) and the
 333 grey dash represent wave-tank studies using artificial soluble surfactants (Mesarchaki et al., 2015; Ribas-
 334 Ribas et al., 2018; Bock et al., 1999). **B:** sf as a function of u_* . Blue circles show sf constrained from the
 335 residual suppression of observed $K_{660_CO_2}$ from this study, with error bars indicating uncertainties. The blue
 336 line corresponds to the fit based on the blue circles ($0.38 \times e^{1.25u_*}$, $R^2 = 0.65$). Red squares represent values
 337 derived from an EC-based CO₂ transfer velocity study. Orange pluses denote the Mustaffa et al. (2020)
 338 dataset with surfactant concentrations of 0.2–0.6 mg L⁻¹. Green triangles show sf inferred from EC-based
 339 DMS and DT exchange experiments in artificial insoluble surfactant patches (Salter et al., 2011). Purple
 340 diamonds represent Mesarchaki et al. (2015), who used ~ 0.2 mg L⁻¹ of artificial soluble surfactant. Yellow
 341 crosses indicate sf derived from coastal heat transfer measurements (Frew et al., 2004). The grey dashed
 342 line shows laboratory experiments with artificial soluble surfactants at ~ 0.3 mg L⁻¹ (Bock et al., 1999).

343

344 This parameterization reflects conditions during CenBASE, where the surfactant concentration
 345 was relatively stable at ~ 0.5 mg L⁻¹. If a SA concentration-dependent sf is needed, one option is
 346 the published linear relationship $sf = 0.32SA + 0.025$ (Pereira et al., 2018). However, this
 347 formulation is physically inconsistent because it predicts a non-zero suppression even when SA =

348 0, whereas sf should theoretically approach zero in surfactant-free conditions. To address this, we
349 re-evaluated the same dataset used in the original study (Pereira et al., 2018) and fitted a
350 proportional relationship that passes through the origin: $sf = 0.38SA$. The goodness of fit ($R^2 =$
351 0.49) is only marginally lower than the original relationship (0.51, Pereira et al., 2018), indicating
352 that the proportional form captures the data nearly as well while remaining physically realistic. For
353 the mean CenBASE surfactant concentration ($SA = 0.54 \text{ mg L}^{-1}$), this relationship yields $sf = 0.21$.
354 Applying this SA-dependent suppression to the wind-dependent correction in Equation 4 results
355 in the combined parameterization:

356
$$K_{660} = \frac{1-0.38SA}{0.79} (1 - 0.38e^{-1.25u_*})(55u_* + 10u_*H_s) \quad (5)$$

357 Previous studies have suggested that water-side convection may influence gas exchange in both
358 open-ocean (McGillis et al., 2004) and Baltic conditions (Rutgersson and Smedman, 2010). During
359 CenBASE, a small spar buoy recorded oxygen, temperature, and salinity at depths of 1.2 m and
360 2.9 m. Dissolved oxygen exhibited small-scale variability with similar patterns at both depths (Fig.
361 A7), indicating coherent near-surface structure over 5-20 m scales, likely driven by wind-induced
362 turbulence intermittently exposing surface patches to the atmosphere. In contrast, no
363 corresponding variability was observed in temperature or salinity (Fig. A7), suggesting that
364 convection played a negligible role in gas exchange under the observed conditions. This supports
365 our assumption that the deviation of the $K_{660\text{CO}_2}$ between the Baltic Sea and the open ocean can
366 be fully attributed to the combined effects of the limited fetch and the elevated surfactants.

367 **3.5 Uncertainty analysis**

368 The quantification results shown above are not free from uncertainty. First, we use the $K_b \propto u_*H_s$
369 relationship for the bubble component, which fits best with the EC-based $K_{660\text{CO}_2}$ observations
370 (Yang et al., 2024). However, alternative formulations have been proposed, such as $K_b \propto$
371 $u_*^{1.67}H_s^{0.67}$ (Deike and Melville, 2018) and $K_b \propto u_*^{0.9}H_s^{0.9}$ (Brumer et al., 2017a; Fairall et al., 2022).
372 These different exponents indicate that the relative contributions of u_* and H_s to gas exchange may
373 vary slightly, introducing parameterization uncertainty. Considering both observational and fitting
374 uncertainties, we assign a 20% uncertainty to the parameterization of Equation 3 (Yang et al.,
375 2024). This uncertainty propagates through the suppression estimates. For instance, the uncertainty
376 in the u_* -related K enhancement estimate is approximately 0.4 cm hr^{-1} (i.e., $2.2 \text{ cm hr}^{-1} \times 20\%$).

377 The suppression analysis uses H_s data derived from ERA reanalysis, which likely carry an
378 uncertainty of about 30% in the Baltic Sea (Giudici et al., 2023). Consequently, the uncertainty in
379 the H_s -related suppression estimate is $\sim 1.4 \text{ cm hr}^{-1}$ (i.e., $\sqrt{(4.0 \times 20\%)^2 + (4.0 \times 30\%)^2} \text{ cm hr}^{-1}$).
380 The uncertainty associated with the surfactant-related suppression is substantially larger
381 because it is not directly determined but inferred as a residual after accounting for other
382 components. Combining the propagated uncertainties from the parameterised total K and from two
383 fetch-induced suppression estimates yields an uncertainty of 4.5 cm hr^{-1} (i.e.,
384 $\sqrt{(22.1 \times 20\%)^2 + 0.4^2 + 1.4^2} \text{ cm hr}^{-1}$), corresponding to approximately 85% of the estimated
385 suppression value (Table 1).

386

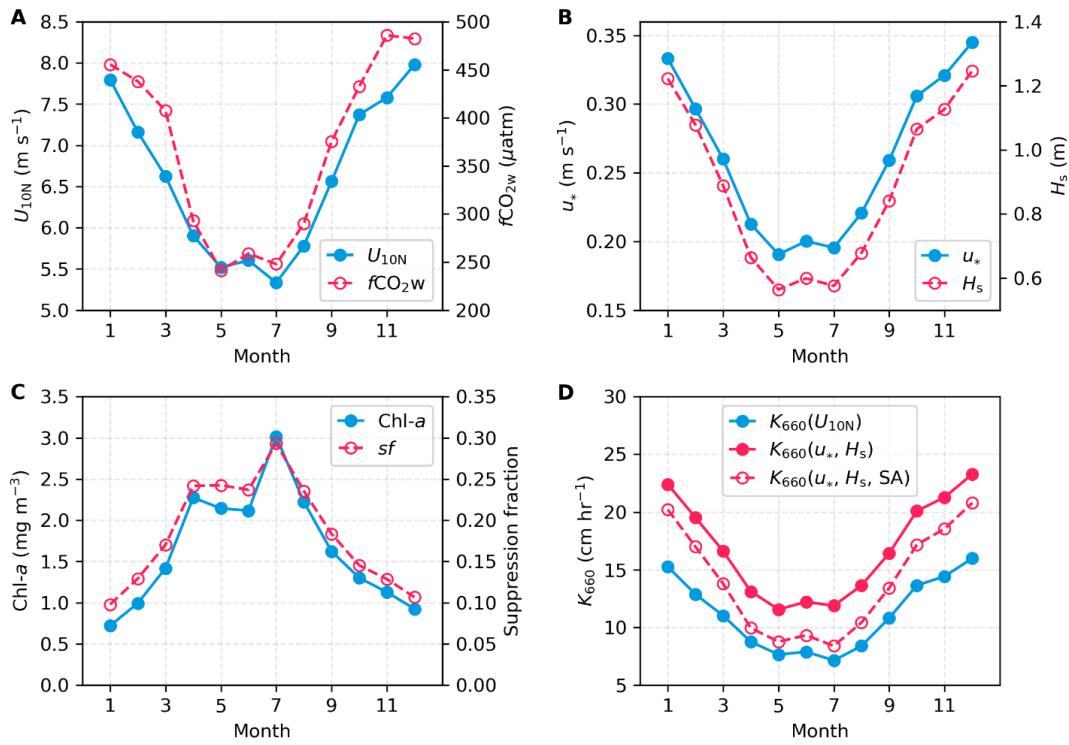
387 **Table 1.** Comparison of mean gas transfer velocities between measurements in the Baltic Sea and estimates
388 using the open ocean parameterisation from Yang et al. (2024) under identical wind speed conditions. The
389 percentages in parentheses in the K_i , K_b , and K columns indicate the relative difference between the Baltic
390 Sea and the open ocean. The last column is the uncertainty assessment of the values in the K column with
391 the values in parentheses representing the relative uncertainties. The positive (negative) sign represents the
392 enhancement (suppression).

Gas transfer velocity (cm hr ⁻¹)			K_{i660}	K_{b660}	K_{660}	Uncertainty
Open ocean			15.1	7.0	22.1	$\pm 4.4 (\pm 20\%)$
Impact factors	Fetch	u_*	+1.5 (+10%)	+0.7 (+10%)	+2.2 (+10%)	$\pm 0.4 (\pm 20\%)$
		H_s	0	-4.0 (-57%)	-4.0 (-18%)	$\pm 1.4 (\pm 36\%)$
	Surfactants		Unsure	Unsure	-5.4 (-25%)	$\pm 4.6 (\pm 85\%)$
Baltic Sea (CenBASE)			-	-	14.9 (-33%)	-

393

394 3.6 Implications for Baltic Sea CO₂ flux estimates

395 The CenBASE cruise took place during the summer bloom (July), when chlorophyll-*a* (Chl-*a*) is
396 high (Pitarch et al., 2016) and $f\text{CO}_{2\text{w}}$ is strongly reduced by primary productivity (Bittig et al.,
397 2024). To upscale these results, we examine how fetch and surfactants shape the climatological
398 CO₂ flux of the Baltic Sea. The $f\text{CO}_{2\text{w}}$ indicates a CO₂ sink in summer and a source in winter (Fig.
399 7A). However, weaker summer winds and stronger winter winds suggest that the magnitudes of
400 uptake and outgassing may be similar. Seasonal cycles of u_* and H_s closely follow wind speed (Fig.

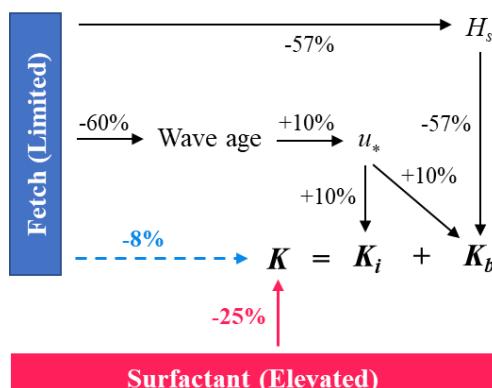


401 7B), while chlorophyll-*a* (Chl-*a*) peaks during the spring-summer bloom and remains low in winter
402 (Fig. 7C). We estimate monthly surfactant concentrations by scaling the July CenBASE value
403 (0.54 mg L⁻¹) with monthly chlorophyll-*a* concentrations following the idea of Wurl et al. (2011)
404 and using the formula $0.54 \times \text{Chl-}a/\text{Chl-}a_{\text{July}}$ mg L⁻¹. Equation 5 is then used to compute the
405 corresponding suppression of gas transfer, $1 - \frac{1-0.38SA}{0.79}(1 - 0.38e^{-1.25u_*})$. The resulting *sf*
406 reflects the seasonal chlorophyll-*a* cycle and modulations by *u_{*}*, yielding ~25% suppression in
407 summer and ~10% in winter (Fig. 7C). However, surfactant concentrations are not solely
408 determined by chlorophyll-*a*; for example, humic acids also act as surfactants (e.g., Klavins &
409 Purmalis, 2010), and the Baltic Sea is known for elevated humic acid levels due to significant
410 terrestrial inputs (Hammer et al., 2017). Therefore, estimating surfactants based solely on
411 chlorophyll-*a* has inherent limitations.

412 We estimate *K*₆₆₀ using three parameterization schemes: the conventional open ocean DT-based
413 *U*_{10N} formulation (Ho et al., 2006), the open ocean EC CO₂-based *u_{*}*-*H_s* formulation (Equation 3;
414 Yang et al., 2024), and the Baltic Sea EC CO₂-based *u_{*}*-*H_s*-SA formulation (Equation 5). Although
415 all these schemes reproduce similar seasonal patterns, their magnitudes differ (Fig. 7D), reflecting
416 sea state and surfactant effects as well as the methodological differences. The *u_{*}*-*H_s*-SA
417 parameterization yields lower values than the *u_{*}*-*H_s* scheme because it incorporates surfactant-
418 induced suppression from the surfactant. This suppression is especially stronger in summer when
419 SA concentrations are highest, leading to largest discrepancies of the estimated climatological *K*₆₆₀
420 from the *u_{*}*-*H_s*-SA and the *u_{*}*-*H_s* schemes. As shown in Section 3.4, *K*₆₆₀ during CenBASE has
421 been reduced by 33%. Notably, this reduction is relative to the open ocean EC-based estimates.
422 When compare with the open ocean DT-based *U*_{10N} formulation, however, this reduction occurs
423 only at wind speeds above ~7 m s⁻¹. At lower wind speeds, the EC-based *K*₆₆₀ observations during
424 CenBASE exceed the DT-based estimates (Fig. 4A). Because climatological Baltic Sea wind
425 speeds are typically below 7 m s⁻¹ in Spring, Summer, and Autumn (Fig. 7A), the *u_{*}*-*H_s*-SA
426 parameterization produces higher *K*₆₆₀ than the *U*_{10N} formulation in these seasons. In winter,
427 despite higher wind speeds, the *u_{*}*-*H_s*-SA scheme still exceeds the *U*_{10N}-based estimates due to the
428 modulation of the surfactants. The SA concentration in winter is estimated to be three times lower
429 than during summer CenBASE cruise (Fig. 7C), resulting in much weaker suppression.

430 Overall, relative to the conventional U_{10N} formulation (Ho et al., 2006), the u_* - H_s -SA
 431 parameterization increases K_{660} in all seasons, enhancing both summer CO₂ uptake by ~10% and
 432 winter outgassing by ~30%, and amplifying the seasonal cycle by ~40%. These opposing seasonal
 433 effects are expected to largely compensate, resulting in only a modest change in the annual mean
 434 CO₂ flux.

435
 436 **Figure 7: Climatological seasonal variations of environmental variables and gas transfer velocities in**
 437 **the Baltic Sea. A:** U_{10N} (blue) and fCO_{2w} (red; Bittig et al., 2024). **B:** u_* (blue) and H_s (red). U_{10N} , u_* , and
 438 H_s are averaged from the ERA5 monthly reanalysis data product (Hersbach et al., 2020) for 1998–2018.
 439 **C:** Surfactant concentrations scaled from monthly chlorophyll a (Pitarch et al., 2016) and surfactant-induced
 440 suppression fraction of K_{660} based on the SA- and U_{10} -dependent parameterisation (Equation 5). **D:** K_{660}
 441 estimated from different parameterizations: U_{10N} -based (blue; Ho et al., 2006), u_* - H_s -based (red solid;
 442 Equation 3, Yang et al., 2024); u_* - H_s -SA-based (red dashed; Equation 5).


443

444

445 **4 Discussion and conclusions**

446 A robust understanding of air-sea gas exchange mechanisms is fundamental for accurately
447 quantifying CO₂ fluxes, which is essential for accurate carbon budgets and climate projections.
448 Most previous studies have focused on the open ocean, where K_{660} is typically parameterized as a
449 function of wind speed. In contrast, marginal seas such as the Baltic Sea exhibit more complex
450 dynamics due to limited fetch and abundant surfactants, which modulate the wind speed
451 dependence of gas exchange. To investigate these processes, a dedicated experiment was
452 conducted in the central Baltic Sea during the CenBASE cruise, employing two commonly used
453 techniques: eddy covariance and dual-tracer methods. The K_{660} derived from both techniques
454 agrees well, confirming the reliability of both methods for gas transfer velocity observations. The
455 observed CO₂ transfer velocity shows a significant reduction compared to the open-ocean CO₂
456 observations and parameterizations under comparable wind conditions (Yang et al., 2024; Fig. 4).
457 This reduction can be attributed to three competing processes (summarized in Fig. 8): 1) a 10%
458 enhancement from fetch-limited increases in friction velocity, 2) an 18% suppression from reduced
459 significant wave height, and 3) a 25% suppression from elevated surfactant concentrations.
460 Together, these effects explain the overall 33% reduction in CO₂ exchange during CenBASE
461 relative to the EC-based open ocean $K_{660\text{-CO}_2}$.

462

463 **Figure 8: Schematic illustrating how fetch and surfactants modulate the CO₂ transfer velocity (K) in**
464 **the Baltic Sea relative to the open ocean.** Values denote the relative magnitude of enhancement (+) or
465 suppression (-) for each process (Table 1). Black arrows and their associated values indicate the effect of

466 fetch on individual gas exchange components, while the blue value on the dashed arrow shows the net fetch
467 effect on total K . The red value and arrow represent the constrained surfactant-induced suppression of K .

468

469 During CenBASE, fetch lengths ranged from 50-300 km, in contrast to more than 1000 km in the
470 open ocean. The limited fetch exerts both enhancing and suppressing effects on gas exchange in
471 the Baltic Sea (Fig. 8). Shorter fetch produces a younger wave field dominated by shorter and
472 steeper waves, increasing surface roughness and thereby enhancing u_* and K_{660} . At the same time,
473 limited fetch constrains wave development, leading to a ~60% reduction in H_s (Fig. 5A). As a key
474 proxy for wave-breaking intensity (Brumer et al., 2017; Deike, 2021; Zhao et al., 2003), reduction
475 in H_s diminishes wave breaking and consequently suppresses bubble-mediated gas transfer
476 (Dobashi & Ho, 2023; Fairall et al., 2006; Ocampo-Torres & Donelan, 1995; Woolf, 2005). These
477 findings emphasize the need to incorporate sea-state dependence into K_{660} parameterizations
478 (Brumer, 2017; Deike & Melville, 2018; Fairall et al., 2022; Yang et al., 2024). When direct wave
479 observations are unavailable, reanalysis products (e.g., ERA5; Hersbach et al., 2020) can serve as
480 a first-order estimate of wave conditions for K evaluation (Bessonova et al., 2025; Giudici et al.,
481 2023).

482 Although bubble effects are expected to be stronger for low-solubility tracers such as ^3He and SF_6
483 than for CO_2 , the EC CO_2 -derived and dual-tracer-derived K_{660} values agreed closely (Fig. 4A).
484 This is primarily because the bubble contribution to the total gas exchange during CenBASE was
485 relatively small due to the low wind regime (Fig. 5B). According to the widely used model (Woolf,
486 1997), bubble-mediated transfer contributes ~25% to total CO_2 exchange and ~35% to $^3\text{He}/\text{SF}_3$
487 exchange under wind speeds of 0-12 m s^{-1} . This difference corresponds to only ~1.5 cm hr^{-1} higher
488 K_{660} for dual tracers, which lies well within the measurement uncertainty and is therefore not
489 practically distinguishable. Moreover, the much lower salinity in the Baltic Sea further limits the
490 bubble-induced solubility dependence of K . Although the bubble size observations with the bubble
491 buoy did not work during CenBASE, it is well established that bubbles coalesce easily in fresh
492 water (this is inhibited in salt water), so the initial bubble size distribution in fresher water quickly
493 evolves towards larger bubbles through coalescence (e.g., De Leeuw et al., 2011). This coalescence
494 effect has little influence on the gas transfer of moderately soluble gases such as CO_2 but reduces
495 K_b for very low-solubility gases (e.g., ^3He and SF_6) due to the reduction of bubble surface area,

496 thereby narrowing the difference in K_{b660} between CO₂ and the ³He/SF₆. This also indicates that
497 the parameterization of the bubble-mediated component derived from open-ocean EC data (Yang
498 et al., 2024) remains applicable to the Baltic Sea, despite differences in salinity and thereby bubble
499 size distribution.

500 The suppression of gas exchange by surfactants has been well documented in laboratory studies,
501 which report 10-65% reductions in K depending on surfactant concentration (Bock et al., 1999;
502 Frew et al., 1990; Goldman et al., 1988; Mesarchaki et al., 2015; Pereira et al., 2016; Pereira et al.,
503 2018; Ribas-Ribas et al., 2018; Schmidt & Schneider, 2011). Based on the empirical relationship
504 derived by Pereira et al. (2018) using laboratory data, the CenBASE microlayer surfactant
505 concentration ($0.54 \pm 0.08 \text{ mg L}^{-1}$) corresponds to an estimated ~20% reduction in K . Field studies
506 have reported similar magnitudes of suppression (24-55%) under artificial surfactant additions
507 (Brockmann et al., 1982; Salter et al., 2011). More recently, field chamber measurements indicate
508 ~23% suppression for natural surfactant levels exceeding 0.2 mg L^{-1} (Mustaffa et al., 2020), and
509 EC-based $K_{660\text{-CO}_2}$ observations have shown ~30% suppression at moderate winds ($\sim 7 \text{ m s}^{-1}$) under
510 likely high surfactant conditions (Yang et al., 2021). Thus, the 25% suppression estimated in this
511 study agrees well with previous laboratory and field results.

512 Our findings refine the mechanistic understanding of air-sea gas exchange and have important
513 implications for coastal CO₂ flux estimates. Using the u^*_s - H_s -SA parameterization, both summer
514 uptake and winter outgassing of CO₂ in the Baltic Sea increase compared to a conventional U_{10N} -
515 based parameterization, amplifying the seasonal cycle. Because many coastal regions exhibit
516 similarly short fetch and elevated surfactant concentrations (Fig. A6), the mechanism-based
517 parameterization proposed here is expected to yield systematically different gas exchange
518 efficiencies than conventional wind speed-based formulations. The mechanism-based K
519 parameterization could alter coastal CO₂ flux estimates (e.g., Resplandy et al., 2024), influencing
520 annual means, long-term trends, seasonal cycles, and spatial patterns. An improved estimate of the
521 ocean CO₂ sink may also help reduce discrepancies between the data-based and model-based
522 global carbon budgets (Friedlingstein et al., 2025). The improvement in the estimate of K is
523 especially important for mCDR studies, which are often tested or developed in coastal
524 environments (e.g., Ho et al., 2024). Beyond CO₂, the updated parameterization may also apply to
525 other greenhouse gases, such as N₂O, which shares the same interfacial exchange mechanism and

526 exhibits similar bubble-mediated behavior due to comparable solubility. Application to DMS is
527 also possible, provided the bubble-mediated component is omitted.

528 Despite the advances from the CenBASE campaign, several uncertainties remain. The surfactant-
529 induced suppression was inferred from residual differences between Baltic Sea and open-ocean
530 $K_{660\text{ CO}_2}$ after correcting for fetch effects, and therefore carries considerable uncertainty even
531 though the magnitude is consistent with previous field constraints. We were unable to partition the
532 surfactant-induced suppression between interfacial and bubble-mediated pathways because
533 available evidence is insufficient to quantify their relative roles. Observations were limited to low-
534 to-moderate wind speeds ($<12\text{ m s}^{-1}$), preventing evaluation of the surfactant effect under high
535 wind speed conditions. Furthermore, surfactant concentrations were relatively uniform during
536 CenBASE, so suppression could not be assessed across natural SA concentration gradients. Given
537 the strong seasonal and spatial variability in biological production, the transferability of our
538 quantified suppression values beyond the CenBASE conditions is uncertain. Addressing these
539 limitations will require coordinated, multi-season observations across diverse fetch conditions,
540 surfactant regimes, and wind speeds. Such efforts are essential for building a generalizable
541 framework for gas exchange in marginal seas and for improving both regional CO₂ budgets and
542 assessment of emerging mCDR applications.

543

544 **Appendix**

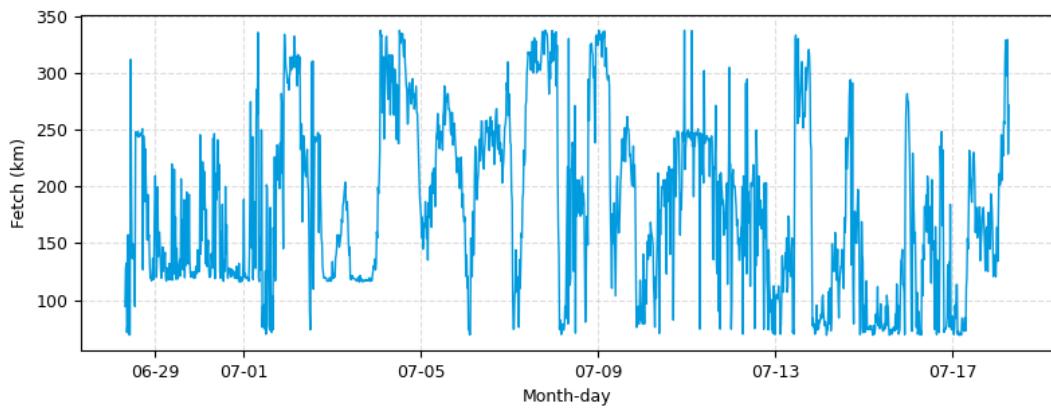
545 **A1. Dual-tracer experiments**

546 The K was also determined using the $^3\text{He}/\text{SF}_6$ dual tracer technique. ^3He and SF_6 were injected
547 into the surface ocean, and their concentrations were monitored over time. Assuming that air-sea
548 gas exchange is the only process affecting the $^3\text{He}/\text{SF}_6$ ratio, K can be derived from the temporal
549 change in their ratio. The two tracers, ^3He and SF_6 , were injected with a molar ratio of 1:340 on 6
550 July 2022 at \sim 7 m depth for 40 minutes, centered at 57.263°N , 20.147°E . The injected tracers were
551 then tracked using an underway SF_6 analysis system (Ho et al., 2002), which continuously
552 measures the SF_6 concentration at the water surface, and the vessel-mounted acoustic Doppler
553 current profiler (ADCP) (150 kHz Ocean Surveyor, RD Instruments).

554 Near the center of the patch of injected tracers, water samples were taken using the CTD rosette
555 equipped with 13 5-L Niskin bottles. Discrete SF_6 samples were taken from the Niskin bottles
556 using 250-ml syringes. The SF_6 concentration was measured onboard the ship using a gas
557 chromatograph equipped with an electron capture detector (GC-ECD) in combination with a
558 purge-and-trap system (Bullister and Weiss, 1988; Gerke et al., 2024). About 40 ml of seawater
559 for discrete ^3He samples was collected in copper tubes placed in aluminum channels, with both
560 ends sealed by stainless steel clamps. The ^3He samples were sent to the laboratory at the Institute
561 of Environmental Physics at the University of Bremen after the cruise. At the laboratory, ^3He was
562 analyzed using a helium isotope mass spectrometer (MAP 215-50) (Sültenfuß et al., 2009).

563 **A2. Surfactant sampling**

564 Surfactant samples from the SML were collected from a small workboat positioned \sim 500 m
565 upwind of the research vessel. The SML was sampled using the glass-plate technique and
566 transferred into amber borosilicate glass bottles (Cunliffe and Wurl, 2014; Harvey and Burzell,
567 1972). When weather conditions were unfavorable, SML sampling was conducted from the bow
568 of the research vessel using a Garrett screen. For surfactant samples, 18 mL SML samples were
569 transferred into acid-washed and pre-combusted (500°C , 8 h) 20 mL glass vials and immediately
570 frozen at -20°C . Surface activity was analyzed within less than one year of collection by phase-
571 sensitive alternating-current voltammetry using a 797 VA Computrace polarograph (Metrohm,
572 Switzerland), following Cosović & Vojvodić (1982).

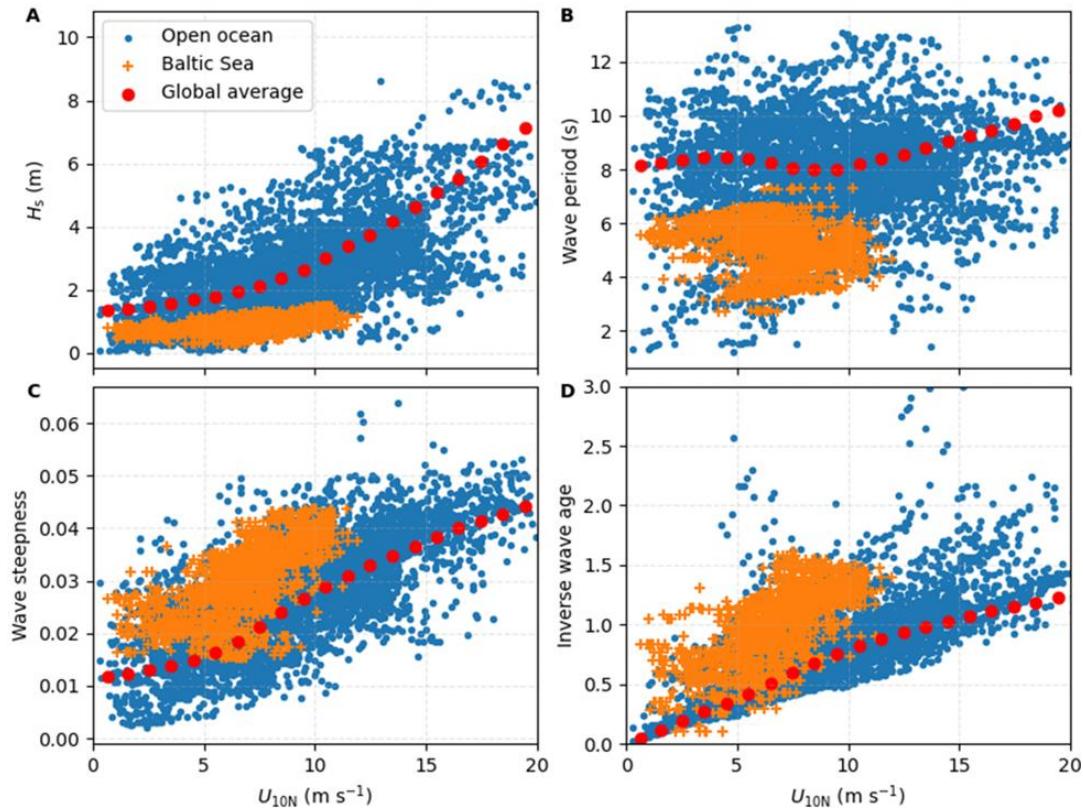

573 **A3. Wind speed distortion correction**

574 During CenBASE, wind speed was measured using two instruments: a 2D sonic anemometer
575 mounted on the ship's foremast (~17 m above MSL) and a 3D EC sonic anemometer on the front
576 tower (~14 m above MSL) (Fig. 1). The foremast measurements are expected to be less distorted
577 because of the higher position of the sensor (O'Sullivan et al., 2013) and are, therefore, used in
578 this study. Nevertheless, previous work shows that the foremast-mounted anemometers can still
579 be biased when the wind is not bow-on (e.g., Landwehr et al., 2018). To address this, we follow
580 Landwehr et al. (2020) and use ERA5 reanalysis wind speeds, which are not affected by ship-
581 relative flow distortions, to correct the ship measurements.

582 Because ERA5 winds may contain regional biases, we first calibrate ERA5 using in situ
583 measurements from the Östergarnholm station (Rutgersson et al., 2020). Winds from five
584 measurement heights (normalized to U_{10}) are highly consistent, supporting the robustness of the
585 station record (Fig. A8). We then compare station winds with ERA5 winds extracted at the station
586 location for the period March–December 2024. To avoid land contamination, only winds from the
587 open sector (80° – 160° ; Rutgersson et al., 2020) are used. ERA5 is slightly lower than the station
588 wind below 6 m s^{-1} but higher at stronger winds (Fig. A8). Two linear regressions are applied to
589 ERA5, resulting in good agreement with the station winds (Fig. A8). Although the ERA5 wave
590 data used in this study are simulated by a wave model forced with ERA5 winds, which may contain
591 minor biases, these are not expected to substantially affect the simulated wave fields (Durrant et
592 al., 2013).

593 The corrected ERA5 winds are then extracted at the CenBASE cruise location and time to serve
594 as a reference for correcting ship wind distortions. The ratio of ship to corrected ERA5 wind speed
595 as a function of relative wind direction shows the expected distortion pattern (Fig. A9; Moat et al.,
596 2006; B. Moat & Yelland, 2015). We fit this ratio using three functions according to the relative
597 wind direction: (1) quadratic for -30° to 45° , (2) linear for -90° to -30° , and (3) linear for 45° to
598 90° (Fig. A9). This fitted relationship is used to correct the ship's wind speed. After correction,
599 the ratio of ship to ERA5 wind speeds aligns closely with unity (Fig. A9).

600

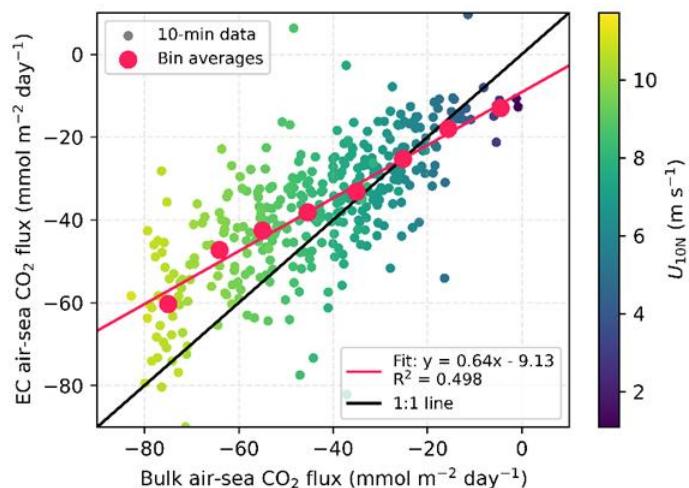


601

602 **Figure A1: Fetch of the location according to the CenBASE cruise track.** It is estimated based on the
603 length to the land and the wind direction.

604

605


606
607 **Figure A2: Wave properties versus wind speed.** Orange: Waves in the Baltic Sea during CenBASE;
608 Blue: Waves in open ocean cruises with eddy covariance measurements (see Yang et al., 2022); and Red: Waves
609 in the global ocean average. For the global ocean average, we use the year 2024 as an example and take the
610 first day of each month at 00:00 to capture the seasonal variability. **A:** Significant wave height; **B:** Wave
611 period; **C:** Wave steepness; **D:** Inverse wave age. See the Method section 2.3 for the wave data extraction
612 information.

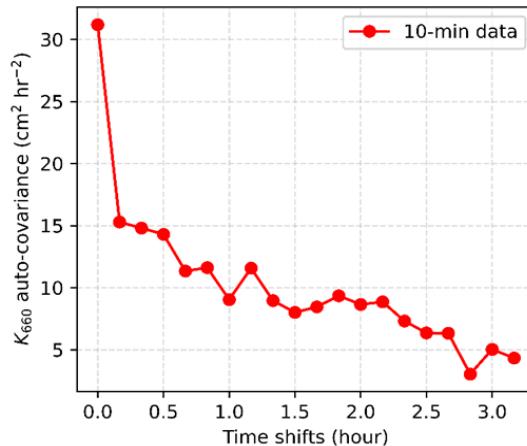
613

614

615

616 **Figure A3: Bulk air-sea CO_2 flux estimates versus EC air-sea CO_2 flux observations.** The Ho et al.
617 (2006) parameterisation is used for the bulk flux estimate. The small dots are 10-minute flux data, with the
618 large red dots representing the bin averages per 10 $\text{mmol m}^{-2} \text{ day}^{-1}$ flux interval. The EC flux observations
619 are lower in magnitude than the bulk flux estimates at wind speeds higher than $\sim 7 \text{ m s}^{-1}$.

620

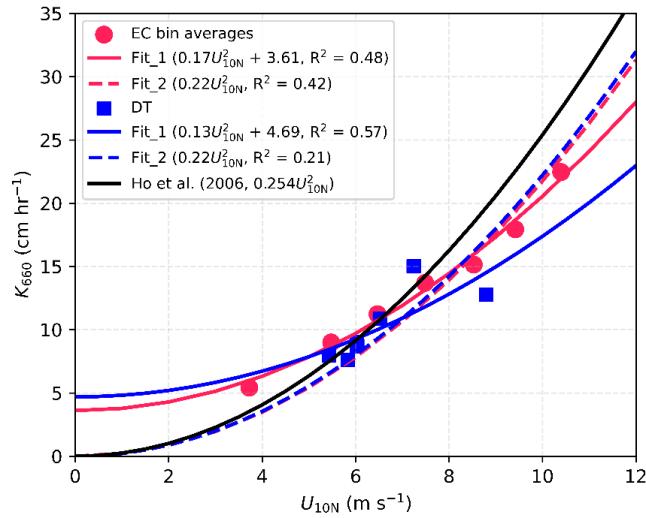

621

622

623

624

625


626

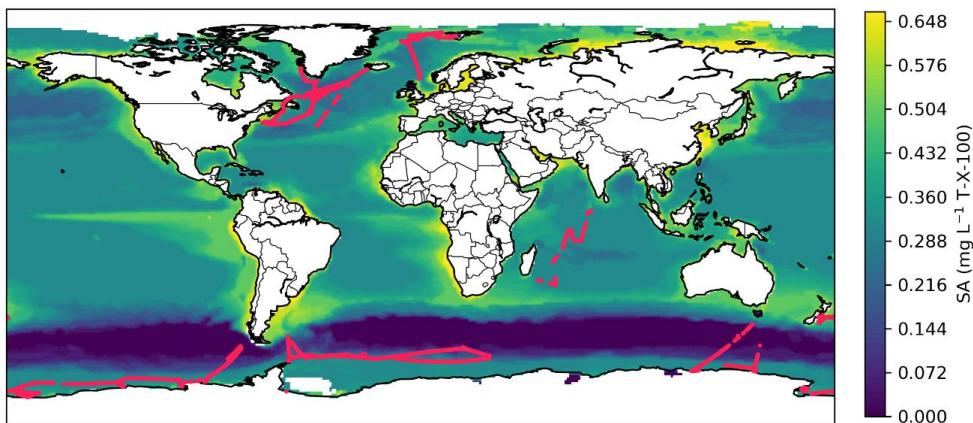
627 **Figure A4: Auto-covariance of EC-derived CO₂ transfer velocities (K_{660}).** The 10-min K_{660} time series
628 from 4-7 July, selected for its continuity (see Fig. 1F), was used for this analysis. The first point represents
629 the variance of the K_{660} time series, while the second point shows the covariance between the original series
630 and a version shifted by one point (i.e., 10-min). The decrease from the first to the second point indicates
631 the random uncertainty in this K_{660} time series (~50%). This uncertainty can be further reduced to ~20% for
632 a 1-hour average (i.e., 50%/ $\sqrt{6}$).

633

634

635

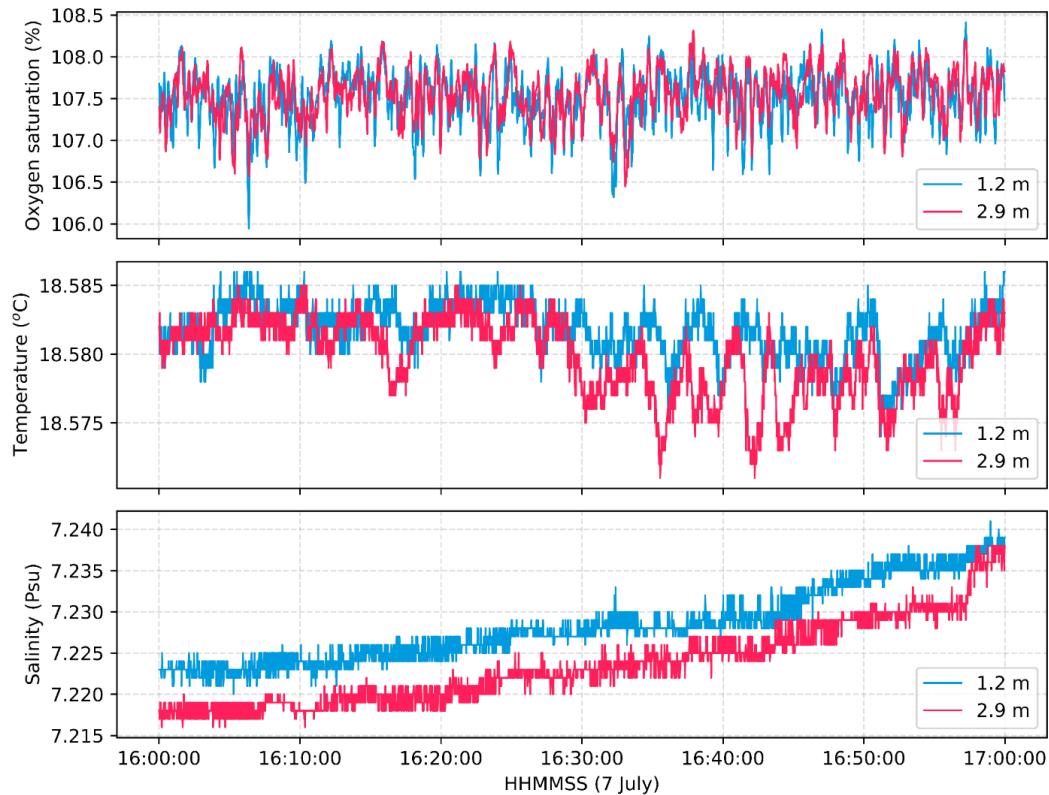
636


637 **Figure A5: Observed and parameterized gas transfer velocities (K_{660}).** Red dots show 10-min EC-
638 derived bin averages (for each $1 \text{ m s}^{-1} U_{10N}$ bin), with red lines representing parameterizations fitted to these
639 data. Blue squares denote DT-derived K_{660} values (timescale ~ 1 day), with blue lines showing
640 corresponding parameterizations. Solid lines follow the fitting form $K_{660} = aU_{10N}^2 + b$, while dashed lines
641 follow $K_{660} = aU_{10N}^2$.

642

643

644


645

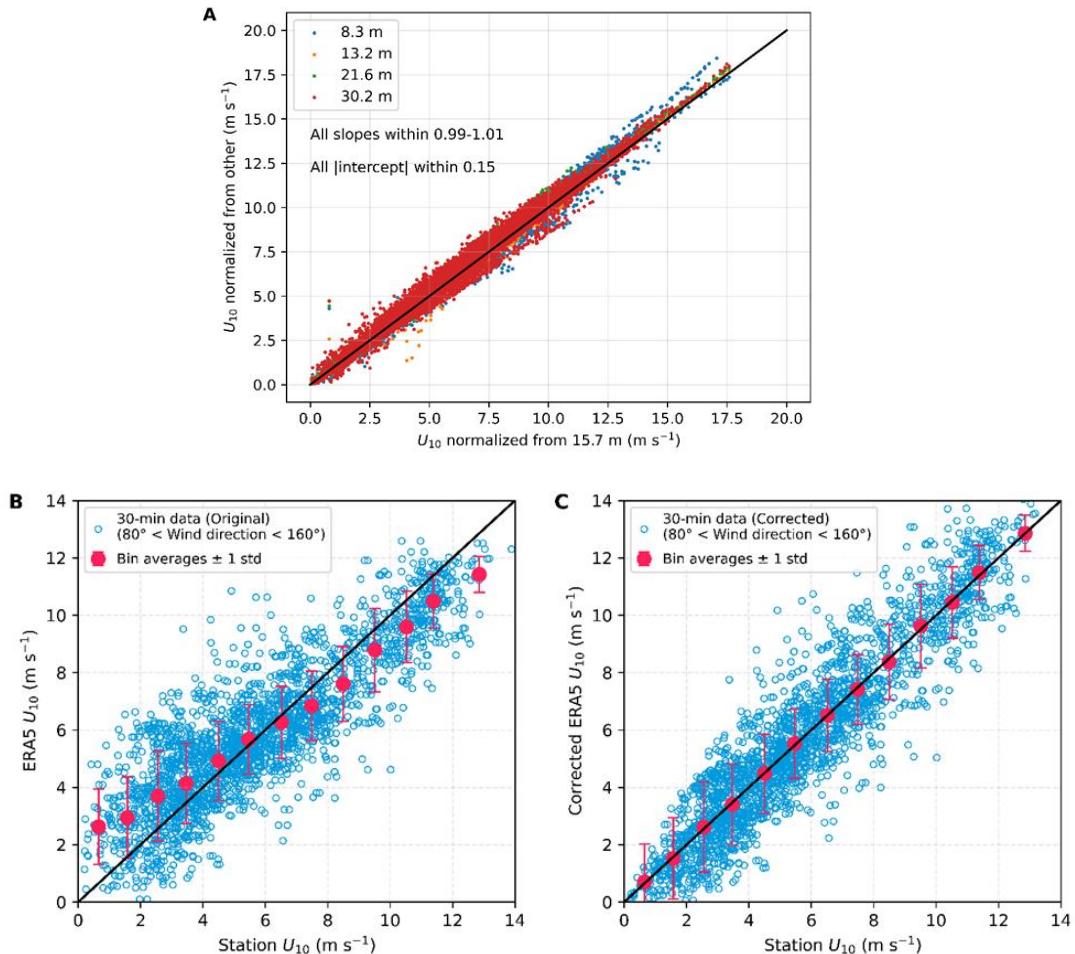
646

647 **Figure A6: Estimated surfactant distributions in the global ocean and the open ocean EC cruise**
648 **tracks.** The surfactant concentration is estimated following Wurl et al (2011) shown here as an annual mean.
649 Red lines indicate the EC cruises that were synthesized in Yang et al. (2022).

650

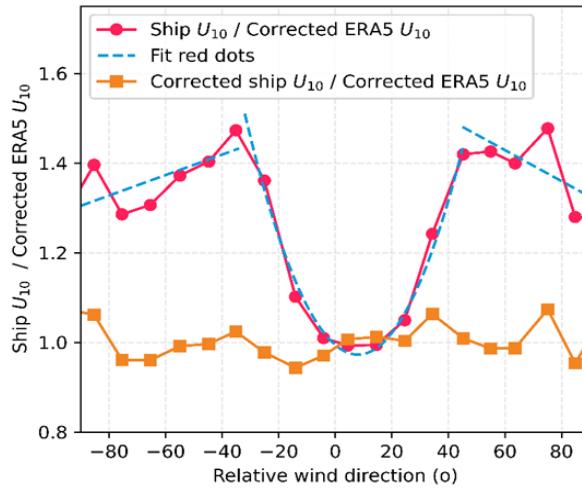
651

652 **Figure A7: Representative dissolved oxygen, salinity and temperature data from the small spar buoy,**
653 **showing the differences measured at 1.2m and 2.9m depth.** The patterns shown here are typical of both
654 day and night measurement periods.


655

656

657


658

659

660 **Figure A8: Correction of ERA5 wind speed using reference measurements from the Östergarnsholm
 661 station (restricted to the open sector, 80° - 160° ; Rutgersson et al., 2020).** **A:** Comparison of the wind
 662 speed measurements from different heights at the Östergarnsholm station. All wind speeds were normalized
 663 to 10-meter height above MSL (U_{10}). **B:** Comparison of the station U_{10} measurements and the extracted
 664 ERA5 U_{10} at the location of the Östergarnsholm station. The red points are bin averages with error bars
 665 representing 1 standard deviation. The red points in panel B are fitted with two linear relationships: (1) $y =$
 666 $0.64x + 2.05$ for station $U_{10} < 7.5 \text{ m s}^{-1}$, and (2) $y = 0.88x + 0.28$ for station $U_{10} > 7.5 \text{ m s}^{-1}$ for correction.
 667 **C:** Comparison of the station and ERA5 U_{10} after the corrections using the relations in panel B.

668

669

670 **Figure A9: Ratio of ship wind speed to subsampled ERA5 wind speed before (red) and after**
671 **correction (yellow) as a function of relative wind direction (RWD).** ERA5 wind speeds were first
672 calibrated against the Östergarnsholm station record (Fig. A8). The fitted relationships (blue) are: (1) $y =$
673 $0.00036(\text{RWD} - 8)^2 + 0.97$ for -30° to 45° , (2) $y = 0.0023\text{RWD} + 1.51$ for -90° to -30° , and (3) $y =$
674 $0.0035\text{RWD} + 1.64$ for 45° to 90° .

675

676

677 **Code and data availability**

678 The code that was used to produce the figures are available in the supplementary material. The
679 processed 10-min EC CO₂ fluxes, wind speeds, friction velocity, and gas transfer velocity can be
680 found in the supplementary material.

681 **Supplement link**

682 The link to the supplement will be included by Copernicus

683 **Author contributions**

684 CM, DH, AE, and GR designed the project. YD processed and analyzed the data in consultation
685 with CM, DH, and RD. CM collected the eddy covariance measurements; HCB collected the CO₂
686 fugacity data; and JK, AE, and BS collected the surfactant data. The dual-tracer data were provided
687 by RD and DH. HC collected the spar buoy measurements. YD prepared the first draft of the
688 manuscript, and all co-authors contributed to and approved the final version.

689 **Competing interests**

690 The authors declare that they have no conflict of interest.

691 **Disclaimer**

692 Copernicus Publications remains neutral with regard to jurisdictional claims made in the text,
693 published maps, institutional affiliations, or any other geographical representation in this paper.
694 While Copernicus Publications makes every effort to include appropriate place names, the final
695 responsibility lies with the authors. Views expressed in the text are those of the authors and do not
696 necessarily reflect the views of the publisher

697 **Acknowledgements**

698 We thank the captains and crew of the *RV Elisabeth Mann Borgese*, T. Steffens (GEOMAR) for
699 running the CO₂ flux system, and Matthis Björner and Michael Glockzin (IOW) for
700 running/postprocessing the MESS data. We greatly appreciate F. Göhring (Deutscher
701 Wetterdienst), Dr. M. Yang (Plymouth Marine Laboratory), Dr. J. Bidlot (European Centre for
702 Medium-Range Weather Forecasts), Dr. A. Rutgersson (Uppsala University), Dr. J. Edson (Woods
703 Hole Oceanographic Institution), and A. Körtzinger for helpful discussions. Data analysis and

704 visualization were completed using Python. ChatGPT was used in carefully polishing the
705 manuscript' language to improve readability.

706 **Financial support**

707 In this study, Y. Dong has been supported by the Alexander von Humboldt Foundation. R. Dobashi
708 acknowledges the support from Crown Prince Akihito Scholarship and the Uehiro Foundation on
709 Ethics and Education. The ICOS station Östergarnsholm is funded by the Swedish Research
710 Council and Uppsala University.

711

712 **Reference**

713 Bell, T. G., Landwehr, S., Miller, S. D., De Bruyn, W. J., Callaghan, A. H., Scanlon, B., et al.:
714 Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO₂ transfer
715 velocities at intermediate-high wind speeds, *Atmos. Chem. Phys.*, 17, 9019–9033,
716 <https://doi.org/10.5194/acp-17-9019-2017>, 2017.

717 Bessonova, V., Tapoglou, E., Dorrell, R., Dethlefs, N., & York, K.: Global evaluation of wave
718 data reanalysis: Comparison of the ERA5 dataset to buoy observations, *Appl. Ocean Res.*, 157,
719 104490, <https://doi.org/10.1016/j.apor.2025.104490>, 2025.

720 Bittig, H. C., Jacobs, E., Neumann, T., & Rehder, G.: A regional *p*CO₂ climatology of the Baltic
721 Sea from in situ *p*CO₂ observations and a model-based extrapolation approach, *Earth Syst. Sci.*
722 *Data*, 16, 753–773, <https://doi.org/10.5194/essd-16-753-2024>, 2024.

723 Blomquist, B. W., Brumer, S. E., Fairall, C. W., Huebert, B. J., Zappa, C. J., Brooks, I. M., et al.:
724 Wind speed and sea state dependencies of air-sea gas transfer: Results from the High Wind
725 Speed Gas Exchange Study (HiWinGS), *J. Geophys. Res. Oceans*, 122, 8034–8062,
726 <https://doi.org/10.1002/2017JC013181>, 2017.

727 Blomquist, B. W., Huebert, B. J., Fairall, C. W., Bariteau, L., Edson, J. B., Hare, J. E., &
728 McGillis, W. R.: Advances in air-sea CO₂ flux measurement by eddy correlation, *Bound.-Lay.*
729 *Meteorol.*, 152, 245–276, <https://doi.org/10.1007/s10546-014-9926-2>, 2014.

730 Bock, E. J., Hara, T., Frew, N. M., & McGillis, W. R.: Relationship between air-sea gas transfer
731 and short wind waves, *J. Geophys. Res. Oceans*, 104, 25821–25831,
732 <https://doi.org/10.1029/1999JC900200>, 1999.

733 Brockmann, U. H., Huhnerfuss, H., Kattner, G., Broecker, H., & Hentzschel, G.: Artificial
734 surface films in the sea area near Sylt 1, *Limnol. Oceanogr.*, 27, 1050–1058,
735 <https://doi.org/10.4319/lo.1982.27.6.1050>, 1982.

736 Brumer, S. E., Zappa, C. J., Blomquist, B. W., Fairall, C. W., Cifuentes-Lorenzen, A., Edson, J.
737 B., et al.: Wave-related Reynolds number parameterizations of CO₂ and DMS transfer velocities,
738 *Geophys. Res. Lett.*, 44, 9865–9875, <https://doi.org/10.1002/2017GL074979>, 2017.

739 Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., et al.:
740 Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and
741 HiWinGS, *J. Phys. Oceanogr.*, 47, 2211–2235, <https://doi.org/10.1175/JPO-D-17-0005.1>, 2017.

742 Bullister, J. L., & Weiss, R. F.: Determination of CCl_3F and CCl_2F_2 in seawater and air, *Deep-*
743 *Sea Res. Pt. A*, 35, 839–853, [https://doi.org/10.1016/0198-0149\(88\)90033-7](https://doi.org/10.1016/0198-0149(88)90033-7), 1988.

744 Cole, J. J., & Caraco, N. F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic
745 lake measured by the addition of SF6, *Limnol. Oceanogr.*, 43, 647–656,
746 <https://doi.org/10.4319/lo.1998.43.4.0647>, 1998.

747 Cosović, B., & Vojvodić, V.: The application of ac polarography to the determination of surface-
748 active substances in seawater 1, *Limnol. Oceanogr.*, 27, 361–369,
749 <https://doi.org/10.4319/lo.1982.27.2.0361>, 1982.

750 Cunliffe, M., & Wurl, O.: Guide to best practices to study the ocean's surface, *Marine Biological*
751 *Association of the United Kingdom for SCOR*, Plymouth, UK, <http://plymsea.ac.uk/6523>, 2014.

752 Deike, L.: Mass transfer at the ocean-atmosphere interface: The role of wave breaking, droplets,
753 and bubbles, *Annu. Rev. Fluid Mech.*, 54, 191–224, <https://doi.org/10.1146/annurev-fluid-030121-014132>, 2021.

755 Deike, L., & Melville, W. K.: Gas transfer by breaking waves, *Geophys. Res. Lett.*, 45, 10482–
756 10492, <https://doi.org/10.1029/2018GL078758>, 2018.

757 Dobashi, R., & Ho, D. T.: Air-sea gas exchange in a seagrass ecosystem—results from a $^3\text{He}/\text{SF}_6$
758 tracer release experiment, *Biogeosciences*, 20, 1075–1087, <https://doi.org/10.5194/bg-20-1075-2023>, 2023.

760 Doney, S. C., Wolfe, W. H., McKee, D. C., & Fuhrman, J. G.: The science, engineering, and
761 validation of marine carbon dioxide removal and storage, *Annu. Rev. Mar. Sci.*, 16, 1–27,
762 <https://doi.org/10.1146/annurev-marine-040523-014702>, 2024.

763 Dong, Y., Yang, M., Bakker, D. C. E., Kitidis, V., & Bell, T. G.: Uncertainties in eddy
764 covariance air-sea CO_2 flux measurements and implications for gas transfer velocity
765 parameterisations, *Atmos. Chem. Phys.*, 21, 8089–8110, <https://doi.org/10.5194/acp-21-8089-2021>, 2021.

767 Dong, Y., Jähne, B., Woolf, D. K., Krall, K. E., Yang, M., Czerski, H., et al.: The role of bubbles
768 in air-sea gas exchange: A critical review, *Authorea* [preprint],
769 <https://doi.org/10.22541/essoar.175611263.31332921/v1>, 2025.

770 Durrant, T. H., Greenslade, D. J. M., & Simmonds, I.: The effect of statistical wind corrections
771 on global wave forecasts, *Ocean Model.*, 70, 116–131,
772 <https://doi.org/10.1016/j.ocemod.2012.10.006>, 2013.

773 Edson, J. B., Hinton, A. A., Prada, K. E., Hare, J. E., & Fairall, C. W.: Direct covariance flux
774 estimates from mobile platforms at sea, *J. Atmos. Ocean. Technol.*, 15, 547–562,
775 [https://doi.org/10.1175/1520-0426\(1998\)015<0547:DCFEFM>2.0.CO;2](https://doi.org/10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2), 1998.

776 Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., et
777 al.: On the exchange of momentum over the open ocean, *J. Phys. Oceanogr.*, 43, 1589–1610,
778 <https://doi.org/10.1175/JPO-D-12-0173.1>, 2013.

779 Fairall, C. W., Bariteau, L., Grachev, A. A., Hill, R. J., Wolfe, D. E., Brewer, W. A., et al.:
780 Turbulent bulk transfer coefficients and ozone deposition velocity in the International
781 Consortium for Atmospheric Research into Transport and Transformation, *J. Geophys. Res.*
782 *Atmos.*, 111, 1–19, <https://doi.org/10.1029/2006JD007597>, 2006.

783 Fairall, C. W., Yang, M., Brumer, S. E., Blomquist, B. W., Edson, J. B., Zappa, C. J., et al.: Air-
784 sea trace gas fluxes: Direct and indirect measurements, *Front. Mar. Sci.*, 9, 1–16,
785 <https://doi.org/10.3389/fmars.2022.826606>, 2022.

786 Frew, N. M.: The role of organic films in air-sea gas exchange, in: *The Sea Surface and Global*
787 *Change*, 121–172, <https://doi.org/10.1017/CBO9780511525025.006>, 1997.

788 Frew, N. M., Goldman, J. C., Dennett, M. R., & Johnson, A. S.: Impact of phytoplankton-
789 generated surfactants on air-sea gas exchange, *J. Geophys. Res. Oceans*, 95, 3337–3352,
790 <https://doi.org/10.1029/JC095iC03p03337>, 1990.

791 Frew, N. M., Bock, E. J., Schimpf, U., Hara, T., Haußecker, H., Edson, J. B., et al.: Air-sea gas
792 transfer: Its dependence on wind stress, small-scale roughness, and surface films, *J. Geophys.*
793 *Res. Oceans*, 109, 1–23, <https://doi.org/10.1029/2003JC002131>, 2004.

794 Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., et
795 al.: Global Carbon Budget 2024, *Earth Syst. Sci. Data*, 17, 965–1039,
796 <https://doi.org/10.5194/essd-17-965-2025>, 2025.

797 Garbe, C. S., Rutgersson, A., Boutin, J., De Leeuw, G., Delille, B., Fairall, C. W., et al.: Transfer
798 across the air-sea interface, in: *Ocean-atmosphere interactions of gases and particles*, 55–112,
799 Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-25643-1_2, 2014.

800 Gerke, L., Arck, Y., & Tanhua, T.: Temporal variability of ventilation in the Eurasian Arctic
801 Ocean, *J. Geophys. Res. Oceans*, 129, e2023JC020608, <https://doi.org/10.1029/2023JC020608>,
802 2024.

803 Giudici, A., Jankowski, M. Z., Männikus, R., Najafzadeh, F., Suursaar, Ü., & Soomere, T.: A
804 comparison of Baltic Sea wave properties simulated using two modelled wind data sets, *Estuar.
805 Coast. Shelf Sci.*, 290, 108401, <https://doi.org/10.1016/j.ecss.2023.108401>, 2023.

806 Goldman, J. C., Dennett, M. R., & Frew, N. M.: Surfactant effects on air-sea gas exchange under
807 turbulent conditions, *Deep-Sea Res. Pt. A*, 35, 1953–1970, [https://doi.org/10.1016/0198-0149\(88\)90119-7](https://doi.org/10.1016/0198-
808 0149(88)90119-7), 1988.

809 Gutiérrez-Loza, L., Nilsson, E., Wallin, M. B., Sahlée, E., & Rutgersson, A.: On physical
810 mechanisms controlling air-sea CO₂ exchange, *Biogeosciences*, 19, 5645–5665,
811 <https://doi.org/10.5194/bg-19-5645-2022>, 2022.

812 Hammer, K., Schneider, B., Kuliński, K., & Schulz-Bull, D. E.: Acid-base properties of Baltic
813 Sea dissolved organic matter, *J. Mar. Syst.*, 173, 114–121,
814 <https://doi.org/10.1016/j.jmarsys.2017.04.007>, 2017.

815 Harvey, G. W., & Burzell, L. A.: A simple microlayer method for small samples 1, *Limnol.
816 Oceanogr.*, 17, 156–157, <https://doi.org/10.4319/lo.1972.17.1.0156>, 1972.

817 Ho, D. T., & Wanninkhof, R.: Air-sea gas exchange in the North Atlantic: ³He/SF₆ experiment
818 during GasEx-98, *Tellus B*, 68, 30198, <https://doi.org/10.3402/tellusb.v68.30198>, 2016.

819 Ho, D. T., Schlosser, P., & Caplow, T.: Determination of longitudinal dispersion coefficient and
820 net advection in the tidal Hudson River with a large-scale, high resolution SF₆ tracer release
821 experiment, *Environ. Sci. Technol.*, 36, 3234–3241, <https://doi.org/10.1021/es015814>, 2002.

822 Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., & Hill, P.: Measurements of air-
823 sea gas exchange at high wind speeds in the Southern Ocean: Implications for global
824 parameterizations, *Geophys. Res. Lett.*, 33, L16611, <https://doi.org/10.1029/2006GL026817>,
825 2006.

826 Ho, D. T., Bopp, L., Palter, J., Long, M. C., Boyd, P., Neukermans, G., & Bach, L.: Monitoring,
827 reporting, and verification for ocean alkalinity enhancement, in: *Guide to Best Practices in*
828 *Ocean Alkalinity Enhancement Research*, 2-*oae*2023, 1–12, <https://doi.org/10.5194/sp-2023-2>,
829 2023.

830 Jähne, B. J., Münnich, K. O. M., Bösinger, R., Dutzi, A., Huber, W., & Libner, P.: On the
831 parameters influencing air–water gas exchange, *J. Geophys. Res.*, 92, 1937–1949,
832 <https://doi.org/10.1029/JC092iC02p01937>, 1987.

833 Klavins, M., & Purmalis, O.: Humic substances as surfactants, *Environ. Chem. Lett.*, 8, 349–354,
834 <https://doi.org/10.1007/s10311-009-0232-z>, 2010.

835 Kunz, J., & Jähne, B.: Investigating small-scale air–sea exchange processes via thermography,
836 *Front. Mech. Eng.*, 4, 4, <https://doi.org/10.3389/fmech.2018.00004>, 2018.

837 Kuss, J., Nagel, K., & Schneider, B.: Evidence from the Baltic Sea for an enhanced CO₂ air-sea
838 transfer velocity, *Tellus B*, 56, 175, <https://doi.org/10.3402/tellusb.v56i2.16407>, 2004.

839 Landwehr, S., Miller, S. D., Smith, M. J., Bell, T. G., Saltzman, E. S., & Ward, B.: Using eddy
840 covariance to measure the dependence of air-sea CO₂ exchange rate on friction velocity, *Atmos.*
841 *Chem. Phys.*, 18, 4297–4315, <https://doi.org/10.5194/acp-18-4297-2018>, 2018.

842 Landwehr, S., Thurnherr, I., Cassar, N., Gysel-Beer, M., & Schmale, J.: Using global reanalysis
843 data to quantify and correct airflow distortion bias in shipborne wind speed measurements,
844 *Atmos. Meas. Tech.*, 13, 3487–3506, <https://doi.org/10.5194/amt-13-3487-2020>, 2020.

845 De Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O'Dowd, C., et
846 al.: Production flux of sea spray aerosol, *Rev. Geophys.*, 49, 1–39,
847 <https://doi.org/10.1029/2010RG000349>, 2011.

848 McGillis, W. R., Edson, J. B., Ware, J. D., Dacey, J. W. H., Hare, J. E., Fairall, C. W., &
849 Wanninkhof, R.: Carbon dioxide flux techniques performed during GasEx-98, *Mar. Chem.*, 75,
850 267–280, [https://doi.org/10.1016/S0304-4203\(01\)00042-1](https://doi.org/10.1016/S0304-4203(01)00042-1), 2001.

851 McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P., Terray, E. A., et al.:
852 Air-sea CO₂ exchange in the equatorial Pacific, *J. Geophys. Res. Oceans*, 109, C08S90,
853 <https://doi.org/10.1029/2003JC002256>, 2004.

854 McKenna, S. P., & McGillis, W. R.: The role of free-surface turbulence and surfactants in air–
855 water gas transfer, *Int. J. Heat Mass Transfer*, 47, 539–553,
856 <https://doi.org/10.1016/j.ijheatmasstransfer.2003.06.001>, 2004.

857 Mesarchaki, E., Kräuter, C., Krall, K. E., Bopp, M., Helleis, F., Williams, J., & Jähne, B.:
858 Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank, *Ocean Sci.*,
859 11, 121–138, <https://doi.org/10.5194/os-11-121-2015>, 2015.

860 Miller, S. D., Marandino, C., & Saltzman, E. S.: Ship-based measurement of air-sea CO₂
861 exchange by eddy covariance, *J. Geophys. Res. Atmos.*, 115, D02112,
862 <https://doi.org/10.1029/2009JD012193>, 2010.

863 Moat, B., & Yelland, M.: Airflow distortion at instrument sites on the RRS James Clark Ross
864 during the WAGES project, *Natl. Oceanogr. Cent. Internal Doc.*, 12,
865 <http://nora.nerc.ac.uk/id/eprint/509304>, 2015.

866 Moat, B. I., Yelland, M. J., & Cooper, E. B.: The airflow distortion at instruments sites on the
867 RRS "James Cook", *Natl. Oceanogr. Cent. Southampton Res. Consult. Rep.*, 11, 44 pp.,
868 <http://eprints.soton.ac.uk/id/eprint/41147>, 2006.

869 Mustaffa, N. I. H., Ribas-Ribas, M., Banko-Kubis, H. M., & Wurl, O.: Global reduction of in situ
870 CO₂ transfer velocity by natural surfactants in the sea-surface microlayer, *Proc. R. Soc. A*, 476,
871 20190763, <https://doi.org/10.1098/rspa.2019.0763>, 2020.

872 Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., et al.: In
873 situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile
874 tracers, *Glob. Biogeochem. Cycles*, 14, 373–387, <https://doi.org/10.1029/1999GB900091>, 2000.

875 O'Sullivan, N., Landwehr, S., & Ward, B.: Mapping flow distortion on oceanographic platforms
876 using computational fluid dynamics, *Ocean Sci.*, 9, 855–866, <https://doi.org/10.5194/os-9-855-2013>, 2013.

878 Ocampo-Torres, F. J., & Donelan, M. A.: On the influence of fetch and the wave field on the
879 CO₂ transfer process: Laboratory measurements, in: Air–Water Gas Transfer, B. Jähne &
880 E. C. Monahan (Eds.), AEON Verlag & Studio, Hanau, 543–552, 1995.

881 Parard, G., Charantonis, A. A., & Rutgersson, A.: Using satellite data to estimate partial pressure
882 of CO₂ in the Baltic Sea, *J. Geophys. Res. Biogeosci.*, 121, 1002–1015,
883 <https://doi.org/10.1002/2015JG003064>, 2016.

884 Pereira, R., Schneider-Zapp, K., & Upstill-Goddard, R. C.: Surfactant control of gas transfer
885 velocity along an offshore coastal transect: Results from a laboratory gas exchange tank,
886 *Biogeosciences*, 13, 3981–3989, <https://doi.org/10.5194/bg-13-3981-2016>, 2016.

887 Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D., & Upstill-Goddard, R. C.: Reduced air-
888 sea CO₂ exchange in the Atlantic Ocean due to biological surfactants, *Nat. Geosci.*, 11, 492–496,
889 <https://doi.org/10.1038/s41561-018-0136-2>, 2018.

890 Pitarch, J., Volpe, G., Colella, S., Krasemann, H., & Santoleri, R.: Remote sensing of chlorophyll
891 in the Baltic Sea at basin scale from 1997 to 2012 using merged multi-sensor data, *Ocean Sci.*,
892 12, 379–389, <https://doi.org/10.5194/os-12-379-2016>, 2016.

893 Prytherch, J., & Yelland, M. J.: Wind, convection and fetch dependence of gas transfer velocity
894 in an Arctic sea-ice lead determined from eddy covariance CO₂ flux measurements, *Glob.*
895 *Biogeochem. Cycles*, 35, e2020GB006633, <https://doi.org/10.1029/2020GB006633>, 2021.

896 Resplandy, L., Hogikyan, A., Müller, J. D., Najjar, R. G., Bange, H. W., Bianchi, D., et al.: A
897 synthesis of global coastal ocean greenhouse gas fluxes, *Glob. Biogeochem. Cycles*, 38, 1–38,
898 <https://doi.org/10.1029/2023GB007803>, 2024.

899 Ribas-Ribas, M., Helleis, F., Rahlf, J., & Wurl, O.: Air-sea CO₂ exchange in a large annular
900 wind-wave tank and the effects of surfactants, *Front. Mar. Sci.*, 5, 457,
901 <https://doi.org/10.3389/fmars.2018.00457>, 2018.

902 Rutgersson, A., & Smedman, A.: Enhanced air-sea CO₂ transfer due to water-side convection, *J.*
903 *Mar. Syst.*, 80, 125–134, <https://doi.org/10.1016/j.jmarsys.2009.11.004>, 2010.

904 Rutgersson, A., Pettersson, H., Nilsson, E., Bergström, H., Wallin, M. B., Nilsson, E. D., et al.:
905 Using land-based stations for air-sea interaction studies, *Tellus A*, 72, 1–23,
906 <https://doi.org/10.1080/16000870.2019.1697601>, 2020.

907 Sabbaghzadeh, B., Upstill-Goddard, R. C., Beale, R., Pereira, R., & Nightingale, P. D.: The
908 Atlantic Ocean surface microlayer from 50°N to 50°S is ubiquitously enriched in surfactants at
909 wind speeds up to 13 m s⁻¹, *Geophys. Res. Lett.*, 44, 2852–2858,
910 <https://doi.org/10.1002/2017GL072988>, 2017.

911 Sabbaghzadeh, B., Arévalo-Martínez, D. L., Glockzin, M., Otto, S., & Rehder, G.: Meridional
912 and cross-shelf variability of N₂O and CH₄ in the eastern-south Atlantic, *J. Geophys. Res.*
913 Oceans, 126, e2020JC016878, <https://doi.org/10.1029/2020JC016878>, 2021.

914 Salter, M. E., Upstill-Goddard, R. C., Nightingale, P. D., Archer, S. D., Blomquist, B., Ho, D. T.,
915 et al.: Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas
916 Exchange Experiment II, *J. Geophys. Res. Oceans*, 116, C11007,
917 <https://doi.org/10.1029/2011JC007023>, 2011.

918 Schmidt, R., & Schneider, B.: The effect of surface films on the air-sea gas exchange in the
919 Baltic Sea, *Mar. Chem.*, 126, 56–62, <https://doi.org/10.1016/j.marchem.2011.03.007>, 2011.

920 Sütlenfuß, J., Roether, W., & Rhein, M.: The Bremen mass spectrometric facility for the
921 measurement of helium isotopes, neon, and tritium in water, *Isot. Environ. Health Stud.*, 45, 83–
922 95, <https://doi.org/10.1080/10256010902871929>, 2009.

923 Upstill-Goddard, R. C.: Air-sea gas exchange in the coastal zone, *Estuar. Coast. Shelf Sci.*, 70,
924 388–404, <https://doi.org/10.1016/j.ecss.2006.05.043>, 2006.

925 Vickers, D., & Mahrt, L.: Fetch limited drag coefficients, *Bound.-Lay. Meteorol.*, 85, 53–79,
926 <https://doi.org/10.1023/A:1000472623187>, 1997.

927 Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited,
928 *Limnol. Oceanogr. Methods*, 12, 351–362, <https://doi.org/10.4319/lom.2014.12.351>, 2014.

929 Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., & McGillis, W. R.: Advances in
930 quantifying air-sea gas exchange and environmental forcing, *Annu. Rev. Mar. Sci.*, 1, 213–244,
931 <https://doi.org/10.1146/annurev.marine.010908.163742>, 2009.

932 Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, *Mar.*
933 *Chem.*, 2, 203–215, [https://doi.org/10.1016/0304-4203\(74\)90015-2](https://doi.org/10.1016/0304-4203(74)90015-2), 1974.

934 Woolf, D. K., Land, P. E., Shutler, J. D., Goddijn-Murphy, L. M., & Donlon, C. J.: On the
935 calculation of air-sea fluxes of CO₂ in the presence of temperature and salinity gradients, *J.
936 Geophys. Res. Oceans*, 121, 1229–1248, <https://doi.org/10.1002/2015JC011427>, 2016.

937 Woolf, D. K.: Bubbles and the air-sea transfer velocity of gases, *Atmos.-Ocean*, 31, 517–540,
938 <https://doi.org/10.1080/07055900.1993.9649484>, 1993.

939 Woolf, D. K.: Parametrization of gas transfer velocities and sea-state-dependent wave breaking,
940 *Tellus B*, 57, 87, <https://doi.org/10.3402/tellusb.v57i2.16783>, 2005.

941 Woolf, D. K.: Bubbles and their role in gas exchange, in: *The Sea Surface and Global Change*,
942 173–206, Cambridge University Press, <https://doi.org/10.1017/CBO9780511525025.007>, 1997.

943 Wurl, O., Wurl, E., Miller, L., Johnson, K., & Vagle, S.: Formation and global distribution of
944 sea-surface microlayers, *Biogeosciences*, 8, 121–135, <https://doi.org/10.5194/bg-8-121-2011>,
945 2011.

946 Yang, M., Smyth, T. J., Kitidis, V., Brown, I. J., Wohl, C., Yelland, M. J., & Bell, T. G.: Natural
947 variability in air-sea gas transfer efficiency of CO₂, *Sci. Rep.*, 11, 1–9,
948 <https://doi.org/10.1038/s41598-021-92947-w>, 2021.

949 Yang, M., Bell, T. G., Bidlot, J. R., Blomquist, B. W., Butterworth, B. J., Dong, Y., et al.: Global
950 synthesis of air-sea CO₂ transfer velocity estimates from ship-based eddy covariance
951 measurements, *Front. Mar. Sci.*, 9, 1–15, <https://doi.org/10.3389/fmars.2022.826421>, 2022.

952 Yang, M., Moffat, D., Dong, Y., & Bidlot, J.-R.: Deciphering the variability in air-sea gas
953 transfer due to sea state and wind history, *PNAS Nexus*, pgae389,
954 <https://doi.org/10.1093/pnasnexus/pgae389>, 2024.

955 Zhao, D., Toba, Y., Suzuki, Y., & Komori, S.: Effect of wind waves on air-sea gas exchange:
956 Proposal of an overall CO₂ transfer velocity formula as a function of breaking-wave parameter,
957 *Tellus B*, 55, 478–487, <https://doi.org/10.3402/tellusb.v55i2.16747>, 2003.

958