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11 Abstract

12 Parameter uncertainty in Dynamic Global Vegetation Models (DGVMs) substantially impacts
13 the reliability of carbon-water cycle simulations. Using the LPJ-GUESS model at 13 sites across
14  China's diverse ecosystems, this study employed a multi-method (Morris, eFAST, Sobol')
15  sensitivity analysis on 39 key parameters to assess their impacts on nine carbon-water cycle
16  variables. Our results revealed that the model's behavior is co-dominated by both core
17  physiological parameters, often hard-coded in the source, and plant functional type-specific traits.
18  This finding suggests limitations in the common practice of focusing calibration solely on user-
19 adjusted files. Furthermore, these parameter controls are highly context-dependent, shifting
20  based on both the target process (e.g., carbon uptake as opposed to water flux) and the regional
21  climate, where arid ecosystems respond most strongly to water-use parameters. The multi-
22 method approach also highlighted that the influence of many parameters is mediated through
23 complex interactions rather than direct effects alone. Consequently, this complex web of
24  sensitivities propagates into contrasting patterns of model uncertainty: arid ecosystems exhibit
25  the highest relative uncertainty, making predictions more uncertain, while humid, productive
26  ecosystems show the largest absolute uncertainty, posing a challenge for carbon budgeting.
27 These findings provide a scientific basis for developing targeted, region-specific
28  parameterization strategies to reduce model uncertainty and improve assessments of terrestrial

29  carbon sink functions.
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32 1 Introduction

33 Terrestrial ecosystems are an important component of the global carbon cycle and water cycle,
34 and play a crucial role in regulating climate change through land—atmosphere interactions
35  (Buster et al., 2024). Carbon uptake and water transport are tightly coupled through plant
36  physiological processes, especially via stomatal regulation, which simultaneously controls
37  carbon dioxide assimilation and water transpiration. In turn water availability directly restricts
38  photosynthetic efficiency, affecting carbon assimilation, vegetation structure, and then feedbacks
39  to soil moisture and evapotranspiration (Hickler et al., 2015). Together, these processes form a
40  complex and dynamic carbon-water coupling system linking terrestrial ecosystems and the
41  atmosphere (Buster et al., 2024; Zhao et al., 2025).

42 Dynamic Global Vegetation Models (DGVMs) are process-based tools that are widely used to
43 simulate ecosystem structure and function under varying climate conditions (Bonan et al., 2003;
44  Forster et al., 2024; Liu et al., 2024). Among them, the Lund-Potsdam-Jena General Ecosystem
45  Simulator (LPJ-GUESS) has become an important platform for carbon-water dynamic modeling
46  research due to its explicit representation of plant functional types, biogeochemical cycles and
47  hydrological processes (Smith et al., 2001). The model can simulate key ecological variables
48  such as gross primary productivity (GPP), evapotranspiration (ET), vegetation carbon storage,
49  and soil carbon storage, and has been widely used at both global and regional scales (Smith et al.,
50  2014; Smith et al., 2011).

51 Despite their broad applicability, the performance of DGVMs is strongly dependent on
52  parameter settings to describe ecological processes, and the selection of parameter values is
53  subject to uncertainty (Verrelst et al., 2019), especially in areas characterized by pronounced
54  ecological heterogeneity. China encompasses a wide range of climate zones and vegetation types
55  (Chen et al., 2022), spanning humid monsoon regions in the southeast to arid and semi-arid
56  inland regions in the northwest. This spatial heterogeneity poses a challenge to the adaptability
57  of model parameters (Guan et al., 2023; Wu, 2023; Ma et al., 2022b), and also provides an ideal
58  platform for exploring regional differences in parameter sensitivity of carbon-water coupling
59  processes.

60 Model parameter sensitivity analysis is a critical method to identify key parameters driving

61  model output and improve simulation accuracy and credibility (Yuxi et al., 2024). At present,
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62  sensitivity analysis methods have evolved from traditional one-at-a-time (OTA) variation to
63  global sensitivity analysis techniques, such as Morris, eFAST and Sobol', which can identify
64  nonlinear relationships and parameter interaction effects (Ma et al., 2022b; Nossent et al., 2011;
65 Vazquez-Cruz et al., 2014). Although these methods have been increasingly applied in
66  ecosystem modeling studies (Pappas et al., 2013), most of them have focused on individual
67  carbon cycle processes or site-specific analyses, with relatively limited attention to the integrated
68  evaluation of carbon-water coupling processes (Oberpriller et al., 2022).

69 Previous studies have shown that LPJ-GUESS outputs are highly sensitive to parameters such
70  as photosynthetic efficiency, plant structure, and carbon allocation strategies. For instance,
71  Pappas et al. (2013) highlighted the influence of photosynthetic quantum efficiency and canopy
72 scale conversion coefficient on GPP and NPP, while Oberpriller et al. (2022) emphasized that the
73  parameters related to water processes and climatic drivers, such as temperature and precipitation,
74  substantially affects on forest simulations. However, these studies are largely confined to
75  temperate regions in Europe, and offer limited insights into the spatial variability of parameter
76  sensitivities across China’s ecologically heterogeneous landscapes. Moreover, calibration and
77  sensitivity analyses in the DGVM community have traditionally focused on the more accessible
78  Plant Functional Type (PFT) parameters found in user-facing files, whereas the influence of core
79  physiological parameters embedded within the model's source code remains less well quantified,
80  potentially limiting a comprehensive understanding of model behavior (Peng et al., 2024).
81  Furthermore, different sensitivity analysis methods have their strengths and limitations. The
82  Morris method has high computational efficiency but is difficult to evaluate interaction effects,
83  whereas the Sobol' method can quantify both main effects and interaction effects but has high
84  computational costs. The extent to which these methods converge or diverge is not well
85  understood, particularly in their ability to untangle direct, linear parameter effects from the
86  complex, non-linear interactions that likely govern coupled systems. More importantly, most
87  existing studies focus on carbon cycle variables, often neglecting the critical role of water
88  dynamics and their feedbacks within ecosystem simulations (Oberpriller et al., 2022).

89 To address these gaps, this study selected 13 representative ecosystem sites across China,
90 covering a variety of typical vegetation types and climate zones. Based on the LPJ-GUESS
91  model, three complementary sensitivity analysis methods--Morris, eFAST and Sobol'--were used

92  to systematically evaluate the impact of 39 key ecological process parameters on the carbon and
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93  water cycle simulation results. By assessing the sensitivity of nine carbon and water cycle
94  variables and analyzing the spatial heterogeneity of parameter effects, this study aims to (1)
95  identify the dominant parameters driving model outputs, (2) evaluate the regional variability of
96  parameter sensitivities, (3) compare the consistency and complementarity of sensitivity analysis
97  methods, and (4) quantify uncertainty propagation across ecosystems. The findings are intended
98  to support the refinement of parameterization strategies in DGVMs and enhance the model’s

99  regional carbon—water cycle assessments under future climate scenarios.

100 2 Materials and Methods

101 2.1 Study Area and Site Design

102 To assess the parameter sensitivity of the LPJ-GUESS model across diverse ecosystems, this
103 study selected 13 representative sites spanning the major natural vegetation types and climate
104  zones in China (Fig. 1; see Table S1 in the Supporting Information for site details). These sites,
105  located within national nature reserves, were selected to minimize anthropogenic disturbances
106  and ensure ecological representativeness.

107 Site selection was primarily based on the MODIS MCD12Q1 land cover product (2001-2023)
108  (Friedl & Sulla-Menashe, 2022) and boundary data of Chinese nature reserves. Key criteria for
109  the site selection included: ensuring the sites represent dominant regional vegetation types (e.g.,
110  forests, grasslands); excluding areas of significant anthropogenic land use; and verifying
111 vegetation stability over time by assessing land cover consistency from 2001 to 2023.

112 To enhance national-scale representativeness, a two-stage sampling strategy was adopted,
113 combining the International Geosphere—Biosphere Programme (IGBP) vegetation type
114  classification with a spatial equilibrium algorithm to ensure a balanced geographical distribution.
115 A detailed description of the site selection process is provided in Text S1 in the Supporting

116  Information.
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118  Fig. 1. Spatial distribution of sample points used for sensitivity analysis

119 2.2 Model and Driving Data
120 2.2.1 LPJ-GUESS Model

121 LPJ-GUESS is a process-based Dynamic Global Vegetation Model designed to simulate
122 terrestrial ecosystem dynamics under changing environmental conditions (Sitch et al., 2003;
123 Smith et al., 2014). It explicitly represents key water, carbon, and nitrogen processes within the
124 soil-plant-atmosphere continuum and simulates vegetation competition for light, water, and
125  space resources (Lindeskog et al., 2013; Lindeskog et al., 2021). The model classifies vegetation
126  into 12 PFTs characterized by specific growth forms (e.g., herbaceous, broadleaf tree, deciduous
127  tree), photosynthetic pathways (C3 or C4), phenological strategies (evergreen, summergreen, or
128  raingreen), tree biometrics and life-history traits, as well as bioclimatic constraints on
129  establishment and survival (Olin et al., 2015; Smith et al., 2014). It also accounts for the fire
130 sensitivity and disturbance responses among PFTs (Smith et al., 2014).

131 In this study, LPJ-GUESS version 4.1 was employed in cohort mode, in which woody
132 individuals of the same size and age within a local neighborhood or patch are grouped into a

133 representative average individual. Each PFT is simulated as a set of such cohorts, assuming
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134 structural uniformity among individuals of the same age within a patch (Olin et al., 2015; Pugh et
135 al., 2019; Teckentrup, 2023). Establishment, mortality, and disturbance events are governed by
136 stochastic processes. Fire occurrence is simulated annually (stochastically) based on probabilistic
137 functions of temperature, fuel availability, and upper soil moisture content, which served as a

138 proxy for litter moisture (Thonicke et al., 2001).

139 2.2.2 Driving Data

140 The driving data required by the LPJ-GUESS model include monthly meteorological variables
141  (temperature, precipitation, and incoming shortwave radiation), soil texture (assumed static over
142 time), annual atmospheric CO: concentration, and nitrogen deposition rates.

143 In this study, meteorological forcing data were derived from the ERAS5-Land reanalysis
144 dataset, which provides monthly data at a spatial resolution of 0.1° for the period 1980-2023
145  (Copernicus Climate Change Service, 2019). Specifically, monthly average temperature,
146 cumulative precipitation, and average incident shortwave radiation were extracted. Annual
147 atmospheric CO: concentration data, reflecting interannual variability, were derived from long-
148  term observations at the Mauna Loa Observatory, Hawaii (Lan et al., 2023). Soil texture data,
149  including sand and clay content, carbon-nitrogen ratio, pH, soil bulk density, and soil organic
150  carbon, were obtained from the National Tibetan Plateau Data Center (Shi et al., 2025). For
151  consistency, values from six standard soil layers within the 0-2 meters depth range were
152 averaged to generate a single representative soil profile for each site. Nitrogen deposition data
153 were adopted from the Lamarque dataset (default spatial resolution of 0.5°), with values from the

154 nearest grid cell assigned to each site as model input (Lamarque et al., 2013).

155 2.2.3 Model Setup

156 To ensure the stabilization of ecosystem carbon pools, the LPJ-GUESS model was initialized
157  with a 500-year spin-up period. This period employed repeated cycling of the first 20 years
158 (1980-2000) of climate forcing data, with temperature trends removed to maintain climatic
159  baseline. During the spin-up, stochastic processes such as fire and natural disturbances were
160  enabled to represent inherent ecological dynamics. However, anthropogenic land-use changes
161  were excluded, as all selected sites are located within national nature reserves, where direct

162  human impacts are minimal.
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163 2.3 Parameter Selection and Value Ranges

164 For the sensitivity analysis, 39 key parameters of the LPJ-GUESS model were selected,
165 covering fundamental ecological processes such as photosynthesis, carbon allocation, and
166  vegetation structure. These parameters comprise 19 core physiological parameters, which are
167  applied uniformly across all vegetation types, and 20 PFT specific traits that characterize the
168  strategies of individual ecosystems. Detailed information on parameter definitions, functions,
169  and value ranges, is provided in Table 1.

170 Parameter value ranges were defined based on a combination of sources: (1) default values
171  and annotations within the model source code; (2) empirical ranges reported in peer-reviewed
172 LPJ-GUESS calibration studies; and (3) a £25% deviation from the default value where direct
173 empirical constraints were unavailable. This strategy was adopted to ensure that the parameter
174  ranges are both sufficiently broad to support global sensitivity analysis and consistent with
175  current ecological understanding.

176 It is crucial to distinguish the objective of this study—Global Sensitivity Analysis (GSA)—
177 from that of parameter calibration. For several hard-coded internal parameters (e.g., reprfrac,
178  turnover_root), value ranges were defined using their technically permissible bounds [0, 1] as
179  specified in the model source code. We acknowledge that the extreme values within these
180  bounds may not always correspond to ecologically realistic conditions. However, retaining these
181  full technical ranges is appropriate in the context of GSA for two reasons. First, empirical
182 ecological constraints for these internal parameters are currently lacking, and restricting their
183 ranges without supporting evidence would introduce subjective assumptions. Second, GSA is
184  intended to examine model sensitivity across the technically allowable parameter space, rather
185  than to infer parameter realism. In this context, strong sensitivity associated with poorly
186  constrained parameters is interpreted as a diagnostic indicator of model behavior, rather than as a
187  direct measure of real-world uncertainty, and may point to priorities for future model
188  development and structural refinement. Finally, for all sampling procedures, parameter values
189  were drawn independently from uniform distributions within their specified minimum and
190 maximum ranges, reflecting the absence of prior information on parameter probability

191 distributions.
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194 2.4 Sensitivity Analysis Methods

195 This study applies three complementary sensitivity analysis methods to assess the impact of

196  parameters on simulated outputs from different analytical perspectives.

197 2.4.1 Morris Sensitivity Analysis Method

198 The Morris method is an efficient global sensitivity analysis technique commonly designed
199  for preliminary parameter screening. It is based on a One-Factor-At-a-Time (OAT) perturbation
200 scheme, in which parameters are varied individually along predefined trajectories in the
201  parameter space while other parameters remain fixed for each elementary step (Morris, 1991).
202 By constructing multiple such trajectories, the method estimates the Elementary Effects (EE) of

203  parameters through successive single-parameter perturbations:

- (l!"'i -1 + +1r )_ (11"'7 Y ) (1)

204 where f{*) is the model output, and x and x+4 represent the function values at points before
205  and after only the i-¢h parameter is changed, respectively. This definition reflects the impact on
206  the output results when only the i-¢h factor undergoes a minor perturbation.

207 The Morris method characterizes parameter importance using two summary statistics. The
208 mean of elementary effects (1) represents the overall influence magnitude of a parameter on
209  model outputs, while the standard deviation of the elementary effects (¢) captures the variability
210  of this influence across the parameter space, which may arise from non-linear responses and

211  interactions with other parameters.

212 2.4.2 eFAST Sensitivity Analysis Method

213 The extended Fourier Amplitude Sensitivity Test (eFAST) is a variance-based global
214  sensitivity analysis method used to quantify the relative importance of model input parameters
215 (Saltelli et al., 1999; Andrea Saltelli, 2002). The method explores the parameter space by
216  assigning sinusoidal functions with distinct frequencies to each parameter, which allows the

217 decomposition of output variance into contributions associated with individual parameter:
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218 The eFAST method calculates two key types of sensitivity indices: First-order sensitivity
219  index S;:
220 The proportion of contribution from the direct effect of the parameter:
=— 3)
)
221 Total sensitivity index  : The overall contribution including all interaction effects:
=1—-——— 4)
@)
222 This approach is well suited for the analysis of non-linear models behavior, as it can capture

223 both first-order (main effect) sensitivities and higher-order (interaction) contributions arising
224 from parameter interactions, while maintaining a relatively moderate computational cost (Saltelli

225  etal., 1999; Vazquez-Cruz et al., 2014).

226 2.4.3 Sobol’ Sensitivity Analysis Method

227 The Sobol' method is a rigorous global sensitivity analysis framework that decomposes the
228  total variance of model outputs into contributions from individual input parameters and their
229  interactions through Monte Carlo sampling (Sobol’, 2001). It provides a detailed quantification
230  of both first-order and higher-order sensitivity effects, making it particularly suitable for
231  complex, nonlinear, and non-monotonic models. In this method, two key sensitivity indices are
232 calculated (Verrelst et al., 2015; Wainwright et al., 2014)
233 First-order sensitivity index represents the proportion of output variance that can be
234 attributed solely to variations in a single input parameter , assuming all other parameters
235  remain unchanged (Song et al., 2012):

_ (-1 “
236 In contrast, the total sensitivity index accounts for the entire contribution of  to output

237  variance, including all its interaction effects with other parameters:
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238 The Sobol' method provides the most comprehensive sensitivity assessment and is capable of
239  handling highly non-linear and non-monotonic models, but its computational cost is relatively

240  high compared to other methods (Nossent et al., 2011).

241 2.5 Experimental Scheme and Design

242 The study selected nine key carbon-water cycle variables as model output indicators: (1)
243 carbon flux variables, including Gross Primary Productivity (GPP), Net Ecosystem Exchange
244  (NEE), Soil Carbon Flux (Soil C Flux); (2) hydrological and structural variables, including Leaf
245  Area Index (LAI), and Actual Evapotranspiration (AET); and (3) carbon pool variables,
246  including Vegetation Carbon (Veg C), Litter Carbon (Litter C), Soil Carbon (Soil C), and Total
247  Carbon (Total C).

248 To systematically evaluate the performance of different sensitivity analysis methods and to
249  investigate the influence of various types of model parameters on carbon-water cycle simulations,
250  a comprehensive experimental framework was designed. First, the 39 parameters were divided
251  into two categories: 19 parameters related to plant physiological processes (hard-coded in the
252 source code), and 20 parameters related to PFT constitution. Second, each parameter group was
253  analyzed independently using three sensitivity analysis methods. Third, to capture the potential
254  interactions across parameter categories and evaluate their joint influence on model outputs, a
255  combined sensitivity analysis was conducted using all 39 parameters. The specific experimental

256  design is summarized in Table 2.

257  Table 2. Experimental Design Scheme

Number of Parameter Sets

Parameter Category Number of Parameter Sets
Morris eFast Sobol’
Physiological processes 19 200 9899 10240
PFT parameters 20 200 9940 10752
Physiological + PFT 39 400 9711 10240
258 The generation of parameter sets (shown in Table 2) was guided by the specific requirements

259  of each method. As described in Section 2.4, the Morris method uses a specific One-Factor-at-a-
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260  Time trajectory design, the eFAST method generates sample sets based on sinusoidal functions,
261  and the Sobol' method combinations were generated using standard Monte Carlo sampling.

262 For the eFAST and Sobol' methods, this resulted in approximately 10,000 parameter
263 combinations, which is sufficient to ensure robust and comprehensive variance decomposition.
264  To improve computational efficiency, parameter updating and model execution for all analyses

265  were fully automated and parallelized using Python process pools.

266 2.6 Data Processing and Statistical Methods
267 2.6.1 Sensitivity Index Calculation and Standardization

268 To ensure comparability of sensitivity analysis results across methods and target variables, a
269  standardized processing workflow was employed. First, for each parameter, raw sensitivity
270  indices were averaged across the 13 study sites—specifically, the mean of elementary effects ( )
271 for the Morris method, and the total sensitivity index ( ;) for eFAST and Sobol’ methods. In
272 the first stage of standardization, the average sensitivity indices for each parameter , method

273 and target variable , denoted as = were normalized by dividing by the maximum sensitivity
274  value for the corresponding method and variable. This normalization ensured a consistent scale
275  for inter-method comparison. Next, to identify the most influential parameters, a preliminary
276  composite index Combined; was computed as the average of the normalized indices from the
277  three methods. Based on Combined,, a subset of the top-N sensitive parameters was selected for
278  further analysis. These top parameters were then re-standardized across the three methods, and a
279  final comprehensive sensitivity score Combined, was calculated by averaging the re-
280  standardized values. This two-stage process enhances interpretability while preserving the

281  relative discriminative power of each sensitivity analysis method.

282 2.6.2 Method Consistency Assessment

283 To assess the consistency in parameter importance ranking among the Morris, eFAST, and
284  Sobol' methods, two complementary approaches were adopted. Spearman rank correlation
285  analysis () and corresponding p-values were used to evaluate monotonic agreement among
286  rankings. Additionally, pairwise linear regression analysis, expessed as = + X were
287  performed to examine systematic differences and relationships in parameter rankings between

288  methods.
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289 2.6.3 Uncertainty Quantification and Spatial Analysis

290 Model output uncertainty was quantified using the Coefficient of Variation (), calculated
291  across all parameter samples. To evaluate the consistency of uncertainty estimates between the
292  eFAST and Sobol' methods, both Pearson and Spearman correlation analyses were conducted,
293  along with linear regression modeling. Results were visualized with scatter plots to identify
294  systematic deviations. Spatial patterns of model output uncertainty across sites and vegetation
295  types were further analyzed using Cumulative Distribution Functions (CDFs) and box plots,
296  enabling the identification of regions and vegetation types characterized by highly sensitive or

297  relatively stable model responses.

298 3 Results

299 3.1 Co-dominance of Physiological and PFT Parameters in Model Sensitivity

300 Our comprehensive sensitivity analysis, conducted using three global methods (Morris,
301  eFAST, Sobol’), reveals a fundamental characteristic of the LPJ-GUESS model: its outputs are
302  not driven by a single class of parameters, but are co-dominated by both core physiological
303  parameters, often hard-coded in the source code, and PFT-specific traits defined in user-facing
304 files. This finding suggests limitations_in the common practice of focusing calibration efforts
305  solely on the more accessible PFT parameters (Oberpriller et al., 2022; Peng et al., 2024). A
306  detailed breakdown of sensitivities for physiological versus PFT parameters is provided in Text
307 S2.1 and S2.2.

308 This co-dominance is illustrated by the two most influential parameters identified across
309 nearly all nine output variables (Fig. 2; see Fig. S1 for full rankings). The highest overall
310  sensitivity was associated with ALPHA C3 (intrinsic quantum efficiency of CO: uptake), a
311  fundamental physiological parameter, which primarily governed carbon flux variables such as
312 GPP and Soil Carbon Flux. Closely ranked was common_reprfirac (proportion of NPP allocated
313 to reproduction), a key PFT trait parameter, which exerted dominant control over ecosystem
314  structure and the magnitude of major carbon stocks (Veg C, Litter C, Soil C, and Total C).

315 This pattern extends beyond the two most influential parameters. The subsequent group of
316  highly sensitive parameters also included a mixture of both parameter types: core physiological

317  parameters like THETA (photosynthesis co-limitation shape) and FRADPAR (fraction of PAR in
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shortwave radiation) were critical for photosynthetic processes, while PFT-specific traits such as
tree_turnover_root (fine root turnover rate) played a key role in regulating carbon residence time

in litter and soil pools.
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Fig. 2: Union of the Top 10 Most Sensitive Parameters across All Target Variables for
Different Methods
While all three analysis methods consistently identified this overall hierarchy of control, minor

discrepancies in rankings and sensitivity magnitude were observed for less dominant parameters,

such as shade tolerant est max (Fig. 2). These differences reflect methodological

characteristics of individual approaches and underscore the value of applying multiple sensitivity

analysis methods in parallel. Moreover, some parameters exhibited process-specific importance:

EGUsphere\
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329  GM (maximum canopy conductance) was particularly influential for AET, whereas the
330  allometric constant tree_k_allom2 showed a distinct sensitivity signal for LAI.

331 Overall, these results refine the understanding of parameter influence in LPJ-GUESS. The
332 regulation of carbon-water cycle processes is not solely governed by adjustable PFT traits but is
333 also strongly constrained by core physiological parameters. This co-dependence underscores that
334  efforts to improve model calibration and reduce uncertainty would benefit from a more

335 comprehensive strategy that explicitly considers both parameter types.

336 3.2 Dissecting Parameter Influence: Direct Physiological Control Versus
337  Interactive Allocation Effects

338 To examine the mechanisms governing the carbon and water cycles, we decomposed the total
339 sensitivity of parameters into direct main effects  and higher-order interaction effects  —
340  using the Sobol' and eFAST methods (Fig. 3, Fig. S4-S5). This analysis reveals distinct
341  differences in the parameter control structures of GPP and AET, which are used as representative
342 fluxes.

343 For GPP, the controlling patterns differ markedly among parameters. The influence of the core
344  physiological constant ALPHA (3 (intrinsic quantum efficiency) is dominated by its direct main
345  effect, with only a minor contribution from interaction effects (blue bars, Fig. 3). This suggests
346  that its influence on modeled photosynthetic capacity is largely independent of other parameters.
347  In contrast, the most influential GPP parameter, the PFT trait common_reprfrac (NPP allocation
348  to reproduction), displays a substantial contribution from interaction effects, comparable in
349  magnitude to its main effect. This indicates that the impacts of carbon allocation are strongly
350  modulated by interactions with other parameters governing vegetation growth and turnover.

351 In contrast, the sensitivity of AET is dominated by interaction effects. For all key controlling
352 parameters—including common_reprfrac, ALPHA C3, and GM (maximum canopy
353 conductance)—interaction effects constitute a substantial, and in several cases dominant, portion
354  of their total influence (orange bars, Fig. 3). This underscores that AET is not governed by

355 individual parameters in isolation, but rather emerges from the combined effects of soil water
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356  availability, canopy properties, and atmospheric demand. Consequently, the influence of any

357  single parameter depends strongly on the overall state of the soil-plant-atmosphere system.

Sobol' Method: GPP vs AET Sensitivity
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359  Fig. 3. Decomposition of parameter sensitivity for GPP and AET into main effects ( ) and
360 interaction effects( — ) based on the Sobol' method.
361 3.3 Methodological Consensus and Complementarity in Sensitivity Rankings
362 To evaluate the robustness of our findings, we assessed the consistency of parameter

363  importance rankings derived from the Morris, eFAST, and Sobol' methods across all nine output
364  variables (Fig. 4). Pairwise comparisons using Spearman rank correlation revealed strong and
365  statistically significant agreement (p < 0.01) among all methods, indicating a high degree of
366  consensus in identification of key model controls.

367 The agreement was particularly notable between the Morris and Sobol' methods, which
368  consistently yielded the strongest correlations, with coefficients (p) frequently exceeding 0.85 for
369  major outputs such as GPP (p = 0.90) and Soil C (p = 0.94). The other pairings, while still

370  showing substantial agreement, exhibited greater variability. For instance, the agreement
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371  between eFAST and Sobol' was strong for structural and stock variables (e.g., p = 0.76 for LAI),
372 but notably weaker for net fluxes such as NEE (p = 0.43). This reduced consistency for NEE is
373 mechanistically plausible, as NEE represents a small residual between two large, opposing fluxes
374 (GPP and ecosystem respiration), which can lead to a more complex and variable sensitivity
375  structure.
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376
377  Fig. 4: Consistency analysis of parameter sensitivity rankings identified by Morris, eFAST,

378  and Sobol' methods across nine output variables. Each of the nine large panels corresponds
379  to a specific model output variable. Within each large panel, the sub-panels compare the
380  sensitivity rankings of the three methods: the diagonal sub-panels display the standardized
381  sensitivity indices for the top-five ranked parameters from each method; the lower-left sub-
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332  panels show scatter plots comparing the parameter sensitivity ranks between pairs of
383  methods, annotated with the Spearman’s rank correlation coefficient p and its statistical
384  significance (*** represents significance < 0.001, ** represents significance < 0.01). The
385  solid line represents the linear regression fit to the ranked scatter points.

386 Crucially, this consensus was strongest for the most influential parameters. Across all three

387  methods, ALPHA C3 and common_reprfrac were consistently identified as the two dominant
388  drivers of GPP. These parameters, along with tree turnover root and THETA, also consistently
389  appeared among the top five ranked parameters for a suite of variables, including Soil C Flux,
390  LAI, and Soil C, with only minor differences in their relative ordering.

391 Nevertheless, the analysis also highlighted key divergences that underscore the
392  complementarity of the methods. A representative example is GM (maximum canopy
393  conductance): while all methods agreed on its top-tier importance for AET, the Morris method
394  assigned it a much lower rank for NEE compared to eFAST and Sobol'. Such discrepancies
395  likely arise from the different mathematical formulations of the methods, particularly in how the
396  parameter space is sampled and how interaction effects are quantified.

397 In summary, although all three sensitivity analysis methods converge on the primary drivers of
398  the carbon-water cycle in LPJ-GUESS, the subtle variations in their rankings provide additional
399  insight into model behavior. This highlights the benefit of a multi-method framework for a more

400  comprehensive assessment of parameter influence.

401 3.4 Divergent Parameter Controls Across Target Variables

402 The influence of model parameters varied markedly across the nine output variables, revealing
403  distinct control structures for different components of the carbon-water cycle (Fig. 5).

404 GPP displayed the most concentrated sensitivity profile. Its response was dominated by a
405 small cohort of photosynthetic parameters—primarily ALPHA C3, followed by
406  common_reprfrac and THETA. This focused control structure highlights that modeled
407  productivity is largely governed by biochemical efficiency at the leaf level (Fig. 5, a-c).

408 In contrast, flux and vegetation structure variables exhibited more complex and diversified
409  control structures (Fig. 5, d-f). Soil Carbon Flux sensitivity largely resembled that of GPP,
410  reflecting the tight coupling between carbon input and heterotrophic respiration. NEE, as a net
411  balance, was sensitive to a broader range of physiological and structural parameters. LAI was co-

412 limited by carbon allocation (common_reprfrac), productivity (ALPHA C3), and turnover

20
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(tree_turnover_roof), while AET was particularly sensitive to GM (maximum canopy

conductance), underscoring the role of stomatal regulation in controlling water fluxes.

The major carbon pools (Vegetation, Litter, and Soil) were governed by a common set of

parameters, reflecting shared controls on biomass dynamics. Their sensitivities were co-

dominated by production (ALPHA_C3), allocation (common_reprfrac), and residence time

(tree_turnover_root). The strong influence of these parameters was most pronounced for Litter C

and Total C, where their combined Sobol' sensitivity indices approached 1.0, indicating near-

complete model control by these three factors alone (Fig. 5, g-1).
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Fig. 5: Comparison of results from the Morris, eFAST, and Sobol sensitivity analysis
methods. Each subplot shows the normalized sensitivity index (Y-axis) of different model
parameters (X-axis, letter codes) for three groups of target variables. The rows represent
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425  the variable groups of Productivity, Flux & Structure, and Carbon Pools, respectively; the
426  columns correspond to the three analysis methods.
427 In summary, different groups of variables are governed by a distinct set of controlling

428  parameters. Productivity is primarily influenced by a small number of photosynthetic inputs,
429  fluxes and vegetation structure by a wider and more complex set of interacting factors, and
430  carbon stocks by the combined effects of production, allocation, and turnover. These findings
431  demonstrate that parameterization and calibration strategies should be aligned with the specific
432 processes of interest, as parameter sets optimized for one component of the system may not

433 perform equivalently for others.

434 3.5 Spatial Heterogeneity of Parameter Controls Across Ecosystems

435 Parameter sensitivities exhibited pronounced spatial heterogeneity across China's diverse
436  vegetation types, revealing distinct control structures between resource-rich and resource-limited
437  ecosystems (based on eFAST results; Fig. 6).

438 In humid forest ecosystems (e.g., DBF, EBF, CNV), model behavior was primarily governed
439 by parameters related to physiological efficiency and biomass turnover. GPP sensitivity was
440  highest for ALPHA_C3, while AET was most sensitive to stomatal regulation via GM. The large
441  carbon pools in these systems, particularly Litter C and Soil C, were strongly controlled by
442 tree_turnover_root, reflecting the dominant role of woody biomass turnover in regulating
443 detritus input and long-term carbon storage. Together, these patterns indicate that carbon and
444 water fluxes in humid forests are predominantly controlled by physiological processes operating
445  under relatively favorable resource conditions.

446 Conversely, arid and semi-arid ecosystems (e.g., BSV, GSL) displayed a distinctly different
447  sensitivity structure, characterized by a stronger influence of resource allocation and use
448  efficiency. The PFT trait common_reprfrac (carbon allocation to reproduction) emerged as a key
449  controlling parameter for GPP and LAI and also exerted a strong influence on AET. This
450  suggests that under conditions of severe water limitation, canopy structure, as shaped by carbon
451  allocation strategies, can exert a greater control over water loss in addition to direct stomatal
452 regulation. Furthermore, the net carbon balance (NEE) in these sensitive systems showed high
453  sensitivity to photosynthetic (ALPHA C3, BC3) and radiation-use (FRADPAR) parameters,
454  indicating that relatively small changes in carbon assimilation efficiency can substantially affect

455  whether the ecosystem functions as a net carbon sink or source.
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Fig. 6: Spatial heterogeneity of parameter sensitivity across different vegetation types.
Each of the nine panels corresponds to a specific output variable (e.g., GPP, AET). Within
each panel, the x-axis represents the 13 different study sites. Each vertical bar is a stacked
bar chart, illustrating the relative contribution of the most sensitive parameters (listed in
the bottom legend) for that specific site. The color of each segment corresponds to a
parameter, and its height represents that parameter's proportional contribution to the total
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463  sensitivity (based on the eFAST method). Therefore, within a single panel, significant
464  variation in the color composition across the site bars indicates that the key controlling
465  parameters for that output variable differ greatly between locations. Conversely, similarity
466  in color composition suggests spatial consistency in the controlling parameters.

467 In summary, parameter sensitivities are strongly contingent on the ecosystem context. Humid

468  forests are primarily controlled by parameters of physiological process rates and biomass
469  turnover. In contrast, arid systems are more sensitive to parameters governing the strategic
470  allocation of scarce resources. This substantial spatial heterogeneity underscores that uniform
471  parameterization strategies are insufficient. Accurate regional and global modeling therefore
472 require ecosystem-specific calibration strategies to capture the diverse responses of terrestrial

473 ecosystems to environmental change.

474 3.6 Impact of Parameter Uncertainty on Model Output

475 Following the identification of sensitive parameters, this section investigates how the inherent
476  uncertainty (i.e., variability within their prescribed ranges) of these parameters collectively
477  propagates to affect the overall uncertainty and range of simulated values for key model output
478  variables. Furthermore, it examines whether the magnitude and spatial characteristics of this

479  output uncertainty vary across vegetation types and geographic regions.

430 3.6.1 Consistency of Uncertainty Quantification

481 To ensure the robustness of our uncertainty assessment, we compared the output Coefficient of
482  Variation (CV) derived from both the Sobol' and eFAST methods. The two methods yielded
483  nearly identical uncertainty estimates across all nine output variables (Fig. 7). This high
484  consistency is demonstrated by strong Pearson correlations (r > 0.97 for all variables), scatter
485  plots where data points for all vegetation types cluster tightly along the 1:1 line, and regression
486  models with slopes approaching 1.0 and intercepts near zero. These results indicate that both
487  methods provide consistent and comparable quantifications of output uncertainty, supporting the

488  subsequent spatial analysis.
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Fig. 7: Uncertainty Assessment Using Sobol’ and eFAST Methods
3.6.2 Opposing Gradients of Productivity and Uncertainty

The propagation of parameter uncertainty into model outputs revealed strong and opposing
spatial gradients across China. Using GPP as an illustrative example (Fig. 8), mean productivity
increased systematically from the arid northwest to the humid southeast. Conversely, the relative
uncertainty of simulated GPP, expressed as CV, showed an opposite pattern, with the highest

values (CV > 80%) occurring in the driest and least productive regions and the lowest values (CV
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499  Fig. 8: Spatial Distribution Pattern of GPP Uncertainty Across Different Sites
500 Critically, this analysis uncovers a clear contrast between relative and absolute uncertainty
501  (Fig. 8b, 8c). In the arid northwest, high relative uncertainty indicates strong sensitivity of
502 modeled GPP to parameter variability, but the low baseline productivity results in a relatively
503  small absolute range of simulated values (narrow box plots). In contrast, in the humid southeast,
504  relative uncertainty is lower, yet the high baseline productivity causes even modest relative
505  uncertainty to translate into a large absolute range of simulated GPP (wide box plots), which has
506  important implications for regional carbon budget estimation. This contrast between relative
507  uncertainty in low-productivity regions and absolute uncertainty in high-productivity regions is
508  not unique to LPJ-GUESS, but likely represents a broader challenge for land surface models,
509  including those used in TRENDY and CMIP6 intercomparisons. Similar spatial patterns were
510  also observed for other variables, such as LAI and AET.
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511 These findings underscore that effective uncertainty management requires region-specific
512  strategies. In resource-limited regions, reducing relative uncertainty depends primarily on
513  improving constraints on sensitive parameters. In productive regions, the key challenge lies in
514  constraining the absolute uncertainty of large fluxes, even when relative uncertainty is low, in

515  order to support reliable carbon accounting.

516 4 Discussion

517 4.1 The Core Mechanisms of Model Control: From Parameter Co-

518 dominance to Spatial Divergence

519 Our multi-method sensitivity analysis, whose robustness is supported by the strong consensus
520 among the Morris, eFAST, and Sobol' methods for top-ranking parameters (Section 3.3), reveals
521  a clear hierarchical and spatially contingent architecture of model control. At a broad level,
522 model behavior is not governed by a single process, but reflects the combined influence of
523  photosynthetic efficiency, carbon allocation strategies, and biomass turnover rates. The relative
524  importance of these processes is not static, but varies systematically across climate gradients,
525  consistent with differences in dominant ecological constraints observed in natural ecosystems
526  (Baral et al., 2014; Liu et al., 2022).

527 The dominant influence of photosynthetic efficiency—primarily represented by the
528 ALPHA C3 parameter—reinforces its role as the ultimate driver of carbon influx into the
529  ecosystem. This aligns with fundamental ecological theory, in which the efficiency of light-use
530  conversion constrains GPP (Farquhar et al., 1980; Thevasundaram et al., 2022). In the model,
531 this control is largely expressed through direct effects, as indicated by the decomposition of main
532 and interaction sensitivities (Section 3.2). However, what happens to this carbon post-
533 assimilation is equally critical. The high sensitivity associated with common_reprfrac (carbon
534  allocation) and tree turnover root (biomass turnover) underscores that patterns of carbon
535  investment among plant tissues and the residence time of biomass exert substantial influence on
536  long-term carbon storage, vegetation structure, and net ecosystem balance (Dong et al., 2024;
537  Wang et al., 2024). This finding suggests that photosynthesis alone is insufficient to explain
538  ecosystem carbon dynamics, and that allocation and turnover represent critical controls on the
539  persistence and distribution of assimilated carbon (Camargo et al., 2023; Kengdo et al., 2023;
540  Zandi et al., 2023).
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541 Crucially, the dominance of these controlling processes is spatially contingent, leading to
542  distinct sensitivity patterns across environments gradients (Pappas et al., 2013). In humid,
543  productive forest ecosystems, model sensitivity is primarily driven by parameters of
544  physiological efficiency. Here, with water being less of a limiting factor, simulated ecosystems
545  operate closer to their maximum photosynthetic potential, making it highly sensitive to
546  ALPHA C3. Furthermore, in structurally complex forest canopies, parameters related to
547  regeneration and light competition (e.g., shade tolerant est max) also emerge as influential,
548  while large carbon stocks are primarily regulated by the slow turnover of woody biomass
549  (tree_turnover root). This pattern reflects a system in which intrinsic growth rates competition
550  and biomass persistence play central roles (Bergkvist et al., 2023; Kiihn et al., 2021; Pugh et al.,
551 2019).

552 In contrast, model control shifts towards parameters associated with resource acquisition and
553  allocation in arid and semi-arid ecosystems (Asargew et al., 2024; Lv et al., 2024). In these
554  water-limited environments, survival under stress becomes more influential than maximizing
555  productivity. Consequently, GM (stomatal conductance) and common_reprfrac (allocation) exert
556  strong control, including for fluxes like AET. This pattern indicates that, within the model
557  framework, conservative water use and allocation strategies play a greater role than
558  photosynthetic capacity alone in regulating ecosystem function under dry conditions (Liu et al.,
559  2022). The heightened sensitivity of NEE to a wider array of parameters in these arid sites
560  further illustrates their inherent sensitivity, where small perturbations in any number of processes
561  can shift the system from a net sink to a source (Liang et al., 2024; Mitchell et al., 2000). These
562  spatially divergent sensitivity patterns suggest that effective model parameterization should
563  reflect contrasting ecological constraints across environments. However, it is important to note
564  that these interpretations are based on the internal logic of LPJ-GUESS. In the absence of
565  systematic validation against site-level observations (e.g., eddy covariance data), these findings
566  should be viewed as model-dependent insights into potential dominant controls rather than direct
567  confirmation of ecosystem mechanisms. Nevertheless, the alignment of these sensitivity patterns
568  with general ecological theory supports the plausibility of the model's representation of key

569  controlling processes.
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570 4.2 Rethinking Model Uncertainty: From Spatial Patterns to an Inherent

571 Tradeoff

572 The propagation of parameter uncertainty through the LPJ-GUESS model is not random but
573  instead follows a clear spatial logic that mirrors the hydro-thermal gradients across China. Our
574  results show that the highest relative uncertainty (CV) consistently occurs in the arid and semi-
575  arid ecosystems of the northwest. This pattern is a direct consequence of the mechanisms
576  discussed in the previous section: these water-stressed systems are critically sensitive to a few
577  dominant parameters controlling resource use and allocation (e.g., GM, common_reprfrac). As a
578  result, the model behavior in these regions is highly variable, where small parameter
579  perturbations can lead to large proportional changes in outputs (Liang et al., 2024). Conversely,
580  the humid and highly productive ecosystems in the southeast exhibit the lowest relative
581  uncertainty, suggesting a buffering effect where a more complex web of interacting, non-
582  dominant parameters creates a more robust and stable system response (Bello et al., 2021;
583  Gomez-Gras et al., 2021).

584 However, a deeper analysis reveals a fundamental—and critically important—tradeoff
585  between relative and absolute uncertainty. The low relative uncertainty in humid forests should
586  not be misconstrued as a lack of modeling challenge. While the model is robust in these regions
587  (low CV), the high baseline productivity and carbon fluxes imply that even small relative error
588 translates into substantial absolute uncertainty in terms of actual carbon mass (kgC m=2 yr™"). For
589  example, a 5% uncertainty associated with a GPP of 1.5 kgC m™ yr' represents a much larger
590  quantity of unknown carbon than a 20% uncertainty associated with a GPP of 0.2 kgC m™2 yr' in
591  an arid ecosystem.

592 This tradeoff redefines the nature of model risk across different regions. In arid ecosystems,
593  the primary risk is relative instability: inaccurate parameterization can lead to qualitatively
594  incorrect predictions of ecosystem functioning (e.g., predicting a sink when it is a source). In
595  humid, productive ecosystems, the risk shifts to quantitative magnitude. Even for a well-
596  calibrated and structurally robust model, the resulting absolute uncertainty range can be enough
597  to substantially impact regional or global carbon budget calculations. This finding demonstrates
598  that managing and interpreting model uncertainty requires ecosystem-specific perspectives,

599  moving beyond reliance on a single metric like CV and toward an integrated understanding of
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600  both relative sensitivity and absolute uncertainty across contrasting environmental contexts (Ma

601  etal., 2022b).

602 4.3 Outlook: From Model Optimization to Future Directions

603 The findings of this study provide a scientific basis for improving the application and
604  parameterization of DGVMs such as LPJ-GUESS. Our results argue against one-size-fits-all
605  calibration strategies and instead support the adoption of more nuanced, targeted approaches.
606  First, model calibration should follow a hierarchical strategy. Priority should be given to globally
607  sensitive parameters that govern core ecosystem processes (e.g., ALPHA_C3, common_reprfrac),
608  followed by targeted tuning for specific variables or regions where additional sensitivity emerges
609 (Gong & Duan, 2017; Yu et al., 2022). Second, calibration must be spatially explicit. The
610  distinctly different sensitivity signatures observed between humid and arid ecosystems clearly
611  indicate that region-specific parameter sets are required to reflect their contrasting environmental
612  constraints and limiting factors (Ma et al., 2022a). Third, given the tradeoff between relative and
613  absolute uncertainty, a multi-objective framework that simultaneously constrains both fluxes
614  (e.g., GPP) and stocks (e.g., Soil C) is essential for robust carbon accounting (Arbolino et al.,
615  2021; Rahimi et al., 2023).

616 Despite the comprehensive nature of our analysis, this study has limitations that define the
617  scope for future research. First, this study relies exclusively on model simulations to diagnose the
618  intrinsic behavior of LPJ-GUESS. While we acknowledge the lack of systematic validation
619  against observational benchmarks (e.g., FLUXNET data), this was a deliberate methodological
620  choice. Conducting GSA prior to calibration is critical to avoid equifinality—getting acceptable
621  model performance for the wrong reasons. By mapping the model's unconstrained sensitivity
622  first, we identify exactly which parameters require observational constraints, thus serving as a
623  necessary prerequisite for robust, data-driven calibration in future works.

624 Second, we focused primarily on parameter uncertainty, while other important uncertainty
625  sources, such as errors in climate forcing data and model structural assumptions, were not
626  explicitly quantified. Future research should therefore move towards an integrated assessment
627  that combines parameter, driver, and structural uncertainties, aiming to enhance model credibility

628  within the context of global efforts such as TRENDY and CMIP6.
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629 Third, and importantly, our sensitivity analysis assumed parameter independence. However, in
630  reality, many physiological parameters often exhibit covariance due to underlying biological
631  trade-offs (e.g., between photosynthetic capacity and leaf nitrogen). Ignoring these correlations
632 may overestimate the effective parameter space and the resulting model sensitivity. Future
633  studies should aim to incorporate parameter correlation matrices into the sampling design to
634  provide a more constrained estimate of uncertainty.

635 These limitations directly inform our vision for the future of ecosystem modeling. An
636  important next step is to extend this analysis to a spatially continuous grid, allowing for the
637  creation of national-scale sensitivity maps that explicitly capture geographic variability in model
638  behavior (Ma et al., 2022a). In parallel, a key priority should be given to fully integrated
639  uncertainty frameworks that explicitly address the interplay of parameter, structural, and driver
640  uncertainties (Oberpriller et al., 2022). Moreover, the increasing availability of multi-source data
641  streams (e.g., eddy covariance, remote sensing, soil inventories) offers unprecedented
642  opportunities to validate sensitivity analyses and to develop more advanced data assimilation
643  schemes (Tao et al., 2020). Finally, exploring the dynamic behavior of these parameter
644  sensitivities under future climate change scenarios, potentially aided by machine learning
645  techniques, will be crucial for enhancing the predictive power of terrestrial ecosystem models in
646  a rapidly changing world (Buster et al., 2024; Gou & Soja, 2024; Hagenauer & Helbich, 2022;
647 Jung & Lee, 2021; Love et al., 2024; Reichstein et al., 2019).

648 5 Conclusions

649 This study provides a comprehensive assessment of parameter controls and uncertainty
650  propagation in the LPJ-GUESS model across China's diverse ecosystems. By integrating three
651  complementary sensitivity analysis methods, we reveal a clear, hierarchical architecture of model
652 control. The simulated carbon-water cycle is co-dominated by a few key parameters governing
653  photosynthetic efficiency (ALPHA_C3), carbon allocation (common_reprfrac), and biomass
654  turnover. Critically, the dominance of these controls is spatially contingent, shifting from a
655  system governed by physiological efficiency in humid forests to systems constrained by strategic
656  resource allocation and water use in arid and semi-arid ecosystems.

657 Furthermore, our analysis uncovers a fundamental tradeoff in how parameter uncertainty

658  propagates. Arid ecosystems exhibit the highest relative uncertainty, yet their low productivity
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659 results in a comparatively small absolute uncertainty range. Conversely, humid and highly
660  productive ecosystems, despite showing greater robustness and low relative uncertainty, are
661  associated with the largest absolute uncertainty in carbon fluxes. This finding highlights distinct
662  modeling challenges across different environments.

663 Collectively, these findings support a move away from one-size-fits-all parameterization
664  towards hierarchical, spatially-explicit, and multi-objective optimization strategies. Future
665  research should focus on extending these analyses to continuous grids and integrating multiple
666  sources of uncertainty (e.g., driver data, model structure) to enhance the predictive reliability of

667  terrestrial biosphere models under ongoing and future environmental change.
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