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Abstract. Drought is a highly consequential natural disaster that may likely increase in both severity and extent across the 

conterminous United States (CONUS). The mechanisms affecting the propagation of drought from the atmosphere to 

streamflow are complex and interactive, making the prediction of streamflow drought difficult with current modeling 

approaches. Machine learning is an emerging tool in the field of hydrology that may be well-suited to prediction of streamflow 

drought across large and topographically diverse areas. Here, we train and analyze 3,198 random forest models at U.S. 20 

Geological Survey streamgages to understand common meteorological drivers of streamflow drought and to define 

physiographic characteristics of basins sensitive to these drivers. We also develop a novel dynamic regionalization approach 

using donor gages to predict daily streamflow drought at pseudo-ungaged locations. For this study, CONUS was divided into 

nine regions for ease of reference in describing results.  Our results show that teleconnections, temperature, evaporative 

demand, and snow-water equivalent are important drivers of streamflow drought in the West, Southwest, and Northern Rocky 25 

Mountains (Northern Rockies) regions of the United States, and precipitation and soil moisture are primary drivers of 

streamflow drought in the Northeast, Southeast, and the Northwest regions. Prediction using dynamic regionalization shows 

comparable performance to at-site models. 
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1 Introduction 

Droughts rank first among all natural disasters in terms of the number of people affected (Mishra and Singh, 2010). The vast 

extent and protracted nature of drought often result in severe and lasting consequences, both for ecosystem stability as well as 

numerous economic sectors including agriculture, recreation, tourism, and more (Basara et al., 2013; Huang et al., 2017; 

Manuel, 2008; Wlostowski et al., 2022; Zou et al., 2018). In the conterminous United States (CONUS), modern droughts such 35 

as the 2010-2013 drought in the southern United States, the subsequent 2012-2013 expansion into the North American drought 

that affected most of the United States, central and eastern parts of Canada, and parts of Mexico, and the 2012-2014 drought 

in California have all resulted in economic losses totalling billions of dollars (Griffin and Anchukaitis, 2014; Seneviratne, 

2012; Williams et al., 2015). Moreover, while certain areas of the United States like the arid western part of the country are 

predisposed to drought development and persistence of droughts (Zhang et al., 2021), droughts remain a threat across all of 40 

the CONUS due to evolving climate conditions and land use.  

Streamflow often provides the most easily monitored hydrologic drought signal in the CONUS owing to a robust network of 

U.S. Geological Survey (USGS) streamgages. This advantage provides important early warning signs of impending drought 

conditions in monitored areas, with two important caveats. The first caveat is that not all locations are monitored, and the 

spatial distribution of unmonitored locations is not random. For example, small watersheds (<10km2) and watersheds at higher 45 

elevations are underrepresented in the USGS streamgage network, particularly in arid regions (Deweber et al., 2014; Kiang et 

al., 2013; Krabbenholft et al., 2022). The second caveat is that the streamflow drought signal is derived from multiple complex 

and interconnected mechanisms that are introduced as the drought signal propagates from the atmosphere to the land surface. 

The interactions between mechanisms affecting the propagation of meteorologic drought to hydrologic drought result in 

complex, non-linear spatial and temporal effects that are still not fully understood. Beven (2001) notes the difficulty in 50 

identifying scale-invariant climatic controls on runoff generation due to spatial and seasonal variability in patterns of water 

storage and residence time.  

Recent advancements in data mining and machine learning (ML) applications to the field of hydrology may provide new 

insights into the spatial and temporal patterns of streamflow drought and the associated drivers across the CONUS (Hamshaw 

et al., 2023; Kratzert et al., 2019; Shen et al., 2021). ML has a distinct advantage over more traditional approaches in its ability 55 

to utilize a wide variety of disparate datasets, potentially uncovering complex patterns in space and time (Jiang et al., 2022; 

Nunes Carvalho et al., 2022; Zhu et al., 2021). Additionally, the fewer assumptions made in ML-based modeling techniques 

offer advantages in both scalability to larger systems, as well as transferability to new systems altogether (Li et al., 2022; 

Tahmasebi et al., 2020). 

Generally, there is a positive correlation between model performance and the amount of training data used (Goodfellow et al., 60 

2016). However, workloads for artificial intelligence (AI) and ML potentially require extremely large volumes of data 

processing and storage capacity (Gbedawo et al., 2023). Further, increasing the interpretability of AI and ML methods for 

high-stakes decision making is crucial (Rudin et al., 2022). In hydrologic modeling, one approach to reducing the volume of 
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training data required while minimizing the amount of information loss is to use dynamic regionalization to select a subset of 

models trained at “donor” gages, similar in character but not necessarily proximal to the ungaged location of interest.  This 65 

subset is then used for prediction at the ungaged location of interest (McIntyre et al., 2005). This method has the advantage of 

reducing the volume of training data and potentially avoiding the introduction of noise from including training data from 

dissimilar basins (Pagliero et al., 2019). 

Through the advantages provided by ML and data mining techniques, we seek to further understand spatial and temporal 

streamflow drought mechanisms, as well as their interactions, within the CONUS. Summarily, we address the following 70 

research questions:  

1. What are the common hydrometeorologic drivers of streamflow drought in the CONUS? 

2. What are the defining physiographic characteristics of basins most sensitive to influential drivers of streamflow 

drought? 

3. Can we use dynamic regionalization (i.e., donor gages) to predict daily streamflow drought at ungaged locations? 75 

2 Methods 

2.1 Study Area 

Our study area consists of 3,198 watersheds across the CONUS monitored by USGS streamgages (Figure 1) from the dataset 

known as the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES) version 2 (Falcone, 2011), hereafter referred 

to as GAGES-II. Basins monitored by streamgages included in the GAGES-II dataset span the extent of the CONUS and 80 

capture much of the hydrologic complexity faced across the nation. 
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Figure 1. Panel a) shows the 3,198 basins in the conterminous United States which comprise the study area. Red basins indicate the 

1,900 filtered basins with Kappa > 0.4 used as candidate donors. The filtering process is described in Section 2.4.1. Panel b) shows 85 
regional naming convention for reference. 
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Because of the non-random placement and objectives of USGS streamgages, there are well-documented biases associated with 

the GAGES-II dataset and the basins monitored (Deweber et al., 2014). These biases translate into nonnormal distributions of 

basin characteristics related to drainage area (i.e., larger rivers are disproportionately monitored), popularity (i.e., rivers 

considered to have higher recreational value are disproportionately monitored), water use (i.e., rivers that are primary sources 90 

of public use are disproportionately monitored), and others. 

2.2 Data 

2.2.1 Streamflow Data 

We obtained daily streamflow data for 9,068 GAGES-II streamgages across the CONUS for climate years (April 1-March 31) 

from 1981-2020. To reduce inaccurate drought identification from sparse records, we selected streamgages where at least eight 95 

years per decade had streamflow observations for 95 percent of days in each climate year (Hammond et al., 2022; Simeone, 

2022). We used climate years for the streamgage selection as they better include the full low-flow season (generally, late 

summer through fall, depending on gage location) in the CONUS (Carpenter and Hayes, 1996; Feaster and Lee, 2017). After 

processing and filtering based on daily streamflow records, our dataset consisted of 3,198 gages. A full description of the input 

data and processing methods are available in Simeone (2022). All data processing was done using R version 4.2.2 (R Core 100 

Team, 2021). 

We identified streamflow droughts using daily streamflow values converted to percentiles using the Weibull plotting position 

(e.g., Schlögl and Laaha, 2017) following methods from Simeone (2022). Since streamflow often follows an annual seasonal 

cycle, we selected a definition of drought that represents a departure from typical annual cycles. To remove this seasonality, 

streamflow percentiles were based on the Weibull plotting positions computed from data for each day of the year using the 105 

values for a 30-day window centered on the given day from all years: 

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  
𝑟

𝑛+1
                                                                                                                                                                        (1) 

 

where r is rank and n is the number of data points. To account for the effect of zero-flow days in the daily streamflow data, we 110 

implemented the combined Threshold Level Method and Continuous Dry period method developed by van Huijgevoort et al. 

(2012). The method treats the number of continuous days with zero flow as a proxy for streamflow level, and breaks ties 

between zero-flow percentile rankings based on the number of preceding zero-flow days (Simeone et al., 2024). For this 

analysis, we conceptualize droughts as binary events. A streamflow percentile below a predefined severity threshold is 

considered a drought; above this severity threshold is a non-drought event. We selected the 20th percentile as the severity 115 

threshold for this analysis as a balance between a useable drought definition and an adequate number of occurrences to inform 

the statistical model, although we recognize that for specific needs other severity levels may be more related to risks in water 

resource scarcity. Our definition of streamflow drought means that every location in the CONUS will be in drought 20 percent 
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of the time, and that these droughts will be evenly distributed throughout the year. We did not de-trend the data, so long-term 

trends in streamflow could affect the temporal distribution of droughts due to our stationary definition of drought. A threshold-120 

based drought identification method was chosen over other methods that incorporate drought longevity to avoid the additional 

complexity that arises from an added minimum duration threshold across a domain where typical drought longevity can vary 

substantially. 

2.2.2 Climatic and physiographic drivers 

Climatic and physiographic variables were selected as explanatory variables in the model based on previous literature, data 125 

availability, and exploratory data analysis (Table 1). Teleconnections data were included to provide additional insight into 

drought conditions, particularly at locations where local precipitation patterns do not often correspond strongly with 

streamflow such as in basins with high baseflow. Date information was included as a predictor to account for possible non-

seasonal temporal patterns that may not be eliminated through Weibull transformation of the streamflow. Sunspot data were 

included as indicators of solar activity, which can influence atmospheric circulation, precipitation patterns, snowpack, and 130 

temperature (Yang and Xing, 2021). Antecedent streamflow data were not used as this would have prevented the utilization of 

the donor method (described in 2.4) at ungaged locations where streamflow is not available. For the individual gage models, 

only climatic (i.e., time-varying) data were included. This is because these models were only time-varying, and static variables 

would have provided no additional information. All geospatial data processing was done using the R package gdptools 

(McDonald, 2022) and followed the workflow described in Text S1. 135 

All climatic variable data (with the exception of climate teleconnection variables) were transformed into percentiles using both 

the variable-threshold method (thresholds are calculated for each day of the year using only the values for that day and 

surrounding 30-day window from all years on record; identified by “weibull_jd” in the variable name) described in section 

2.2.1 as well as a fixed-threshold method (all values in the period of record are used to calculate a single fixed threshold; 

identified by “site” in the variable name and described in Simeone, 2022) that results in a deviation from the long-term average. 140 

Transformed variables were included as predictors alongside their untransformed forms. In addition, we included values 

derived from rolling windows of 30 (monthly trends), 90 (seasonal trends), and 365 (annual trends) days to average or sum 

preceding daily values to provide the models with information on antecedent conditions. This resulted in 130 total predictors. 

 

Table 1. Selected explanatory variables for the at-site models. With the exception of the teleconnections (AMO, PDO, ENSO, PNA), 145 
all variables were also transformed to percentiles and smoothed using rolling 30, 90, and 365-day rolling windows.  

Variable  Units  Source  Reference  

Minimum Temperature  °C  

gridMET Abatzoglou, 2013 
Maximum Temperature  °C  

Precipitation  mm  

Evapotranspiration (Reference – grass)  mm  
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Standardized Precipitation 

Evapotranspiration Index (SPEI)  
unitless  

Snow Water Equivalent (SWE)  mm  NASA NSIDC Broxton et al., 2019 

Soil Moisture (0-10 cm depth)  kg/m2  

NASA NLDAS2 
Mitchell et al., 

2004 
Soil Moisture (10-40 cm depth)  kg/m2  

Soil Moisture (40-100 cm depth)  kg/m2  

Atlantic Multidecadal Oscillation (AMO) unitless 
National Oceanic and 

Atmospheric Administration 
Enfield et al., 2001  

Pacific Decadal Oscillation (PDO) unitless 
National Oceanic and 

Atmospheric Administration 
Mantua, 1999  

El Nino-Southern Oscillation (ENSO) unitless 
National Oceanic and 

Atmospheric Administration 
Bjerknes, 1969 

Pacific North America pattern (PNA) unitless 
National Oceanic and 

Atmospheric Administration 

Barnston & 

Livezey, 1987 

 

Sunspots 
International 

sunspots 
Royal Observatory of Belgium Clette et al., 2015 

Date decimal date N/A N/A 

 

2.3 At-site model development and evaluation 

All model development was done using R version 4.2.2 (R Core Team, 2021) run on Amazon Web Services using Amazon 

SageMaker Studio. We chose to implement random forest classification models (Breiman, 2001) for the modeling framework 150 

because of the robustness of the method (Biau and Scornet, 2016; Tyralis et al., 2019), robustness to redundancies and 

correlations among predictor variables (post-hoc dimension reduction, described in 2.4.2, is utilized over pre-processing for 

this reason), and the ability to quantify the relative importance of individual predictor variables (Archer and Kimes, 2008). 

The modeling was done using the caret package in R (Kuhn et al., 2023). 

2.3.1 Training and configuration 155 

A random forest classification model was trained for each of the 3,198 streamgages included in the analysis. Because of the 

imbalance in the proportion of drought events (0.2), the training data were weighted inversely to the percentile threshold used 

to define a drought, or in this case, 0.2. That is, all observations of drought were weighted by 0.8 and all observations of non-

drought were weighted by 0.2. This allows the random forest models to better represent minority class instances of drought by 

increasing the contribution of the drought instance to the data-splitting calculation at each node in the decision trees. In this 160 
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case, a weight of 0.8 for drought instances and 0.2 for non-drought instances means each instance of drought is treated as four 

instances for each instance of non-drought. Pre-processing on each model to reduce the number of predictor variables was 

avoided in favor of post-processing to facilitate direct comparison among the 3,198 models developed for the analysis. Because 

random forests are robust to correlated predictors and uninformative predictor variables, preserving the full input space for all 

models allows for interpretability and enhanced pattern detection, two major goals for this analysis.  165 

Variable importance was computed using the Gini Index, or mean decrease in impurity (MDI), which sums the gain associated 

with all splits performed along a given variable. MDI was selected to compute variable importance because it has been shown 

that rankings based on MDI can be more robust to perturbations of the data compared with those obtained with permutation-

based importance (Calle and Urrea, 2011). Minimum node size was set to 10 to avoid overfitting. Cohen’s Kappa (Cohen, 

1960) was used to select the optimal model because it is not prone to bias toward the majority class. 170 

2.3.2 Model evaluation 

To understand model performance at each streamgage, the models were trained on data from 1985-2015 and tested on data 

from 1982-1984 and 2016-2020. The early testing period (1982-1984) is shorter because the snow water equivalent data we 

used are not available prior to 1982. We included an early and late testing period to be able to account for and potentially 

analyze the presence of nonstationarity in the frequency of streamflow droughts at the streamgages of interest.  175 

We selected evaluation metrics that provide a fair assessment of the prediction, accounting for the imbalance in the drought 

data. Selected metrics include: 

 

Cohen’s Kappa coefficient (Cohen, 1960): 
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
                                                                                                                        (2) 

Observed agreement, 𝑝𝑜 : 
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                                                                                                          (3) 180 

Expected agreement by chance, 𝑝𝑒 :                                                                                                                                            (4) 

𝑻𝒑𝒐𝒔 + 𝑭𝒏𝒆𝒈

𝑻𝒑𝒐𝒔 + 𝑻𝒏𝒆𝒈 + 𝑭𝒑𝒐𝒔 + 𝑭𝒏𝒆𝒈
×

𝑻𝒑𝒐𝒔 + 𝑭𝒑𝒐𝒔

𝑻𝒑𝒐𝒔 + 𝑻𝒏𝒆𝒈 + 𝑭𝒑𝒐𝒔 + 𝑭𝒏𝒆𝒈
+

𝑭𝒑𝒐𝒔 + 𝑻𝒏𝒆𝒈

𝑻𝒑𝒐𝒔 + 𝑻𝒏𝒆𝒈 + 𝑭𝒑𝒐𝒔 + 𝑭𝒏𝒆𝒈
×

𝑭𝒏𝒆𝒈 + 𝑻𝒏𝒆𝒈

𝑻𝒑𝒐𝒔 + 𝑻𝒏𝒆𝒈 + 𝑭𝒑𝒐𝒔 + 𝑭𝒏𝒆𝒈
 

Model sensitivity:  
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠 + 𝐹𝑛𝑒𝑔
,                                                                                                                                                     (5) 

Model specificity: 
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔 + 𝐹𝑝𝑜𝑠
,                                                                                                                                                         (6) 

Balanced model accuracy: 
𝑀𝑜𝑑𝑒𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑦+𝑀𝑜𝑑𝑒𝑙 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
, and                                                                                                      (7) 185 

Overall model accuracy: 
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
                                                                                                                                (8) 

 

where Tpos is the number of true positives, Fneg is the number of false negatives, Tneg is the number of true negatives, and 

Fpos is the number of false positives. 
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Cohen’s Kappa score (hereafter, “Kappa”) is designed to evaluate the observed model accuracy compared to the expected 190 

model accuracy. By adjusting for agreement that might happen by random chance, it is a helpful metric for evaluating models 

trained on imbalanced data where a naïve model simply predicting the majority class might result in misleading metrics. Model 

sensitivity and specificity characterize the model performance specifically associated with events (droughts) and non-events 

(non-droughts), respectively. Balanced model accuracy represents the mean of model sensitivity and specificity and provides 

an unbiased evaluation of model performance as it relates to prediction of both drought and non-drought events. 195 

2.4 Development and evaluation of dynamic regionalization method 

Within the overall methodology (Figure 2), the analysis and application of the model output to a donor-based prediction method 

was conducted in four steps:  1) pre-analysis filtering of gages associated with poor model performance, 2) dimension reduction 

of important predictor variables using principal component analysis (PCA), 3) regression of principal components (PCs) using 

basin characteristics as predictors, and 4) development of a donor-gage drought prediction method at pseudo-ungaged basins 200 

using regressed principal components. 

 

Figure 2. Methodology flowchart describing the intermediate processing steps in white boxes and steps that directly address research 

questions in green boxes. Boxes are organized by the three major research questions. Sections that elaborate on the steps are also 

listed in each box for reference. CONUS refers to the conterminous United States. 205 
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2.4.1 Pre-analysis filtering of poor-performance gages 

At-site models with poor performance (Kappa scores less than 0.4) were excluded from the potential donor candidate pool. 

We observed that poor performance was typically seen in the Northern Rocky Mountains (Northern Rockies), West, and 

Southwest regions of the United States, where in a greater prevalence of basins, water management practices can alter the 

observed streamflow (Falcone, 2011). Because these practices are not adequately represented with the available data, we are 210 

unable to model them accurately. Gages which are subject to high levels of disturbance are often located in the arid west where 

water management practices may have a larger proportional effect. Because of this, consideration was given to trade-offs 

between spatial representativeness and noise reduction in the filtering process. 

Kappa was prioritized as the primary filtering mechanism above other metrics as it is a more robust measure of classification 

performance in imbalanced datasets. This decision ensured that the models used in the analysis not only demonstrated high 215 

predictive power, but also a robust ability to handle class imbalances and make informed classification decisions when applied 

to drought conditions. Ultimately, the threshold value of Kappa > 0.4 was set to include values of at least a “fair” to “moderate” 

rating (Fleiss et al., 2003; Landis and Koch, 1977). This reduced the dataset from 3,198 models to 1,900 filtered models. These 

filtered models were then used for the remainder of the analysis, as well as donor candidates in the method described in 2.4.4. 

2.4.2 Dimension reduction of variable importance 220 

The Gini Index variable importance measure described in 2.3.1 is a useful byproduct of the random forest (RF) models, as it 

provides insight into the discriminative ability of each predictor variable for streamflow drought classification (Archer and 

Kimes, 2008). However, the high dimensionality of the 130 predictor variable dataset for each RF model, as well as the 

influence of insignificant variables and correlative effects, necessitated transformation prior to analysis and interpretation 

(Jolliffe, 2002). Therefore, we applied PCA (Hotelling, 1933) to reduce the dimensional complexity of the predictor variable 225 

importance values generated for each of the filtered random forest models. The variable importances were scaled to have unit 

variance before analysis, and the top 27 PCs were selected accounting for 95% of the total variability in the dataset. PCA was 

conducted in R using the stats package (R Core Team, 2021). Correlation among variable importances were not explicitly 

calculated due to the scale of the predictor dataset. However, loadings with similar magnitude and direction within a principal 

component are generally proportional with the Pearson correlation coefficient (Frost et al., 2015). Therefore, loadings were 230 

examined here following the dimensional reduction as part of the overall analysis. 

2.4.3 Regression of principal components using basin characteristics 

To predict at locations outside the modeled dataset, PC scores were estimated using regressions built with 58 selected climatic 

and physiographic basin characteristics obtained from the GAGES-II dataset (Falcone, 2011). These variables were derived 

from a prior study (Konapala and Mishra, 2020), and selected based on their relatively high influence over streamflow drought 235 

(Addor et al., 2018; Rice et al., 2015; Stoelzle et al., 2014). Included are 10 climate variables, 15 hydrologic catchment 
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variables, 4 land cover variables, 23 soil characteristic variables, and 6 topographic variables. Table S2 lists these variables 

with a short description. A complete description of these variables can be found in the metadata associated with the GAGES-

II dataset (Falcone, 2011). A linear model was deemed sufficient for modeling the principal components through inspection 

of each covariate relationship with the first 6 principal components, as well as ANOVA-based comparative model testing of 240 

alternatives to the Gaussian error distribution. Therefore, a linear regression for each of the 27 principal component scores was 

developed using the 58 GAGES-II variables at all donor-gage locations. The variables were each scaled such that they were 

centered with a mean of 0 and a standard deviation of 1 to facilitate comparison of the regression coefficients. 

2.4.4 Development of donor-gage prediction method 

To accomplish a donor-based prediction at a location of interest (LOI) outside the donor-gage network, we developed a method 245 

which selects characteristically similar donors for the LOI and combines them to generate a single prediction time series. First, 

a set of PC scores were estimated for the LOI using the regression models described in 2.4.3 and the LOI basin characteristics. 

To determine a set of suitable donors, a weighted sum of absolute differences between the estimated PC scores for the LOI 

and the PC scores for each candidate donor was computed. That is, the absolute value of the difference between each estimated 

PC for the LOI and each corresponding PC generated for each candidate donor by the random forest models was computed. 250 

Individual PC scores were weighted by the percent of total variance explained by the PC as described in 2.4.2. For example, 

if PC1 explains 25% of the total variance in the original dataset of variable importances, the calculated values for the absolute 

difference between PC scores for PC1 were weighted by 0.25. This ensured that high variance and therefore more determinative 

PCs for donor selection were given more weight for the donor selection process. The weighted differences for each PC score 

between the LOI estimate and each donor were then summed for each candidate donor. In an effort to dilute the effects of 255 

potential outlier donors due to possible low regression strength, we selected the top 1% (i.e., 19 of 1,900) of candidates that 

resulted in the minimal weighted absolute sum of differences to comprise the donors for the LOI. The random forest 

explanatory variables described in Table 1 for the LOI were then used to force each of the donor RF models and provide a set 

of drought probability time series. These were then averaged and converted to a binary series using a threshold of 0.35, which 

was determined based on maximization of Kappa between the donor predictions and observations through iterative testing at 260 

0.05 intervals from 0.05 to 0.95. 

2.4.5 Evaluation of donor-gage predictions 

Donor-gage predictions were evaluated at all 3,198 sites (i.e., both filtered and unfiltered), as well as at the filtered subset of 

1,900 sites, using the Kappa metric based on two targets. The first target was the relative performance of the donor-gage 

predictions when compared to the time series of streamflow droughts as predicted by the at-site model for the test period at 265 

each gage. This evaluation provided both an understanding of how well the donor-gage method performed compared to what 

can be expected from a model at that gage, as well as the validity of matching donors using patterns in variable importances. 
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The second target we used was the timeseries of observed streamflow droughts at each gage. This target allowed us to assess 

the performance of the donor-gage prediction method with all types of error included in the analysis. 

3 Results 270 

3.1 At-site model results 

3.1.1 Model performance 

Performance for the at-site RF models evaluated with the metrics described in 2.3.2 are summarized below in Table 2. 

Performance across all metrics were higher at filtered sites than at all locations 

Table 2. At-site model performance metrics for all sites (n=3,198) and filtered sites (n=1,900) based on comparison of at-site RF 275 
models to observed streamflow drought time series. 

Metric Subset Mean Median Standard  

Deviation 

Minimum Maximum 

Balanced Accuracy All sites 0.75 0.77 0.12 0.35 1 
 

Filtered 0.82 0.82 0.06 0.63 1 

Kappa All sites 0.42 0.45 0.2 -0.16 0.88 
 

Filtered 0.56 0.55 0.09 0.4 0.88 

Overall Accuracy All sites 0.86 0.87 0.07 0.46 1 
 

Filtered 0.88 0.88 0.04 0.75 1 

Sensitivity All sites 0.59 0.65 0.26 0 1 
 

Filtered 0.73 0.75 0.14 0.27 1 

Specificity All sites 0.91 0.91 0.06 0.48 1 

 Filtered 0.91 0.91 0.05 0.69 1 

 

Spatial patterns in Kappa were evident, with greater Kappa scores primarily in the Central, Southeast, and Northeast regions, 

along the Pacific coast of the West and Northwest regions, and towards the center of the Southwest region (Figure 3). 
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 280 

Figure 3. At-site model performance represented by the Kappa metric for a) all 3,198 sites, and b) 1,900 sites filtered by Kappa 

scores > 0.4. 

3.1.2 Model Importance Values 

Following the filtering described in 2.4.1, we examined the variable importance values produced for each of the 130 input 

variables included in the 1,900 models. Boxplots of values associated with each variable are provided in Figure S3. Across all 285 

models, the input variables with the highest median importances were soil moisture, precipitation, and Standardized 

Precipitation Evapotranspiration Index (SPEI) at various rolling window smoothing lengths, with some Weibull-transformed 

and others in raw form. However, spatial patterns across most variables were evident (Figure 4). For example, potential 

evapotranspiration (PET) was found to have higher importance in the South, Southwest, and Southeast regions. SPEI had 

higher importance across the CONUS except in the Southwest region, whereas snow water equivalent (SWE) importance was 290 

high in the Southwest, Northern Rockies, Northwest, and West regions. Teleconnections (AMO, PDO, ENSO, PNA), while 

low relative to other variables, were generally higher importance in the western CONUS (Northwest, West, Northern Rockies, 

Southwest regions). Decimal Date was found to be relatively low importance at most sites except in the West, Southwest, and 

South regions, where certain gages demonstrate an outsized value. 
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 295 

Figure 4. Spatial plots of the transformations (indicated in parentheses) with the highest median Gini Index scores (i.e., variable 

importance) for each variable at 1,900 at-site models across the CONUS. Roll30, Roll90, and Roll365 indicate rolling smoothing 

windows of 30 days, 90 days, and 365 days, respectively. JD and Site indicate Weibull transformation using the Julian Day (variable) 

or site-based (fixed) drought threshold definitions, respectively.  

Overall, the variable with the greatest mean importance was Weibull-transformed soil moisture between 40- and 100-cm depth 300 

(mean Gini Index score of 82.5), followed by Weibull-transformed soil moisture between 10- and 40-cm depth (mean Gini 

Index score of 64.1). Following these in mean importance were three precipitation variables: 90-day rolling average Weibull-
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transformed precipitation (mean Gini Index score of 57.2), 90-day rolling average precipitation (mean Gini Index score of 

52.2), and 365-day rolling average Weibull-transformed precipitation (mean Gini Index score of 50.3). The 90-day rolling 

average Weibull-transformed SPEI was the next greatest (mean Gini Index score of 47.6). Variables besides soil moisture, 305 

precipitation, and SPEI did not have mean Gini Index scores greater than 37.1, which was the value found for the decimal date 

variable. 

3.2 Principal Components Analysis 

PCA results revealed that the first three principal components (PCs) explained about 60 percent of the variance in the variable 

importance data, and the first six PCs explained about 80 percent. While a total of 27 PCs were included in the analysis, only 310 

the top three will be discussed here in detail since regional patterns are only clearly apparent for these PCs. Interpretation of 

the PCs in terms of the original variables illuminates some high-level data structures present among the original RF model 

input variables. In general, loadings (the coefficients of the linear combination of the original variables from which the PCs 

are constructed) closer to -1 or 1 indicate that the variable strongly influences the component. However, due to the complexity 

and high dimensionality of the input data, loadings for the first three PCs did not exceed a magnitude of 0.25.  315 

Relatively high magnitude loadings for PC1 include teleconnections such as PNA, ENSO, and PDO, as well as atmospheric 

energy and evaporative demand metrics such as temperature (both minimum and maximum daily) and PET (Figure 5). 

However, these variables were less influential in the Central and coastal Northwest regions of the CONUS. These loadings 

were between -0.11 and -0.13. PC2 is dominated by moisture-related metrics: precipitation, SPEI, and soil moisture. These 

loadings were between 0.11 and 0.18. Notably, a clear split between 365D soil moisture and 30D precipitation is evident in 320 

the loadings between the eastern (Northeast and Central regions) and the western (West, Southwest, Northwest, and Northern 

Rockies regions) parts of the CONUS. PC3 is largely characterized by soil moisture (between -0.13 and -0.21) and SWE 

(between 0.10 and 0.19). Soil moisture is dominant in the Southeast and South regions, whereas SWE is more influential in 

the Northeast, Northwest, Northern Rockies, Southwest, and interior parts of the West along the Sierra Nevada mountain range 

. 325 
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Figure 5. The top three principal components (PCs) for variable threshold random forest drought model importance values at each 

donor candidate site (n=1900) across the contiguous United States. Generally, PC scores indicate covariation among the predictors 

listed for each subplot below their associated spatial maps. Here, the 10 largest positive and negative loadings are listed in order, 

with a horizontal dashed line indicating where the dataset was truncated. The color of these variable points corresponds with the 330 
spatial maps and indicates a relatively strong influence of the variable at the sites of the same color. 

3.3 Regression of PCs with donor basin characteristics 

Regression statistics for the first three PCs are provided below in Table 3. Adjusted R2 for the first three principal components 

were found to be between 0.41 and 0.74. Statistics for all 27 principal components are also provided in Table S4. 

Table 3. Regression statistics for the first 3 principal components modeled using GAGES-II variables. For each PC, the R2, adjusted 335 
R2, residual standard error (SE), F-statistic, F-critical, degrees of freedom (df), p-value, and Akaike Information Criterion (AIC) 

score are provided. 

PC R2 Adjusted R2 Residual SE F-statistic F-critical df p-value AIC 

1 0.42 0.41 5.26 36.84 37 1862 < 0.01 6348.68 

2 0.67 0.67 3.05 101.2 38 1861 < 0.01 4270.88 

3 0.74 0.74 1.73 143.5 37 1862 < 0.01 2112.95 
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For PC1, the F-statistic was below the F-critical value. However, all p-values were found to be below 0.01, indicating statistical 

significance for alpha = 0.05. An abbreviated table for the most significant predictor variables (p-value < 0.001) with 

coefficients above 1 or below -1 for the first three PCs are shown below in Table 4 along with their coefficients. The coefficient 340 

threshold was implemented to focus the interpretation on significant variables that also generate the greatest response in the 

PC value. 

Table 4. Linear regression coefficients for highly significant (p < 0.001) predictor variables with coefficient absolute values > 1 for 

the first 3 principal components (PCs). 

GAGES-II Variable Short description Category PC1 PC2 PC3 

BFI_AVE Base Flow Index Hydro  -1.68  

DEVNLCD06 Watershed percent “developed” LC06_Basin    

ELEV_MEAN_M_BASIN Mean watershed elevation Topo -1.38 -2.66  

FORESTNLCD06 Watershed percent “forest” LC06_Basin 1.28   

FST32F_BASIN Mean day of year of first freeze Climate -2.09 3.11 1.78 

LAT_GAGE Gage latitude BasinID   1.04 

LNG_GAGE Gage longitude BasinID    

LST32F_BASIN Mean DOY of last freeze Climate  3.35 2.88 

NO10AVE 
Average percent of soil by weight passing 
through No. 10 sieve Soils    

NO200AVE 
Average percent of soil by weight passing 
through No. 200 sieve Soils    

PERMAVE Average permeability Soils 2.44   

PET Mean annual potential evapotranspiration Climate -10.93 -1.38 -1.89 

PLANTNLCD06 Watershed percent “planted/cultivated” LC06_Basin 1.69   

PPTAVG_BASIN Mean annual basin precipitation Climate 3.42 -1.01  

PRECIP_SEAS_IND Precipitation seasonality index Climate -1.22   

RFACT Rainfall and runoff factor Soils  1.11  

SNOW_PCT_PRECIP Snow percent of total precipitation Climate   2.02 

T_AVG_BASIN Average annual basin air temperature Climate 10.65  2.74 

WDMIN_BASIN 
Average annual basin minimum days of 
precipitation Climate -1.27 1.34  

 345 

For the PC1 regression, PET and T_AVG_BASIN were found to have very high magnitude coefficients (>10), but with 

opposite sign. 
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3.4 Donor-gage prediction results 

Mean Kappa scores for donor-gage predictions for the test period (Water Year [WY; Oct 1-Sept 30] 1982-1984 starting April 

1982, WY 2016-2020) at all sites was 0.40 with a standard deviation (σ) of 0.22). Other metrics are summarized below in 350 

Table 5. 

Table 5. Donor-gage model performance metrics for all sites (n=3,198) and filtered sites only (n=1,900) based on comparison of 

donor-gage model to observed streamflow drought time series. 

Metric Subset Mean Median Standard Deviation, σ Min Max 

Balanced Accuracy All sites 0.73 0.75 0.13 0.3 1 
 

Filtered 0.79 0.81 0.09 0.37 0.98 

Kappa All sites 0.4 0.44 0.22 -0.26 0.84 
 

Filtered 0.52 0.53 0.14 -0.23 0.84 

Overall Accuracy All sites 0.86 0.87 0.07 0.38 1 
 

Filtered 0.88 0.88 0.04 0.62 0.99 

Sensitivity All sites 0.54 0.59 0.26 0 1 
 

Filtered 0.67 0.71 0.19 0 1 

Specificity All sites 0.91 0.91 0.05 0.5 1 
 

Filtered 0.91 0.91 0.04 0.64 1 

 

Geographically, higher Kappa scores (0.4 and above) were distributed similarly to the at-site model Kappas (Figure 3), 355 

primarily in the East and Southeast regions (Figure 6). Higher Kappa scores were also found in the Southwest and coastal parts 

of the West and Northwest. Low Kappa scores (below 0.4) were found primarily in the Northern Rockies, Southwest, and 

Great Lakes regions. 
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Figure 6. Model performances of donor-based predictions represented by Kappa scores for the test period (1982-1985, 2015-2020) 360 
at a) all 3,198 gage locations, and b) 1,900 sites filtered by Kappa scores > 0.4. 

3.4.1 Comparisons to at-site model performance 

Donor-based predictions had a mean Kappa score across all sites 0.02 lower than the at-site model predictions (0.03 for the 

filtered subset). Generally, the donor-based predictions outperform low-Kappa at-site models and underperform high-Kappa 

at-site models, indicating an overall smaller distribution of scores (Figure 7). Furthermore, the geographic distribution of 365 

donor-based model performance generally followed the distribution of at-site model performance. The spatial structure of the 

comparative model performance was generally undefined. However, the donor-based method underperformed the at-site 

models in the coastal part of the West and Northwest regions, in particular. 
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Figure 7. A comparison between donor-based model accuracy and at-site model accuracy at 3,198 sites in the CONUS. Panel (a) is 370 
a scatterplot showing the relationship between at-site and donor-based models and corresponding boxplots showing model 

distributions, and panel (b) is a map showing the differences between donor-based and at-site model Kappa values. Sites with less 

than a 0.1 absolute difference are represented with small grey points. 

3.4.2 Selected example gages 

Two sites were selected to demonstrate the donor-gage method in the Northeast and Southwest regions of the United States. 375 

(Figure 8). These sites include basins represented by USGS streamgage 09152500 in the west (U.S. Geological Survey, 2024b) 

(Gunnison R. Near Grand Junction, CO; U.S. Geological Survey, 2024b) and USGS streamgage 01440400 in the east 

(Brodhead Creek Near Analomink, PA; U.S. Geological Survey, 2024a). 
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Figure 8. Two example prediction locations in the Southwest United States (U.S. Geological Survey [USGS] streamgage 09152500) 380 
and Northeast (USGS streamgage 01440400). The map displays the prediction locations as triangles, and the 19 selected donor gages 

for predicting at that location as circles of the same color. Time series of predicted streamflow drought probability for the model 

test period 2015-2020 are displayed for their corresponding prediction locations, with periods of observed streamflow drought 

displayed in red, the donors in black (mean donor prediction is bold), and the at-site model predictions in blue. A dashed line at 0.35 

indicates the threshold for predicted streamflow drought status, where predictions above the line indicate streamflow drought and 385 
below indicate non-drought. 

The drought events that occurred at these two locations differed in both longevity and frequency during the later test period 

(2016-2020), with droughts in the Southwest location appearing for greater lengths of time but at a lower frequency. 

Additionally, donor gages for the Northeast site were located a much shorter mean distance from the site at 219 km (donors 

for the Southwest site were located at a mean distance of 2,891 km). In addition, the relative agreement in predicted drought 390 

probability among the donors also differed, with donors generally in greater agreement for the Northeast location (mean 

standard deviation of 0.03) than the Southwest location (mean standard deviation of 0.06). However, despite these differences, 

the donor-based approach was able to perform comparably to the at-site model predictions in both circumstances, with a 

difference in Kappa of 0.07 and 0.01 for the western and eastern locations, respectively. 
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4 Discussion 395 

4.1 The common meteorologic drivers of streamflow drought across the CONUS 

The random forest model variable importances indicated the top three important categories of variables among those tested for 

predicting streamflow drought in the CONUS were soil moisture, precipitation, and SPEI. These drivers, as fundamental 

indicators of moisture, are directly linked to streamflow and are therefore well-documented in their linkage to streamflow 

drought (McCabe et al., 2023; Pournasiri Poshtiri et al., 2019). Soil moisture importance, particularly at the deeper 10-40 and 400 

40-100 cm depths, was especially high in places with relatively low aridity (i.e., regions outside of the Southwest). This is 

likely indicative of hydrologic memory effects that influence the persistence of drought through sustained dry periods, acting 

as a critical buffer to transient meteorological anomalies. Other variables, such as PET and SWE, showed a more region-

specific (mainly, the Southwest and Northern Rockies) relevance to streamflow drought prediction. This is consistent with the 

dominant role of temperature and seasonal snowpack in the regulation of streamflow for basins in the arid Southwest and 405 

basins that are primarily snow-driven (Livneh and Badger, 2020). The teleconnection (AMO, PDO, ENSO, and PNA) and 

sunspots variables showed a generally low predictive importance across the CONUS. This is consistent with past findings that 

show these large-scale drivers have limited direct influence over streamflow at the local scale (Mallya et al., 2013; Piechota 

and Dracup, 1996). Notably, the Date variable shows elevated importance for certain sites in the western CONUS (South, 

Southwest, West regions). Given that streamflow was transformed to reduce seasonality in the models, it is possible that long-410 

term drying trends due to persistent warming, snowpack loss, and reduced runoff efficiency are being captured here. This 

aligns with findings from prior literature (Livneh and Badger, 2020) documenting such shifts in many western catchments. 

The principal component analysis allows for an examination of generalized drought typology in the CONUS, whereby 

individual meteorological and hydrologic variables can be examined by their relative fluctuations in importance across regions 

(Kim et al., 2021; Mainali and Pricope, 2017). Such regional drought patterns have been investigated before. Konapala and 415 

Mishra (2020) found three distinct drought regimes across the CONUS based on random forest algorithms for the period of 

1979-2010 — longer duration, less frequent, and less intense droughts; moderate duration, moderately frequent, and 

moderately intense droughts; and shorter duration, more frequent, and more intense droughts. The basins organized into these 

drought regimes often exhibited similar spatial patterns to the regions that developed from the PCA in this analysis. Their 

study found high elevation, arid/semiarid, and/or snow-fed basins, typically found in the western CONUS (West, Southwest, 420 

Northwest, and Northern Rockies regions), were clustered into the first regime and contrast with the more humid basins in 

other clusters that demonstrate a more direct precipitation influence, typically found in the Northwest and eastern CONUS 

(Northeast, Central, and Southeast regions). Additionally, the largest loadings for PC2 in this study were largely the same 

variables in the positive (SPEI, precipitation) and negative (soil moisture, SWE) directions, but at different smoothing window 

lengths (365-day in the negative direction, 30-day in the positive direction). This is analogous to the varying drought lengths 425 

found by Konapala and Mishra (2020): models in the western CONUS were more influenced by longer smoothing window 

lengths for important drought predictor variables (365 days), and shorter lengths in the eastern CONUS (0 to 30 days). 
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Through PCA, we found evidence of spatial groupings among broad categories of variables with relatively similar influence 

on streamflow drought. For example, PC1 described relatively high loadings among the teleconnections used in this study 

(PNA, ENSO, PDO), temperature, and PET. All these loadings were negative and are therefore associated with the region in 430 

Figure 5 populated with sites that have a negative (purple) PC value. This includes the West, Southwest, Northern Rockies, 

and non-coastal Northwest, as well as parts of the Southeast and Northeast regions. The outsized impact of these climate 

variables on drought conditions in the CONUS at regional scale has been well-documented (e.g., Baek et al., 2019; Cook et 

al., 2014; Woodhouse et al., 2016). Other notable examples include Singh et al. (2021) finding a significant modulation of 

ENSO effects on streamflow, and a PCA conducted by McCabe et al. (2004) finding a principal component highly correlated 435 

with PDO to explain 24% of total variance in drought frequency. Floriancic et al. (2021) found that high excess PET is a 

potential driver of low flows in catchments along the coastal Southeast and Northeast regions. The low importance of 

teleconnections variables at individual sites combined with high loadings and overall predominance of teleconnections 

variables within PC1 (demonstrating a strongly consistent, regional scale pattern) demonstrate that teleconnections act as 

strong background climate modulators at regional scales, influencing overall drought sensitivity without directly contributing 440 

to local drought conditions.  

It is also possible that compounding interactions between the teleconnections variables is a factor in the dominance of 

teleconnections among the high magnitude loadings within PC1. Prior studies have shown that PDO may modify the 

relationship between ENSO and regional drought events by either strengthening or weakening the atmospheric circulation 

anomalies associated with ENSO (Gershunov and Barnett, 1998; Rao et al., 2019; Singh et al., 2021; Yeh et al., 2018). 445 

Similarly, a La Niña-induced negative PNA pattern may be intensified by the negative PDO (Hu and Huang, 2009; Nguyen et 

al., 2021; Wang et al., 2014). Given ideal phase timing, teleconnections may interact in compounding fashion to strengthen 

the severity of streamflow drought conditions at a regional scale.  

We observe similar high-loading driver components and interactions in other PCs as well. PC2 combines precipitation and 

moisture-related drought drivers (SPEI, soil moisture), and PC3 is primarily associated with SWE and soil moisture-related 450 

drivers. Through sign analysis, we find that short-term precipitation, SPEI, and soil moisture are positive in PC2, and therefore 

associated with the Northeast region where PC2 is positive (green) in Figure 5. A precipitation deficit is generally considered 

to be the primary driver of drought conditions, though long-term changes to precipitation show a high degree of spatiotemporal 

variability (Naumann et al., 2018). The intermediate storage mode of precipitation, either in the soil or in snowpack, is likely 

the discerning difference between PC3 positive and negative regions. In the Northeast region, SWE is a high magnitude 455 

positive loading, and soil moisture is a high magnitude negative loading. Spatially, we see this in the delineation of basins into 

groups of snow-driven and non-snow-driven streamflow, such as between the Southeast region and mountainous parts of the 

western CONUS. 

A difficulty that arises when linking meteorology to streamflow drought is the overlapping influence of multiple driver 

components within a region. From Figure 5, we observe that drought in the western CONUS is driven by numerous 460 

meteorological drivers. PC1, PC2, and PC3 all describe drought combinations of drivers centered in this area. Many individual 
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drivers are represented here: teleconnections, PET, temperature, and SWE, among others. Contrast this with the Northeast 

region, where we note a dominance of PC2 (precipitation-related) drivers over all others. It is possible that a major contributor 

to the relative difficulty in untangling predictors of streamflow drought in the western CONUS (apart from the difficulty in 

including water management operations), arises from this large pool of overlapping streamflow drought typologies that can 465 

affect the region. Future inclusions to the workflow, such as partial dependence analysis or Shapley Additive Explanations 

(SHAP) values not originally in the scope of this investigation, may prove useful in disentangling these effects. 

 

4.2 The connection between basin physiography and streamflow drought drivers 

To better understand the spatial structure of variable importance patterns in streamflow drought prediction found in the PCA, 470 

we regressed the principal components against static basin characteristics (Table 4). The resulting variability in connection 

strength between PCs and basin characteristics, where R2 for the first three principal component regressions showed increasing 

explanatory power (0.42 for PC1, 0.67 for PC2, and 0.74 for PC3), is likely indicative of the fact that basin characteristics 

more effectively explain the spatial variation in local, physically grounded predictors like soil moisture, precipitation, and 

snowpack, rather than indirect, regional-scale predictors like teleconnections, which were dominant loadings in PC1.  475 

The high magnitude regression coefficients for the teleconnections and temperature-dominated PC1 typified the majority of 

the eastern CONUS (where PC1 is strongly positive) as forested or cultivated (FORESTNLCD06, PLANTNLCD06), rainy 

(PPTAVG_BASIN), warm (T_AVG_BASIN), and with permeable soils (PERMAVE). This is in contrast with the western 

CONUS (where PC1 is strongly negative), where elevations may be higher (ELEV_MEAN_M_BASIN), precipitation is more 

seasonal (PRECIP_SEAS_IND) and basins are drier (PET, WDMIN_BASIN). These relationships suggest a greater 480 

importance for teleconnections and energy demand-related variables in basins with less buffering capacity (low soil moisture 

retention and minimal snowpack), and a greater sensitivity overall towards larger-scale climate patterns such as ENSO and 

PNA which comprise the high-loading drivers for the PC1 drought combination. Peña-Gallardo et al. (2019) conducted a PCA 

investigating correlations between propagation from climate forcings (SPEI) and hydrological drought and found similar 

results. 485 

PC2, dominated by moisture-related variables (precipitation, SPEI, and soil moisture), showed a contrast between the 

Northeast region (where PC2 is generally positive), and the western CONUS (where PC2 is negative). High magnitude 

coefficients associated with positive PC2 values included later freeze dates (FST32F_BASIN, LST32F_BASIN), more days 

with precipitation (WDMIN_BASIN), and a higher rainfall and runoff factor (RFACT). In the more humid Northeast, the 

strong influence of these longer-term soil moisture metrics show basins in this region retain water over longer periods. In 490 

contrast, the western CONUS associated negative PC2 values with high magnitude negative sign coefficients like elevation 

(ELEV_MEAN_M_BASIN) and PET, suggesting a diminished capacity for water storage over long periods. These results 

contextualize PC2 as a moisture-regime axis, framed by physiographic controls on catchment memory and responsiveness to 

shifts in moisture input. 

https://doi.org/10.5194/egusphere-2025-6064
Preprint. Discussion started: 21 January 2026
Public domain. CC0 1.0.



25 

 

Finally, PC3 distinguished between basins with soil moisture-driven (negative PC3 values) variables in the South and 495 

Southeast regions, and SWE-driven (positive PC3 values) variables in the Northeast, Northwest, Northern Rockies, and 

Southwest regions, as well as interior parts of the West region along the Sierra Nevada mountain range. From the regression, 

positive PC3 values were associated with high magnitude basin characteristics including snow as a percent of total precipitation 

(SNOW_PCT_PRECIP), timing of basin average day of first and last freeze (FST32F_BASIN, LST32F_BASIN), latitude 

(LAT_GAGE), and basin average temperature (T_AVG_BASIN), while negative PC3 values were associated with baseflow 500 

index (BFI_AVE) and PET. These regression relationships for PC3 point towards a dichotomy in seasonal storage between 

flow regimes in snow-dominated systems found in the western CONUS, and baseflow-driven systems in the South and 

Southeast regions where soil moisture plays a more dominant role. In the snowpack-driven western CONUS basins vulnerable 

to streamflow drought driven by a reduction in SWE, the effects of earlier (and therefore slower) snowmelt highlight the 

importance of freezing conditions timing and air temperature, as evidenced by findings that earlier, slower snowmelt decreases 505 

subsurface flow and streamflow production (Barnhart et al., 2016).  

4.3 The performance and applicability of the donor-gage method 

Beyond its use as an analytical tool for the investigation of streamflow drought causes and corollaries, this method was 

evaluated for its potential as a predictive tool in pseudo-ungaged basins. The primary motivator lies in the idea that the 

complexity of streamflow drought, in terms of both the interconnections and overlapping of meteorological drivers, as well as 510 

the mitigating and exacerbating factors of the land surface as the signal propagates to the basin outlet, imply a need for a model 

workflow capable of independent and flexibly-derived predictions.  

Here, the term “independent” is defined in contrast to regional models that may be insensitive to sub-regional scale, highly 

heterogeneous, and influential drought drivers affecting individual basins within the region. Basins which are not well-

represented by overall regional characteristics, which become increasingly prevalent as the modeled processes increase in 515 

spatiotemporal variability, may be poorly represented by such models. This is particularly true in regions that encompass a 

wide range of basin characteristics, such as the western CONUS. Our donor-based method addresses this issue by providing a 

dynamic regionalization approach to optimize a sparse-model architecture. In other words, it reduces the complexity of a 

regional tree-based model by pruning the number of donor gages back to only those that are similar to the ungaged location of 

interest. 520 

Similarly, the term “flexibly-derived” pertains to overcoming the limitations introduced by models designed and calibrated to 

specific circumstances, locations, and prior human understanding of the modeled process(es). The process of combining 

meteorological drivers in the context of the response variable, such as with PCA, is likely to become an increasingly important 

step in an age where models are becoming larger in scope, and datasets more varied and numerous. Drought models forced 

with meteorological datasets without a contextually-based transformation or filtering built on the response variable(s) are likely 525 

to be less accurate than those with selected and pretreated input data. Machine learning-based approaches do not suffer the 

rigidity of process-based modeling approaches yet are sensitive to the datasets they are supplied. This opens the door to 
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potential future applications in different conditions, such as for modeling streamflow drought response to future climate 

scenarios. 

One oft-cited concern with machine learning-based approaches comes from its characterization as a “black box” (Rudin, 2019; 530 

Welchowski et al., 2022). That is, the internal functions of a machine learning model are not easily interpretable. This can be 

an issue in situations where the model may be drawing misleading or inaccurate conclusions from the input data. Given this 

concern, our compartmentalization of the workflow into discrete steps provides several points along the workflow for analysis, 

interpretation, and adjustment. For example, this method provides a mechanism to examine and manipulate the specific inputs 

to the model (e.g., donor gages). For every set of predictions at ungaged locations using this approach, the modeler is able to 535 

analyze the change in predictions or predictive accuracy given a new set of donor gages. Through this permutation of donors, 

the importance of each donor in the model can be evaluated, providing crucial information on the relative importance of various 

model parameters on the final predictions.  

5 Conclusion 

In this study, we developed a machine learning-based methodology to advance understanding of the meteorological drivers of 540 

streamflow drought, as well as the land surface characteristics that influence its propagation to the basin outlet. We have also 

investigated the potential for this donor-based method as an approach for drought prediction in pseudo-ungaged basins using 

a dynamic regionalization. We conclude that the meteorological drivers of streamflow drought are highly interconnected, and 

the reorganization of these drivers with specific reference to streamflow drought through PCA transformation of random forest 

importance values provides contextually based insights into the influence of these drivers. Overall, we found that the greatest 545 

importance values across the CONUS were held by precipitation, soil moisture, and SPEI. From PCA, we found that, within 

PC1, teleconnections, temperature, and PET are highly interrelated in the context of streamflow drought. Similarly, we found 

from analysis of PC2 that the importance of precipitation, SPEI, and soil moisture to streamflow drought predictability are 

also highly interrelated at consistent smoothing window lengths. These PCs, along with the SWE- and soil-moisture-driven 

PC3, exhibit the strongest regional differences across the CONUS. 550 

Additionally, we found regional differences in overlap of streamflow drought drivers, with the western CONUS subject to 

teleconnections, temperature, precipitation, and snow, and the Northeast region dominated by precipitation-related drivers 

alone. We also conclude static climatic and physiographic basin characteristics have an important and complex influence on 

drought propagation during the transitional period in the hydrologic cycle between the atmosphere and observed streamflow.  

Finally, we found potential in the dynamic regionalization of a donor-based method for predicting streamflow drought at 555 

pseudo-ungaged locations. We found a comparable performance in predicting drought between an at-site random forest model, 

and a dynamically selected and weighted set of donors which share common drought response characteristics. 

The results from this investigation provide new insights into the spatiotemporal distribution of influential streamflow drought 

drivers and may serve as a guiding framework towards future advances in streamflow drought prediction. Further, this method 
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can provide greater potential for improving the interpretability of machine learning by parsing the prediction-model donors 560 

out and allowing them to be analyzed individually. 
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