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Abstract. The added value of increased process complexity has long been a central yet unresolved question in hydrological
modeling, particularly for snowmelt runoff (SMR), where multiple physical processes interact in complex ways. To address
this, we develop a Tree-Based Model Complexity Scoring (TBMCS) method to systematically quantify the complexity of
snow-related processes across 13 global hydrological and land surface models. Then by using SMR characteristics, i.e., total
runoff (Qgum ), peak discharge (Quax), and centroid timing (CTQ), as integrated indicators to evaluate these models, we sys-
tematically quantify the linkage between model complexity and model performance in 1,513 snow-dominated basins. Results
show that (1) models differ substantially in their representation of physical processes, with the largest divergence in melting
process treatments, followed by sublimation, interception and rainfall-snowfall partitioning processes. (2) While the model per-
formance for Qg and Quax shows limited sensitivity to model complexity, CTQ performance exhibits a positive correlation
with model complexity (r = 0.56, P < 0.05) particularly in highly complex basins, highlighting the role of process complexity
in stern conditions. (3) We also find that the model performance depends more on systematic and balanced representations
of key processes than on complexity alone. High-complexity models with well-integrated processes (e.g., DBH) show high
robustness, whereas models lacking critical modules exhibit poor accuracy, and even simpler models with well-designed mod-
ules (e.g., PCR-GLOBWB) can perform robustly. This study provides a quantitative framework for assessing model complexity
and emphasizes that systematic process design is critical for improving SMR simulations in complex environments, offering

guidance for future model development.

1 Introduction

Hydrological models play a central role in global water resources management, flood forecasting, and ecosystem protection.
With advances in computational capacity and growing understanding of physical processes, these models have evolved from
early conceptual models to today’s complex and process-based frameworks. While more sophisticated models can represent a
larger number of physical processes, numerous studies have shown that increasing complexity does not always yield statistically
significant improvements in performance, in part due to over-parameterization and overfitting (Beven, 1993, 2006). At the
same time, the principle of “as simple as possible, but not simpler” continues to guide model development (Valéry et al.,

2014). Despite the complex basin conditions with strong spatial heterogeneity, previous studies have shown that even simple
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models are capable of adequately describing its integrated response characteristics (Savenije, 2001; Schoups et al., 2008), as
they embody fundamental physical principles (Ohmura, 2001). Therefore, a long-standing question that then arises is whether
greater model complexity necessarily translates into better model performances (Schoups et al., 2008; Valéry et al., 2014; Reed
et al., 2025). This remains a central challenge for model development, particularly in determining which physical processes
warrant further refinement to justify added complexity and which can be simplified. As a result, a systematic, quantitative
evaluation of the complexity—performance relationship is essential for the future of hydrological modeling.

This question is particularly relevant in snow-dominated basins. Compared with rainfall-driven runoff, snowmelt runoff
(SMR) is a more intricate process, involving rainfall-snowfall partitioning, canopy interception, and sublimation during the
accumulation period, as well as energy balance, liquid water transfer, and snow—albedo feedbacks during the melting period.
The coexistence of these processes and their strong interactions creates a high degree of physical complexity, making SMR an
ideal testbed to evaluate whether increased model complexity indeed translates into better performance.

However, existing models differ substantially in how these snowmelt-related processes are represented. Depending on their
primary objectives, some models simplify or even ignore processes such as sublimation, relying instead on parameter calibra-
tion to approximate snow sublimation (e.g., LPJML). In contrast, others adopt a more process-based approach (e.g., CWATM),
explicitly accounting for the energy requirements and resistances associated with sublimation. Similarly, while some models
explicitly resolve snowmelt processes via full energy balance schemes—accounting for canopy radiative transfer JULES-W2),
snow aging (ORCHIDEE-MICT), or aerosol-albedo interactions (CLM40)—others rely on empirical degree-day formulations
(e.g., LPJML, PCR-GLOBWB). Such difference makes it difficult to compare models and to understand the linkages between
complexity and performance, especially given that model complexity is challenging to quantify (Best et al., 2015; Orth et al.,
2015; Merz et al., 2022). Prior efforts to describe complexity have often relied on qualitative text descriptions or schematic
illustrations (Telteu et al., 2021; Miiller Schmied et al., 2025), which, although informative, lack a consistent quantitative
framework. Therefore, there is a pressing need to develop a clear and unified framework for quantifying model complexity.

In addition, previous studies have suggested that higher complexity does not necessarily lead to superior performance
(Savenije, 2001). For example, Ruelland (2023) evaluated the SIAR model in 17 basins in the French Alps and Pyrenees
and found that a single-parameter model could achieve performance comparable to more complex alternatives. Similarly,
Valéry et al. (2014) reported that moderately complex models outperformed both overly simple and overly complex models
across 380 basins in France, Switzerland, Sweden, and Canada. Merz et al. (2022) using data from 700 basins across the conti-
nental United States, also highlighted that an intermediate-complexity model (SALTO17) performed best at the regional scale.
However, several limitations remain. First, complexity is often defined merely by parameter count, overlooking the mechanistic
representation of processes and thereby obscuring how process-level complexity affects performance. Second, most evaluations
are based on limited model ensembles or basin samples, restricting the generalizability of their findings under large-scale and
heterogeneous conditions. Third, performance assessments commonly neglect snowmelt-related metrics such as total runoff
(Qsum), peak discharge (Qumax), and centroid timing (CTQ), leading to incomplete conclusions in snowmelt-dominated re-
gions. Collectively, these limitations hinder a robust understanding of the complexity—performance relationship and limit the

transferability of insights across diverse model structures and hydrological conditions.
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To address these gaps, this study proposes a unified and quantitative framework to characterize model complexity in SMR
processes. We compile 13 state-of-the-art large-scale hydrological, land surface, and dynamic vegetation models that span a
broad spectrum of complexity. These include six ISIMIP2a water sector models (PCR-GLOBWB (Sutanudjaja et al., 2018),
DBH (Tang et al., 2006), VIC (Liang et al., 1994), MATSIRO (Pokhrel et al., 2014), CLM40 (Oleson et al., 2010), LPJML
(Schaphoff et al., 2018)) and seven ISIMIP3a models (CWATM (Burek et al., 2020), HO8 (Hanasaki et al., 2008), HYDROPY
(Stacke and Hagemann, 2021), JULES-W2 (Best et al., 2011), MIROC-INTEG-LAND (Yokohata et al., 2020), ORCHIDEE-
MICT (Guimberteau et al., 2018), WATERGAP2-2E (Miiller Schmied et al., 2024)). The ensemble is not intended to be an
exhaustive set of all available models (Hou et al., 2023; Guo et al., 2024), but it aims to provide a representative and sufficiently
diverse testbed for evaluating the complexity—performance relationship.

Specifically, we aim to (1) overcome the limitation of parameter-count—based definitions by developing a Tree-Based Model
Complexity Scoring (TBMCS) method that quantifies process-level complexity in snow accumulation and melt; (2) address
the lack of model and basin diversity by leveraging a large and representative ensemble of 13 state-of-the-art models across
1513 snowmelt-domain catchments worldwide; and (3) tackle the narrow scope of performance metrics by evaluating models
against key SMR indicators—Qgum, Qmax, and CTQ. In addition, this study seeks to provide a systematic and comprehensive
assessment of whether greater model complexity leads to improved performance under large-scale and high-heterogeneity

conditions, while also identifying priorities for process representation to guide future model development and selection.

2 Data and Methods
2.1 Models and study regions

This study uses 13 models from ISIMIP2a/3a, categorized into seven global hydrological models (GHMs: PCR-GLOBWB,

DBH, VIC, CWATM, HO8, HYDROPY, and WATERGAP2-2E), five land surface models (LSMs: MATSIRO, CLM40, JULES-W2,

MIROC-INTEG-LAND, and ORCHIDEE-MICT), and one dynamic global vegetation model (DGVM: LPJML) as the testbed
for examining the linkage between model complexity and performance. These categories differ in their representation of phys-
ical processes: GHMs generally provide more comprehensive descriptions of water balance processes; LSMs incorporate more
detailed parameterizations of energy-related processes; and DGVMs place greater emphasis on vegetation and ecological dy-
namics. Analyzing differences in model performance thus offers insight into disentangling the role of process representation
across model categories.

The study domain comprises 1,513 natural basins in the mid- to high-latitude Northern Hemisphere that are minimally
affected by human activities, glaciers, or permafrost, and that have at least 10 years of observational records during 1979—
2019 (Yin et al., 2024). The key runoff characteristics considered here are Qsum, Qmax, and CTQ, which are crucial for
water resource utilization, flood hazard prevention, and water resource management, respectively. Details of basin selection,

characteristic definitions, and data quality control procedures are provided in Section 2 of Part 1.
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2.2 The main snow accumulation and melt processes

Here, we examine several key cascading processes from the snow accumulation period to the snowmelt period, including
rainfall-snowfall partitioning, snow interception, snow sublimation, snowmelt, canopy radiative transfer, and surface albedo
changes. This design follows our experimental focus on the key characteristics of SMR (i.e., total runoff, peak runoff, and
centroid timing). Among these processes, rainfall-snowfall partitioning, snow interception, and snow sublimation are related
to snow accumulation and are more closely associated with Qg and Quax, Whereas canopy radiative transfer and surface
albedo are mainly associated with snowmelt. Thus, it is necessary to score the complexity of all cascading processes. A

detailed description is provided in Section 2.2.1 of Part 1.
2.3 The Tree-Based Model Complexity Scoring (TBMCS) method

To quantitatively assess the relationship between model performance and model complexity, a tree-based framework is intro-
duced to evaluate model complexity (Fig. 1). This framework captures structural differences—specifically tree depth, number
of nodes, and number of leaves—which together characterize the overall complexity of a model. In this representation, the
calculation of a variable Y at the root node (Fig. 1) is considered “more complex” when the model relies on a larger number
of governing equations (nodes, blue boxes), input variables (leaves, grey boxes), and/or parameters (grey boxes with dashed
outlines), all of which enrich the physical realism of the modeled processes. Here, “physical realism” refers to more explicit
and comprehensive descriptions of land-surface heterogeneity and physical parameterizations that capture dynamic system
behaviors. Such enhancements typically increase model complexity by expanding the number of nodes and leaves within the

tree structure.

Depth: 4 Ideal Model
Nodes: 7
Leaves: 5
Score: 5

Physical Process

Function not expanded
( m= f(a,b) ) ( n=f(a,,b,) ] k Parameter
) | ] (e

Input Data

) a,= f(dy.e,)

Figure 1. A conceptual diagram of the *Tree-Based Model Complexity Scoring’ (TBMCS) method. The root node is the target variable
to be predicted (Y). The node will continue branching for each term in the equation if the term is further modeled using another equation or

sub-model. The branching criteria for nodes follow the rules described in the text above.

To build such a tree, we start from a variable of interest and its mathematical equation in a root node. A node continues

branching for each term of the equation if that term is further modeled with an additional equation (or sub-model). Branching
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stops when one of the following criteria is met: (1) the term corresponds to an input dataset or parameter (Fig. 1, grey boxes);
or (2) the term corresponds to a variable whose physical representation does not significantly differ among models or is
already encoded in another tree (Fig. 1, green boxes). By constructing such trees for the same variable (e.g., Y in Fig. 1) and
applying consistent branching criteria across different large-scale hydrological models, we establish a unified, quantitative, and
measurable framework for scoring the relative (not absolute; see Discussions) complexity of snow-related processes.

After building the trees, the number of depths, nodes, and leaves is counted, and weights are assigned to obtain a quantitative
complexity score for each model. Given the hierarchical structure that governs the model’s ability to accurately simulate runoff
characteristics, we assign weights of 0.6, 0.3, and 0.1 to tree depth, number of nodes, and number of leaves, respectively. These
weights reflect the relative importance of each structural attribute in influencing complexity. Although the selection of weights
is subjective, it does not affect the relative ranking among models, which is the primary purpose of this study. Future work may
revise these weights to better represent absolute complexity.

Finally, we assess the four key physical processes described in Section 2.2 by assigning each a complexity score that
reflects the difficulty of estimating snowfall (P, ), interception (P, ), sublimation (Egpow), and snowmelt (). The overall
complexity of each model is then calculated as the sum of these scores, providing a straightforward measure of both the relative

emphasis on individual processes and the model’s overall structural complexity.
2.4 Experiment design

To analyze the relationship between model complexity and model performance, we use the Pearson correlation coefficient (r)
as the primary metric. The Pearson correlation coefficient r,, between two variables = and y is defined as:

n

S (@ —7) (s — )

n n
Z(ﬂfi—i’)z Z(yi—§)2
i=1 i=1
where z; and y; are the values of the i-th ( = 1,...,n) observations of variables x and ¥y, and Z and ¥ are their respective

means. In this study, = represents the model complexity score and y represents the model performance (e.g., model bias).
Basin complexity is primarily determined by two key factors—topography and vegetation. To quantify these factors, we
employ four representative metrics: basin mean elevation (DEM) and its variability (DEMstd) for topography, and leaf area
index (LAI) and plant functional type entropy (PFTh) for vegetation. Each metric plays a critical role in shaping the physical
processes that govern snowmelt runoff. A composite basin complexity index is derived for each basin by normalizing and
aggregating these four metrics, following the detailed procedure described in Section 2.2.3 of Part 1.
To further disentangle the effects of individual basin complexity factors on the relationship between model complexity and

model performance, we apply partial correlation analysis. This method quantifies the association between two variables while
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controlling for the influence of a third variable, and is defined as:

rmy - Tmzryz
2

Tey.z = )
Ja-r)a-r)

where 7., denotes the partial correlation coefficient between variables x and y after controlling for factor z. In this study,
we define = as model complexity, ¥ as model performance in a given basin, and z as a specific basin complexity factor (e.g.,
DEM, DEMstd, LAI, or PFTh).

3 Results
3.1 Quantification and Characterization of Model Complexity

We begin our analysis by quantifying the physical complexity of the rainfall-snowfall partitioning process (Fig. 2). Rainfall-
snowfall partitioning is a key process that determines the phase of precipitation reaching the land surface, with different phases
exerting substantial influence on snowpack accumulation and ablation. Air temperature is widely recognized as the primary
indicator for distinguishing precipitation phase. Existing models generally implement precipitation-phase discrimination via
two approaches: (1) directly using the precipitation phase from the forcing data (grey shaded area in Fig. 2), or (2) applying
a temperature-threshold-based rainfall-snowfall partitioning scheme. Among the 13 ISIMIP models, four (MATSIRO, HO8,
MIROC-INTEG-LAND, ORCHIDEE-MICT) directly use precipitation phase from the forcing data. The remaining nine mod-
els employ a rainfall-snowfall partitioning scheme, which typically follows one of two formulations: a fixed single-temperature

threshold (blue shaded area in Fig. 2) or a segmented dual-temperature threshold (green shaded area in Fig. 2).
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Figure 2. TBMC-based scoring for the rainfall-snowfall partitioning process. Each schematic diagram shows the tree for each model.
The plotting order is arranged from the lowest to the highest score. The gray, blue, and green shaded areas represent snowfall obtained directly
from the forcing data, estimated using a fixed single temperature threshold, and estimated using a segmented dual-temperature threshold,

respectively.

The fixed single-temperature threshold method adopts a constant critical temperature to determine precipitation phase. When
the air temperature falls below the threshold, precipitation is classified as snowfall; otherwise, it is rainfall. Models such
as PCR-GLOBWB, DBH, LPIML, CWATM, JULES-W2, and WATERGAP2-2E apply this approach. In contrast, the dual-
temperature threshold method employs two critical temperatures to represent a transitional range between rainfall and snowfall
(e.g., VIC, CLM40, HYDROPY). Based on these structural differences, the complexity score for the rainfall-snowfall parti-
tioning process across the 13 models ranges from 0.7 to 1.9.

Following rainfall-snowfall partitioning, snow interception is the next key process that determines the fraction of snowfall
retained within the canopy versus that reaching the ground. This process also influences the exchange of energy and mass
between the forest canopy and the atmosphere, thereby altering the sub-canopy snow distribution. Among the 13 ISIMIP
models, all except HO8 include an explicit representation of interception (Fig. 3). Based on the TBMCS method, the complexity
scores range from 1.7 to 4.1. Most models share a similar three-layer tree depth, with differences primarily arising from
the number of leaves (i.e., parameters). The magnitude of interception capacity is closely tied to vegetation representation,

typically parameterized as a function of LAI (blue shading in Fig. 3). CWATM provides the simplest scheme, relying solely on
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a fixed coefficient (grey shading), whereas WATERGAP2-2E offers the most detailed formulation by accounting for vegetation,

temperature, and evapotranspiration effects (green shading).
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Pt total precipitation
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SAl: steam area index
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Figure 3. TBMC-based scoring for the interception process. Each schematic diagram shows the tree for each model. Since the HO8 model

does not include an interception module, it is therefore excluded from the scoring. The plotting order is arranged from the lowest to the

highest score. Gray, blue, and green shaded areas denote interception directly linked to the parameter, with LAI effects, and with evaporation

effects, respectively.

Notably, several models—including CWATM, HYDROPY, CLM40, LPJIML, DBH, ORCHIDEE-MICT, and WATERGAP2-2E—do

not distinguish precipitation phase in their interception parameterizations, applying a unified scheme for both rainfall and snow-

fall. In contrast, the remaining models employ separate parameterizations specifically for snow interception.
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Snow sublimation is a major snow-loss process during the cold season and a key component of energy and mass exchanges

between the cryosphere and the atmosphere. Among the evaluated models, all except HYDROPY explicitly represent subli-

mation, yielding complexity scores from 1.6 to 4.7. These representations can be grouped into two main types: (1) a fixed

sublimation value, as in LPJML (grey shading in Fig. 4); and (2) formulations that estimate sublimation based on evapotran-

spiration, adopted by the other models. Most models share a three- to four-layer depth and account for the effects of vapor

pressure deficit (VPD), surface resistance (Rgy.f), and aerodynamic resistance (R,;;) on sublimation (blue and green shading).

More complex implementations explicitly model R, (green shading), primarily by incorporating vegetation characteristics

such as LAI, as evident in JULES-W2, DBH, CLM40, PCR-GLOBWB, and CWATM. CWATM also includes a crop-specific

sublimation factor when the underlying surface is cropland, resulting in the highest complexity score (4.7).
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Figure 4. TBMC-based scoring for the sublimation process. Each schematic diagram shows the tree for each model. Since the HYDROPY

model does not include a sublimation module, it is therefore excluded from the scoring. The plotting order is arranged from the lowest to

the highest score. Gray, blue, and green shaded areas denote sublimation directly linked to a fixed parameter, accounting for a resistance

parameter, and further parameterized surface resistance, respectively.
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Snowmelt, the process through which accumulated snow ablates, is the most critical determinant of runoff generation. Based
on structural differences, existing snowmelt modules can be broadly classified into two categories: degree-day models (grey
shading in Fig. 5) and energy-balance models (blue shading in Fig. 5). PCR-GLOBWB, LPIML, CWATM, HYDROPY, and

185 WATERGAP2-2E employ the degree-day method, whereas HO8, VIC, DBH, MATSIRO, MIROC-INTEG-LAND, ORCHIDEE-MICT,
JULES-W2, and CLM40 use an energy-balance formulation.

Degree-day models estimate melt solely from a degree-day factor, producing relatively low complexity scores (1.8-2.2).
Differences nevertheless exist among these models depending on whether the degree-day factor is fixed or dynamic. For
example, PCR-GLOBWB, LPJML, and WATERGAP2-2E employ fixed factors, whereas CWATM uses a dynamic factor

190 incorporating rainfall intensity and seasonality. HYDROPY also uses a dynamic factor that increases linearly with the number
of snowmelt days.

In contrast, energy-balance models exhibit substantially higher complexity scores (5.2-6.1), as they compute snowmelt
by explicitly resolving the snowpack energy budget, including longwave and shortwave radiation, sensible and latent heat
fluxes, ground heat flux, and the latent heat of fusion. Shortwave radiation is particularly critical. HO8 calculates vegetation

195 shading directly using albedo, whereas models such as JULES-W2, DBH, and CLM40 employ the two-stream approximation
(Sellers, 1985). CLM40 further enhances this representation by explicitly accounting for vegetation structure and type through
parameters such as stem area index (SAI), leaf reflectance, and spectral transmittance across PFTs. Surface albedo is another
major component; although snow albedo depends on snow age, melt stage, surface temperature, water content, and impurities,
simpler models (e.g., VIC) represent only its decay with snow aging. In contrast, CLM40 includes solar zenith angle, impurities

200 such as black carbon and dust, snow age, temperature, and spectral dependence, yielding a far more comprehensive treatment.

In summary, degree-day models offer simplicity and computational efficiency but rely on empirical assumptions, whereas
energy-balance models provide a more physically realistic depiction of snowmelt at the cost of increased complexity and data

requirements.

10
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Figure 5. TBMC-based scoring for the melt process. Each schematic diagram shows the tree for each model. The plotting order is
arranged from the lowest to the highest score. Gray and blue shaded areas denote the degree-day factor model and the energy balance model,

respectively.
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We aggregated the complexity scores of the four key physical processes for each model to derive a total complexity score
(Table 1). The results indicate that the three most complex models are CLM40, JULES-W2, and DBH (scores > 14), whereas
the least complex are HYDROPY, LPJML, and HO8 (scores < 10). Unlike earlier approaches defining complexity solely by
the number of fluxes and storages (Miiller Schmied et al., 2025), our framework provides a more quantitative and structurally
consistent assessment by considering not only the represented variables but also the number of physical formulations, their

associated parameters and input datasets.

Table 1. Model structural complexity components.

Model Category Rainfall-snowfall partitioning Interception Sublimation Melt Sum
HYDROPY GHM 1.9 2.6 0 2.1 6.6

LPIML DGVM 1.8 2.7 1.6 1.8 79

HO8 GHM 0.7 0 29 52 88

PCR-GLOBWB GHM 1.8 2 4.6 1.8 102
CWATM GHM 1.8 1.7 4.7 22 104
WATERGAP2-2E GHM 1.8 4.1 3.1 2.1 111
MATSIRO LSM 0.7 29 29 58 123
MIROC-INTEG-LAND LSM 0.7 29 29 5.8 123
VIC GHM 1.9 2.9 3 52 13

ORCHIDEE-MICT LSM 0.7 2.8 4 58 133
DBH GHM 1.8 2.8 4.4 5.6 146
JULES-W2 LSM 1.8 2.8 4.1 59 146
CLM40 LSM 1.9 2.7 4.5 6.1 152

The largest contributions to total complexity and inter-model variance arise from the melt process (1.8-6.1), followed by
sublimation (0—4.7), interception (0—4.1), and rainfall-snowfall partitioning (0.7-1.9). This pattern highlights that existing
models place the greatest emphasis on melt processes, while snow-accumulation processes are represented less extensively. A
category-level comparison further shows that LSMs generally exhibit higher complexity than GHMs and the DGVM, primarily

due to their detailed energy-balance formulations within the melt modules.
3.2 Linkage between model complexity and model performance

Based on the established complexity metrics for each model, we subsequently examine the relationship between model com-
plexity and model performance, aiming to identify the conditions under which higher complexity confers performance advan-
tages. Figure 6 summarizes the overall relationship between model complexity and performance. The results show that for

CTQ (Fig. 6¢), there is a positive relationship (r = 0.45) between complexity and model performance—defined as the propor-
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tion of basins with acceptable bias (+20% for Qgum and Quax, £5 days for CTQ across 1513 basins). For Qguy and Quax

(Figs. 6a-b), model complexity exhibits little to no consistent influence on performance (r = 0.03, » = —0.14, respectively).
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Figure 6. Relationship between model complexity and model performance. Panels (a—c) present Qsum, Qmax, and CTQ, respectively.

The red line denotes the fitted regression. HH (high model complexity and high model performance), HL (high complexity and low perfor-

mance), LH (low complexity and high performance), and LL (low complexity and low performance) are defined based on the median values

of the corresponding x- and y-axis variables. Point shapes indicate model categories: circles for GHM, squares for LSM, and triangles for

DGVM. ALL, GHM, and LSM represent the Pearson correlation coefficients calculated using all models, global hydrological models, and

land surface models, respectively.
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We then divided basins into high- and low-heterogeneity groups using the median value of basin complexity as the threshold
(definitions provided in Section 2 of Part 1), aiming to test whether model complexity yields consistent performance gains
under different heterogeneity conditions. Figure 7 shows that, overall, the correlation between model complexity and perfor-
mance is stronger under high basin complexity. Across different runoff characteristics, the correlation is not significant for
Qsum and Q. In contrast, for CTQ, model complexity is significantly associated with performance (r = 0.56, P < 0.05)

under high basin complexity (Fig. 7f). Ten out of thirteen models fall within the 95% confidence interval of the fitted line.
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Figure 7. Relationship between model complexity and model performance under different basin complexity scenarios. (a—c) show
the relationship under low basin complexity and (d—f) show the relationship under high basin complexity. The red line denotes the fitted
regression. The red shading indicates the 95% confidence interval. HH (high model complexity and high model performance), HL (high
complexity and low performance), LH (low complexity and high performance), and LL (low complexity and low performance) are defined
based on the median values of the corresponding x- and y-axis variables. Point shapes indicate model categories: circles for GHM, squares
for LSM, and triangles for DGVM. ALL, GHM, and LSM represent the Pearson correlation coefficients calculated using all models, global

hydrological models, and land surface models, respectively.

The relationship between model complexity and performance differs across runoff characteristics because they rely on
distinct processes. Qsum 1s primarily constrained by water balance closure (snowfall-sublimation—snowmelt) and is therefore

less sensitive to detailed process representations; even relatively simple models can yield reasonable results as long as water
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balance is maintained. Q,,,x depends more on reproducing input peaks and runoff routing, yet most models remain simple in
key processes such as rainfall-snowfall partitioning and interception, so added complexity offers limited benefit.

In contrast, CTQ is highly sensitive to energy-related processes (e.g., canopy radiative transfer, snow density, surface albedo).
Simple degree-day schemes often misrepresent melt timing, whereas more complex energy-based formulations capture the on-
set and magnitude of snowmelt more accurately, leading to stronger improvements in CTQ performance. For example, DBH
and LPJML illustrate typical cases of high-complexity—high-performance and low-complexity—low-performance, respectively:
DBH employs an energy-balance approach, while LPJML relies on a fixed degree-day factor. Under high basin complex-
ity, fixed factors fail to account for key mechanisms such as melt retardation from canopy shading or melt acceleration via
snow—albedo feedbacks. This highlights that model complexity becomes particularly advantageous in heterogeneous environ-
ments, where more detailed representations are required to capture the intricate processes controlling runoff timing.

Error compensation further explains these differences. For Qgum and Quax, process-level errors can be offset through cal-
ibration, masking the potential advantages of higher complexity. By comparison, CTQ, as a normalized timing metric, is less
amenable to such compensation because it reflects the full temporal distribution of flows. In snow-dominated basins, spatial
variability in energy balance and snow storage strongly controls runoff timing, giving more complex models a clear advantage
that cannot be achieved through parameter tuning alone.

Building on the preceding section, Figure 8 illustrates the mechanisms linking model complexity to performance. Partial
correlation analysis shows that the impacts of individual basin complexity factors (DEM, DEMstd, LAI, and PFTh) are uneven.
Model complexity exhibits limited or even negative correlations with Qgum and Quax and shows little sensitivity to hetero-
geneity, whereas CTQ is most strongly influenced, displaying a pronounced threshold effect and a positive correlation with

complexity that becomes stronger under higher heterogeneity.
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Figure 8. Influence of basin complexity factors on the correlation between model complexity and model performance. Panels (a—d)
correspond to DEM, DEMstd, LAI, and PFTh, respectively. In each panel, the x-axis (Q1-Q10) represents deciles from the 10th to the 100th
percentile, with values shown in parentheses. Each grid cell indicates the partial correlation, where red denotes negative correlation and blue

denotes positive correlation. * indicate statistical significance at P < 0.05.

For the threshold effects in the relationship between model complexity and CTQ performance, the correlation with model
complexity reaches its maximum at a PFTh of approximately 0.89 (Fig. 8d). This is likely because greater vegetation di-
versity enhances canopy—snow interactions (Musselman et al., 2008), but beyond this threshold, the coexistence of multi-
ple canopy—snow processes may diminish the advantage of complex models. A similar threshold is observed for DEMstd at
roughly 226.48 m (Fig. 8b). At this point, the gain from complexity peaks as models become fully equipped to resolve intricate

snowmelt processes. However, beyond this threshold, errors in forcing data and routing, along with increased parameter uncer-
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tainties, begin to dominate, limiting further benefits from additional complexity. For Qg and Qy,ax, threshold effects are also
present, though not statistically significant. For example, when DEM reaches 930.33 m, the correlation between model com-
plexity and Qsunm, performance peaks at 0.31 (Fig. 8a). Similarly, when LAI is 0.32, the correlation between model complexity
and Quax performance reaches its maximum value of 0.34 (Fig. 8c). These findings underscore that model development and
improvement should be adapted to basin-specific surface conditions. Enhancing the representation of key physical processes
is crucial for improving accuracy and robustness, but efforts should be targeted to avoid excessive parameterization that may
introduce additional uncertainty or overfitting.

We also find that with increasing basin complexity, the link between model complexity and performance becomes stronger,
particularly under conditions of higher DEM, where more complex models are required to reliably simulate CTQ. This is
physically grounded in the fact that high-elevation regions receive strong surface radiation and accumulate substantial snow,
requiring energy-balance-based melt schemes to accurately capture both the onset and acceleration of snowmelt—processes
that are typically represented in more complex models and are essential for reproducing CTQ. For Qg and Quax, accurate
simulation is largely determined by processes related to snow accumulation, whereas model complexity is primarily reflected
in the representation of snowmelt. As a result, the potential benefits of added complexity are often offset by parameter uncer-
tainties, which can even lead to a negative relationship between complexity and performance.

Finally, we extend these findings from a new perspective by examining the relationship between complexity and model
robustness (Fig. 9). Here, robustness is redefined as a composite criterion of model performance, requiring both low bias and
a strong ability to maintain accuracy under increasing basin complexity (see Section 2 of Part 1 for details). By incorporating
this indicator, Figure 9 complements Figure 6 by moving beyond general accuracy and providing a more comprehensive

assessment of model robustness in heterogeneous environments.
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Figure 9. Relationship between model complexity and model robustness. Panels (a—c) present Qsum, Qmax, and CTQ, respectively. The

red and blue line represents the fitted regression for all models and GHMs. The red and blue shading indicates the 95% confidence interval.

HH (high model complexity and high model performance), HL (high complexity and low performance), LH (low complexity and high

performance), and LL (low complexity and low performance) are defined based on the median values of the corresponding x- and y-axis

variables. Point shapes indicate model categories: circles for GHM, squares for LSM, and triangles for DGVM. ALL, GHM, and LSM

represent the Pearson correlation coefficients calculated using all models, global hydrological models, and land surface models, respectively.

Consistent with the previous findings, complexity shows no significant correlation with robustness for Qgum and Qpax

(Figs. 9a-b). However, for CTQ (Fig. 9¢), there is a significant positive correlation between complexity and model robustness
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(r =0.53, P <0.1). This strongly validates our previous conclusions: for simulating centroid timing, more complex models
not only demonstrate a higher potential for accuracy in complex environments but also exhibit greater stability when applied
across a wide range of conditions. Notably, GHMs exhibit a strong positive correlation (r = 0.82, P < 0.05).

In terms of model robustness, DBH, VIC, MATSIRO, HO8, HYDROPY, JULES-W2, and WATERGAP2-2E fall within the
95% confidence interval of the regression line, indicating that increasing model complexity enhances the robustness of CTQ

simulation, whereas other models show weaker associations.
3.3 Physical Process Mechanisms and Targeted Model Optimization

To further interpret the findings presented above, we conducted a process-level analysis to link model complexity with re-
silience and to derive implications for future model development (Fig. 10). Models were classified into four quadrants (HH,

HL, LH, LL) according to their overall complexity and robustness (Fig. 9).
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DBH). In contrast, models in the LL quadrant show pronounced deficiencies in their process representations (Figs. 10i-1). For
instance, HO8 lacks a realistic treatment of canopy interception, which likely contributes to its poor performance.

Models in the HL quadrant are characterized by high structural complexity but low robustness. For example, although
CLM40 incorporates a wide range of physical processes, its reliance on fixed default parameter values appears to limit per-
formance and result in high bias (Yan et al., 2023). A comparison between HH and HL models indicates that their overall
structural complexity scores are not markedly different; thus, the divergence in performance is more likely driven by parameter
choices, specific process formulations, and the strategies used to couple individual components.

By contrast, models in the LH quadrant demonstrate that satisfactory resilience can be achieved even with relatively modest
structural complexity. For example, PCR-GLOBWB and CWATM are consistently classified as LH across all three runoff
characteristics. These models maintain a complete representation of key hydrological processes despite their lower overall
complexity. Notably, CWATM enhances snowmelt simulation by introducing additional parameters to overcome limitations
inherent in the degree-day factor method, illustrating that low-complexity models can still deliver robust accuracy when their
process formulations are carefully designed.

To further investigate how individual physical process modules influence model performance, we selected three representa-
tive models along the linear relationship between model complexity and CTQ robustness identified in Figure 10c. These models
illustrate a gradient of structural sophistication (Figure 11). The simple model HO8 lacks key processes such as canopy inter-
ception, constraining its ability to realistically simulate snowmelt runoff. In contrast, the medium-complexity model CWATM
incorporates all major hydrological processes but employs a simplified degree-day formulation for snowmelt estimation, which
may limit its skill in capturing the timing of meltwater release. At the high-complexity end, the DBH model includes a more
comprehensive suite of physical processes and represents snowmelt using an energy-balance approach, thereby improving the

physical realism of melt simulations.

(a) HO8 (b) CWATM (c) DBH

Lnterc, — Model Interc . interc

--— IDEAL Model N e TG

sublim ¢ ) Parti Sublim

Figure 11. Complexity of physical process representation in representative models. Each radar plot illustrates the relative scores of
four key process modules (Parti: partitioning, Interc: interception, Sublim: sublimation, and Melt) for the models within the corresponding
cluster. Colored polygons denote individual models, and the thick black dashed line represents the ideal model with maximum scores across

all processes, serving as a benchmark for comparison.

22



315

320

325

330

335

340

https://doi.org/10.5194/egusphere-2025-6073
Preprint. Discussion started: 20 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

This comparison highlights that although increasing complexity enables a more explicit representation of cryospheric pro-
cesses, performance gains depend critically on whether the added complexity addresses key limitations—such as melt param-

eterization—rather than on structural complexity alone.

4 Conclusions and Discussions

This study develops the TBMCS method, which for the first time systematically quantifies and compares the physical com-
plexity of snow-related processes across 13 global hydrological and land surface models. Building on this, we conducted a
comprehensive assessment across global 1,513 basins to examine the relationship between model complexity and performance
in simulating three key snowmelt runoff characteristics (Qsym, Qmax, and CTQ), further revealing the pathways through which
model complexity influences performance. Our findings provide new insights into the long-standing debate on where and to
what extent the added complexity of models yields substantive performance gains. The primary findings are summarized as

follows:

e Substantial inter-model differences exist in the representation of physical process complexity, with total scores ranging
from below 10 (e.g., HYDROPY, LPJML, HOS8) to above 14 (e.g., CLM40, JULES-W2, DBH). The largest divergence
arises from the snowmelt process (1.8-6.1), followed by sublimation (0—4.7), interception (0—4.1), and rainfall-snowfall
partitioning (0.7-1.9), indicating that most of the complexity heterogeneity stems from different treatments of melt. For
the different model categories, LSMs generally exhibit higher complexity than GHMs and DGVM, largely due to their

inclusion of detailed energy balance schemes.

e Contrary to the conventional view that “more complex models are not necessarily better,” model complexity shows a
significant positive correlation with CTQ performance under high basin complexity (r = 0.56, P < 0.05), while Qsum
and Quax remain largely insensitive to complexity gains. Basin complexity strengthens the complexity—performance
linkage and introduces threshold effects, with the strongest correlations observed at PFTh = 0.89 and DEMstd = 226 m.
Moreover, from a robustness perspective, CTQ exhibits a strong positive effect (r = 0.53, P < 0.1), underscoring the

irreplaceable value of model complexity in highly complex environments.

e Model performance is shaped less by complexity itself than by the systematic representation of key processes. The ab-
sence of key physical processes constrains model performance more severely than process simplification. DBH (high
complexity—high robustness model) achieves high robustness through balanced and well-integrated process design,
whereas HO8 (low complexity—low robustness model) shows poor accuracy due to missing critical modules such as
canopy interception. In addition, high complexity alone does not ensure robustness due to uncertainty of parameters
(e.g., CLM40), whereas well-designed snowmelt modules enable even simple models to perform resiliently (e.g., PCR-
GLOBWB, CWATM).

We revealed how process complexity shapes model performance in snowmelt runoff, though several limitations remain to be

refined in future work:
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345 e First, as mentioned in Section 2.3, our proposed TBMCS method is not designed to offer the absolute score of a model’s
complexity in this study. Instead, the design is to allow intercomparison among different models - some processes have
been simplified if their governing equations or the represented processes have no major differences from other models.

Future studies could consider more specific complexity measures if the absolute score of the model is required.

e Second, snowmelt-related processes are currently represented separately, but some processes can be coupled. To maintain
350 simplicity, we did not assign more complex scoring for potentially coupled processes. However, future research could

refine this approach to provide a more realistic and accurate absolute score for each model.

e Third, our study lacks a quantitative assessment of how individual processes affect model performance, and has not yet
examined the roles of parameter number, process count, or computational forms (e.g., linear vs. nonlinear). Moreover,
as our focus was on snowmelt runoff, other key processes were not included. Future work should therefore quantify

355 process-specific complexity and conduct more systematic analyses.

Appendix A

Code and data availability. All data used in this study are available from public repositories: (a) ISIMIP model outputs from https://data.isimip.org/;
(b) GSHA (Yin et al., 2024) from https://zenodo.org/records/10433905. The code used in this study is available from the corresponding author

upon reasonable request.
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