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Abstract.

The surface moisture flux is a large term in the surface energy balance and difficult to estimate remotely. The main difficulty

for its remote estimation is a poor ability to measure near-surface humidity. Current methods to retrieve near-surface specific

humidity approach the problem statistically and have errors of approximately 1 gkg−1 even in global, annual averages. Using

extensive measurements from the EUREC4A field campaign (ElUcidating the RolE of Clouds, Circulation Coupling in Cli-5

mate), we demonstrate that remote sensing measurements of cloud base height can provide useful estimates of near-surface

humidity over convective oceanic regions where optically-thick clouds do not prevent lidar sampling. First applying the method

to 171 coincident radiosonde and ceilometer pairings collected from a research vessel from January 18 to February 14, 2020

yields skillful predictions of near-surface specific humidity regarding the mean (mean bias 0.33 gkg−1 compared to observed)

and its variability (r = 0.76). We then apply this method using an airborne lidar to estimate cloud base height from above. In10

two representative case studies, we find similar skill in the predicted humidity, with low mean biases (−0.06 and−0.03 gkg−1

compared to observed) with substantial variability captured (r = 0.61 and r = 0.57, respectively). Besides estimates of cloud

base height, we highlight two main error sources: (i) the relative humidity lapse rate below cloud base and (ii) the temperature

difference between the sea surface and near-surface air, which would need to be calibrated if using this method to develop

an operational product to estimate the near-surface specific humidity from downward-looking spaceborne lidar. This proof of15

concept raises the potential for application over convective oceanic regions where lidar sampling of cloud base is possible.

This method could provide a physics-based augmentation to existing, more empirical approaches and therefore provide an

additional observational constraint on the surface energy budget.

1 Introduction

The surface energy balance is a fundamental property of the climate system. How it is partitioned among its different compo-20

nents, and how it varies in space and time tempers the behavior of the atmosphere above, and the land or water below (e.g.,

Hartmann, 2015). Among its varied components, the main balance is between moisture fluxes, extracting energy from the sur-

face through evaporation, and the absorption of energy from the sun. Sensible energy transfers, and net radiant energy fluxes
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in the thermal infrared also combine to cool the surface, but on average only half as strongly as the evaporation of water which

maintains the flux of moisture to the atmosphere (e.g., Hartmann, 2015). In addition to providing an energetic link between25

the surface and the atmosphere, the moisture flux links the water and the energy cycles (e.g., Jackson et al., 2009; Kubota and

Tsutomu, 2008; Fajber et al., 2023). Despite their importance, the evaporative (or moisture) fluxes are difficult to measure, and

they are both one of the largest, and most uncertain terms in the surface energy balance (e.g., Liman et al., 2018; Clayson et al.,

2019). An improved ability to quantify evaporative fluxes is therefore essential for observation-based studies of the water and

energy cycles, and the dynamics of weather systems and circulations that they fuel.30

These fluxes can be reasonably well estimated from the covariance of anomalies in moisture, q′, and vertical air motions,

w′, i.e., as ρℓvw′q′, with ρ the density and ℓv the vaporization enthalpy. Surface layer similarity provides a mean field theory

for the evaporative flux, which is encapsulated by the bulk aerodynamic formula (e.g., Fairall et al., 1996b, 2003; Edson et al.,

2013), taking the form,

w′q′ = C|U |∆q, where ∆q ≡ qs− qa (1)35

so that the evaporative flux can be directly related to the difference, ∆q, in the specific humidity deficit of the air, qa, as

compared to the surface, qs, and the near-surface wind speed, |U |, with C being an exchange coefficient. The value of C can

depend on the surface properties and stability in a complex way, but it is well characterized by decades of careful measurements

calibrating theoretical expectations (Fairall et al., 1996b, 2003; Edson et al., 2013). The surface moisture fluxes can therefore

be reasonably well determined given knowledge of the specific humidity of the near-surface air, qa, the saturation specific40

humidity at the surface temperature and pressure, qs, as well as the near-surface winds, |U |.
Following the bulk aerodynamic formulation of surface fluxes, we assume that the water vapor pressure at the ocean surface

is at saturation, so that the surface specific humidity qs equals the saturation specific humidity q∗(Ts,Ps). This approximation

in bulk theory reflects the near-equilibrium condition at the air–sea interface and is a standard assumption in flux parameter-

izations, sometimes with a 0.98 correction for typical salinity (e.g., Fairall et al., 1996b, 2003). Satellite remote sensing can45

provide reasonable estimates of Ts, which given Ps determines q∗ and hence qs. Likewise a variety of measurements provide

increasingly accurate estimates of surface wind speeds (e.g., Ricciardulli and Manaster, 2021). The main limitation in esti-

mating evaporative fluxes over the ocean is therefore the measurement of the near-surface specific humidity of the air, qa, a

quantity for which there is no real proxy. As a result, satellite-based climatologies of evaporative fluxes over the ocean depend

on qa correlating with other quantities that can be remotely sensed, so that it (or the evaporative flux as a whole) can be in-50

ferred statistically. Gentemann et al. (2020) detail approaches to this problem. These include retrievals from passive microwave

measurements, such as the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS4) (Liman et al., 2018;

Andersson et al., 2010) and SeaFlux CDR (Clayson and Brown, 2016), as well as approaches that combine reanalysis and

passive microwave data, such as IFREMER4 (Bentamy et al., 2013, 2017a) and J-OFURO3 (Tomita et al., 2019). Liman et al.

(2018), for instance, compared HOAPS climatology with in situ buoy and ship measurements and found retrieval uncertainties55

in latent heat flux of 15 Wm−2, with a global-mean error of 25 Wm-2. Errors were found to be particularly large over the
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subtropical oceans, where evaporative fluxes are large in magnitude, with an average of 37 Wm-2 in random instantaneous

retrieval errors (Liman et al., 2018).

A number of studies have confirmed that the most uncertain term in Eq. 1 is qa (e.g., Bourras, 2006; Tomita and Kubota,

2006; Jackson et al., 2009; Bentamy et al., 2017b; Roberts et al., 2019; Robertson et al., 2020). Liman et al. (2018) estimated60

that contributions from qa contribute approximately 60% to overall uncertainty in the evaporative flux, whereas uncertainties

from the wind speed contribute about 25%.

Given this uncertainty, our goal is to develop a method to estimate qa over convective oceanic regions. To this end, we

exploit the physical connection between cloud base height h and near-surface relative humidity Wa: in a convective, well-

mixed subcloud layer the cloud base forms near the lifting condensation level (LCL) and thus the height at which it forms65

depends primarily on near-surface T and q.

Our method takes advantage of the fact that a convective cloud-topped boundary layer is ubiquitous over the world oceans

(Fig. 1). We demonstrate this ubiquity by analyzing daily ERA5 surface fluxes from the year 2020 to compute the climatological

frequency of positive surface buoyancy flux, B0, representing the annual frequency of convectively unstable surface conditions.

The resulting ‘buoyancy-favorability’ map (Fig. 1) shows that near-surface convective instability prevails over most tropical70

and subtropical oceans, with ocean-only mean frequencies of 85% globally and 99% between 30◦ S and 30◦ N.

Building on this link, we test the idea that Wa (and hence qa) can be inferred from h and a small set of parameters, as a basis

for a possible retrieval. To this end, we summarize notation and data (Sec. 2); we then derive the relationship between h, Wa,

and ∆q ≡ qs− qa and quantify sources of uncertainty (Sec. 3). Using coincident ceilometer–radiosonde and lidar–dropsonde

measurements from EUREC4A, we validate the h–Wa linkage from surface and airborne platforms (Sec. 4.1, 4.2). We estimate75

the two near-surface control parameters, dW/dz and ∆aT , from observations (Sec. 4.3) and evaluate retrieval skill in qa

(Sec. 4.4). Finally, we discuss scope, caveats, and practical use, and conclude (Sec. 5, 6).

2 Notation and data

Throughout, for notation, the subscript s denotes surface quantities and the subscript a denotes near-surface atmospheric quan-

tities evaluated at the reference height za = 40m. This height corresponds to the lowest reliable sonde level and is close to80

the R/V Meteor air-temperature measurements at 28.3 m used in this study. The ocean surface temperature Ts is the skin tem-

perature. Near-surface atmospheric variables carry the a subscript; for example, qa, Ta, and Wa refer to conditions at za. Air

pressure is denoted by P and vapor pressure by e, with e∗ denoting the saturation value for a plane of pure water. Hence,

because the surface is water (albeit wavy and not pure), es ≈ e∗(Ts). To make it easier to manipulate in equations, for which

abbreviations make poor symbols, we use the symbol W to denote relative humidity.85

Regarding data, we employ coincident sounding and lidar data from ground-based and airborne observing platforms during

the EUREC4A field campaign (ElUcidating the RolE of Clouds, Circulation Coupling in Climate), which took place in January

and February 2020 in the trade-wind zone east of Barbados (Bony et al., 2017; Stevens et al., 2021; Albright et al., 2022).

During EUREC4A the German High Altitude and Long Range Research Aircraft (HALO) launched 810 dropsondes between

3

https://doi.org/10.5194/egusphere-2025-6092
Preprint. Discussion started: 16 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 1. Frequency of days with positive surface buoyancy flux, B0, during 2020, computed from daily ERA5 reanalysis data of sensible and

latent heat fluxes, as well as the 2 m air temperature. The shading indicates the fraction of days for which the surface buoyancy flux is positive

(upward). Positive values represent convectively unstable surface conditions. Values approach unity over most tropical and subtropical ocean

regions, indicating nearly continuous convective instability. Over the global oceans, the area-weighted mean frequency is approximately

85%, while in the tropical band (30◦ S–30◦ N) it reaches 99%. White contours denote frequencies of 0.50, 0.75, 0.90, 0.95, and 0.99.

January 22, 2020 and February 15, 2020 (George et al., 2021) (see the EUREC4A data paper for HALO by Konow et al. (2021)).90

These dropsondes yield vertical profiles of pressure, temperature, and relative humidity with a manufacturer-stated accuracy

of 0.4 hPa, 0.1◦C, and 2%, respectively (Vaisala, 2020). During EUREC4A, dropsonde measurements were distributed along a

fixed flight pattern, the ‘EUREC4A circle’ — a circular flight pattern with an approximately 220-kilometer diameter, centered

at 13.3◦N, 57.7◦W, at 9.5 km altitude. Following Bony et al. (2017); Stevens et al. (2021), one circle-mean refers to the mean

of typically 12 dropsondes launched over one hour along the EUREC4A circle (due to operator and instrument errors, on some95

circles fewer sondes were launched, but never fewer than seven). A circling-mean is defined as the mean of three consecutive

circle-means, corresponding to 30–36 consecutive soundings aggregated over 210 minutes (see Albright et al. (2022) and Vogel

et al. (2022) for further information). This sampling strategy provides aggregated, statistical estimates of a large-scale signal.

Also onboard the HALO aircraft, the airborne demonstrator for the WAter vapor Lidar Experiment in Space (WALES)

measured atmospheric backscatter and water vapor DIfferential Absorption Lidar (DIAL) profiles (Wirth et al., 2009; Konow100
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et al., 2021). Due to its high horizontal and vertical resolution, airborne lidar data is amenable to studying small-scale clouds,

such as in trade cumulus regions. Here we evaluate the lidar data at the highest possible resolution, e.g., the backscatter ratio

and aerosol depolarization data are analyzed at 0.2 second time resolution and 7.5 m vertical resolution. For the analyzed

flights, the altitude was nearly constant ( 10.4 km) and the aircraft speed was about 210 m/s, resulting in consistent horizontal

spatial resolution of 42 m (Konow et al., 2021). We use data at a wavelength of 532 nm, and the backscatter profiles are105

extinction corrected using the High Spectral Resolution Lidar (HSRL) method (Esselborn et al., 2008). All data are regridded

to a constant altitude scale over the EGM96 geoid.

Over the same time period, radiosondes were launched as part of the campaign from the Barbados Cloud Observatory (BCO,

Stevens et al., 2016) and the research vessel, R/V Meteor (Stephan et al., 2020), from January 16 to March 1, 2020. As described

in Stevens et al. (2021), ceilometer measurements of cloud base height were made from January 18, 2020 to February 14, 2020110

from the same platforms. At the BCO, the ceilometer is an OTT CHM 15k pulsed laser cloud height detector at 1064 nm used

to detect cloud base height and lifting condensation level; at the R/V Meteor, the ceilometer is a Jenoptik system measuring

vertical profiles of attenuated backscatter at 1064 nm to infer cloud base as a function of altitude and aerosol (Stevens et al.,

2021).

3 Theory and parameter sensitivities for cloud base height as a proxy for near-surface humidity115

Before quantifying empirical relationships between cloud base height, h, and near-surface relative humidity (Wa), we outline

the theoretical basis linking both quantities. In a well-mixed and unsaturated subcloud layer, the specific humidity is nearly

constant while temperature follows a dry-adiabatic profile. Relative humidity is defined as

W =
e

e∗(T )
= q

Rv

R

P

e∗(T )
, (2)

where R = (1− q)Rd + qRv is the gas constant of an ideal mixture of ‘dry-air’ and water vapor, e∗(T ) is the saturation vapor120

pressure, and q the specific humidity.

For an adiabatic process for which pressure varies hydrostatically, dT/dz =−g/cp, and negligible vertical humidity gradi-

ents (dq/dz ≈ 0), the vertical gradient of W simplifies to

dW

dz
=

g

T

(
ℓv

cpRvT
− 1

R

)
W, (3)

which gives the adiabatic rate of increase of relative humidity with height. Averaging across a well-mixed boundary layer with125

a depth of 600 m, q = 15gkg−1 and T varying dry-adiabatically about a mid-layer (300 m) mean value of 296.41 K – values

derived from the Meteor and BCO radiosondes – yields a boundary layer mean value of dW
dz = 4.0%hm−1 (referring to percent

per hectometer, or 100 m).

In reality, the subcloud layer departs slightly from adiabaticity due to entrainment of drier air from above and the partial

compensation of temperature and moisture tendencies by turbulent mixing (Wyngaard and Brost, 1984). Allowing weak vertical130

5

https://doi.org/10.5194/egusphere-2025-6092
Preprint. Discussion started: 16 January 2026
c© Author(s) 2026. CC BY 4.0 License.



gradients in both T and q, the more general form of the relative-humidity lapse rate is

dW

dz
=

[(
1
q
− Rv−Rd

R

)
dq

dz
− g

RT
− ℓv

RvT 2

dT

dz

]
W, (4)

which reduces to Eq. (3) when dq/dz = 0 and dT/dz =−g/cp.

Using representative trade-wind conditions from Albright et al. (2022), dq/dz ≈−1gkg−1 km−1 and dT/dz ≈−9.4Kkm−1,

together with T = 296.4K and q = 15gkg−1, Eq. (4) gives
(

1
W

)
dW
dz ≈ 4.0× 10−4 m−1, corresponding to dW

dz ≈ 3.6%hm−1135

for W ≃ 0.9. This non–well-mixed estimate is about 10% smaller than the adiabatic value, with most of the reduction arising

from the moisture-dilution term
(

1
q − Rv−Rd

R

)
dq
dz .

3.1 From relative to specific humidity

Given a cloud base at height h, where W = 100%, the relative humidity at a reference height za below cloud base can be

approximated as140

Wa ≈ 1− (h− za)
dW

dz
. (5)

From Eq. (2), the near-surface specific humidity deficit, ∆q = qs− qa, may then be written as

∆q = qs

{
1−Wa

[
e∗(Ta)
e∗(Ts)

]
Ps− [1−Rd/Rv]e∗(Ts)

Pa− [1−Rd/Rv]Wae∗(Ta)

}
. (6)

Linearizing e∗(T ) about Ts using the Clausius–Clapeyron relation,

e∗(Ta)≈ e∗(Ts) [1−χ∆aT ], χ =
ℓv

RvT 2
s

≈ 1/16 K−1, (7)145

and neglecting small pressure effects simplifies Eq. (6) to

∆q ≈ qs [1−Wa + χ∆aT Wa] , (8)

where ∆aT = Ts−Ta is the sea–air temperature difference. Substituting Eq. (5) links ∆q explicitly to h, the vertical gradient

dW/dz, and ∆aT .

The corresponding fractional uncertainty in ∆q from errors in h and ∆aT (first-order propagation) is150

εq ≈Wa εh +
χ∆aT Wa

1− (1−χ∆aT )Wa
(εh + εT ), (9)

where εh ≡ δ
[
h(dW/dz)

]/[
h(dW/dz)

]
and εT ≡ δ(∆aT )/∆aT are fractional errors, and Wa is used as a fraction. For

typical values Wa = 0.90, ∆aT = 1.3K, and χ≈ 1/16 K−1,

εq ≈ 1.32εh + 0.42εT .

This analysis reinforces Eq. (9): the dominant source of uncertainty in ∆q is the estimate of the product of h and dW/dz. Er-155

rors in the air–sea temperature contrast, ∆aT , also propagate into the energy budget via the sensible heat flux, producing same-

sign errors in the net surface energy flux. The resulting fractional error scales with the Bowen ratio, B, as (1 +0.13/B),εT ,
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growing as B decreases. For climatological oceanic conditions (B ≈ 0.1) (Oliver, 2005), this amplification factor is ∼ 2.3,

which is still insufficient for εT to become comparable to the contribution from an equal εh.

Figure 2 summarizes these relationships schematically, showing how h, dW/dz, and ∆aT combine to determine the near-160

surface specific humidity deficit ∆q.

Wa ≈ 1 − (h − za) dW
dx

W = 100% at h

 ( )q*a Ta(2) (3)

Le ∼ |U | (qs,sat − q40m)

(4) Δq ≈ qs[1−Wa+χΔaTWa]

(1)

where  =  - Ta Ts ΔaT

dW
dx

Figure 2. Schematic overview of the methodology highlighting the three main error sources: (1) estimating cloud base height, h, where

W = 100% is assumed and then extrapolated to za using (2) a fixed relative humidity lapse rate dW
dz

, which is then converted to qa as

described in the text with (3) a fixed ∆aT = 1.3K.

4 Results

4.1 Ground-Based Validation

For the ground-based validation, we use W from radiosondes and cloud base height distributions that are derived from

ceilometer measurements during 60 minute windows centered on the radiosonde launch time. From the resulting distribu-165

tion of ceilometer cloud detections, we associate h with the first and major peak of the distribution calculated from a Gaussian

kernel density estimate, similar to the method employed in Albright et al. (2022) and Vogel et al. (2022). There is a strong

correlation between h and the 10th percentile (r=0.94) or other low quantiles. Associating cloud base with the main peak of the

distribution (or low quantiles) accounts for the expectation that ceilometer based cloud detections are skewed to more elevated
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(a) (b)

Figure 3. Ceilometer cloud returns for 30 minutes before and after the radiosonde launch time (grey histograms) and the relative humidity

profiles measured by the radiosondes (blue profiles, data every 10 m). Also shown on the ceilometer cloud base height histograms are the

10th percentile (solid light blue line), the first major peak of the distribution calculated from a Gaussian kernel density estimate (orange

dashed line), and the height at which relative humidity would reach 100% when extrapolating from a linear regression fit to the observed

profile from 200-400 m (turquoise dashed line), as described in the text. Panel (a) is around the radiosonde launched on Jan. 29, 2020 at

06:44 UTC (2:44 am local Barbados time) and panel (b) is Feb. 1 2020 at 00:25 UTC (8:25 pm local Barbados time). These are two cases

where radiosonde relative humidity reached 100% below 1000 m.

values (Nuijens et al., 2014). This skewness is expected from the tendency of clouds to evaporate from their base upwards,170

leaving cloud remnants to dissipate above cloud base. Similarly a local maximum in the wind speed near cloud base results in

cloud base scudding ahead of more elevated regions of the cloud mass, which would also lead to a longer tail of more elevated

ceilometer cloud returns. Rain, on the other hand, is infrequent and not readily identified in the ceilometer signal, leading less

often to the situation whereby ceilometer estimates of h are low-biased (Nuijens et al., 2014). Fig. 3 illustrates this method for

two example 60 minute periods for radiosondes where relative humidity reached 100% below 1000 m. First ceilometer cloud175

detections are plotted as a histogram for the two cases, along with associated radiosonde profiles of relative humidity. For the

ceilometer cloud base height distribution, horizontal lines illustrate different choices of h: the 10th percentile, first distribution

peak, and the extrapolation to the altitude where W reaches 100% based on linear fits to W in the layer between 200-400 m.

Using the first distribution peak of ceilometer values to estimate h, we calculate h and Wa for 118 radiosondes at the BCO

and 171 radiosondes at the R/V Meteor. Fig. 4 shows the close association between these two quantities. Also shown for180

comparison are subcloud layer height estimates from dropsonde measurements and virtual potential temperature, θv, vertical

profiles (averaged at the ∼220 km diameter circle spatial scale, over three hours, following Vogel et al. (2022) and Albright

et al. (2022)). Theoretical estimates from Eq. 4 are also plotted, both the adiabatic case and a case where dT
dz departs from its

adiabatic profile. The agreement between the lines and the points in Fig. 4 show the expected consistency.
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Figure 4. Near-surface relative humidity at 40 m, Wa, from radiosondes and ceilometer-based estimates of cloud base height, h (using the

first, major peak of the distribution) from R/V Meteor (n=171, dark blue) and BCO (n=118, medium blue) measurements. Also shown are

area-averaged estimates of h from HALO dropsondes (light blue) as calculated by Vogel et al. (2022) and Albright et al. (2022). Lines are

theoretical relationships as described in the text (red: adiabatic lapse rate of -9.8 K/km; light grey dashed line: temperature lapse rate of -8.5

K/km).

4.2 Testing the method with airborne lidar data185

Having established the relationship between h and Wa based on both theory and surface measurements, we now turn to

estimating the relationship using data from WALES airborne data. For each profile, the lowest altitude where the lidar signal

is above background aerosol values is selected using a backscatter ratio of 20. The threshold for the backscatter ratio was set

to 20 to ensure it lies well above values typically associated with strong aerosol loadings, which can reach up to around 10 for

transported desert dust. Lowering the threshold would identify more clouds; however, the resulting change in relative humidity190

is minimal (about 1% when varying the threshold from 10 to 20) and becomes negligible (around 0.1%) when increasing it

further from 20 to 40. We only consider cases where the sea surface is still visible, which ensures the accuracy of the extinction

correction by the HSRL method. This consideration limits detections to optically-thin clouds or the corner regions of clouds,

as deeper clouds are opaque to the downward-staring lidar, and has the advantage of being less susceptible to rain detections.

For edge cases this implies that the cloud base near the edges of the clouds can be extrapolated to the center of the cloud,195

which is opaque to the lidar (e.g., assuming that the clouds are mostly flat at the bottom). For multi-layered cloud systems, the

base of the upper layer is sometimes identified instead of the lowest cloud base. These cases could be flagged and removed

based on a cloud base height histogram controlled filter which uses the fact that for multilayer systems a second or third mode

appears. As discussed above in the case of surface-based measurements, 3D effects can also bias cloud bases high when the
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cloud is vertically skewed by wind shear, a situation that Nuijens et al. (2014) showed was not uncommon for the winter trades200

near Barbados. Under those conditions, the lidar will only intersect the top cloud base region. We minimize these effects by

applying a running minimum filter with a width of 3 km.

(a)

(b)

Cold
 po

ols

(c)

(a)

(d)

Figure 5. Cloud base height, h, from WALES for two days, January 28, 2020 (red) and February 2, 2020 (blue), and relative humidity at

40 m, Wa, from the nearest dropsonde launch. Outliers are labeled as (a), (b), (c), and (d), with the suspected source of bias discussed in the

text and further illustrated in Fig. 6. As in Fig. 4, lines are theoretical relationships (red: adiabatic lapse rate of -9.8 K/km; light grey line:

temperature lapse rate of -8.5 K/km).

Figure 5 presents results for two days of the campaign: January 28, 2020 (57 WALES lidar–dropsonde pairings) and

February 2, 2020 (32 pairings), which are selected because they sampled a representative range of cloud base conditions.

January 28 was characterized by small cumulus clouds, often referred to as ‘sugar’ clouds (e.g., Stevens et al., 2020; Bony205

et al., 2020), while February 2 was characterized by deeper clouds with more stratiform layers near cloud top, referred to as

‘flower’ clouds (e.g., Stevens et al., 2020) and the presence of a strong Saharan dust layer reaching up to 2.5 km. Overall there

is a good correspondence between h as measured by WALES and the dropsonde Wa, all the more so given that the Wa is a

point estimate not necessarily centered on the lidar estimates.

A few outliers from the rest of the data are apparent in Fig. 5. An analysis of these exceptions helps give confidence in the210

rule, i.e., the purported Wa(h) relation. For the February 2, 2020 case, which had more stratiform clouds, three outliers are

identified. To investigate these outliers, we examine the backscatter data used to estimate the cloud base height, vertical profiles
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https://doi.org/10.5194/egusphere-2025-6092
Preprint. Discussion started: 16 January 2026
c© Author(s) 2026. CC BY 4.0 License.



(a)

(a)

(a)

(b)

(c)

(d) W / %

Figure 6. The four anomalous Wa and h pairings labeled as outliers, (a), (b), (c), and (d), in Fig. 5. Left column: the backscatter ratio

including the selected time as vertical line (red), the inferred cloud base height (blue horizontal line), and for the top panel, an approximate

cloud base height value expected from the linear relationship (orange horizontal line); center column: relative humidity profiles for the nearest

sounding in blue, as well as the soundings immediately before and after (black, solid and dashed, respectively); right column: visible satellite

images (GOES-16 ABI) illustrating the cloud organization from above and the location of the dropsonde at its launch time, accessed via

https://observations.ipsl.fr/aeris/eurec4a-data/PRODUCTS/GOES-E_movies/VIS_IR_combined/v1.0.0/.
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of relative humidity for the closest dropsonde and the dropsondes immediately prior and after, and visible satellite images of the

cloud formations (Fig. 6). A visual inspection of the scenes around the anomalous points suggest that the outliers are associated

with cold pools that increase relative humidity (increasing specific humidity and decreasing temperature) (Touzé-Peiffer et al.,215

2022), and/or cloud fragments associated with dissipating or stratiform cloud elements. The outlier labeled (a) appears to be

a cloud fragment from the stratiform cloud layer, as seen in the backscatter ratios and, to some extent, in the visible satellite

image; it is associated with higher relative humidity than the dropsonde sounding immediately before and after. If instead

estimating a cloud base height around 750 m and relative humidity between 70–75% representative of the larger environment,

the point would align with the other data, as illustrated schematically in Fig. 5. Cases (b) and (c) correctly identify the cloud220

base height, but the cold pool soundings have higher-than-expected relative humidity as seen in the dropsonde profiles. This

high value of Wa result in a Wa(h) relationship that differs from the expected linear relationship, but these values would not

be expected to be associated with significant errors in the inferred relative humidity because the cloud base height estimate is

not biased. Having removed these outliers on Feb. 2, the WALES lidar method has similar skill to ground-based lidar estimates

as shown in Fig. 4.225

In addition, point (d) in the figure appears to be associated with cloud forming on a cold pool boundary, which was uncharac-

teristic of the broader cloud environment (Fig. 6d). Here again it appears that the value does not violate the Wa(h) relationship

used to estimate Wa from h, but rather violates the correspondence between the humidity estimate and the lidar selection of

the lowest cloud base. Recalculating the correlation with a cloud base height value of 300 m, the association increases (to r =

-0.86). This example suggests some ambiguity in the estimate of Wa based on the spread of cloud base estimates below the230

peak value of the distribution, something that would have to be fine-tuned in an operational retrieval.

4.3 Estimates of dW
dz

and ∆aT

To operationalize our framework requires estimating the two near-surface control parameters, dW
dz and ∆aT , from observations

and adopt representative values to convert Wa(za) into qs−qa in the analysis. To test the proposed method we use the EUREC4A

data. If these ideas were used to develop an operational product, they may need to be tuned, perhaps to depend on ambient235

conditions from a prior expectation or other product.

Figure 7 shows the distribution of relative-humidity lapse rates, dW
dz , calculated from R/V Meteor radiosondes launched

between 16 January and 1 March 2020. Soundings are separated into cloudy profiles (where W reaches 100% below 1 km) and

non-cloudy profiles. The lapse rate is estimated from a linear regression between 200 and 400 m. For cloudy soundings, which

occur about 10% of the time, the mean is 3.9 %hm−1 (median 3.8 %hm−1; 5–95% range 2.4 %hm−1 to 4.7 %hm−1). For240

non-cloudy soundings, the distribution is broader with a median of 3.5 %hm−1 (5–95% range 1.1 %hm−1 to 4.9 %hm−1).

These empirical estimates agree closely with the theoretical expectations derived in Sec. 3, where Eq. (3) predicted an

adiabatic rate of dW
dz ≈ 4.0%hm−1 and Eq. (4) gave a slightly smaller non–well-mixed value of about 3.3 %hm−1. Based on

these results, in the subsequent analysis, we adopt dW
dz = 4%hm−1 as a representative value—close to both the peak of the

cloudy-sounding distribution and the theoretical estimate.245
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Figure 7. Histograms of dW
dz

calculated from R/V Meteor soundings as a linear regression between 200m to 400m: cloudy soundings (blue),

defined as soundings where W ≥ 100% below 1 km, and non-cloudy soundings (red) otherwise. Vertical dashed lines mark the median of

each distribution, and the solid black line marks the representative value of 4%hm−1 used in the analysis.

For za = 40m, δaP is negligible compared with P . Given Wa, we can therefore calculate qs− qa from h dW
dz and ∆aT .

Because both dW
dz and ∆aT are controlled by boundary-layer dynamics and the near-adiabatic temperature structure, both

quantities are expected to remain relatively constant over time.

Figure 8a shows the time evolution of sea-surface temperatures measured by the port thermosalinograph (depth 5 m) and

near-surface air temperatures measured at 28.3 m. The seawater measurements are expected to be biased warm relative to250

the true skin temperature due to the cool-skin effect, typically 0.1 K to 0.3 K (Fairall et al., 1996a; Yan et al., 2024). As ex-

pected, nearly all (97%) of the 47,512 measurements show the ocean warmer than the overlying air, consistent with unstable

and convective conditions. The median and mean temperature differences are 1.0 and 1.1 K, respectively. Because the relevant

temperature for surface fluxes is the sea-surface skin temperature, we take it to be 0.3 K cooler than the measured bulk tempera-

ture, yielding a representative offset of ∆aT = 1.3K. This fixed offset is applied to the sea-surface temperatures corresponding255

to each radiosonde launch.

4.4 Retrieval skill in qa

We now evaluate the retrieval skill of the cloud base-height method for near-surface specific humidity, qa, by comparing

predicted values with co-located sounding observations. Fig. 9a,b presents the time series of predicted near-surface specific hu-

midity, qa, based on 171 co-located ceilometer–radiosonde pairs and observed radiosondes launched from the R/V Meteor. On260

average the cloud base height method overestimates qa by 0.33 gkg−1 (5th–95th percentile range:−0.74 gkg−1 to 1.8 gkg−1),
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(a) (b)

Figure 8. (a) Time series of sea-surface temperatures (Ts), measured 5 m below the ocean surface, and near-surface air temperatures (Ta),

measured at 28.3 m on the R/V Meteor. (b) Distribution of temperature differences, ∆aT = Ts−Ta, with vertical lines for the mean and

median values.

with a median absolute error of 0.47 gkg−1. The temporal variability is well captured (r = 0.76). The largest positive biases

occur early in the campaign when cloud bases were low – the error in qa correlates with cloud-base height (r = 0.54 overall,

rising to r = 0.76 for bases below 600 m), suggesting that shallow, poorly mixed layers (e.g., beneath decaying cold pools; see

Fig. 6) are less amenable to this approximation. No systematic diurnal bias is evident, although the small sample size limits a265

definitive assessment of hour-of-day effects.

Figure 9c,d shows the comparison between WALES airborne lidar–derived qa estimates and coincident dropsonde mea-

surements also from HALO. Here the cloud-base method again reproduces the variability reasonably well (r = 0.61), with a

small mean bias of −0.06 gkg−1 and a median absolute error of 0.26 gkg−1 on January 28, 2020. On February 2, 2020, the

correlation is slightly lower (r = 0.57), with a mean bias of −0.03 gkg−1 and a median absolute error of 0.27 gkg−1.270

5 Scope, caveats, and practical use

The method proposed in this study is designed for convective marine boundary layers in which the subcloud layer is well

mixed and shallow cumulus clouds are coupled to the surface. These conditions are ubiquitous over the world ocean (Fig.1).

In such conditions, the cloud base height corresponds closely to the lifting condensation level, which depends primarily on the

near-surface temperature and humidity.275

Despite the ubiquity of favorable conditions, several processes can violate the proxy’s assumptions or introduce measurement

bias. Cold pools from downdrafts and rain-driven outflows can produce shallow, moist layers decoupled from the overlying

cloud, lowering the observed cloud base relative to the environmental LCL and thus overestimating qa. Optically thick or
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(c) (d)

(b)(a)

Figure 9. Comparison of observed and predicted near-surface specific humidity estimates and their error distributions. (a) Time series of

observed qa from radiosondes launched from the R/V Meteor (solid black) versus the cloud base-height-derived prediction from R/V Meteor

ceilometer data (dashed blue; r = 0.76). Time is month and day. (b) Histogram of predicted minus observed qa for the R/V Meteor data

with a median absolute error of 0.47 gkg−1 and a mean bias of 0.33 gkg−1 (vertical line). (c) Time series of observed qa from HALO

dropsondes (solid black) versus cloud base-height-derived predictions from WALES airborne lidar estimates on January 28, 2020 (dashed

blue, r = 0.64). Time is hour and minute, UTC. (d) Histogram of predicted minus observed qa for the HALO comparison, with a median

absolute error of 0.26 gkg−1 and a mean bias of −0.06 gkg−1 (vertical line).

multilayer clouds pose observational limits: a lidar or ceilometer may detect an upper cloud base rather than the lowest, inflating

the apparent cloud base height and biasing the inferred near-surface humidity low; optical-depth and multilayer screening are280

therefore required. Shallow or weakly mixed layers, in addition to those induced by cold pools, depart from the well-mixed

assumption, weakening the cloud base and surface-humidity link and typically yielding low-biased estimates of qa unless

filtered.

Accordingly, the proxy should be applied only where boundary-layer conditions are convective and the detected cloud base

is the lowest layer coupled to the surface. These conditions can be diagnosed using coincident lidar backscatter, optical-depth285

screening, or reanalysis-based buoyancy metrics as in Fig. 1. Within such convective marine regimes, the method’s assumptions

hold and the resulting estimates of near-surface specific humidity are expected to be reliable.
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6 Discussion and conclusions

We show that downward-looking lidar retrievals of cloud base height can be used to infer near-surface relative humidity.

Combined with wind speed, sea surface temperature, and the near-surface air–sea temperature difference, this information290

enables physically-based estimates of the surface water vapor flux. Over the ocean, where such measurements are both scarce

and essential for the surface energy balance, scatterometers provide wind speed, and long-running satellite records provide

sea-surface temperature. Because the air–sea temperature difference varies only modestly across most of the global ocean, it

can be estimated statistically. Thus, relative humidity inferred from cloud base height supplies a key missing ingredient for

remote-sensing estimates of the surface water vapor flux.295

The method we propose for estimating near-surface humidity requires unbiased estimates of cloud base height, and the

satisfaction of two further assumptions: (i) that the relative humidity lapse rate is near the value it would obtain in a well-mixed

layer, and thus relatively constant; and (ii) that the near-surface air temperature is cooler than the surface, so that the layer above

is convectively driven. Convective boundary layer clouds – which form in the radiatively cooled, cold advection-dominated

boundary layers that prevail over tropical oceans – both underpin our near-surface humidity estimates and confirm that the300

very conditions required for those estimates are in place. While this physical situation limits the application of the method to

conditions where shallow convective clouds are present, they are ubiquitous, even in regions of deep convection. Our analysis

shows that the method will benefit from some calibration for estimating cloud base from a distribution of lidar echoes, for

estimating the relative humidity lapse rate, and for estimating the air-sea temperature difference. Their unbiased estimation

will be required for using the proposed method to establish large-scale climatologies of near-surface relative humidity and305

associated moisture fluxes.

As an outlook we note that the method we propose could facilitate the development of a long-term, day and night, and

physically-based near-surface humidity climatology if applied to global data of cloud base height. Techniques using multi-

angle satellite imagery have been shown to retrieve cloud base height, albeit over longer timescales (Böhm et al., 2019). The

most promising candidate for obtaining such data is measurements using a spaceborne lidar. Currently the newly-launched310

EarthCARE satellite (Illingworth et al., 2015) provides HSR-Lidar data. It provides backscatter data with a horizontal reso-

lution of about 280 m and a vertical resolution of 100 m. While the horizontal resolution appears to be sufficient to apply our

method, the limited vertical resolution would imply an error of the near-surface humidity of about 0.5 gkg−1 attributed to the

vertical sampling error alone (based on Eq. (9) assuming typical values for Wa,h, etc.). With sufficient sampling, and given the

variability of cloud base height, it might be possible to obtain greater precision in estimates of the mean cloud base height than315

what is implied by the single-snapshot vertical resolution. Laser ranging using more sophisticated methods, such as employed

by the Global Ecosystem Dynamics Investigation lidar aboard the International Space Station, could provide better estimates

of cloud base height. But presently GEDI does not provide data products that allow this capability to be explored. Future

satellites refining these technologies could be adapted to the conditions of the proposed method, and potentially could provide

coincident estimates of near-surface wind speed and air-sea temperature difference. In this context, measurements of ocean320

surface texture using synthetic aperture radar could also be explored as a way to estimate the difference between the surface
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temperature and that of the air just above it, which would better constrain the proposed estimates both directly, and indirectly

due to the expected covariability of the relative humidity lapse rate and the air-sea temperature difference. At the least, our work

suggests that cloud base height information from lidar measurements could be usefully incorporated into reanalyses and into

existing statistical flux retrieval frameworks – such as those used in HOAPS, SeaFlux, IFREMER, or J-OFURO climatologies325

(e.g., Gentemann et al., 2020; Liman et al., 2018; Bentamy et al., 2017a; Tomita et al., 2019) – to better constrain near-surface

humidity and surface moisture fluxes.
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