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Figure S1. Northern high-latitude region considered in this study, as defined in Hugelius et al. (2024) for RECCAP2. The marked area

outlines the entire region and the shaded area represents the location of permafrost in JULES-pf at the start of the simulations in 1850.
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Figure S2. Timeseries of global CO2 emissions for the SSP scenarios and their extensions to 2300: (a) SSP1-2.6, (b) SSP5-3.4-OS, (c)

SSP2-4.5, and (d) SSP5-8.5.
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Figure S3. Timeseries of the projected global temperature changes for the SSP scenarios: (a) SSP1-2.6, (b) SSP5-3.4-OS, (c) SSP2-4.5, and

(d) SSP5-8.5. Shown for the percentiles produced by PRIME using the mean of the climate patterns (colours).
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Figure S4. Timeseries of global total Net primary productivity (NPP) for the JULES-pf configuration. The different colours are the different

PRIME percentiles and the individual lines within each colour are different spatial patterns of change across the selected CMIP6 ESMs.
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Figure S5. Timeseries of global total heterotrophic respiration (Rh) for the JULES-pf configuration. The different colours are the different

PRIME percentiles and the individual lines within each colour are different spatial patterns of change across the selected CMIP6 ESMs.
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Figure S6. Timeseries of cumulative total Net ecosystem productivity (NEP; Gt C) over the RECCAP2 permafrost region in the JULES-pf

configuration, for: (a) SSP1-2.6, (b) SSP5-3.4-OS, (c) SSP2-4.5, and (d) SSP5-8.5. The different colours are for different PRIME percentiles

representing a range of climate sensitivities and the individual lines within each colour are different spatial patterns of change across the

selected CMIP6 ESMs.
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Table S1. The 18 CMIP6 ESMs which were used with the SSP5-8.5 driven climate patterns to drive JULES as part of the PRIME framework.

Model

1. ACCESS-CM2

2. ACCESS-ESM1-5

3. CNRM-CM6-1

4. CNRM-CM6-1-HR

5. CNRM-ESM2-1

6. CanESM5

7. EC-Earth3-Veg

8. FGOALS-g3

9. HadGEM3-GC31-LL

10. HadGEM3-GC31-MM

11. INM-CM4-8

12. IPSL-CM6A-LR

13. MIROC-ES2L

14. MIROC6

15. MPI-ESM1-2-HR

16. MPI-ESM1-2-LR

17. MRI-ESM2-0

18. UKESM1-0-LL
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1.1 CARDAMOM

CARDAMOM is a model-data fusion framework used to provide an uncertainty bounded systemic-data informed analysis of

terrestrial ecosystem carbon cycling. CARDAMOM uses a Bayesian approach within an Adaptive-Proposal Markov Chain

Monte Carlo algorithm (Haario et al., 2001; Bloom et al., 2016) to integrate diverse ecological information and their uncertain-5

ties to retrieve ensembles of parameters (representing ecosystem traits) for an intermediate complexity process-model of the

terrestrial ecosystem carbon and water cycles (DALEC). CARDAMOM-DALEC is applied on a per-pixel basis, meaning that

the calibration for each location is a function of the local data, their uncertainties and ecological theory embedded in DALEC

and ecological and dynamical constraints (for details see Bloom and Williams, 2015; Bloom et al., 2016; Famiglietti et al.,

2021; Smallman et al., 2021). Our pixel-by-pixel approach gives us a unique capability to retrieve spatially explicit parameter10

(i.e. trait) and uncertainty information, removing the need for plant functional type assumption, instead reflecting real within

biome biological variability (Exbrayat et al., 2018). Our analyses can be used to understand the internal carbon cycling dynam-

ics from site scale (Smallman et al., 2017; George-Chacon et al., 2023; Thayamkottu et al., 2024) to large scale evaluations of

land surface models not able to directly integrate observations (Caen et al., 2022; Williams et al., 2025).

DALEC is a suite of process-models of varied levels of complexity and process representation, selected to match to the15

requirements of the analysis of interest and the availability of observations for calibration. The specific version of DALEC used

here is DALEC-4 (Smallman et al., 2019, 2021), hereafter referred to simply as DALEC. DALEC simulates the states and fluxes

of carbon and water in terrestrial ecosystems and their exchanges with the atmosphere. DALEC has four live C pools (labile,

foliage, wood (above + below), and fine roots), two dead organic matter pools (litter, soil organic matter (SOM)) and a three

soil water pools at varied depths. Carbon uptake, via photosynthesis (gross primary production, GPP), is estimated as a function20

of meteorology, simulated LAI and available water supply from the roots. GPP is allocated to autotrophic respiration (Ra) and

plant tissues based on temporally fixed fractions. The labile pool supports additional seasonal foliage growth as a function

of a day-of-year model, while foliage loss is also determined using a day-of-year model (Bloom and Williams, 2015). Wood

and fine root turnover follows 1st order kinetics. Decomposition of litter to SOM and heterotrophic respiration (Rh) resulting

from the mineralisation of both litter and SOM follow parametrisable 1st order kinetics with an exponential temperature25

modification. Fire and deforestation / degradation are imposed on DALEC using forcings derived from Earth observations.

Fire emissions are determined by imposing a burned fraction and assuming a fraction of the biomass contained in the burned

pixel fraction is combusted or converted to litter based on locally calibrated, tissue specific combustion-completeness factors,

following Exbrayat et al. (2018). Deforestation / degradation follows a similar approach to fire. Each carbon stock and flux

within DALEC is controlled by one or more parameters which are estimated probabilistically by CARDAMOM.30

The version of CARDAMOM used here (2003-2024, 0.5 x 0.5 degree, monthly) is described in detail in Smallman et al.,

(in prep) and is submitted to version 14 of the TRENDY model inter-comparison which feeds into the Global Carbon Project

2025 (Friedlingstein et al., 2025). CARDAMOM uses the following observational constraints and uncertainties.

– Monthly MODIS LAI and fAPAR (2003-2023; Myneni et al. (2021)).

– Annual MODIS GPP (2003-2023; Running and Zhao (2021)).35
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– Annual woody biomass maps (2007, 2010, 2015-2019) merged from Xu et al. (2021).

– Single estimate of the initial soil C content (1 m depth; Hengl et al. (2017)).

– Prior estimate for leaf carbon per unit leaf area (Butler et al., 2017).

– Prior estimate for the carbon use efficiency (NPP/GPP; Collalti and Prentice (2019)).

All variables reported in this manuscript are calculated at the pixel level using the full ensemble information and propagated40

assuming fully correlated uncertainties. Reported values will be the median, defining the ‘most likely’ estimate given the

assimilated observations and the 95% confidence interval (95% CI) but aggregating in space the pixel level 2.5% and 97.5%

quantiles.
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