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Abstract11

Parameter uncertainty in Dynamic Global Vegetation Models (DGVMs) substantially impacts12

the reliability of carbon-water cycle simulations. Using the LPJ-GUESS model at 13 sites across13

China's diverse ecosystems, this study employed a multi-method (Morris, eFAST, Sobol')14

sensitivity analysis on 39 key parameters to assess their impacts on nine carbon-water cycle15

variables. Our results revealed that the model's behavior is co-dominated by both core16

physiological parameters, often hard-coded in the source, and plant functional type-specific traits.17

This finding suggests limitations in the common practice of focusing calibration solely on user-18

adjusted files. Furthermore, these parameter controls are highly context-dependent, shifting19

based on both the target process (e.g., carbon uptake as opposed to water flux) and the regional20

climate, where arid ecosystems respond most strongly to water-use parameters. The multi-21

method approach also highlighted that the influence of many parameters is mediated through22

complex interactions rather than direct effects alone. Consequently, this complex web of23

sensitivities propagates into contrasting patterns of model uncertainty: arid ecosystems exhibit24

the highest relative uncertainty, making predictions more uncertain, while humid, productive25

ecosystems show the largest absolute uncertainty, posing a challenge for carbon budgeting.26

These findings provide a scientific basis for developing targeted, region-specific27

parameterization strategies to reduce model uncertainty and improve assessments of terrestrial28

carbon sink functions.29
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1 Introduction32

Terrestrial ecosystems are an important component of the global carbon cycle and water cycle,33

and play a crucial role in regulating climate change through land–atmosphere interactions34

(Buster et al., 2024). Carbon uptake and water transport are tightly coupled through plant35

physiological processes, especially via stomatal regulation, which simultaneously controls36

carbon dioxide assimilation and water transpiration. In turn water availability directly restricts37

photosynthetic efficiency, affecting carbon assimilation, vegetation structure, and then feedbacks38

to soil moisture and evapotranspiration (Hickler et al., 2015). Together, these processes form a39

complex and dynamic carbon-water coupling system linking terrestrial ecosystems and the40

atmosphere (Buster et al., 2024; Zhao et al., 2025).41

Dynamic Global Vegetation Models (DGVMs) are process-based tools that are widely used to42

simulate ecosystem structure and function under varying climate conditions (Bonan et al., 2003;43

Forster et al., 2024; Liu et al., 2024). Among them, the Lund-Potsdam-Jena General Ecosystem44

Simulator (LPJ-GUESS) has become an important platform for carbon-water dynamic modeling45

research due to its explicit representation of plant functional types, biogeochemical cycles and46

hydrological processes (Smith et al., 2001). The model can simulate key ecological variables47

such as gross primary productivity (GPP), evapotranspiration (ET), vegetation carbon storage,48

and soil carbon storage, and has been widely used at both global and regional scales (Smith et al.,49

2014; Smith et al., 2011).50

Despite their broad applicability, the performance of DGVMs is strongly dependent on51

parameter settings to describe ecological processes, and the selection of parameter values is52

subject to uncertainty (Verrelst et al., 2019), especially in areas characterized by pronounced53

ecological heterogeneity. China encompasses a wide range of climate zones and vegetation types54

(Chen et al., 2022), spanning humid monsoon regions in the southeast to arid and semi-arid55

inland regions in the northwest. This spatial heterogeneity poses a challenge to the adaptability56

of model parameters (Guan et al., 2023; Wu, 2023; Ma et al., 2022b), and also provides an ideal57

platform for exploring regional differences in parameter sensitivity of carbon-water coupling58

processes.59

Model parameter sensitivity analysis is a critical method to identify key parameters driving60

model output and improve simulation accuracy and credibility (Yuxi et al., 2024). At present,61
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sensitivity analysis methods have evolved from traditional one-at-a-time (OTA) variation to62

global sensitivity analysis techniques, such as Morris, eFAST and Sobol', which can identify63

nonlinear relationships and parameter interaction effects (Ma et al., 2022b; Nossent et al., 2011;64

Vazquez-Cruz et al., 2014). Although these methods have been increasingly applied in65

ecosystem modeling studies (Pappas et al., 2013), most of them have focused on individual66

carbon cycle processes or site-specific analyses, with relatively limited attention to the integrated67

evaluation of carbon-water coupling processes (Oberpriller et al., 2022).68

Previous studies have shown that LPJ-GUESS outputs are highly sensitive to parameters such69

as photosynthetic efficiency, plant structure, and carbon allocation strategies. For instance,70

Pappas et al. (2013) highlighted the influence of photosynthetic quantum efficiency and canopy71

scale conversion coefficient on GPP and NPP, while Oberpriller et al. (2022) emphasized that the72

parameters related to water processes and climatic drivers, such as temperature and precipitation,73

substantially affects on forest simulations. However, these studies are largely confined to74

temperate regions in Europe, and offer limited insights into the spatial variability of parameter75

sensitivities across China’s ecologically heterogeneous landscapes. Moreover, calibration and76

sensitivity analyses in the DGVM community have traditionally focused on the more accessible77

Plant Functional Type (PFT) parameters found in user-facing files, whereas the influence of core78

physiological parameters embedded within the model's source code remains less well quantified,79

potentially limiting a comprehensive understanding of model behavior (Peng et al., 2024).80

Furthermore, different sensitivity analysis methods have their strengths and limitations. The81

Morris method has high computational efficiency but is difficult to evaluate interaction effects,82

whereas the Sobol' method can quantify both main effects and interaction effects but has high83

computational costs. The extent to which these methods converge or diverge is not well84

understood, particularly in their ability to untangle direct, linear parameter effects from the85

complex, non-linear interactions that likely govern coupled systems. More importantly, most86

existing studies focus on carbon cycle variables, often neglecting the critical role of water87

dynamics and their feedbacks within ecosystem simulations (Oberpriller et al., 2022).88

To address these gaps, this study selected 13 representative ecosystem sites across China,89

covering a variety of typical vegetation types and climate zones. Based on the LPJ-GUESS90

model, three complementary sensitivity analysis methods--Morris, eFAST and Sobol'--were used91

to systematically evaluate the impact of 39 key ecological process parameters on the carbon and92
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water cycle simulation results. By assessing the sensitivity of nine carbon and water cycle93

variables and analyzing the spatial heterogeneity of parameter effects, this study aims to (1)94

identify the dominant parameters driving model outputs, (2) evaluate the regional variability of95

parameter sensitivities, (3) compare the consistency and complementarity of sensitivity analysis96

methods, and (4) quantify uncertainty propagation across ecosystems. The findings are intended97

to support the refinement of parameterization strategies in DGVMs and enhance the model’s98

regional carbon–water cycle assessments under future climate scenarios.99

2Materials andMethods100

2.1 StudyArea and Site Design101

To assess the parameter sensitivity of the LPJ-GUESS model across diverse ecosystems, this102

study selected 13 representative sites spanning the major natural vegetation types and climate103

zones in China (Fig. 1; see Table S1 in the Supporting Information for site details). These sites,104

located within national nature reserves, were selected to minimize anthropogenic disturbances105

and ensure ecological representativeness.106

Site selection was primarily based on the MODIS MCD12Q1 land cover product (2001-2023)107

(Friedl & Sulla-Menashe, 2022) and boundary data of Chinese nature reserves. Key criteria for108

the site selection included: ensuring the sites represent dominant regional vegetation types (e.g.,109

forests, grasslands); excluding areas of significant anthropogenic land use; and verifying110

vegetation stability over time by assessing land cover consistency from 2001 to 2023.111

To enhance national-scale representativeness, a two-stage sampling strategy was adopted,112

combining the International Geosphere–Biosphere Programme (IGBP) vegetation type113

classification with a spatial equilibrium algorithm to ensure a balanced geographical distribution.114

A detailed description of the site selection process is provided in Text S1 in the Supporting115

Information.116
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117

Fig. 1. Spatial distribution of sample points used for sensitivity analysis118

2.2 Model and Driving Data119

2.2.1 LPJ-GUESS Model120

LPJ-GUESS is a process-based Dynamic Global Vegetation Model designed to simulate121

terrestrial ecosystem dynamics under changing environmental conditions (Sitch et al., 2003;122

Smith et al., 2014). It explicitly represents key water, carbon, and nitrogen processes within the123

soil-plant-atmosphere continuum and simulates vegetation competition for light, water, and124

space resources (Lindeskog et al., 2013; Lindeskog et al., 2021). The model classifies vegetation125

into 12 PFTs characterized by specific growth forms (e.g., herbaceous, broadleaf tree, deciduous126

tree), photosynthetic pathways (C3 or C4), phenological strategies (evergreen, summergreen, or127

raingreen), tree biometrics and life-history traits, as well as bioclimatic constraints on128

establishment and survival (Olin et al., 2015; Smith et al., 2014). It also accounts for the fire129

sensitivity and disturbance responses among PFTs (Smith et al., 2014).130

In this study, LPJ-GUESS version 4.1 was employed in cohort mode, in which woody131

individuals of the same size and age within a local neighborhood or patch are grouped into a132

representative average individual. Each PFT is simulated as a set of such cohorts, assuming133
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structural uniformity among individuals of the same age within a patch (Olin et al., 2015; Pugh et134

al., 2019; Teckentrup, 2023). Establishment, mortality, and disturbance events are governed by135

stochastic processes. Fire occurrence is simulated annually (stochastically) based on probabilistic136

functions of temperature, fuel availability, and upper soil moisture content, which served as a137

proxy for litter moisture (Thonicke et al., 2001).138

2.2.2 Driving Data139

The driving data required by the LPJ-GUESS model include monthly meteorological variables140

(temperature, precipitation, and incoming shortwave radiation), soil texture (assumed static over141

time), annual atmospheric CO₂ concentration, and nitrogen deposition rates.142

In this study, meteorological forcing data were derived from the ERA5-Land reanalysis143

dataset, which provides monthly data at a spatial resolution of 0.1° for the period 1980-2023144

(Copernicus Climate Change Service, 2019). Specifically, monthly average temperature,145

cumulative precipitation, and average incident shortwave radiation were extracted. Annual146

atmospheric CO₂ concentration data, reflecting interannual variability, were derived from long-147

term observations at the Mauna Loa Observatory, Hawaii (Lan et al., 2023). Soil texture data,148

including sand and clay content, carbon-nitrogen ratio, pH, soil bulk density, and soil organic149

carbon, were obtained from the National Tibetan Plateau Data Center (Shi et al., 2025). For150

consistency, values from six standard soil layers within the 0-2 meters depth range were151

averaged to generate a single representative soil profile for each site. Nitrogen deposition data152

were adopted from the Lamarque dataset (default spatial resolution of 0.5°), with values from the153

nearest grid cell assigned to each site as model input (Lamarque et al., 2013).154

2.2.3 Model Setup155

To ensure the stabilization of ecosystem carbon pools, the LPJ-GUESS model was initialized156

with a 500-year spin-up period. This period employed repeated cycling of the first 20 years157

(1980-2000) of climate forcing data, with temperature trends removed to maintain climatic158

baseline. During the spin-up, stochastic processes such as fire and natural disturbances were159

enabled to represent inherent ecological dynamics. However, anthropogenic land-use changes160

were excluded, as all selected sites are located within national nature reserves, where direct161

human impacts are minimal.162
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2.3 Parameter Selection and Value Ranges163

For the sensitivity analysis, 39 key parameters of the LPJ-GUESS model were selected,164

covering fundamental ecological processes such as photosynthesis, carbon allocation, and165

vegetation structure. These parameters comprise 19 core physiological parameters, which are166

applied uniformly across all vegetation types, and 20 PFT specific traits that characterize the167

strategies of individual ecosystems. Detailed information on parameter definitions, functions,168

and value ranges, is provided in Table 1.169

Parameter value ranges were defined based on a combination of sources: (1) default values170

and annotations within the model source code; (2) empirical ranges reported in peer-reviewed171

LPJ-GUESS calibration studies; and (3) a ±25% deviation from the default value where direct172

empirical constraints were unavailable. This strategy was adopted to ensure that the parameter173

ranges are both sufficiently broad to support global sensitivity analysis and consistent with174

current ecological understanding.175

It is crucial to distinguish the objective of this study—Global Sensitivity Analysis (GSA)—176

from that of parameter calibration. For several hard-coded internal parameters (e.g., reprfrac,177

turnover_root), value ranges were defined using their technically permissible bounds [0, 1] as178

specified in the model source code. We acknowledge that the extreme values within these179

bounds may not always correspond to ecologically realistic conditions. However, retaining these180

full technical ranges is appropriate in the context of GSA for two reasons. First, empirical181

ecological constraints for these internal parameters are currently lacking, and restricting their182

ranges without supporting evidence would introduce subjective assumptions. Second, GSA is183

intended to examine model sensitivity across the technically allowable parameter space, rather184

than to infer parameter realism. In this context, strong sensitivity associated with poorly185

constrained parameters is interpreted as a diagnostic indicator of model behavior, rather than as a186

direct measure of real-world uncertainty, and may point to priorities for future model187

development and structural refinement. Finally, for all sampling procedures, parameter values188

were drawn independently from uniform distributions within their specified minimum and189

maximum ranges, reflecting the absence of prior information on parameter probability190

distributions.191
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2.4 Sensitivity Analysis Methods194

This study applies three complementary sensitivity analysis methods to assess the impact of195

parameters on simulated outputs from different analytical perspectives.196

2.4.1 Morris Sensitivity Analysis Method197

The Morris method is an efficient global sensitivity analysis technique commonly designed198

for preliminary parameter screening. It is based on a One-Factor-At-a-Time (OAT) perturbation199

scheme, in which parameters are varied individually along predefined trajectories in the200

parameter space while other parameters remain fixed for each elementary step (Morris, 1991).201

By constructing multiple such trajectories, the method estimates the Elementary Effects (EE) of202

parameters through successive single-parameter perturbations:203

��� =
� �1, …, ��−1, �� + �, ��+1, …, �� − � �1, …, ��, …, ��

�
(1)

where f(·) is the model output, and x and x+Δ represent the function values at points before204

and after only the i-th parameter is changed, respectively. This definition reflects the impact on205

the output results when only the i-th factor undergoes a minor perturbation.206

The Morris method characterizes parameter importance using two summary statistics. The207

mean of elementary effects (μ) represents the overall influence magnitude of a parameter on208

model outputs, while the standard deviation of the elementary effects (σ) captures the variability209

of this influence across the parameter space, which may arise from non-linear responses and210

interactions with other parameters.211

2.4.2 eFAST Sensitivity Analysis Method212

The extended Fourier Amplitude Sensitivity Test (eFAST) is a variance-based global213

sensitivity analysis method used to quantify the relative importance of model input parameters214

(Saltelli et al., 1999; Andrea Saltelli, 2002). The method explores the parameter space by215

assigning sinusoidal functions with distinct frequencies to each parameter, which allows the216

decomposition of output variance into contributions associated with individual parameter:217
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�� =
�
��� +

�<�
���� +

�<�<�
����� + ⋯ + �12...� (2)

The eFAST method calculates two key types of sensitivity indices: First-order sensitivity218

index Si:219

The proportion of contribution from the direct effect of the parameter:220

�� =
��

�(�) (3)

Total sensitivity index ���: The overall contribution including all interaction effects:221

��� = 1 −
�−�

�(�) (4)

This approach is well suited for the analysis of non-linear models behavior, as it can capture222

both first-order (main effect) sensitivities and higher-order (interaction) contributions arising223

from parameter interactions, while maintaining a relatively moderate computational cost (Saltelli224

et al., 1999; Vazquez-Cruz et al., 2014).225

2.4.3 Sobol’ Sensitivity Analysis Method226

The Sobol' method is a rigorous global sensitivity analysis framework that decomposes the227

total variance of model outputs into contributions from individual input parameters and their228

interactions through Monte Carlo sampling (Sobol′, 2001). It provides a detailed quantification229

of both first-order and higher-order sensitivity effects, making it particularly suitable for230

complex, nonlinear, and non-monotonic models. In this method, two key sensitivity indices are231

calculated (Verrelst et al., 2015; Wainwright et al., 2014)232

First-order sensitivity index �� represents the proportion of output variance that can be233

attributed solely to variations in a single input parameter �� , assuming all other parameters234

remain unchanged (Song et al., 2012):235

�� =
���(�~�(�|��))

��
(5)

In contrast, the total sensitivity index ��� accounts for the entire contribution of �� to output236

variance, including all its interaction effects with other parameters:237
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��� = �� +
�≠�

���� +
�≠�,�≠�,�<�

����� + ⋯ (6)

The Sobol' method provides the most comprehensive sensitivity assessment and is capable of238

handling highly non-linear and non-monotonic models, but its computational cost is relatively239

high compared to other methods (Nossent et al., 2011).240

2.5 Experimental Scheme and Design241

The study selected nine key carbon-water cycle variables as model output indicators: (1)242

carbon flux variables, including Gross Primary Productivity (GPP), Net Ecosystem Exchange243

(NEE), Soil Carbon Flux (Soil C Flux); (2) hydrological and structural variables, including Leaf244

Area Index (LAI), and Actual Evapotranspiration (AET); and (3) carbon pool variables,245

including Vegetation Carbon (Veg C), Litter Carbon (Litter C), Soil Carbon (Soil C), and Total246

Carbon (Total C).247

To systematically evaluate the performance of different sensitivity analysis methods and to248

investigate the influence of various types of model parameters on carbon-water cycle simulations,249

a comprehensive experimental framework was designed. First, the 39 parameters were divided250

into two categories: 19 parameters related to plant physiological processes (hard-coded in the251

source code), and 20 parameters related to PFT constitution. Second, each parameter group was252

analyzed independently using three sensitivity analysis methods. Third, to capture the potential253

interactions across parameter categories and evaluate their joint influence on model outputs, a254

combined sensitivity analysis was conducted using all 39 parameters. The specific experimental255

design is summarized in Table 2.256

Table 2. Experimental Design Scheme257

Parameter Category Number of Parameter Sets
Number of Parameter Sets

Morris eFast Sobol’

Physiological processes 19 200 9899 10240

PFT parameters 20 200 9940 10752

Physiological + PFT 39 400 9711 10240

The generation of parameter sets (shown in Table 2) was guided by the specific requirements258

of each method. As described in Section 2.4, the Morris method uses a specific One-Factor-at-a-259

https://doi.org/10.5194/egusphere-2025-6076
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



14

Time trajectory design, the eFAST method generates sample sets based on sinusoidal functions,260

and the Sobol' method combinations were generated using standard Monte Carlo sampling.261

For the eFAST and Sobol' methods, this resulted in approximately 10,000 parameter262

combinations, which is sufficient to ensure robust and comprehensive variance decomposition.263

To improve computational efficiency, parameter updating and model execution for all analyses264

were fully automated and parallelized using Python process pools.265

2.6 Data Processing and Statistical Methods266

2.6.1 Sensitivity Index Calculation and Standardization267

To ensure comparability of sensitivity analysis results across methods and target variables, a268

standardized processing workflow was employed. First, for each parameter, raw sensitivity269

indices were averaged across the 13 study sites—specifically, the mean of elementary effects (�)270

for the Morris method, and the total sensitivity index (��ᵢ) for eFAST and Sobol’ methods. In271

the first stage of standardization, the average sensitivity indices for each parameter �, method �272

and target variable �, denoted as ��,�,� were normalized by dividing by the maximum sensitivity273

value for the corresponding method and variable. This normalization ensured a consistent scale274

for inter-method comparison. Next, to identify the most influential parameters, a preliminary275

composite index Combined1 was computed as the average of the normalized indices from the276

three methods. Based on Combined1, a subset of the top-N sensitive parameters was selected for277

further analysis. These top parameters were then re-standardized across the three methods, and a278

final comprehensive sensitivity score Combined2 was calculated by averaging the re-279

standardized values. This two-stage process enhances interpretability while preserving the280

relative discriminative power of each sensitivity analysis method.281

2.6.2 Method Consistency Assessment282

To assess the consistency in parameter importance ranking among the Morris, eFAST, and283

Sobol' methods, two complementary approaches were adopted. Spearman rank correlation284

analysis (� ) and corresponding p-values were used to evaluate monotonic agreement among285

rankings. Additionally, pairwise linear regression analysis, expessed as �� = � + � × �� were286

performed to examine systematic differences and relationships in parameter rankings between287

methods.288
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2.6.3 Uncertainty Quantification and Spatial Analysis289

Model output uncertainty was quantified using the Coefficient of Variation (��), calculated290

across all parameter samples. To evaluate the consistency of uncertainty estimates between the291

eFAST and Sobol' methods, both Pearson and Spearman correlation analyses were conducted,292

along with linear regression modeling. Results were visualized with scatter plots to identify293

systematic deviations. Spatial patterns of model output uncertainty across sites and vegetation294

types were further analyzed using Cumulative Distribution Functions (CDFs) and box plots,295

enabling the identification of regions and vegetation types characterized by highly sensitive or296

relatively stable model responses.297

3 Results298

3.1 Co-dominance of Physiological and PFT Parameters in Model Sensitivity299

Our comprehensive sensitivity analysis, conducted using three global methods (Morris,300

eFAST, Sobol’), reveals a fundamental characteristic of the LPJ-GUESS model: its outputs are301

not driven by a single class of parameters, but are co-dominated by both core physiological302

parameters, often hard-coded in the source code, and PFT-specific traits defined in user-facing303

files. This finding suggests limitations in the common practice of focusing calibration efforts304

solely on the more accessible PFT parameters (Oberpriller et al., 2022; Peng et al., 2024). A305

detailed breakdown of sensitivities for physiological versus PFT parameters is provided in Text306

S2.1 and S2.2.307

This co-dominance is illustrated by the two most influential parameters identified across308

nearly all nine output variables (Fig. 2; see Fig. S1 for full rankings). The highest overall309

sensitivity was associated with ALPHA_C3 (intrinsic quantum efficiency of CO2 uptake), a310

fundamental physiological parameter, which primarily governed carbon flux variables such as311

GPP and Soil Carbon Flux. Closely ranked was common_reprfrac (proportion of NPP allocated312

to reproduction), a key PFT trait parameter, which exerted dominant control over ecosystem313

structure and the magnitude of major carbon stocks (Veg C, Litter C, Soil C, and Total C).314

This pattern extends beyond the two most influential parameters. The subsequent group of315

highly sensitive parameters also included a mixture of both parameter types: core physiological316

parameters like THETA (photosynthesis co-limitation shape) and FRADPAR (fraction of PAR in317
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shortwave radiation) were critical for photosynthetic processes, while PFT-specific traits such as318

tree_turnover_root (fine root turnover rate) played a key role in regulating carbon residence time319

in litter and soil pools.320

321

Fig. 2: Union of the Top 10 Most Sensitive Parameters across All Target Variables for322
Different Methods323
While all three analysis methods consistently identified this overall hierarchy of control, minor324

discrepancies in rankings and sensitivity magnitude were observed for less dominant parameters,325

such as shade_tolerant_est_max (Fig. 2). These differences reflect methodological326

characteristics of individual approaches and underscore the value of applying multiple sensitivity327

analysis methods in parallel. Moreover, some parameters exhibited process-specific importance:328
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GM (maximum canopy conductance) was particularly influential for AET, whereas the329

allometric constant tree_k_allom2 showed a distinct sensitivity signal for LAI.330

Overall, these results refine the understanding of parameter influence in LPJ-GUESS. The331

regulation of carbon-water cycle processes is not solely governed by adjustable PFT traits but is332

also strongly constrained by core physiological parameters. This co-dependence underscores that333

efforts to improve model calibration and reduce uncertainty would benefit from a more334

comprehensive strategy that explicitly considers both parameter types.335

3.2 Dissecting Parameter Influence: Direct Physiological Control Versus336
Interactive Allocation Effects337

To examine the mechanisms governing the carbon and water cycles, we decomposed the total338

sensitivity of parameters into direct main effects �� and higher-order interaction effects ��� − ��339

using the Sobol' and eFAST methods (Fig. 3, Fig. S4-S5). This analysis reveals distinct340

differences in the parameter control structures of GPP and AET, which are used as representative341

fluxes.342

For GPP, the controlling patterns differ markedly among parameters. The influence of the core343

physiological constant ALPHA_C3 (intrinsic quantum efficiency) is dominated by its direct main344

effect, with only a minor contribution from interaction effects (blue bars, Fig. 3). This suggests345

that its influence on modeled photosynthetic capacity is largely independent of other parameters.346

In contrast, the most influential GPP parameter, the PFT trait common_reprfrac (NPP allocation347

to reproduction), displays a substantial contribution from interaction effects, comparable in348

magnitude to its main effect. This indicates that the impacts of carbon allocation are strongly349

modulated by interactions with other parameters governing vegetation growth and turnover.350

In contrast, the sensitivity of AET is dominated by interaction effects. For all key controlling351

parameters—including common_reprfrac, ALPHA_C3, and GM (maximum canopy352

conductance)—interaction effects constitute a substantial, and in several cases dominant, portion353

of their total influence (orange bars, Fig. 3). This underscores that AET is not governed by354

individual parameters in isolation, but rather emerges from the combined effects of soil water355
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availability, canopy properties, and atmospheric demand. Consequently, the influence of any356

single parameter depends strongly on the overall state of the soil-plant-atmosphere system.357

358

Fig. 3. Decomposition of parameter sensitivity for GPP and AET into main effects (��) and359
interaction effects(��� − ��) based on the Sobol' method.360

3.3 Methodological Consensus and Complementarity in Sensitivity Rankings361

To evaluate the robustness of our findings, we assessed the consistency of parameter362

importance rankings derived from the Morris, eFAST, and Sobol' methods across all nine output363

variables (Fig. 4). Pairwise comparisons using Spearman rank correlation revealed strong and364

statistically significant agreement (p < 0.01) among all methods, indicating a high degree of365

consensus in identification of key model controls.366

The agreement was particularly notable between the Morris and Sobol' methods, which367

consistently yielded the strongest correlations, with coefficients (ρ) frequently exceeding 0.85 for368

major outputs such as GPP (ρ = 0.90) and Soil C (ρ = 0.94). The other pairings, while still369

showing substantial agreement, exhibited greater variability. For instance, the agreement370
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between eFAST and Sobol' was strong for structural and stock variables (e.g., ρ = 0.76 for LAI),371

but notably weaker for net fluxes such as NEE (ρ = 0.43). This reduced consistency for NEE is372

mechanistically plausible, as NEE represents a small residual between two large, opposing fluxes373

(GPP and ecosystem respiration), which can lead to a more complex and variable sensitivity374

structure.375

376
Fig. 4: Consistency analysis of parameter sensitivity rankings identified by Morris, eFAST,377
and Sobol' methods across nine output variables. Each of the nine large panels corresponds378
to a specific model output variable. Within each large panel, the sub-panels compare the379
sensitivity rankings of the three methods: the diagonal sub-panels display the standardized380
sensitivity indices for the top-five ranked parameters from each method; the lower-left sub-381

https://doi.org/10.5194/egusphere-2025-6076
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



20

panels show scatter plots comparing the parameter sensitivity ranks between pairs of382
methods, annotated with the Spearman’s rank correlation coefficient ρ and its statistical383
significance (*** represents significance < 0.001, ** represents significance < 0.01). The384
solid line represents the linear regression fit to the ranked scatter points.385
Crucially, this consensus was strongest for the most influential parameters. Across all three386

methods, ALPHA_C3 and common_reprfrac were consistently identified as the two dominant387

drivers of GPP. These parameters, along with tree_turnover_root and THETA, also consistently388

appeared among the top five ranked parameters for a suite of variables, including Soil C Flux,389

LAI, and Soil C, with only minor differences in their relative ordering.390

Nevertheless, the analysis also highlighted key divergences that underscore the391

complementarity of the methods. A representative example is GM (maximum canopy392

conductance): while all methods agreed on its top-tier importance for AET, the Morris method393

assigned it a much lower rank for NEE compared to eFAST and Sobol'. Such discrepancies394

likely arise from the different mathematical formulations of the methods, particularly in how the395

parameter space is sampled and how interaction effects are quantified.396

In summary, although all three sensitivity analysis methods converge on the primary drivers of397

the carbon-water cycle in LPJ-GUESS, the subtle variations in their rankings provide additional398

insight into model behavior. This highlights the benefit of a multi-method framework for a more399

comprehensive assessment of parameter influence.400

3.4 Divergent Parameter Controls Across Target Variables401

The influence of model parameters varied markedly across the nine output variables, revealing402

distinct control structures for different components of the carbon-water cycle (Fig. 5).403

GPP displayed the most concentrated sensitivity profile. Its response was dominated by a404

small cohort of photosynthetic parameters—primarily ALPHA_C3, followed by405

common_reprfrac and THETA. This focused control structure highlights that modeled406

productivity is largely governed by biochemical efficiency at the leaf level (Fig. 5, a-c).407

In contrast, flux and vegetation structure variables exhibited more complex and diversified408

control structures (Fig. 5, d-f). Soil Carbon Flux sensitivity largely resembled that of GPP,409

reflecting the tight coupling between carbon input and heterotrophic respiration. NEE, as a net410

balance, was sensitive to a broader range of physiological and structural parameters. LAI was co-411

limited by carbon allocation (common_reprfrac), productivity (ALPHA_C3), and turnover412
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(tree_turnover_root), while AET was particularly sensitive to GM (maximum canopy413

conductance), underscoring the role of stomatal regulation in controlling water fluxes.414

The major carbon pools (Vegetation, Litter, and Soil) were governed by a common set of415

parameters, reflecting shared controls on biomass dynamics. Their sensitivities were co-416

dominated by production (ALPHA_C3), allocation (common_reprfrac), and residence time417

(tree_turnover_root). The strong influence of these parameters was most pronounced for Litter C418

and Total C, where their combined Sobol' sensitivity indices approached 1.0, indicating near-419

complete model control by these three factors alone (Fig. 5, g-i).420

421

Fig. 5: Comparison of results from the Morris, eFAST, and Sobol sensitivity analysis422
methods. Each subplot shows the normalized sensitivity index (Y-axis) of different model423
parameters (X-axis, letter codes) for three groups of target variables. The rows represent424
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the variable groups of Productivity, Flux & Structure, and Carbon Pools, respectively; the425
columns correspond to the three analysis methods.426
In summary, different groups of variables are governed by a distinct set of controlling427

parameters. Productivity is primarily influenced by a small number of photosynthetic inputs,428

fluxes and vegetation structure by a wider and more complex set of interacting factors, and429

carbon stocks by the combined effects of production, allocation, and turnover. These findings430

demonstrate that parameterization and calibration strategies should be aligned with the specific431

processes of interest, as parameter sets optimized for one component of the system may not432

perform equivalently for others.433

3.5 Spatial Heterogeneity of Parameter Controls Across Ecosystems434

Parameter sensitivities exhibited pronounced spatial heterogeneity across China's diverse435

vegetation types, revealing distinct control structures between resource-rich and resource-limited436

ecosystems (based on eFAST results; Fig. 6).437

In humid forest ecosystems (e.g., DBF, EBF, CNV), model behavior was primarily governed438

by parameters related to physiological efficiency and biomass turnover. GPP sensitivity was439

highest for ALPHA_C3, while AET was most sensitive to stomatal regulation via GM. The large440

carbon pools in these systems, particularly Litter C and Soil C, were strongly controlled by441

tree_turnover_root, reflecting the dominant role of woody biomass turnover in regulating442

detritus input and long-term carbon storage. Together, these patterns indicate that carbon and443

water fluxes in humid forests are predominantly controlled by physiological processes operating444

under relatively favorable resource conditions.445

Conversely, arid and semi-arid ecosystems (e.g., BSV, GSL) displayed a distinctly different446

sensitivity structure, characterized by a stronger influence of resource allocation and use447

efficiency. The PFT trait common_reprfrac (carbon allocation to reproduction) emerged as a key448

controlling parameter for GPP and LAI and also exerted a strong influence on AET. This449

suggests that under conditions of severe water limitation, canopy structure, as shaped by carbon450

allocation strategies, can exert a greater control over water loss in addition to direct stomatal451

regulation. Furthermore, the net carbon balance (NEE) in these sensitive systems showed high452

sensitivity to photosynthetic (ALPHA_C3, BC3) and radiation-use (FRADPAR) parameters,453

indicating that relatively small changes in carbon assimilation efficiency can substantially affect454

whether the ecosystem functions as a net carbon sink or source.455
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456

Fig. 6: Spatial heterogeneity of parameter sensitivity across different vegetation types.457
Each of the nine panels corresponds to a specific output variable (e.g., GPP, AET). Within458
each panel, the x-axis represents the 13 different study sites. Each vertical bar is a stacked459
bar chart, illustrating the relative contribution of the most sensitive parameters (listed in460
the bottom legend) for that specific site. The color of each segment corresponds to a461
parameter, and its height represents that parameter's proportional contribution to the total462
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sensitivity (based on the eFAST method). Therefore, within a single panel, significant463
variation in the color composition across the site bars indicates that the key controlling464
parameters for that output variable differ greatly between locations. Conversely, similarity465
in color composition suggests spatial consistency in the controlling parameters.466
In summary, parameter sensitivities are strongly contingent on the ecosystem context. Humid467

forests are primarily controlled by parameters of physiological process rates and biomass468

turnover. In contrast, arid systems are more sensitive to parameters governing the strategic469

allocation of scarce resources. This substantial spatial heterogeneity underscores that uniform470

parameterization strategies are insufficient. Accurate regional and global modeling therefore471

require ecosystem-specific calibration strategies to capture the diverse responses of terrestrial472

ecosystems to environmental change.473

3.6 Impact of Parameter Uncertainty on Model Output474

Following the identification of sensitive parameters, this section investigates how the inherent475

uncertainty (i.e., variability within their prescribed ranges) of these parameters collectively476

propagates to affect the overall uncertainty and range of simulated values for key model output477

variables. Furthermore, it examines whether the magnitude and spatial characteristics of this478

output uncertainty vary across vegetation types and geographic regions.479

3.6.1 Consistency of Uncertainty Quantification480

To ensure the robustness of our uncertainty assessment, we compared the output Coefficient of481

Variation (CV) derived from both the Sobol' and eFAST methods. The two methods yielded482

nearly identical uncertainty estimates across all nine output variables (Fig. 7). This high483

consistency is demonstrated by strong Pearson correlations (r > 0.97 for all variables), scatter484

plots where data points for all vegetation types cluster tightly along the 1:1 line, and regression485

models with slopes approaching 1.0 and intercepts near zero. These results indicate that both486

methods provide consistent and comparable quantifications of output uncertainty, supporting the487

subsequent spatial analysis.488
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489

Fig. 7: Uncertainty Assessment Using Sobol’ and eFAST Methods490

3.6.2 Opposing Gradients of Productivity and Uncertainty491

The propagation of parameter uncertainty into model outputs revealed strong and opposing492

spatial gradients across China. Using GPP as an illustrative example (Fig. 8), mean productivity493

increased systematically from the arid northwest to the humid southeast. Conversely, the relative494

uncertainty of simulated GPP, expressed as CV, showed an opposite pattern, with the highest495

values (CV > 80%) occurring in the driest and least productive regions and the lowest values (CV496
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< 60%) in the most productive forest areas.497

498

Fig. 8: Spatial Distribution Pattern of GPP Uncertainty Across Different Sites499
Critically, this analysis uncovers a clear contrast between relative and absolute uncertainty500

(Fig. 8b, 8c). In the arid northwest, high relative uncertainty indicates strong sensitivity of501

modeled GPP to parameter variability, but the low baseline productivity results in a relatively502

small absolute range of simulated values (narrow box plots). In contrast, in the humid southeast,503

relative uncertainty is lower, yet the high baseline productivity causes even modest relative504

uncertainty to translate into a large absolute range of simulated GPP (wide box plots), which has505

important implications for regional carbon budget estimation. This contrast between relative506

uncertainty in low-productivity regions and absolute uncertainty in high-productivity regions is507

not unique to LPJ-GUESS, but likely represents a broader challenge for land surface models,508

including those used in TRENDY and CMIP6 intercomparisons. Similar spatial patterns were509

also observed for other variables, such as LAI and AET.510
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These findings underscore that effective uncertainty management requires region-specific511

strategies. In resource-limited regions, reducing relative uncertainty depends primarily on512

improving constraints on sensitive parameters. In productive regions, the key challenge lies in513

constraining the absolute uncertainty of large fluxes, even when relative uncertainty is low, in514

order to support reliable carbon accounting.515

4 Discussion516

4.1 The Core Mechanisms of Model Control: From Parameter Co-517
dominance to Spatial Divergence518

Our multi-method sensitivity analysis, whose robustness is supported by the strong consensus519

among the Morris, eFAST, and Sobol' methods for top-ranking parameters (Section 3.3), reveals520

a clear hierarchical and spatially contingent architecture of model control. At a broad level,521

model behavior is not governed by a single process, but reflects the combined influence of522

photosynthetic efficiency, carbon allocation strategies, and biomass turnover rates. The relative523

importance of these processes is not static, but varies systematically across climate gradients,524

consistent with differences in dominant ecological constraints observed in natural ecosystems525

(Baral et al., 2014; Liu et al., 2022).526

The dominant influence of photosynthetic efficiency—primarily represented by the527

ALPHA_C3 parameter—reinforces its role as the ultimate driver of carbon influx into the528

ecosystem. This aligns with fundamental ecological theory, in which the efficiency of light-use529

conversion constrains GPP (Farquhar et al., 1980; Thevasundaram et al., 2022). In the model,530

this control is largely expressed through direct effects, as indicated by the decomposition of main531

and interaction sensitivities (Section 3.2). However, what happens to this carbon post-532

assimilation is equally critical. The high sensitivity associated with common_reprfrac (carbon533

allocation) and tree_turnover_root (biomass turnover) underscores that patterns of carbon534

investment among plant tissues and the residence time of biomass exert substantial influence on535

long-term carbon storage, vegetation structure, and net ecosystem balance (Dong et al., 2024;536

Wang et al., 2024). This finding suggests that photosynthesis alone is insufficient to explain537

ecosystem carbon dynamics, and that allocation and turnover represent critical controls on the538

persistence and distribution of assimilated carbon (Camargo et al., 2023; Kengdo et al., 2023;539

Zandi et al., 2023).540
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Crucially, the dominance of these controlling processes is spatially contingent, leading to541

distinct sensitivity patterns across environments gradients (Pappas et al., 2013). In humid,542

productive forest ecosystems, model sensitivity is primarily driven by parameters of543

physiological efficiency. Here, with water being less of a limiting factor, simulated ecosystems544

operate closer to their maximum photosynthetic potential, making it highly sensitive to545

ALPHA_C3. Furthermore, in structurally complex forest canopies, parameters related to546

regeneration and light competition (e.g., shade_tolerant_est_max) also emerge as influential,547

while large carbon stocks are primarily regulated by the slow turnover of woody biomass548

(tree_turnover_root). This pattern reflects a system in which intrinsic growth rates competition549

and biomass persistence play central roles (Bergkvist et al., 2023; Kühn et al., 2021; Pugh et al.,550

2019).551

In contrast, model control shifts towards parameters associated with resource acquisition and552

allocation in arid and semi-arid ecosystems (Asargew et al., 2024; Lv et al., 2024). In these553

water-limited environments, survival under stress becomes more influential than maximizing554

productivity. Consequently, GM (stomatal conductance) and common_reprfrac (allocation) exert555

strong control, including for fluxes like AET. This pattern indicates that, within the model556

framework, conservative water use and allocation strategies play a greater role than557

photosynthetic capacity alone in regulating ecosystem function under dry conditions (Liu et al.,558

2022). The heightened sensitivity of NEE to a wider array of parameters in these arid sites559

further illustrates their inherent sensitivity, where small perturbations in any number of processes560

can shift the system from a net sink to a source (Liang et al., 2024; Mitchell et al., 2000). These561

spatially divergent sensitivity patterns suggest that effective model parameterization should562

reflect contrasting ecological constraints across environments. However, it is important to note563

that these interpretations are based on the internal logic of LPJ-GUESS. In the absence of564

systematic validation against site-level observations (e.g., eddy covariance data), these findings565

should be viewed as model-dependent insights into potential dominant controls rather than direct566

confirmation of ecosystem mechanisms. Nevertheless, the alignment of these sensitivity patterns567

with general ecological theory supports the plausibility of the model's representation of key568

controlling processes.569
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4.2 Rethinking Model Uncertainty: From Spatial Patterns to an Inherent570
Tradeoff571

The propagation of parameter uncertainty through the LPJ-GUESS model is not random but572

instead follows a clear spatial logic that mirrors the hydro-thermal gradients across China. Our573

results show that the highest relative uncertainty (CV) consistently occurs in the arid and semi-574

arid ecosystems of the northwest. This pattern is a direct consequence of the mechanisms575

discussed in the previous section: these water-stressed systems are critically sensitive to a few576

dominant parameters controlling resource use and allocation (e.g., GM, common_reprfrac). As a577

result, the model behavior in these regions is highly variable, where small parameter578

perturbations can lead to large proportional changes in outputs (Liang et al., 2024). Conversely,579

the humid and highly productive ecosystems in the southeast exhibit the lowest relative580

uncertainty, suggesting a buffering effect where a more complex web of interacting, non-581

dominant parameters creates a more robust and stable system response (Bello et al., 2021;582

Gómez‐Gras et al., 2021).583

However, a deeper analysis reveals a fundamental—and critically important—tradeoff584

between relative and absolute uncertainty. The low relative uncertainty in humid forests should585

not be misconstrued as a lack of modeling challenge. While the model is robust in these regions586

(low CV), the high baseline productivity and carbon fluxes imply that even small relative error587

translates into substantial absolute uncertainty in terms of actual carbon mass (kgC m⁻² yr⁻¹). For588

example, a 5% uncertainty associated with a GPP of 1.5 kgC m⁻² yr⁻¹ represents a much larger589

quantity of unknown carbon than a 20% uncertainty associated with a GPP of 0.2 kgC m⁻² yr⁻¹ in590

an arid ecosystem.591

This tradeoff redefines the nature of model risk across different regions. In arid ecosystems,592

the primary risk is relative instability: inaccurate parameterization can lead to qualitatively593

incorrect predictions of ecosystem functioning (e.g., predicting a sink when it is a source). In594

humid, productive ecosystems, the risk shifts to quantitative magnitude. Even for a well-595

calibrated and structurally robust model, the resulting absolute uncertainty range can be enough596

to substantially impact regional or global carbon budget calculations. This finding demonstrates597

that managing and interpreting model uncertainty requires ecosystem-specific perspectives,598

moving beyond reliance on a single metric like CV and toward an integrated understanding of599
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both relative sensitivity and absolute uncertainty across contrasting environmental contexts (Ma600

et al., 2022b).601

4.3 Outlook: From Model Optimization to Future Directions602

The findings of this study provide a scientific basis for improving the application and603

parameterization of DGVMs such as LPJ-GUESS. Our results argue against one-size-fits-all604

calibration strategies and instead support the adoption of more nuanced, targeted approaches.605

First, model calibration should follow a hierarchical strategy. Priority should be given to globally606

sensitive parameters that govern core ecosystem processes (e.g., ALPHA_C3, common_reprfrac),607

followed by targeted tuning for specific variables or regions where additional sensitivity emerges608

(Gong & Duan, 2017; Yu et al., 2022). Second, calibration must be spatially explicit. The609

distinctly different sensitivity signatures observed between humid and arid ecosystems clearly610

indicate that region-specific parameter sets are required to reflect their contrasting environmental611

constraints and limiting factors (Ma et al., 2022a). Third, given the tradeoff between relative and612

absolute uncertainty, a multi-objective framework that simultaneously constrains both fluxes613

(e.g., GPP) and stocks (e.g., Soil C) is essential for robust carbon accounting (Arbolino et al.,614

2021; Rahimi et al., 2023).615

Despite the comprehensive nature of our analysis, this study has limitations that define the616

scope for future research. First, this study relies exclusively on model simulations to diagnose the617

intrinsic behavior of LPJ-GUESS. While we acknowledge the lack of systematic validation618

against observational benchmarks (e.g., FLUXNET data), this was a deliberate methodological619

choice. Conducting GSA prior to calibration is critical to avoid equifinality—getting acceptable620

model performance for the wrong reasons. By mapping the model's unconstrained sensitivity621

first, we identify exactly which parameters require observational constraints, thus serving as a622

necessary prerequisite for robust, data-driven calibration in future works.623

Second, we focused primarily on parameter uncertainty, while other important uncertainty624

sources, such as errors in climate forcing data and model structural assumptions, were not625

explicitly quantified. Future research should therefore move towards an integrated assessment626

that combines parameter, driver, and structural uncertainties, aiming to enhance model credibility627

within the context of global efforts such as TRENDY and CMIP6.628
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Third, and importantly, our sensitivity analysis assumed parameter independence. However, in629

reality, many physiological parameters often exhibit covariance due to underlying biological630

trade-offs (e.g., between photosynthetic capacity and leaf nitrogen). Ignoring these correlations631

may overestimate the effective parameter space and the resulting model sensitivity. Future632

studies should aim to incorporate parameter correlation matrices into the sampling design to633

provide a more constrained estimate of uncertainty.634

These limitations directly inform our vision for the future of ecosystem modeling. An635

important next step is to extend this analysis to a spatially continuous grid, allowing for the636

creation of national-scale sensitivity maps that explicitly capture geographic variability in model637

behavior (Ma et al., 2022a). In parallel, a key priority should be given to fully integrated638

uncertainty frameworks that explicitly address the interplay of parameter, structural, and driver639

uncertainties (Oberpriller et al., 2022). Moreover, the increasing availability of multi-source data640

streams (e.g., eddy covariance, remote sensing, soil inventories) offers unprecedented641

opportunities to validate sensitivity analyses and to develop more advanced data assimilation642

schemes (Tao et al., 2020). Finally, exploring the dynamic behavior of these parameter643

sensitivities under future climate change scenarios, potentially aided by machine learning644

techniques, will be crucial for enhancing the predictive power of terrestrial ecosystem models in645

a rapidly changing world (Buster et al., 2024; Gou & Soja, 2024; Hagenauer & Helbich, 2022;646

Jung & Lee, 2021; Love et al., 2024; Reichstein et al., 2019).647

5 Conclusions648

This study provides a comprehensive assessment of parameter controls and uncertainty649

propagation in the LPJ-GUESS model across China's diverse ecosystems. By integrating three650

complementary sensitivity analysis methods, we reveal a clear, hierarchical architecture of model651

control. The simulated carbon-water cycle is co-dominated by a few key parameters governing652

photosynthetic efficiency (ALPHA_C3), carbon allocation (common_reprfrac), and biomass653

turnover. Critically, the dominance of these controls is spatially contingent, shifting from a654

system governed by physiological efficiency in humid forests to systems constrained by strategic655

resource allocation and water use in arid and semi-arid ecosystems.656

Furthermore, our analysis uncovers a fundamental tradeoff in how parameter uncertainty657

propagates. Arid ecosystems exhibit the highest relative uncertainty, yet their low productivity658
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results in a comparatively small absolute uncertainty range. Conversely, humid and highly659

productive ecosystems, despite showing greater robustness and low relative uncertainty, are660

associated with the largest absolute uncertainty in carbon fluxes. This finding highlights distinct661

modeling challenges across different environments.662

Collectively, these findings support a move away from one-size-fits-all parameterization663

towards hierarchical, spatially-explicit, and multi-objective optimization strategies. Future664

research should focus on extending these analyses to continuous grids and integrating multiple665

sources of uncertainty (e.g., driver data, model structure) to enhance the predictive reliability of666

terrestrial biosphere models under ongoing and future environmental change.667
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