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Text S1. Detailed Methodology for Study Site Selection

S1.1 Land Cover Data Preprocessing and Dominant Vegetation Type

Determination
The land cover data source adopted in this study is the NASA MODIS MCD12Q1 product

(2001-2023) (Friedl & Sulla-Menashe, 2022), which provides global land cover information for

17 IGBP (International Geosphere-Biosphere Programme) categories at a spatial resolution of

0.05°. To match the typical application scale of the LPJ-GUESS model, the original data were

first resampled to a 0.1° resolution. During the resampling process, a spatial mapping

relationship was established between the target 0.1° grid cells and the original four 0.05°

sub-pixels, and the pixel proportion of each IGBP category within each 0.1° grid cell was

calculated.

Subsequently, for each 0.1° grid cell, the multi-year average proportion of the 17 land cover

types from 2001 to 2023 was computed. A clear threshold was set for determining the dominant

vegetation type: only when the multi-year average proportion of the land cover type with the

highest proportion within a grid cell exceeded 30%, and the difference between this proportion

and that of the second-highest proportion type was greater than 10%, was the type with the

highest proportion identified as the dominant vegetation type for that grid cell. Through this

series of processing steps, a spatio-temporal vegetation distribution dataset was ultimately

generated. This dataset, containing the latitude and longitude coordinates of each 0.1° grid, the

identified dominant vegetation type number during the study period, and detailed proportion

information for each type, served as the basis for site selection.

S1.2 Detailed Sample Site Screening Steps
The screening of sample sites strictly followed these three core principles and operational

steps:

Nature Reserve Restriction: Using GIS spatial overlay analysis, the vector boundaries of

China's national nature reserves were intersected with the aforementioned 0.1° vegetation

distribution dataset. Only grid points falling entirely within the boundaries of nature reserves

were extracted as the initial candidate pool. This aimed to minimize significant disturbances

from recent human activities on the natural state of vegetation.

Natural Vegetation Type Screening: From the initial candidate pool, non-natural or

non-primary focus vegetation cover types in the IGBP classification, such as artificial surfaces

(e.g., urban areas, croplands mixed with natural vegetation), and pure bare lands, were further

excluded. The focus was on retaining grid points representing typical regional natural ecosystems,

including various types of forests, grasslands, shrublands, savannas, and wetlands.



Temporal Stability Verification of Vegetation Type: To ensure the representativeness and

stability of the ecological attributes of the selected sites during the study period, a consistency

check of vegetation type was performed for each candidate site that passed the above screening.

This was done for the entire observation period from 2001 to 2023. The specific method

involved tallying the IGBP vegetation type identified for the site each year over the 23-year

period. The vegetation type with the highest frequency of occurrence was then determined as the

final, representative Plant Functional Type (PFT) for that site for subsequent analysis. This step

effectively ensured the long-term stability of the core ecological attributes of the sample sites.

S1.3 Detailed Spatial Equilibrium Sampling Method
After obtaining representative and stable candidate natural vegetation sites through the

rigorous screening described above, a two-stage sampling strategy was designed and

implemented. This was to ensure that the finally selected sample sites could comprehensively

cover China's diverse natural vegetation types and be as geographically balanced as possible,

thereby reducing potential biases in the analysis results due to spatial autocorrelation. The

strategy is as follows:

Category Assurance Sampling (First Stage): Initially, all eligible candidate natural

vegetation sites were grouped according to their represented IGBP land cover classification

system. When selecting sites, it was mandatory that each major natural vegetation type (e.g.,

evergreen needleleaf forest, deciduous broadleaf forest, grassland, and other distinct IGBP

categories) included at least one selected sample site. This measure aimed to ensure, from a

typological perspective, that the study adequately considered and comprehensively covered

China's vegetation diversity.

Spatial Equilibrium Optimization (Second Stage): When the planned total number of

sample sites (set to 13 in this study) exceeded the total number of vegetation types that could be

covered by the first stage, a spatial equilibrium optimization sampling procedure was initiated to

select the remaining sites. The core idea of this procedure was to prioritize, through iterative

selection, candidate sites that could maximize their geographical distance from the existing set of

selected sample sites. Specifically, for each unselected candidate site, the shortest Euclidean

distance to all already selected sample sites was calculated. The candidate site with the largest

shortest Euclidean distance was then added to the sample set. This process was repeated until the

predetermined total number of samples was reached. This iterative selection method aimed to

effectively reduce the spatial clustering effect and autocorrelation among the finally selected

sample sites, promoting a more uniform and dispersed distribution of sites on a national

geographical scale. This, in turn, allows for a more scientific and unbiased representation of the

macroscopic ecological environment characteristics of different regions in China.



Text S2: Detailed Sensitivity Analysis by Parameter Type

S2.1 Sensitivity Analysis of Physiological Process Parameters
To further clarify the role of different parameter types, this section first focuses on the

sensitivity of the 19 physiological process parameters (Fig. S2). When considering only

physiological parameters, ALPHA_C3 (intrinsic quantum efficiency of CO2 uptake for C3 plants)

exhibited the most prominent sensitivity, showing the highest sensitivity to almost all nine output

variables. Its standardized sensitivity index was close to or reached 1.0 across all three methods,

indicating that the quantum efficiency of photosynthesis is the core physiological parameter

regulating the ecosystem carbon-water processes in the model.

THETA (photosynthesis co-limitation shape parameter) was the second most important

physiological parameter, showing moderate to high sensitivity to variables such as GPP, Soil

Carbon Flux, and LAI. The GM (maximum canopy conductance equivalent) parameter, which

directly regulates water transpiration, showed extremely high sensitivity to Actual

Evapotranspiration (AET) and a significant impact on Net Ecosystem Exchange (NEE). The

analysis also revealed that NEE exhibited a relatively broad sensitive response to multiple

physiological parameters, including K_BEER (light extinction coefficient), ALPHAM (empirical

parameter for evapotranspiration), and FRADPAR. In contrast, physiological parameters related

to fire occurrence (MINFUEL) and specific litter decomposition processes (TAU_LITTER,

ATMFRAC) generally showed low sensitivity to the various output variables in the current

analysis.

S2.2 Sensitivity Analysis of PFT Constitutive Parameters
Next, this section analyzes the sensitivity of the 20 parameters related to Plant Functional

Type (PFT) constitution (Fig. S3). The results clearly indicate that common_reprfrac (proportion

of NPP allocated to reproduction) is the most critical PFT parameter. Its sensitivity to all nine

output variables was significantly higher than other PFT parameters across all three analysis

methods. This highlights the decisive regulatory role of vegetation reproduction and biomass

allocation strategies on ecosystem carbon-water dynamics.

Among other PFT parameters, tree_turnover_root (fine root turnover rate) showed

particularly high sensitivity to Litter Carbon stock (Litter C) and Total Carbon stock (Total C),

especially under the Morris method where its sensitivity index approached 0.88.

shade_tolerant_est_max (maximum seedling establishment rate for shade-tolerant tree species)

had a relatively significant impact on NEE, as well as on Vegetation and Litter Carbon stocks.

Furthermore, some PFT parameters related to tree structure (e.g., tree_k_allom2) and the

relationship between leaf and sapwood area (e.g., broadleaved_k_latosa) also showed moderate



sensitivity to variables such as LAI and Vegetation Carbon. The sensitivity patterns of different

output variables to PFT parameters also varied. For instance, GPP was strongly influenced by a

few PFT parameters (mainly common_reprfrac), while various carbon stock variables were

sensitive to a broader range of PFT parameters (especially those related to carbon allocation and

turnover).



Fig. S1: Sensitivity Results of All Parameters for Nine Different Target Variables Using Different Methods



Fig. S2: Physiological Process Parameters for All Target Variables Across Different Methods



Fig. S3: PFT Composition Parameters for All Target Variables Across Different Methods



Fig. S4. Decomposition of parameter sensitivity for GPP and AET into main effects (Sᵢ) and

interaction effects based on the eFAST method



Fig. S5. Decomposition of parameter sensitivity for GPP and AET into main effects (��) and

interaction effects based on the Sobol' method.



Table S1 IGBP types at each site and their corresponding dominant PFT types in LPJ-GUESS

ID Lon Lat IGBP IGBP full name LPJ-GUESS PFT

1 85.4 41.3 BSV barren or sparsely vegetated C3G

2 88.3 31.8 GSL grasslands C3G
3 116.8 44.1 GSL grasslands C3G
4 112.9 28.8 SAV savannas TeBS + C3G
5 105.3 37.8 OSH open shrublands IBS + C3G
6 109.1 31.9 DBF deciduous broadleaf forest TeBS
7 104.3 32.9 MF mixed forests TeBS + TeNE
8 117.8 27.8 EBF evergreen broadleaf forest TeBE
9 103.3 34.5 WSV woody savannas TeBS + C3G
10 98.7 25.5 ENF evergreen needleleaf forest TeNE
11 118.8 30.8 CNV cropland/natural vegetation mosaic TeBS + C3G
12 109.1 21.6 PWL permanent wetlands TrBE + C3G
13 120.6 51.8 DNF deciduous needleleaf forest BNS
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	ID
	Lon
	Lat
	IGBP
	IGBP full name
	LPJ-GUESS PFT
	1
	85.4
	41.3
	BSV
	barren or sparsely vegetated
	C3G
	2
	88.3
	31.8
	GSL
	grasslands
	C3G
	3
	116.8
	44.1
	GSL
	grasslands
	C3G
	4
	112.9
	28.8
	SAV
	savannas
	TeBS + C3G
	5
	105.3
	37.8
	OSH
	open shrublands
	IBS + C3G
	6
	109.1
	31.9
	DBF
	deciduous broadleaf forest
	TeBS
	7
	104.3
	32.9
	MF
	mixed forests
	TeBS + TeNE
	8
	117.8
	27.8
	EBF
	evergreen broadleaf forest
	TeBE
	9
	103.3
	34.5
	WSV
	woody savannas
	TeBS + C3G
	10
	98.7
	25.5
	ENF
	evergreen needleleaf forest
	TeNE
	11
	118.8
	30.8
	CNV
	cropland/natural vegetation mosaic
	TeBS + C3G
	12
	109.1
	21.6
	PWL
	permanent wetlands
	TrBE + C3G
	13
	120.6
	51.8
	DNF
	deciduous needleleaf forest
	BNS

