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Abstract. Accurate simulation of snowmelt runoff (SMR) is critical for water resource management. However, despite the

abundance of global hydrological models, little is known about their SMR performance. This study first presents a com-

prehensive evaluation of SMR across 15 state-of-the-art large-scale models and runoff products by focusing on their biases in

first-order indices, i.e., the total volume (Qsum), peak flow (Qmax), and centroid timing (CTQ) of runoff in the snowmelt period.

Then by introducing 1,513 snow-dominated basins with diverse topography and vegetation complexities, we further proposed5

a novel model robustness metric to test how different models perform under increasing basin complexity, thereby allowing for

a quantification on how they adapt to stern conditions. Our results reveal that (1) most models exhibit underestimated Qsum

and Qmax and predict CTQ too early. These biases are particularly pronounced in regions such as the western United States,

northern Europe, and northeastern China. (2) Model biases systematically increase with basin complexity, with CTQ exhibiting

strong sensitivity to mean elevation and topographic variability, while Qsum and Qmax being shaped more by mean elevation10

and the diversity of vegetation types in the basin. (3) The robustness assessment further shows that observation-constrained

runoff products exhibit the most outstanding performance (i.e., low biases and strong adaptability to stern conditions), followed

by the ISIMIP3a and ISIMIP2a models. Notably, while global hydrological models generally exhibit stronger robustness in

simulating SMR than land surface models, the latter model category performs substantially better for CTQ than for Qsum

or Qmax, highlighting their structural advantage in capturing melt timing relative to runoff magnitude. This study provides a15

benchmark for SMR evaluation and a new framework for assessing model performance under increasing basin complexities,

offering crucial insights for future model development and uncertainty reduction.

1 Introduction

Snowmelt runoff (SMR) is a critical freshwater resource supporting human society and agricultural development. Globally,

SMR contributes approximately 50% of the annual runoff for more than 26% of the terrestrial land area, directly supplying20

freshwater for about one-sixth of the world’s population (Qin et al., 2020). Accurate simulation of SMR is therefore essential

for effective water resources management and for assessing the impacts of climate change on water resources. This need

becomes increasingly urgent under future climate change scenarios, where established snow–runoff relationships are expected

to shift substantially (Wieder et al., 2022), necessitating a systematic understanding of SMR dynamics.
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However, despite a plethora of large-scale hydrological models simulating SMR as the key process for cold region hydrol-25

ogy, their performances remain unsatisfactory. This is largely due to the inherent complexity of SMR-related processes, which

involves several cascading processes from rainfall–snowfall partitioning, sublimation, canopy interception to snowmelt dy-

namics. Such a challenge is consistently highlighted by multi-Model Intercomparison Projects (MIPs). For example, Hou et al.

(2023) reported substantially lower model skill in cold regions compared to non-cold regions. Similarly, Guo et al. (2024) re-

vealed markedly larger runoff biases in cold regions, particularly for extreme events. However, existing model assessments have30

largely emphasized the overall model performance at annual or seasonal time scales (Tang et al., 2023), and comprehensive

evaluations explicitly targeting SMR remain rare. These studies generally attributed errors to simplified process representa-

tions, parameter uncertainties, or model structures (Beck et al., 2017; Haddeland et al., 2011), without a direct diagnosis of

the underlying processes. As a result, the critical deficiencies in SMR processes are usually entangled with errors from other

hydrological processes (Chai et al., 2025), compromising our understanding of the behavior and limitations of existing models.35

This highlights an urgent need for a tailored diagnosis for the SMR processes to guide future model development.

One of the key factors of a systematic assessment is to identify the appropriate evaluation perspectives. Previous model

evaluations have primarily focused on aggregated metrics such as the Nash–Sutcliffe Efficiency (NSE; Nash and Sutcliffe

(1970)) and the Kling–Gupta Efficiency (KGE; Gupta et al. (2009)). While they are useful for assessing the overall temporal

dynamics, their aggregated nature makes it difficult to disentangle the specific deficiencies tied to process representations. In40

fact, a satisfying model should accurately capture the major characteristics of the SMR hydrograph, namely its total volume

(Qsum), peak flow (Qmax), and centroid timing (CTQ), which are the first-order metrics crucial to water resource management

and utilization. However, past assessments have not been structured to explicitly quantify these dimensions, which may hide

the potential trade-offs of certain models (e.g., a model excelling in timing but failing in volume).

Beyond the major characteristics of a hydrograph, a more critical perspective is to assess how well a model performs across45

diverse land conditions. This is particularly relevant for SMR simulation, where land surface complexity is known to challenge

model accuracy. The complexity is generally related to terrain and vegetation conditions (Li et al., 2022; Fenicia et al., 2014):

high-elevation environments introduce intricate rainfall–snowfall partitioning thresholds and enhanced sublimation (Schulz

and De Jong, 2004; Strasser et al., 2008), while varied topography and vegetation demand sophisticated representations of

canopy interception, radiation transfer, and runoff generation. Taken together, a model that performs well or maintains its skill50

even in the face of increasingly complex land surface conditions should be considered robust. However, past assessments have

rarely been designed to test this robustness and reveal which type of models excel under varying levels of complexity. This

presents another gap in benchmarking our current modeling capabilities.

To address these gaps, we gathered 15 state-of-the-art large-scale runoff models and data products across 1,513 snow-

dominated basins worldwide for the period 1979–2019. Based on this dataset, we systematically evaluated their SMR per-55

formance by explicitly considering the three primary characteristics of the SMR hydrograph, followed by a further test of

model robustness using a novel metrics to describe the performance under varying land complexities. The models and products

include six Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) water-sector models (PCR-GLOBWB, DBH,

VIC, MATSIRO, CLM40, LPJML), seven ISIMIP3a water-sector models (CWATM, H08, HYDROPY, JULES-W2, MIROC-
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INTEG-LAND, ORCHIDEE-MICT, WATERGAP2-2E), and two recent global river-flow data products, namely Global Reach-60

Level A Priori Discharge Estimates for Surface Water and Ocean Topography (GRADES; Lin et al. (2019)) and Global River

Discharge Reanalysis (GRDR; Feng and Gleason (2024)). Our model selection criteria are twofold: first, it should cover a

sufficiently wide spectrum of models to facilitate a discussion on the performance and process disparities of different mod-

elling schemes (Chen et al., 2021; Guo et al., 2024; Hou et al., 2023); second, it should cover observation-constrained runoff

products, allowing for an assessment of the potential performance gains from gauge or satellite data. Our analysis begins with65

a systematic assessment of the primary characteristics of SMR (total volume, peak flow, and centroid timing), followed by

an analysis of performance stratified by land-surface complexity and a detailed discussion of model robustness. By combining

multiple performance aspects and highlighting model robustness, we expect this novel evaluation perspective to offer additional

dimensions for diagnosing model deficiencies, thereby advancing model development and uncertainty reduction.

2 Data and Methods70

2.1 Data

2.1.1 ISIMIP2a/3a water sector models and global runoff products

Table 1 summarizes the 13 state-of-the-art macro-scale water sector models and two data products utilized in this study.

Among these, six models belong to ISIMIP2a, while seven are part of ISIMIP3a. All models were obtained from the ISIMIP

water sector data repository (https://data.isimip.org/). For each model, their total runoff (i.e., sum of surface and subsurface75

runoff) was extracted for river routing (Section 2.2), and the key SMR indices were subsequently calculated for evaluation

(Section 2.3).

These models were categorized into three groups (see Table 1 and references therein): i.e., seven global hydrological models

(GHMs: PCR-GLOBWB, DBH, VIC, CWATM, H08, HYDROPY, and WATERGAP2-2E), five land surface models (LSMs:

MATSIRO, CLM40, JULES-W2, MIROC-INTEG-LAND, and ORCHIDEE-MICT), and one dynamic global vegetation model80

(DGVM: LPJML). We categorized the models into these groups primarily because GHMs tend to focus on water balance

representation, LSMs are generally more advanced in simulating energy-exchange processes, and DGVMs are better suited for

capturing vegetation ecosystem dynamics. Thus, comparative analyses across different model categories may provide insights

into their relative strengths and limitations. We also included two observation-constrained datasets for evaluation—GRADES,

a global runoff product based on VIC model simulations followed by bias correction using gauge-extrapolated information,85

and GRDR, a recently released global runoff product that enhances accuracy by assimilating river-width data from Landsat

into a model-based discharge simulation framework. Incorporating these two discharge products allows for discussions on the

gains brought by observational constraints.

All models were run at a spatial resolution of 0.5◦ with daily time steps. Models with similar meteorological forcing and

simulation scenarios were purposefully chosen such that our comparisons more exclusively focus on process diagnostics instead90

3

https://doi.org/10.5194/egusphere-2025-6071
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



of other uncertainty sources. All models and datasets were matched to the same geospatial framework (i.e., the MERIT-Basins

river network; Lin et al. (2019)) to ensure consistency. Further details are provided in Section 2.2.

Table 1. Overview of models and data products considered in this study.

Experiment Model Climate forcing Model class Reference

ISIMIP2a PCR-GLOBWB GSWP3 GHM Sutanudjaja et al. (2018)

DBH GSWP3 GHM Tang et al. (2006)

VIC GSWP3 GHM Liang et al. (1994)

MATSIRO GSWP3 LSM Pokhrel et al. (2014)

CLM40 GSWP3 LSM Oleson et al. (2010)

LPJML GSWP3 DGVM Schaphoff et al. (2018)

ISIMIP3a CWATM GSWP3-W5E5 GHM Burek et al. (2020)

H08 GSWP3-W5E5 GHM Hanasaki et al. (2008)

HYDROPY GSWP3-W5E5 GHM Stacke and Hagemann (2021)

JULES-W2 GSWP3-W5E5 LSM Best et al. (2011)

MIROC-INTEG-LAND GSWP3-W5E5 LSM Yokohata et al. (2020)

ORCHIDEE-MICT GSWP3-W5E5 LSM Guimberteau et al. (2018)

WATERGAP2-2E GSWP3-W5E5 GHM Müller Schmied et al. (2024)

Dataset GRADES MSWEP / Lin et al. (2019)

GRDR MSWEP and ECMWF / Feng and Gleason (2024)

2.1.2 Routing runoff with the RAPID vector-based routing model

To ensure that all models are comparable under the same geospatial framework, we first routed the gridded runoff of all

ISIMIP2a and ISIMIP3a models through the same river routing model, RAPID (the Routing Application for Parallel compu-95

tatIon of Discharge; David et al. (2011)). RAPID is an efficient vector-based river routing model that enables intercomparison

of discharge at global scales (David et al., 2011), making it an ideal choice for routing ISIMIP runoff.

The river network used for routing is MERIT-Basins (Lin et al., 2019), a high-resolution, vector-based hydrography dataset

constructed from the MERIT-Hydro DEM (Yamazaki et al., 2019). We use the area-weighted mapping technique (Lin et al.,

2018) to map the gridded runoff (0.5◦) onto the vectorized hydrography to determine lateral inflows, with the connectivity of100

the river-network topology pre-specified as input. RAPID employs the Muskingum method, which requires two parameters:

a weighting factor x and the flood-wave travel time k. Since x is less sensitive in the Muskingum method, it is typically set

to 0.3 globally. In contrast, k plays a key role in routing performance and is estimated using river-specific characteristics.

Specifically, k is calculated for each river reach by combining channel length with flow celerity estimated from Manning’s

equation, as expressed in Eqn. (1):105
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3ln
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√

S0

(
wd

2d+w

)2/3
(1)

Where l is the length of the river channel, n is Manning’s roughness coefficient and is typically set to 0.035 for natural rivers

(Lin et al., 2019). S0 is the channel slope, and w and d are the river width and depth estimated by multi-year average runoff

using a long established power-law equation (Andreadis et al., 2013). Note that the river routing model choice and parameters

can influence the SMR timing and magnitude, but due to our evaluation focusing on the long-term mean metrics and the110

small- to medium-sized basins, the impact of the routing model can be considered minimal. In summary, we standardized

forcing data and routing schemes as much as possible, in order to focus on process diagnostics specifically on the land model

parameterizations.

2.2 Methods

2.2.1 Definition of key SMR characteristics115

As briefly discussed in Section 1, diagnosing processes related to SMR can be challenging due to the many processes in-

volved (Fig. 1a). To simplify this, we focus on three first-order characteristics—total runoff (Qsum), peak flow (Qmax), and the

centroid timing (CTQ) of runoff in the snowmelt period. Qsum is closely linked to water availability, Qmax determines flood

hazard potential, and CTQ provides essential information for water resource management. More importantly, these metrics are

directly linked with snow accumulation and melt processes (Fig. 1b). Specifically, rainfall–snowfall partitioning controls the120

precipitation phase and the magnitude of snow accumulation, while snow interception and sublimation regulate snow redistri-

bution and loss. Together, these processes determine the amount of meltable snow, thereby influencing both Qsum and Qmax.

In comparison, the melt process, being more closely linked to energy dynamics, governs the timing and rate of SMR and exerts

a stronger control on CTQ (Fig. 1b). Compared with a full time-series analysis, our focus on these key runoff characteristics

offers a more direct and physically interpretable evaluation of model performance.125

To obtain these metrics, we first defined a snowmelt period based on snow water equivalent (SWE) data from the fifth-

generation atmospheric reanalysis of the European Center for Medium Range Weather Forecasts (ERA5; Hersbach et al.

(2020)), which is between when the maximum SWE is reached and when SWE drops below 1 mm (Fig. 1c). After this, Qsum

is defined as the total runoff in the snowmelt periods. Qmax is the maximum discharge in the snowmelt periods. CTQ refers

to the calendar date on which cumulative runoff reaches 50% of the total runoff in the snowmelt period, which measures the130

timing of concentrated runoff during snowmelt, reflecting both the onset and the rate of melt. These definitions are conceptually

consistent with previous studies that examined annual (Han et al., 2024) or cold-season runoff (Dudley et al., 2017), but they

are further restricted to the snowmelt period to increase the SMR signals. We also introduced a few filtering steps to ensure the

SMR signals are the dominant ones, which will be introduced in Section 2.2.2.
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Figure 1. Major physical processes influencing snowmelt runoff (SMR), key runoff characteristics, and the study area. (a) dominant

physical processes during snow accumulation and melt; (b) linkages between physical processes and key runoff characteristics; (c) definition

of the snowmelt period and the three key characteristics used for model evaluation; (d) spatial distribution of hydrological stations and the

ratio of snowmelt runoff.

2.2.2 Catchment selection135

We obtained daily streamflow data from 1,513 gauges (Fig. 1d) for evaluation. This was sourced from the Global Streamflow

Characteristics, Hydrometeorology, and Catchment Attributes dataset (GSHA; Yin et al. (2024)), covering a total of 21,568

gauges. The gauges were then filtered to include only those above 30◦N (i.e., mid- to high-latitude regions) and those with

long-term snow water equivalent (SWE) ≥ 1 mm in at least one month of the cold season (i.e., during October to March).

Additionally, to minimize the impact of other processes such as human activities, glacier melt, and permafrost thaw on runoff,140
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we excluded basins with urban land cover > 5%, degree of regulation (DOR) > 10%, a combined fraction of urban and

cropland areas > 10%, and glacier or permafrost coverage > 5%. To identify snowmelt-dominated basins, we quantified the

contribution of SMR to total runoff during the snowmelt period (Eqn. (2)), and only basins with SMRratio > 0.5 were retained.

SMRratio =
SMR

Q
(2)145

where SMR is calculated using a water balance approach, following Eqn. (3):

SMR = Q−P + ET (3)

where Q was derived from gauge observations in GSHA (Yin et al. (2024), P from Multi-Source Weighted-Ensemble Precip-

itation (Beck et al., 2019), and ET from Global Land Evaporation Amsterdam Model (Martens et al., 2017).

Above all, only basins with more than 10 years of runoff observations during 1979–2019 were included. For each year, the150

proportion of missing daily records had to be < 10%, and missing values were filled using linear interpolation. Via the above

constraints, potential interferences on basin-scale SMR were minimized, ensuring the robustness of the SMR assessment.

As illustrated in Figure 2, the key characteristics of snowmelt runoff exhibit pronounced spatial variations across the North-

ern Hemisphere. In the western coastal and mountainous regions of the United States, the northeastern United States, northern

Europe, and northern Japan, SWEmax values are relatively high (Fig. 2a). This corresponds to later melt onset (Meltstart)155

and melt completion (Meltend) in the season, as well as higher Qsum and Qmax values. The CTQ date is correspondingly

later (Fig. 2a–f). In comparison, the central United States, the eastern coastal United States, western Europe, and northeastern

China generally exhibit lower values of these snowmelt characteristics, indicating relatively less snow, earlier melt timing, and

reduced meltwater contributions.

2.2.3 Quantifying the complexity of basins160

To quantify the impact of land surface complexity on SMR simulation, it is essential to first identify the primary factors known

to challenge model performance. Based on existing literature (Li et al., 2022; Poulter et al., 2011; Torres-Rojas et al., 2022;

Harper et al., 2023), we focus on two key factors: topography and vegetation. The influence of topographic complexity on

model performance is mainly reflected in two aspects: mean elevation controls processes such as precipitation partitioning and

snow–radiation interactions, whereas topographic relief introduces finer-scale variations in surface energy balance and runoff165

generation. Similarly, vegetation complexity affects basin processes through its density and composition: higher canopy density

enhances interception and sublimation, while greater diversity in plant functional types increases landscape heterogeneity in

energy exchange and hydrological responses (Li et al., 2022).

Correspondingly, for quantification, we selected four metrics, i.e., mean elevation (denoted as DEM), topographic variability

(denoted as DEMstd), mean leaf area index (denoted as LAI), and the entropy of plant functional type (denoted as PFTh), to170

represent these drivers. Together, these metrics form a four-dimensional vector that describes the overall complexity of a basin,

where higher values generally denote more challenging conditions for simulation. To synthesize this multi-faceted complexity,
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Figure 2. The spatial pattern of snow and runoff characteristics. (a) shows maximum snow water equivalent, (b) and (c) show the start

and end timing of snowmelt. (d-e) present total runoff (Qsum), peak flow (Qmax) and centroid timing of runoff (CTQ) during the snowmelt

period, respectively. Meltstart, Meltend, and CTQ are shown as the months instead of ’Day of Water Year’ (DOY) for better interpretation

of the results.

we further introduced a complexity index (CI) by summing the normalized values of these four metrics (Eqn. (4)), which is

designed to provide a comprehensive representation of the major drivers of land surface complexity.

CI = DEMnorm + DEMstdnorm + LAInorm + PFThnorm (4)175

For CI and its subcomponents, higher values usually mean more challenging conditions for SMR simulation. Consequently,

we expect a model to be robustly representing the SMR processes if it not only performs well in basins with low complexity,

but also maintains its accuracy in highly complex basins. Our analysis therefore first examines model performance against each

complexity factor individually, followed by examining the performance against the overall complexity by using CI.

2.2.4 Measuring robustness of models180

As described above, a robust model should accurately simulate SMR across diverse land conditions. To assess this, our eval-

uation focuses on how model performance changes along gradients of land surface complexity. Specifically, we developed a

Robustness Index from two perspectives: the overall magnitude of the bias across all conditions (i.e., stability) and the perfor-

mance trend as conditions become more complex (i.e., adaptability).
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First, to quantify the bias magnitude, we calculated the Stratified Mean Absolute Bias (SMAB). This metric represents the185

average absolute bias across all complexity groups, which avoids potential distortions from an uneven distribution of basins

and provides a more physically meaningful measure of overall performance. We compute the SMAB as follows (Eqn. (5)):

SMAB =
1

CIn

n−1∑

i=1

|Biasi|+ |Biasi+1|
2

(CIi+1−CIi) (5)

where i denotes the index of complexity groups ranging from 1 to n− 1, Biasi represents the median model bias within the

i-th complexity group, and CIi indicates the corresponding complexity level.190

Second, the absolute bias was regressed against the complexity index using simple linear regression. The slope S was

adopted as an adaptability measure, with larger values denoting stronger responses to complexity stress and thus less ability to

cope with complex land surface conditions (Eqn. (6)).

|Biasi|= S×CIi + b (6)

For comparing across all models, both the SMAB and the slope (S) were normalized to a [0,1] scale. These two normalized195

metrics describe different aspects of model robustness: SMABnorm highlights the overall performance, while Snorm focuses

on the model’s ability to persist in highly complex basins. Together, they form a two-dimensional vector (SMABnorm,Snorm),

where the origin point (0,0) represents an ideal model with zero average bias and no degradation trend. Representing the

combined effect of individual components as their Euclidean distance, as commonly done in prior studies (Kay et al., 2007;

Oudin et al., 2010; Hu et al., 2022), is adopted here to define the Robustness Index (RI). A larger distance reflects lower200

robustness, and the final index is calculated as one minus this distance (Eqn. (7)), offering a first-order measure of overall

model performance.

RI = 1−
√

SMAB2
norm + S 2

norm (7)

A higher RI score, approaching one, signifies a model closer to the ideal origin point, reflecting both low overall bias and

strong adaptability to complexity.205

3 Results

3.1 The performance of 15 models and datasets

We first present the distribution of model biases in three key SMR characteristics (Qsum, Qmax, and CTQ) across multiple

models and datasets (Fig. 3). It is evident from Figure 3 that most models and datasets exhibit notable biases in simulating

SMR characteristics. Specifically, 10 out of 15 tend to underestimate Qsum and Qmax, while CTQ is generally predicted earlier210

than observed (14 out of 15). Although a few models perform consistently well, considerable variability exists across metrics.

The following sections provide a detailed assessment of Qsum, Qmax, and CTQ, respectively. Fig. 3a shows that the highest

accuracy of Qsum is achieved by discharge datasets (i.e., GRDR and GRADES), followed by GHMs (blue bars) and LSMs
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(yellow bars). GRDR and GRADES have 42.41% and 40.08% of basins, respectively, that lie within the ±20% threshold, and

with a median bias of –10.27% and 0.73%. Among models, WATERGAP2-2E performs the best (30.06%, –1.81%), while215

VIC, MATSIRO, and MIROC-INTEG-LAND show the poorest performance, each with median biases exceeding –50%. These

results highlight persistent underestimation in many physically based models, while underscoring the advantage of observation-

constrained datasets. Details of each model’s performance are shown in Appendix A1.
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Figure 3. Evaluation of key SMR characteristics (averaged over 1979–2019) simulated by 15 models/datasets across 1513 basins.

(a–c) present total runoff (Qsum), peak flow (Qmax), and centroid timing of runoff (CTQ) of the SMR, respectively. The black dashed line

denotes zero bias, and the red shading denotes the acceptable ranges (±20% for Qsum and Qmax, ±5 days for CTQ). Model rankings are

determined by the proportion of basins falling within these ranges (e.g., red triangle). Model categories (e.g., GHMs, LSMs, DGVM, and

Datasets) and ISIMIP phases are distinguished by background color and hatch patterns.

Fig. 3b presents results for Qmax, which largely resemble Qsum but exhibit generally worse performance. The same three

models (i.e., GRADES, GRDR, and WATERGAP2-2E) again lead in performance (with 31.78%, 31.09%, and 27.80% of220
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basins, respectively, lying within the acceptable range). The weakest performers remain unchanged (VIC, MATSIRO, MIROC-

INTEG-LAND), but with lower proportions in the acceptable range (11.19%, 9.95%, and 3.98%). HYDROPY achieves 20.25%

basin with bias within ±20% for Qsum (median bias: 23.31%), but only 17.02% for Qmax (55.53%). On average, models tend

to simulate Qsum with higher fidelity than Qmax (22.23% vs. 19.30%), reflecting greater challenges in capturing peak flows,

which are more sensitive to melt rate and timing.225

Model performance for CTQ (Fig. 3c) displays a distinct pattern. GRDR remains the best, with 55.18% of basins within

±5 days and a median bias of –3 days. However, rankings among models diverge substantially from those for Qsum and

Qmax. Notably, VIC, MATSIRO, and JULES-W2—previously among the least accurate for Qsum and Qmax—rank among the

top performers for CTQ. Conversely, models such as DBH, which ranked fourth for Qsum, perform poorly for CTQ. These

contrasts reflect fundamental differences in how models represent the timing versus magnitude of snowmelt, and emphasize230

the importance of snowpack energy balance and melt onset processes in simulating runoff timing.

In addition, we compared the performance of different model categories and ISIMIP phase (see Fig. A2–A3 in the Appendix

A). The results show that GRDR and GRADES consistently outperform models, underscoring the importance of observational

constraints. Among models, GHMs generally outperform LSMs in simulating Qsum and Qmax, whereas LSMs show better

performance for CTQ (Fig. A2 in the Appendix A). This indicates that GHMs tend to better capture the magnitude of runoff235

during the snowmelt period, while LSMs more accurately reproduce its centroid timing. Notably, two of the top four models

are LSMs (Fig. 3c), likely because magnitude can be well represented by simplified but calibrated runoff schemes, whereas

the timing benefits more from physically based, energy-related process representations. Furthermore, models from ISIMIP3a

outperform those from ISIMIP2a (Fig. A3 in the Appendix A), suggesting that advancements in model generations have

substantially contributed to improved performance.240

We further evaluate the spatial performance of the models (Figure. 4), which shows the overall biases, inter-model differ-

ences, and the best-performing model at each site. Fig. 4a–c highlights the spatial patterns of ensemble mean simulation bias.

Widespread underestimation and earlier runoff timing are observed across several regions, including the western coastal and

mountainous areas of the United States, western and northern Europe, northeastern China, and Japan. In more than 50% of

the basins within these regions, Qsum and Qmax exhibit negative biases ranging from 0 to –60%, while CTQ occurs up to 15245

days earlier than observed. Meanwhile, significant overestimations are found in the central United States and northern China.

Across all basins, the proportion meeting the predefined performance thresholds, i.e., bias within ±20% for Qsum and Qmax,

and within –5 days for CTQ, is 27.87%, 29.44%, and 45.02%, respectively. These basins are mainly located along the eastern

coast of the United States. Detailed spatial maps of each model’s performance are shown in Appendix A4– A6.

We also assess inter-model consistency in Fig. 4d–f, which shows the largest inter-model discrepancies occur in the central250

United States, northern Europe, and northeastern China, where CV for Qsum and Qmax exceeds 0.8 and the CTQ range exceeds

30 days. Basins with relatively low variability, defined as CV < 0.4 or CTQ range < 20 days, occupy 20.66%, 15.24%, and

24.57% of all basins for Qsum, Qmax, and CTQ, respectively. These basins are primarily located in mid- to low-latitude regions

of the United States and western Europe.
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Fig. 4g–i identifies the best-performing model in each basin, with the top two models highlighted in pie charts to examine255

whether any model demonstrates broad applicability. The results suggest that, no single model or dataset consistently outper-

forms others across all basins. For the SMR magnitude (i.e., Qsum and Qmax), GRDR and GRADES emerge as the best ones,

each being the best-performing model in over 10% of basins. The remaining 70% of basins are distributed among several

other models, each contributing approximately 5% on average. For the SMR timing (i.e., CTQ), DBH and PCR-GLOBWB

are the most frequently selected, accounting for 14.14% and 13.31% of basins, respectively. These findings underscore the260

inconsistency in optimal model selection across different runoff characteristics.

Overall, basins exhibiting larger simulation biases tend to also display greater inter-model variability, indicating the per-

sistent SMR challenges within these regions. This may be attributed to: (1) the complex land conditions, which makes it

difficult for models to accurately represent relevant physical processes, and (2) differing model complexities, where simpler

and more complex models diverge more significantly under such land conditions. These jointly determine the increased biases265

and reduced consistency there. Furthermore, model performance varies across basins—strong performance in one basin does

not guarantee similar performance elsewhere. This highlights that no single model is universally applicable, and that model

selection should consider both complexity of the basin and the model’s ability to represent key physical processes.
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Figure 4. Bias, variability, and the best model for simulated SMR characteristics across different basins. (a–c) show the percent bias

of Qsum (%) , percent bias of Qmax (%), and bias of CTQ (days), respectively, in the simulated SMR. (d–f) show inter-model variability

represented by the coefficient of variation (CV) for Qsum and Qmax, and inter-model range of CTQ (days). (g–i) show the model with the

smallest bias in each basin for Qsum, Qmax, and CTQ, respectively. The pie charts provide a summary of these patterns, with bold black

outlines highlighting the proportion within ±20% bias in (a–c), the two lowest variability levels in (d–f), and the top two models with the

highest proportions in (g–i).

3.2 Impacts of land surface complexity on model performance

To understand how land surface complexity influences model performance, we next analyze the results to identify general270

patterns, dissect the effects of different complexity sources, and compare the behaviors of models with varying structures. The

most pervasive pattern is that model performance deteriorates as basin complexity increases (Fig. 5a–c). For the majority of

models, biases in simulating Qsum, Qmax, and CTQ grow as the land surface becomes more complex, confirming the hypothesis
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that many models have a limited ability to capture intricate land surface processes in such environments. Among the three

characteristics, the bias in CTQ increases most markedly with basin complexity, followed by Qmax and Qsum. Moreover,275

this fragility in CTQ is particularly evident beyond a certain complexity threshold (Fig. 5c), where performance deteriorates

sharply for nearly all models, suggesting a potential breakdown in their ability to handle compounded, non-linear landscape

effects. For Qsum and Qmax, two distinct groups of models can be identified: those with consistently low bias (e.g., GRDR

and GRADES) and those with consistently high bias (e.g., VIC). Notably, GRADES is based on VIC runoff simulations

constrained by observations, while GRDR further assimilates remotely sensed river width information. The result provides an280

initial assessment of the gain from data assimilation as a strategy for correcting inherent model. Detailed relationships between

each factor and the model performance can be found in the Appendix A Fig. A7–A9.
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Figure 5. Influence of basin complexity on model simulations of key runoff characteristics. (a–c) show the variation in model per-

formance as basin complexity increases, and (d–f) represent the Spearman correlation between model performance and individual basin

complexity factors. A positive correlation indicates that model bias increases with increasing basin complexity, whereas a negative corre-

lation indicates that model bias decreases as basin complexity increases. Shading indicates the basin complexity factor with the highest

absolute Spearman correlation among the four factors.

A deep dive into specific model comparisons offers interesting insights into how different model structures handle com-

plexity. A noteworthy and counterintuitive observation is the improved performance of certain physically complex models in

more challenging land surface. For example, models like JULES-W2 and PCR-GLOBWB exhibit an unexpected trend where285

their simulation bias for Qsum decreases as basin complexity increases (Fig. 5a). This suggests that the advanced process

representations within these models, which might be less critical in simple, homogeneous basins, become advantageous in

complex terrain. For instance, JULES-W2’s sophisticated schemes for canopy interception, sublimation, and radiation transfer

are explicitly designed to handle the fine-scale variability introduced by complex topography conditions (Fig. 5d). However,
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we would like to note that while the result points to the potential of sophisticated physics to enhance model robustness, further290

diagnostic analysis is essential to confirm whether this improved performance reflects a genuinely better process representation.

The analysis also reveals significant structural trade-offs in how different models respond to complexity, particularly when

comparing the simulation of Qsum and Qmax. This is exemplified by the opposing responses of DBH and LPJML: in complex

basins, DBH improves its Qmax (Fig. 5b) simulation while degrading its Qsum (Fig. 5a) simulation, whereas LPJML exhibits

the inverse pattern. These contrasting responses may reflect differences in how the two models simulate runoff generation295

for different flow characteristics. A model like DBH may have a structure that better represents the fast, event-based runoff

pathways critical for capturing flood peaks, while LPJML might be better structured to simulate the slow, integrated processes

that determine the long-term water balance. These findings imply that no single model structure currently excels at both

functions in complex environments, highlighting the need to select models based on the specific scientific question at hand.

When the overall complexity is decomposed into its constituent components, a clear hierarchy of influence emerges (Fig. 5d–300

f). The bias in simulated Qsum is primarily driven by variations in DEM and PFTh (Fig. 5d). This likely reflects the strong

link between DEM and processes such as rainfall–snowfall partitioning and sublimation, while PFTh affects the accuracy

of interception representation. These processes jointly determine the accuracy of Qsum simulation. In comparison, the bias

in simulated Qmax is more strongly influenced by vegetation cover (e.g., LAI) and vegetation type diversity (e.g., PFTh)

(Fig. 5e). Both LAI and PFTh affect the amount of energy and water reaching the ground surface; during the snowmelt period,305

the extent to which liquid precipitation interception is properly represented can substantially impact Qmax. The timing metric

CTQ is mainly controlled by topographic factors (Fig. 5f), particularly DEM and its variability (DEMstd), likely because CTQ

is more sensitive to energy-related processes, and both DEM and DEMstd are key determinants of surface energy balance.

Overall, topography remains the dominant driver of model bias, underscoring its critical role in shaping runoff dynamics,

while vegetation exerts a comparatively secondary influence. Their combined interactions ultimately govern the magnitude and310

structure of the overall model bias.

3.3 Assessment of Model Robustness

We further evaluate the aforementioned model’s robustness by analyzing performance across the defined complexity groups

(Figure 6). By focusing on two aspects of our robustness metric, we aim to identify significant performance differences among

the models or model groups and explore the underlying reasons for these variations. Models with lower stability and lower315

adaptability are considered higher robust in reproducing runoff characteristics (Fig. 6a).
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Figure 6. Assessment of model robustness in key SMR characteristics. (a) Schematic illustration. (b–d) Results for Qsum, Qmax, and CTQ,

respectively. Blue circles denote global hydrological models (GHMs), yellow squares denote land surface models (LSMs), green triangles

denote dynamic global vegetation models (DGVMs), and grey diamonds denote data products. SMABnorm denotes the normalized stratified

mean absolute bias, and Snorm denotes the normalized regression slope of absolute bias. Detailed calculation procedures are provided in

Section 2.2.4.

Overall, the models with the highest robustness for Qsum are GRDR, GRADES, and PCR-GLOBWB (Fig. 6b). These

models exhibit both low average bias and minimal performance degradation as land surface complexity increases. In contrast,

models like CLM40, MATSIRO, and MIROC-INTEG-LAND rank the lowest, primarily due to their large simulation biases.

The robustness rankings for Qmax are generally consistent, with GRDR, GRADES again performing well (Fig. 6c). However,320

a key difference is that several models, such as CWATM and HYDROPY, exhibit significant improvements in simulating Qmax

in more complex basins, hinting at structural differences in how they handle event-based runoff.

The results for CTQ reveal a more critical pattern (Fig. 6d). While the overall bias is comparable across many models, the

performance of nearly all models degrades sharply with increasing complexity. This indicates that runoff timing is the charac-

teristic most sensitive to the challenges posed by complex land surfaces, as indicated in Section 3.2. This Snorm arises largely325
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because timing is influenced by coupled processes that are difficult to simulate accurately in complex environments. For ex-

ample, topography modulates surface radiation and alters runoff convergence, while dense and diverse vegetation complicates

canopy interception and energy transfer. The inability of current models to resolve these intricate interactions leads to the sharp

decline in performance for accurately predicting the timing of the snowmelt.

A deep dive into the two components of the robustness score provides more insights in model behavior. For Qsum, some330

models present a clear conflict between these two metrics (Fig. 6b). Models like LPJML and CLM40 may appear accurate

in simple basins, but their performance degrades rapidly in more complex environments (Fig. 5a), resulting in a higher slope

and consequently greater instability in performance. Conversely, although PCR-GLOBWB exhibits a relatively large overall

bias, its performance improves with increasing basin complexity (Fig. 5a), thereby achieving a high robustness ranking. This

seemingly counterintuitive result may reflect a trade-off inherent in physically complex models, as their sophisticated process335

representations provide advantages for simulating the intricate dynamics in challenging basins but may introduce unnecessary

structural uncertainty in simpler environments at the same time. Such a pattern is even more pronounced for Qmax (see Fig. 6c),

where a larger set of models, including DBH and HYDROPY, exhibit a low slope. This suggests their internal structures may

be better suited to capturing the dynamics of peak discharge in highly complex terrain conditions.

We further aggregate the results by model group to identify systematic differences in performance (Figure. 7). Overall,340

ISIMIP 3a outperforms ISIMIP 2a in simulating Qsum and Qmax, whereas ISIMIP 2a shows slightly better skill for CTQ.

Moreover, observation-constrained datasets (GRADES and GRDR) exhibit the highest robustness, followed by GHMs and

LSMs. These GHMs advantage is particularly pronounced for Qsum and Qmax (Fig. 7a–b). For CTQ (Fig. 7c), however,

LSMs exhibit a clear relative improvement compared with their performance for Qsum and Qmax, with MIROC-INTEG-

LAND notably rising from the lowest tier to a leading position (Fig. 6d). This improvement likely reflects the more advanced345

treatment of radiative transfer and surface energy balance in LSMs, which plays a greater role in capturing melt timing than in

reproducing total runoff or peak discharge.

Figure 7. Assessment of model robustness in key SMR characteristics grouped by model categories and ISIMIP phase. (a–c) show

results for Qsum, Qmax, and CTQ, respectively. The orange line denotes the median, the black triangle indicates the mean, and the classifica-

tions of model types and ISIMIP phases follow Section 2.1.1.
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4 Conclusions and Discussions

This study, for the first time, provides a systematic and large-scale evaluation of the ability of 15 state-of-the-art hydrological

models and runoff products to capture key runoff characteristics in the snowmelt period across 1,513 basins worldwide. Beyond350

conventional performance metrics, we introduce a novel indicator—robustness—to explicitly quantify how model skill evolves

with increasing basin complexity. This framework advances model intercomparison by moving beyond average bias evaluation,

offering deeper insights into the stability and adaptability of model performance under complex environmental conditions. Our

primary findings are summarized as follows:

• Most models exhibit systematic biases in simulating key runoff characteristics in the snowmelt period. In particular, they355

tend to underestimate Qsum and Qmax while predicting CTQ too early. These biases are especially pronounced in regions

such as the western United States, northern Europe, and northeastern China, where both the magnitude of deviations and

the inter-model discrepancies are substantial. GRDR and GRADES generally outperform most process-based models in

reproducing SMR characteristics. The ISIMIP3a models also show consistently higher accuracy compared to ISIMIP2a,

and ensemble means typically provide more robust results than the individual models.360

• Model biases are substantially increased under high basin complexity, with stronger underestimation of Qsum and Qmax

and earlier estimation of CTQ. The underestimation is generally more severe for Qmax than for Qsum. Notably, model

skill in simulating CTQ declines sharply as basin complexity increases, highlighting the limited capacity of current

models to capture complex snow–vegetation–topography interactions under highly heterogeneous conditions. Models

show divergent responses to increasing basin complexity: GRDR and GRADES remain relatively robust, some models365

(e.g., JULES-W2, PCR-GLOBWB) show partial adaptability, while many others exhibit increasing biases.

• By applying the newly developed robustness metric, we find that GRDR and GRADES consistently rank at the top,

with PCR-GLOBWB, JULES-W2, and DBH also performing well. By contrast, CLM40, MATSIRO, and MIROC-

INTEG-LAND show low robustness for Qsum and Qmax but improve markedly in CTQ. Overall, GHMs demonstrate

higher robustness in simulating key characteristics. Notably, compared with their performance in simulating Qsum and370

Qmax, LSMs gain a relative advantage in capturing CTQ. These contrasting responses underscore fundamental structural

differences in how models represent runoff magnitude versus melt timing under heterogeneous conditions.

These findings advance the understanding of SMR modeling under complex land surface conditions, establishing a benchmark

framework for future model development. Several limitations are worthy of further discussion for future research.

• First, it is noteworthy that ISIMIP2a and ISIMIP3a exhibit differences beyond their mechanistic descriptions of the375

snow accumulation and snowmelt processes. These variations include differences in forcing, simulation scenarios, and

whether model calibration is applied. In our data selection process, we have minimized these discrepancies to enhance

direct comparisons that emphasize process differences. However, further scrutiny may be necessary to fully delineate

these differences.
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• Second, the evaluation metrics of models could be further improved. While this study primarily focused on biases and380

robustness in simulating key SMR characteristics, it did not assess the models’ capability in reproducing the temporal

dynamics of SMR. Future research should therefore focus on evaluating how well models capture the temporal dynamics

of SMR.

• Third, the relationship between model performance and the completeness of physical process representation requires

further investigation. Current analyses are largely conducted at the level of model categories or intercomparison projects,385

providing only a broad perspective on the link between model structure and performance. Future work should therefore

focus on developing a unified framework to quantify model process complexity, which would allow a more rigorous

evaluation of how physical process differences translate into performance disparities.
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Appendix A

Figure A1. Percentage of gauges (%) with well-simulated snowmelt runoff indices for each model. (a) shows the percentage of gauges

with good simulated CTQ (within ±5 days of the observed) as ranked by their performance. (b) and (c) show that with well-simulated Qsum

(PBias within ±20%) and that with well-simulated Qmax (PBias within ±20%) in the snowmelt period.
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Figure A2. Evaluation of simulated runoff over 1979–2019 across 1513 catchments grouped by model categories. Panels (a–c) show

the biases in total runoff (Qsum), peak flow (Qmax), and centroid timing of runoff (CTQ) during the snowmelt period, respectively. The black

dashed line indicates zero bias, and the gray dashed lines denote the acceptable ranges (±20% for Qsum and Qmax, and ±5 days for CTQ).

Model rankings are based on the proportion of basins falling within these acceptable ranges.
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Figure A3. Evaluation of simulated runoff over 1979–2019 across 1513 catchments grouped by ISIMIP phase. Panels (a–c) show the

biases in total runoff (Qsum), peak flow (Qmax), and centroid timing of runoff (CTQ) during the snowmelt period. The black dashed line

indicates zero bias, and the gray dashed lines denote the acceptable ranges (±20% for Qsum and Qmax, and ±5 days for CTQ). Rankings

are determined by the proportion of basins falling within these acceptable ranges.
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Figure A4. The percentage bias of total runoff (Qsum) during the snowmelt period (unit: %). Colors indicate the degree of bias compared

to observations: red represents underestimation, blue indicates overestimation, and yellow signifies well-matched total runoff. The point size

is adjusted based on station density for better visualization and does not have physical significance. Colored boxes around model/dataset

names denote three categories of data.
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Figure A5. The percentage bias of peak flow (Qmax) during the snowmelt period (unit: %). Colors indicate the degree of bias compared

to observations: red represents underestimation, blue indicates overestimation, and yellow signifies well-matched total runoff. The point size

is adjusted based on station density for better visualization and does not have physical significance. Colored boxes around model/dataset

names denote three categories of analysis data.
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Figure A6. The bias in snowmelt timing, represented by the centroid time of runoff (CTQ) during the snowmelt period (unit: day)

Colors indicate the extent of bias compared to observations: red represents earlier snowmelt, blue indicates later snowmelt, and yellow

signifies well-matched snowmelt timing. The point size is adjusted based on station density for better visualization and does not have

physical significance. Colored boxes around model/dataset names denote three categories of analysis data.
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Figure A7. The bias in total runoff (Qsum) in the snowmelt period as a function of basin complexity factors. The value of each grid

represents the median bias (color shading) within the corresponding range of DEM, DEMstd, LAI, and PFTh. The figures are ordered from

top to bottom based on the proportion of biases within ±20%.
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Figure A8. The bias in peak flow (Qmax) in the snowmelt period as a function of basin complexity factors. The value of each grid

represents the median bias (color shading) within the corresponding range of DEM, DEMstd, LAI, and PFTh. The figures are ordered from

top to bottom based on the proportion of biases within ±20%.
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Figure A9. The bias in centroid timing of runoff (CTQ) during in the snowmelt period as a function of basin complexity factors. The

value of each grid represents the median bias (color shading) within the corresponding range of DEM, DEMstd, LAI, and PFTh. The figures

are ordered from top to bottom based on the proportion of biases within ±5 days.
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