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Abstract. Satellite observations of nitrogen dioxide (NO2) are a valuable tool for estimating nitrogen oxides (NOx) emissions

from point sources and can support carbon dioxide (CO2) monitoring through emission ratios. We assess the capability of

TROPOMI NO2 measurements to quantify the temporal variability of NOx emissions from eighteen power plants in Europe

and the United States. Using the cross-sectional flux (CSF) method implemented in the ddeq Python library (version 1.1), we

derive top-down emissions and compare two NOx chemistry corrections approaches: a “local” method based on MicroHH and5

a “global” method based on GEOS-Chem simulations. Annual top-down estimates using the local approach agree well with

bottom-up estimates from the CORSO point source database, with a mean bias of 9±20% when aggregating sources within 30

km. A regression analysis yields a slope of 1.05±0.17 and a coefficient of determination of 0.68. The local correction yields

emissions that are 58±8% higher than the global approach. Satellite-based estimates successfully captured seasonal and short-

term variability in bottom-up emissions estimated from electricity generation in Europe and continuous emissions monitoring10

systems (CEMS) in the USA. However, limitations remain due to reduced winter coverage, emissions below the detection

limit, overlapping plumes, and uncertainties in NOx chemistry corrections especially for non-isolated facilities. Overall, our

findings demonstrate that satellite NO2 observations can effectively monitor the seasonality of NOx emissions from power

plants. Addressing remaining uncertainties will be essential for future emission monitoring systems and upcoming satellite

missions targeting both NO2 and CO2.15

1 Introduction

Anthropogenic emissions from power plants and industrial facilities are among the largest contributors to global emissions of

air pollutants and greenhouse gases (GHGs), including carbon dioxide (CO2) and nitrogen oxides (NOx=NO2+NO) (Crippa

et al., 2024). These emissions negatively impact air quality and drive climate change, significantly affecting human health,

ecosystems, and global warming. Accurate and timely monitoring of these emissions is therefore essential for assessing20

progress toward air quality standards and climate mitigation targets. In particular, identifying and quantifying emission hot

spots, i.e. cities, power plants and industrial facilities, is a key objective of the European CO2 Monitoring and Verification Sup-
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port (CO2MVS) system. This system aims to support the European Union’s climate policy by providing robust, independent

emission estimates based on satellite observations (Janssens-Maenhout et al., 2020).

Emission quantification methods can broadly be categorized into bottom-up and top-down approaches. Bottom-up methods25

rely on direct measurements at emission sources using Continuous Emission Monitoring System networks (CEMS, e.g., Tang

et al., 2020) or on estimates derived from activity data (e.g., fuel consumption) combined with emission factors (e.g., Guevara

et al., 2024). While direct measurements based on CEMS can be accurate, they often have limited spatial and temporal coverage

since only large point sources are mandated to be equipped with these monitoring systems. Estimates based on activity data are

more scalable but typically involve larger uncertainties due to assumptions in emission factors and reporting practices (Super30

et al., 2020). Both approaches depend heavily on data provided by facility operators, which may be incomplete or inconsistent

across regions. Top-down methods use atmospheric measurements such as remote sensing observations to infer point source

emissions by linking observed trace gas concentrations to emission rates through inverse modeling (e.g., Kaminski et al., 2022;

van der A et al., 2024) or mass balance techniques (e.g., Beirle et al., 2021; Kuhlmann et al., 2024; Hakkarainen et al., 2025;

Leguijt et al., 2025; Varon et al., 2018). These methods leverage satellite instruments such as the Tropospheric Monitoring35

Instrument (TROPOMI) aboard Sentinel-5P, which provides high-resolution measurements of nitrogen dioxide (NO2), carbon

monoxide (CO), methane (CH4), and other trace gases (Veefkind et al., 2012). By combining satellite observations with wind

speed and atmospheric transport models, top-down approaches can offer independent, spatially resolved emission estimates.

However, the accuracy of top-down approaches is limited by uncertainties in satellite observations and restrictions in spatial

and temporal coverage (e.g., Santaren et al., 2025).40

Given that CO2MVS envisions assimilating individual emission estimates at the time of satellite overpass, it is crucial to

assess whether temporal variability in emissions can be captured using instruments like TROPOMI. This capability would

enhance the system’s responsiveness to short-term changes in industrial activity, policy interventions, and episodic events such

as maintenance shutdowns or fuel switching. In this study, we focus on top-down estimates of NOx emissions derived from

TROPOMI NO2 observations. We compare these satellite-based estimates with bottom-up emission inventories for Europe and45

the United States of America (USA), examining their consistency and discrepancies. Furthermore, we analyze the seasonal

cycle of NOx emissions and assess how well satellite data reflect known temporal patterns from bottom-up sources. Finally,

we discuss the limitations of current top-down approaches and provide recommendations for methodological improvements.

2 Bottom-up emission estimates

This study analyzes emissions from a selection of large point sources: six power plants in Europe and twelve in the USA50

(Table 1). These facilities were chosen for their high emission rates (>3 kt NOx expressed as NO2 a−1) and the availability

of high resolution temporal emission data derived from official sources (see paragraphs below). Annual bottom-up emission

estimates were obtained from the CORSO point source database (Guevara et al., 2024, 2025), which provides annual emissions

of CO2, NOx, CO, SOx and CH4 for the year 2021. The database includes emissions from power generation, iron and steel

production and cement manufacturing per industrial facility at their exact geographical locations. For the European power55
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Table 1. List of six power plants in Europe and twelve power plants in the USA analyzed in this study with emissions from CORSO point

source database in kt NOx expressed as NO2 a−1.

Power plant Country Longitude [◦] Latitude [◦] Emissions [kt a−1]

Belchatow Poland 19.326 51.266 25.8

Boxberg Germany 14.570 51.421 10.3

Kozienice Poland 21.465 51.664 10.7

Jänschwalde Germany 14.458 51.836 11.6

Lippendorf Germany 12.373 51.184 7.1

Weisweiler Germany 6.324 50.839 10.0

Alcoa Allowance USA -87.333 37.915 7.6

Colstrip USA -106.614 45.883 7.1

Gen J M Gavin USA -82.116 38.935 7.4

Hunter USA -111.029 39.175 10.0

Intermountain USA -112.580 39.510 9.7

James H Miller USA -87.060 33.632 6.7

Labadie USA -90.838 38.562 7.2

Martin Lake USA -94.571 32.261 8.8

Miami Fort USA -84.804 39.113 8.5

Milton R Young USA -101.213 47.066 7.5

New Madrid USA -89.562 36.515 14.6

Thomas Hill USA -92.638 39.552 10.8

plants, information on annual emissions is directly derived from the integrated Industrial Reporting Database provided by the

European Environmental Agency (EEA, 2024), while for the U.S. power plants emissions are obtained from the Emissions

and Generation Resource Integrated Database (eGRIDv2021; US EPA, 2024). In addition to CORSO, we used the CAMS-

GLOB-ANT (version 6.2) inventory (Soulie et al., 2024), which provides gridded anthropogenic emissions at global scale

at 0.1◦ resolution for a total of 17 emission sectors, including power generation, manufacturing industry, road transport and60

residential and commercial combustion activities, among others. CAMS-GLOB-ANT is used to complement the point source

data reported by CORSO and to provide context for regional background emissions.

For U.S. power plants, daily NOx emission reports were obtained from publicly available Clean Air Market Program Data

(CAMPD) of the U.S. Environmental Protection Agency (EPA). These reports are based on CEMS installed at the facilities,

providing high-frequency measurements of NOx emissions. For European power plants, only annual emission totals are avail-65

able because daily or hourly emission measurements are not publicly accessible. We therefore estimate NOx emissions by

scaling annual totals using hourly actual electricity generation data from the ENTSO-E Transparency Platform (Hirth et al.,
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2018). This approach assumes a linear relationship between power output and NOx emissions, which was also used by previous

studies (Nassar et al., 2022).

According to EPA and EEA performance specifications, reported NOx emissions are required to have a relative accuracy70

of 10% (1σ) or better (US EPA, 2023; Brinkmann et al., 2018). We therefore assume that daily, monthly and annual reported

NOx emissions are accurate to within ±10% of the annual totals. For European hourly and monthly estimates, additional

uncertainties may arise from the assumed emission-power relationship and operational dynamics. However, for the purposes

of this study, we consider these uncertainties to be encompassed within the 10% range.

3 Top-down emission estimates75

NOx emissions of the European and U.S. power plants were estimated from NO2 column images retrieved from the TROPOMI

instrument aboard the Sentinel-5P satellite. TROPOMI is a nadir-viewing imaging spectrometer that measures back-scattered

solar irradiance in the ultra-violet, visible, near-infrared and shortwave spectral range. It provides daily global coverage at a

resolution of 3.5 km by 5 km at nadir, enabling the detection of localized NO2 emission plumes of individual power plants. Tro-

pospheric NO2 vertical column densities (VCDs) are retrieved from the visible spectrum using differential optical absorption80

spectroscopy (DOAS) that provides slant column densities (SCDs). Following a troposphere-stratosphere separation, SCDs

are converted to VCDs using air mass factors (AMFs) that correct for viewing geometry, surface reflectance, atmospheric

scattering and the vertical distribution of NO2 (Veefkind et al., 2012; van Geffen et al., 2022).

NOx emissions were estimated using the cross-sectional flux (CSF) method, implemented in the open-source Python library

for data-driven emission quantification (ddeq, Kuhlmann et al. (2024) for version 1.0). The ddeq library was originally de-85

veloped for estimating CO2 and NOx emissions from synthetic satellite images of the Copernicus CO2 Monitoring (CO2M)

mission (Kuhlmann et al., 2019, 2021). In the CoCO2 project, the library was extended with additional methods and was used

for benchmarking different approaches for emission quantification of hot spots (Hakkarainen et al., 2024; Santaren et al., 2025).

In this study, we use version 1.1 of the ddeq library, which includes several improvements over version 1.0. Notably, we have

merged the two cross-sectional flux methods implemented in the ddeq library: the CSF (cross-sectional flux) implementation,90

which was originally developed by Kuhlmann et al. (2020) for CO2M, and the light cross-sectional flux (LCSF) implementa-

tion, which was originally developed by Zheng et al. (2020) for OCO-2 and modified for CO2M by Santaren et al. (2025). As

a result, the CSF implementation can now identify the plume location based on the wind direction at the source, a feature we

employed in this study.

3.1 Input data and pre-processing95

The input data for emission quantification consists of the TROPOMI NO2 data product (version 2.4.0) including the associated

auxiliary product, which provides the a priori NO2 profiles used in the AMF calculations. These datasets were obtained from

the Copernicus Dataspace for the year 2021. Meteorological input is obtained from the ERA5 reanalysis product on single and
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pressure levels, including surface pressure, geopotential, temperature, specific humidity, mean surface net shortwave radiation

flux, and the zonal and meridional wind at 10 m, 100 m and on pressure levels (Hersbach et al., 2020).100

The CSF method requires an estimate of the effective wind speed, i.e., the mean transport wind speed in the plume. To

compute this, ERA5 pressure levels were first converted to height above the surface. Any height levels below the surface,

occasionally present in the dataset, were excluded. To enhance vertical resolution near the surface, wind vectors at 10 m and

100 m were incorporated into the profile. The effective wind speed was then calculated as weighted mean using the GNFR-A

standard emission profile for power plants (Brunner et al., 2019), which provides a suitable estimate of the NOx distribution105

near the source. The approach is more robust and consistent than using, for example, the mean wind within the planetary

boundary layer (PBL), which can be lower than the emission height, particularly in winter.

3.2 Cross-sectional flux method

The CSF method is used to estimate the NOx emission rate Q (in kg NO2 / s) from satellite observations. The emission rate is

calculated as110

Q =
f

D
·u · q, (1)

where f is the NO2-to-NOx conversion factor, u is the effective wind speed, q is the line density (in kg m−1), and D is the

correction term for NOx decay during transport. The decay term is computed as

D = exp
(
− x

uτ

)
, (2)

where x is the distance from the source, and τ is the NOx chemical lifetime (Kuhlmann et al., 2024). The combined correction115

factor c = f/D accounts for both the conversion of NO2 to NOx and the decay of NOx during transport as described in Section

3.4.

The NO2 line density q is derived by fitting a Gaussian curve with a linear background to the NO2 column data in the plume

area downwind of each source. The fitted function is

g(y) =
q√
2πσ

exp
(
− (y−µ)2

2σ2

)
+ my + b, (3)120

where y is the across-wind direction, µ and σ are center position and standard width of the Gaussian curve, and m and b are

slope and intercept of the linear background.

The plume area used for fitting is defined by following the wind direction from 1 km to 30 km downwind of the source. In

the across-wind direction, the plume area extends 80 km perpendicular to the wind direction. This spatial window ensures that

the plume is sufficiently captured while minimizing interference from neighboring sources or background variability.125

3.3 Air mass factor corrections

The air mass factors (AMFs) provided in the standard TROPOMI product are known to be biased in regions with strong local

enhancements (Griffin et al., 2019; Verhoelst et al., 2021; Douros et al., 2023). This is because the global TM5 chemistry
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transport model, which provides the NO2 profiles, has a coarse horizontal resolution of 1◦, which is not sufficient to resolve

narrow NO2 plumes from individual point sources.130

To address this limitation, we apply a correction to the AMFs using the averaging kernels (AKs) provided in the standard

product and a modified vertical NO2 profile (Eskes and Boersma, 2003). Specifically, we enhance the standard TM5 NO2

profile by adding an NO2 enhancement derived from Eq. (3) to the TM5 profile. The enhancement is vertically distributed

according to the GNFR-A emission profile.

We recalculate the AMFs by applying the AKs to the modified NO2 profile. The corrected AMFs are then used to update the135

NO2 column densities. Subsequently, Equation (3) is re-fitted to the corrected NO2 columns to obtain the AMF-corrected line

density q, which is used in the CSF method to compute the final NOx emission estimates.

3.4 NOx chemistry corrections

To derive NOx emissions from NO2 satellite observations, it is necessary to estimate the NO2-to-NOx conversion factor f

and the NOx chemical lifetime τ . In this study, we use a global approach, which is based on global chemistry transport140

simulations with GEOS-Chem, and a local approach, which is based on plume-resolving simulations with the MicroHH large-

eddy simulation (LES) model for the Jänschwalde power plant. We detail the two methods below.

3.4.1 Global approach: GEOS-Chem simulations

The emissions monitoring system developed for the CO2MVS capacity will be based on the Integrated Forecasting System

(IFS) operated by ECMWF (Inness et al., 2013). One of the envisioned capabilities of CO2MVS is the assimilation of NO2145

satellite observations to constrain CO2 emission using emission ratios. However, the greenhouse gas monitoring system will

not perform full-chemistry simulations due to the high computational costs. Instead, a lightweight chemistry scheme based on

machine learning would be used for predicting NO2:NOx concentration ratios and NOx rate of change from meteorological

variables available within the IFS.

As part of the CORSO project, a prototype of this scheme was developed for Europe using training data from the GEOS-150

Chem model. The machine learning model predicts NO2:NOx concentration ratios from solar zenith angle, longitude, latitude,

height above surface, shortwave radiation, temperature, humidity and wind speed. To predict NOx rate of change, the model

additionally requires NOx concentrations as input. This prototype model is described and validated in detail by Schooling et al.

(2025).

In this study, we use an expanded version of the prototype, trained on global GEOS-Chem simulations for the year 2021 at a155

resolution of 2◦ by 2.5◦. Meteorological input parameters for the machine-learning model were taken from ERA5 reanalysis.

To estimate the NOx rate of change, we converted the modified NO2 profiles from the AMF calculation to NOx using the

predicted NO2:NOx concentration ratios from the machine-learning model. The NOx chemical lifetime is then calculated

using τ =−[NOx]/R, where [NOx] is the NOx concentration (in molecules cm−3) and R is the rate of change (in molecules

cm−3 s−1). Finally, the vertical profiles of ratios and lifetimes are weighted using the GNFR-A emission profile to compute160

column-averaged NO2:NOx ratios (f ) and NOx lifetimes (τ ).
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3.4.2 Local approach: MicroHH simulations

Recent high-resolution atmospheric chemistry simulations with the MicroHH LES model have shown that NOx chemistry

within emission plumes is highly complex, with chemical evolution strongly influenced by emission strength, wind speed,

amount of turbulent mixing with the background atmosphere, and time since emissions (Krol et al., 2024). As a consequence,165

NOx correction factors can vary significantly depending on the method and part of the plume used for emission quantification

(Hakkarainen et al., 2024).

To improve the accuracy of NOx emission estimates based on TROPOMI NO2 observations, Meier et al. (2024) analyzed

these MicroHH simulations for four large point sources, including the Jänschwalde power plants in Europe. Based on these

simulations, an empirical formula was developed that predicts the NOx:NO2 ratio f as a function of time since emissions:170

f(t) = m · exp
(
− t

r

)
+ f0, (4)

where m, r and f0 are parameters fitted to the simulations. Furthermore, they also analyzed the lifetime in the simulations,

which varied from 1 to 5 hours with a mean value around 2.5 hours.

Since plume-resolving simulations for all power plants in this study are not available, we adopted the parameters derived for

the Jänschwalde power plant (i.e.: m = 1.6±0.1, r = 1638±162 s, f0 = 1.31±0.01). The power plant was simulated for 22 and175

23 May 2018 with an annual NOx emission rate of 18 kt (Krol et al., 2024), which is within the emission range of the power

plants analyzed here. Additionally, we apply a fixed lifetime of 2.5 hours for all sources.

This approach allows us to explore the spatial and temporal generalizability of high-resolution plume simulations conducted

at a single location. Although the empirical formula was originally developed using data from only two simulation days, its

application over a full year has already shown promising results with a significant reduction in the biases between bottom-up180

and top-down emission estimates for the Belchatow and Jänschwalde power plants (Meier et al., 2024).

3.5 Quality filtering

To ensure the reliability of individual emission estimates, estimates were visually inspected to identify potential causes of

failure in the quantification process. Based on this assessment, we excluded all cases where either the shift or the standard

width of the fitted Gaussian curve exceeded 10 km. A large shift typically indicates a misalignment between the observed185

plume and the wind direction used to define the plume axis, while an excessively broad standard width suggests that the fitting

algorithm may have captured a diffuse source region or background enhancement upstream of the actual emission source. We

also filter out estimates for wind speeds lower than 2.0 m s−1, because of the large relative uncertainty of the wind speed itself

and the NOx chemistry correction factors. In particular, the correction factors are exceeding 3 for the local approach under low

wind speeds, which introduces substantial uncertainty and reduces the reliability of the emission estimates.190
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3.6 Monthly and annual emission estimates

Various approaches have been proposed to compute monthly and annual emission estimates from individual estimates (Santaren

et al., 2025). One method involves fitting a smooth function through individual estimates to reconstruct a seasonal cycle, which

can then be integrated to obtain monthly and annual means (Kuhlmann et al., 2020). However, we found that the time series

of bottom-up reports is not consistently smooth, making this approach less suitable for our dataset. Another commonly used195

method applies weighted averaging based on estimated uncertainties, but this introduces bias because the uncertainties in

the CSF method are proportional to the magnitude of the estimated emissions (see next section). As a result, lower emission

estimates, associated with smaller uncertainties, would receive disproportionately high weights, resulting in an underestimation

of the true emissions.

In this study, we therefore compute monthly emissions by calculating the arithmetic mean of all valid individual estimates200

for each month. We deliberately avoid weighted averaging for the reasons outlined above. To derive annual emissions, we

linearly interpolate monthly means to fill gaps in months where no valid estimates are available. The final annual emission

value is calculated as the median of the twelve monthly values. This approach mitigates the risk of bias from isolated extreme

values, which can occur if only a single estimate is available in a given month, particularly in winter.

3.7 Uncertainties205

The uncertainties in the top-down emission estimates are quantified using Monte Carlo simulations, which estimate the uncer-

tainty by generating an ensemble of the input parameters for the CSF method. The uncertainty of line density q is derived from

fitting the Gaussian curve using the precision of the TROPOMI NO2 product. This precision is used to create an ensemble of

line densities for each estimate. For wind speed, we assume an uncertainty of 1.0 m s−1, consistent with the validation of the

ERA5 reanalysis product (e.g., Vanella et al., 2022; Potisomporn et al., 2023). To avoid negative wind speeds in the ensemble,210

we use a lognormal distribution centered on the effective wind speed, with a standard deviation is 1.0 m s−1.

Wind speed uncertainty has a direct impact on the uncertainty of the chemistry correction, because it is required to calculate

the time since emissions used in Eqs. (4) and (2). For the local chemistry approach, we additionally include the uncertainties

in the empirical parameters (m, r and f0) used for the NO2-to-NOx conversion factor. The NOx lifetime is modelled using a

lognormal distribution with a mean of 2.5 hours and a standard deviation of 0.6 hours, consistent with the distribution found215

by Meier et al. (2024). For the global approach, we use an uncertainty of 0.10 for the ratio, which was obtained by comparing

the machine-learning with the GEOS-Chem simulations. The uncertainty in the rate of change is negligible compared to the

uncertainty in the time since emissions; therefore, it is not included.

To quantify the uncertainties in the estimated emissions, we compute 16th, 50th and 84th percentile of the Monte Carlo

ensemble, corresponding to the median and the ±1σ confidence interval. For monthly and annual estimates, we account for a220

temporal sampling error of 30%, which was estimated from the bottom-up time series and is consistent with previous studies

Hill and Nassar (2019). Finally, we include a systematic error of 10% to the monthly and annual values, which is added to the

overall uncertainty budget.
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4 Results

4.1 Example of emission at satellite overpass225

The CSF method was applied to the six power plants in Europe and twelve power plants in the USA summarized in Table 1.

Figure 1 shows three examples of NOx emission estimates derived from TROPOMI NO2 observations for the Jänschwalde,

Miami Fort and Hunter power plants. The examples highlight some of the challenges associated with estimating NOx emissions

from satellite observations.

For the Jänschwalde power plant, the emission plume is clearly visible in the satellite image. Additional plumes from nearby230

plants (Schwarze Pumpe and Boxberg) can also be identified south of Jänschwalde. The plume area (yellow polygon), limited

to 30 km downwind, effectively isolates the Jänschwalde power plant, minimizing the interference from neighboring sources.

The across-plume NO2 enhancement is well captured by the Gaussian curve, resulting in a top-down emission estimate of

16.2±4.7 kt a−1 using the local chemistry approach. This value is slightly larger but consistent with the bottom-up estimate of

13.5±1.2 kt a−1 .235

In contrast, the Miami Fort power plant example shows no discernible plume in the TROPOMI NO2 image. On the day of

observation, the reported emissions were very low with only 2.3 kt a−1 and wind speeds were relatively high with 5 m s−1,

likely dispersing the weak plume below the detection limit. The top-down estimate was flagged as invalid, because both the

center position and standard width of the Gaussian curve were larger than 10 km.

The third example is for the Hunter power plant and shows its emission plume with bottom-up reported emissions of 11.5 kt240

a−1. There is also an additional enhancement from the Huntington power plant, which is located about 25 km north of Hunter

and has 6 kt a−1 annual emissions. This case illustrates the complexity of accounting for NOx chemistry in overlapping plumes.

For an inert gas, like CO2, the enhancements from multiple sources would simply add up, and the total emission estimate would

reflect the sum of the individual contributions. However, for reactive species like NOx, the chemistry correction introduces a

non-linear effect. Since the correction factor is dominated by the decay term, a stronger correction is necessary for older plumes245

(cf. Sec. 4.3). In this example, the NOx from Huntington is significantly younger than the NOx from Hunter. Consequently,

the NOx correction, assuming an older plume, strongly overcorrects the emission estimate. The resulting top-down estimate is

36.7±8.2 kt a−1, which is substantially higher than the combined bottom-up emissions of the two power plants.

4.2 Annual emissions

Figure 2 and Table 2 compare the annual NOx emission estimates from the bottom-up and top-down approaches for the 18250

power plants. The bottom-up estimates are shown for the CAMS-GLOB-ANT inventory and the CORSO point source database.

CAMS-GLOB-ANT emissions are integrated for the energy sector and all other sectors within a radius of 30 km around the

power plant. CORSO emissions are shown for the power plant and for other facilities within a radius of 30 km. A radius of

30 km was used because top-down emissions are estimated using TROPOMI measurements from up to 30 km downstream of

the facility. The top-down estimates use the local NOx correction from the MicroHH simulations and the global correction255
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Figure 1. Three examples of NOx emission estimates for (a) Jänschwalde, (b) Miami Fort and (c) Hunter power plant. The upper row shows

the TROPOMI NO2 image with location of the plume area. The lower row shows the NO2 column densities in across-plume direction and

the fitted Gaussian curve.
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Figure 2. (a,b) Annual NOx emissions from 18 power plants (in kt NOx expressed as NO2 a−1), comparing bottom-up estimates from

CAMS-GLOB-ANT (split between power generation and all other sectors) and the CORSO database, with top-down estimates derived

from TROPOMI NO2 observations using local and global chemistry correction approach. Numbers in brackets indicate the number of valid

TROPOMI emission estimates in 2021 for each facility. (c) Scatter plot comparing bottom-up estimates from CORSO database (all within

30 km) with top-down from TROPOMI using local chemistry correction. For top-down estimates, error bars show 1σ confidence interval

derived from Monte Carlo simulations.

from the GEOS-Chem simulations. To provide spatial context, Figure 3 shows maps of total NOx emissions from the CAMS-

GLOB-ANT emission inventory and location of CORSO point sources in a 2◦×2◦ region around each power station.

On average, total emissions from the CAMS-GLOB-ANT inventory are 70±100 % larger than those reported in the CORSO

database. The differences arise because CAMS-GLOB-ANT includes emissions not only from power plants, but also from

other relevant NOx combustion sources such as road transport, residential and commercial combustion and manufacturing260
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Figure 3. Emission maps of NOx emissions in a 2◦×2◦ region around the power stations from the CAMS-GLOB-ANT inventory in 2021

(all sectors). Black crosses mark the locations of point sources in the CORSO database. The black circle shows a 30-km radius around the

facility location.

industry, while CORSO is limited to major power plant, iron/steel production sites and cements plants. When considering

only the CAMS-GLOB-ANT emissions reported for the power generation sector, differences with the CORSO database are

much lower 30±81%, although significant discrepancies still exist at specific sites. For instance, emissions in CAMS-GLOB-

ANT around Boxberg, which include the Schwarze Pumpe power plant, are only half of those reported in CORSO. Moreover,

CAMS-GLOB-ANT includes emissions of some power plants that were decommissioned prior to 2021, such as the Gorgas265

power plant (reported at 4 kt a−1 in CAMS-GLOB-ANT) east of James H Miller (Figure 3 ), which was permanently closed

in 2019. This is probably because the CAMS-GLOB-ANT is based on a version of the EDGAR inventory, which uses the

outdated CARMA version 3 power plant database from 2009 (Soulie et al., 2024), whereas the CORSO database uses reported

emissions from 2021. This issue has been resolved in more recent versions of EDGAR (Crippa et al., 2024). In addition, spatial

mismatches are evident in CAMS-GLOB-ANT with emission locations sometimes offset from actual stack coordinates, for270

example, in the case of the Hunter power plant. This is also related to the use of CARMA in the EDGAR inventory. The spatial

analysis also shows that several facilities are located near urban areas or industrial complexes, as observed for Lippendorf,

Weisweiler, Miami Fort, and Labadie.

The top-down estimates using the local NOx correction approach are 58±8% higher than those obtained with the global

approach, due to the larger correction factor of the local approach (see Section 4.3). When comparing CORSO bottom-up and275

top-down approaches for individual power plants, the local approach yields emissions 34±34% larger. However, satellite-based

estimates are sensitive to the area surrounding the source. If we consider all point sources within 30 km of the power plant, the
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Table 2. Annual top-down and bottom-up NOx emission estimates in kt NOx expressed as NO2 a−1.

Power plant CAMS-GLOB-ANT CORSO database TROPOMI NO2

(within 30 km) (facility) (within 30 km) (local) (global)

Belchatow 24.1 25.8 25.9 24.0 15.1

Boxberg 7.6 10.3 16.5 13.7 8.4

Kozienice 13.3 10.7 10.8 13.1 8.3

Jänschwalde 9.8 11.6 11.6 12.3 7.1

Lippendorf 13.4 7.1 7.5 10.4 6.0

Weisweiler 30.5 10.0 20.6 18.6 11.0

Alcoa Allowance 27.5 9.0 10.7 9.7 6.5

Colstrip 13.7 7.1 7.5 9.4 5.8

Gen J M Gavin 34.0 7.5 13.0 11.9 7.9

Hunter 14.9 10.0 16.0 22.3 14.2

Intermountain 11.7 9.6 9.6 10.9 6.7

James H Miller 30.5 6.7 6.9 8.1 5.3

Labadie 22.6 7.2 7.2 7.3 5.1

Martin Lake 27.9 8.8 12.5 9.5 6.2

Miami Fort 25.0 8.4 10.4 15.1 9.3

Milton R Young 12.7 7.5 10.9 12.2 8.1

New Madrid 9.1 14.5 14.5 17.7 11.9

Thomas Hill 8.7 10.8 10.8 10.4 6.7

local approach is only 9±20% larger than bottom-up estimates. In contrast, the global approach still yields top-down estimates

that are 31±12% lower than the bottom-up estimates within the same 30 km radius.

We find larger discrepancies for some power plants. For example, the Hunter power plant, which is located near the Hunt-280

ington power plant (Figure 1c), the NOx correction appears to systematically overestimate emissions. Similarly, for the Miami

Fort power plant, top-down estimates exceed bottom-up values (cf. Table 2). This facility is also surrounded by several nearby

point sources, which may contribute to the overcorrection effect similar to what was seen at Hunter. Additionally, emissions

during the summer months at Miami Fort were low and frequently below the satellite detection threshold (Figure 1b). Since

non-emitting days are not included when averaging, this may lead to an overestimation of annual emissions.285

Figure 2c shows that the regression between CORSO bottom-up estimates (within 30 km) and local top-down estimates

yields a slope of 1.06±0.17 and an intercept of 0.3±1.7 kt a−1, with a correlation coefficient of approximately 0.70, showing

good agreement.
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Figure 4. Comparison of NOx chemistry parameters used for estimating NOx emissions from TROPOMI NO2 observations for the Jän-

schwalde power plant, using the local and global correction approach. Rows show wind speed u, NO2-to-NOx conversion factor f , NOx

decay correction term D, and the combined correction c = f/D. The left column displays the time series of each parameter, while the right

column shows the same data sorted by wind speed. The shaded area shows the 68% confidence interval (CI) derived from the Monte Carlo

simulations.

4.3 Impact of NOx chemistry

To assess the influence of the NOx chemistry on estimated emissions, Figure 4 shows the temporal variability and the relation-290

ship between wind speed and the chemistry parameters (f , 1/D and c = f/D) for the Jänschwalde power plant.

The conversion factor, f(t), derived from the local MicroHH simulations, shows strong temporal variability. This variability

is driven by changes in wind speed, which affect the estimated time since emissions in Eq. (4) for a fixed plume area up to

30 km downstream. At low wind speeds, the plume remains longer in the area, allowing more time for converting NO to

NO2, resulting in lower conversion factors. Conversely, at higher wind speeds, less conversion occurs within the same area.295

Consequently, the conversion factor increases from 1.3 to 2.2 as wind speeds increase from 1 to 16 m s−1. In contrast, the

temporal variability of the conversion factor f for the global approach, based on GEOS-Chem, shows less temporal variability.

The factor exhibits a weak seasonal cycle with smaller values during winter. However, it does not strongly depend on wind

speed, as the approach lacks explicit information about time since emissions. The mean value of 1.4 is slightly larger than the

background parameter f0 = 1.31 from the MicroHH simulations.300
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The decay correction term 1/D depends strongly on wind speed for both approaches, which is primarily driven by wind

speed directly influences the time since emission in Eq. (2). In fact, a constant lifetime of 2.5 h was used for the local approach.

The global approach has lifetimes of about 5 hours in summer and even longer lifetimes in winter. As expected, the correction

term is largest for low wind speeds, because more NOx has decayed within the 30 km plume length. For the local approach,

the term ranges from 4.0 at 1 m s−1 to 1.2 at 16 m s−1. For the global approach, the correction term is smaller with a mean305

value of 1.1. The correction term can even become smaller than 1 in winter, indicating net NOx production.

The combined term c = f/D is dominated by the decay term with larger values for low wind speeds. It ranges from 2.4 to

6.6 for the local approach and 1.1 to 3.8 for the global approach. The difference explains the systematic offset between the

emission estimates using the two approaches. Importantly, the large correction factor associated with low wind speeds was the

reason for filtering out top-down estimates with wind speeds below 2 m s−1, because they introduce substantial uncertainty310

and potential overestimation.

4.4 Time series of emissions

The number of valid satellite overpasses per year ranges from 38 to 170, depending on the cloud frequency at the location and

the isolation of the power plant. Fewer estimates are available for plants situated near other emission sources, as overlapping

plumes and interference often lead to quality filtering and data rejection. For all European power plants, the number of valid315

top-down emission estimates during winter is notably low, with only 12% of the total valid estimates occurring in that season.

In January 2021, the Kozienice power plant is the only plant providing a valid estimate. For U.S. power plant, slightly more

valid estimates (16%) are available during winter (see Figure S4 in the supplement).

Figure 5 compares top-down and bottom-up NOx emission time series for six selected power plants. The time series for

all analyzed plants are shown in the supplement. The left column displays individual estimates, while the right column shows320

monthly values. For European power plants, bottom-up estimates are derived from the CORSO annual values scaled by power

generation data, whereas for U.S. plants, daily NOx emissions directly taken from CEMS measurements. We further computed

relative mean bias (MB in %), reduced chi-squared values (χ2
red) and Pearson correlation coefficient (r2) for each time series.

For the Jänschwalde power plant, top-down estimates are slightly larger than bottom-up reports (MB≈ 5%). The correlation

coefficients are low (r2 ≈ 0.3) preliminary due to the low variability of emissions of the plant. The reduced chi-squared value325

is moderately high for individual estimates (χ2
red= 7.5), while the monthly value (χ2

red= 1.5) is close to unity, suggesting that

the differences between bottom-up and top-down estimates are broadly consistent with their estimated uncertainties. The time

series for the Kozienice power plant shows generally similar performance, except for a pronounced outlier in January. This

outlier was not flagged by the automatic quality filtering, resulting in a large mean bias for monthly values and, consequently,

lower reduced chi-squared values and correlation coefficients (MB = 68%, χ2
red= 4.0, r2= 0.10). This highlights the importance330

of robust quality filtering in top-down approaches.

The four U.S. power plants exhibit strong variability in reported emission, which is reflected in the top-down estimates

and results in high correlation coefficients (r2 ranging from 0.51 to 0.84 for monthly values). The mean bias is small for

Intermountain and Thomas Hill (8%) but larger for New Madrid (27%). Reduced chi-squared values range from 10 to 20
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Figure 5. Time series of NOx emission estimates from top-down (using the local NOx correction approach) and bottom-up (based on reported

values for the power plant). The left column shows individual satellite overpass estimates (n indicates the number of overpasses used), while

the right column presents monthly averages. Error bars represent the 1σ confidence interval derived from Monte Carlo simulations. Numbers

show relative mean bias (MB in %), reduced chi-squared values (χ2
red) and Pearson correlation coefficient (r2) for each time series.

for individual overpasses and fall below 4 for monthly values, generally indicating good agreement at the monthly scale. The335

Miami Fort power plant has a strong seasonal cycle with very low emissions reported from May to October. Top-down estimates
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capture this pattern, although the number of valid estimates is limited during summer, because emissions frequently fall below

the detection limit (e.g., Fig. 1b). While the correlation coefficient is high (r2 = 0.84 for monthly values), the mean bias is quite

large (MB = 64%) due to the presence of other sources in the vicinity (see Fig. 3). This bias is reduced when considering all

point sources within 30 km (Table 2).340

Figure 6 shows MBs, χ2
red and r2 for individual estimates and monthly mean values (see Table S1 in the supplement for all

values). Since we compare bottom-up emissions for the power plant, MBs can be large when plants are not isolated because

top-down values are sensitive to surrounding sources, (cf. Fig.3). The correlation coefficients span a large range, with low

values for plants without a pronounced seasonal cycle and higher values for monthly averages. Reduced chi-squared values

are generally below 5 for monthly values (χ̄2
red = 3.9, range: 1.5 to 11.5), with remaining deviation between top-down and345

bottom-up driven by the mean bias, due to missing neighboring sources, and uncertainties in the top-down method such as

uncertainties in NO2 columns (e.g., AMF correction), wind speed and NOx chemistry correction.
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Figure 6. (a) Relative mean biases (MB), (b) reduced chi-squared values (χ2
red) and (c) Pearson correlation coefficients (r2) comparing the

time series of bottom-up and top-down NOx emissions at satellite overpass and for monthly values.

5 Discussion and conclusions

This study investigates the potential of satellite-based TROPOMI NO2 observations to quantify the seasonal and daily vari-

ability of NOx emissions from point sources. We focus on eighteen power plants in Europe and the United States of America.350

Top-down emissions were derived using the cross-sectional flux method implemented in the ddeq Python library. To account

for NOx chemistry, we compared two approaches for converting NO2 to NOx and for correcting for NOx chemical lifetime:

a “local” correction extrapolated from plume-resolving MicroHH simulations, and a “global” correction interpolated from

GEOS-Chem simulations using a machine learning model. We evaluated the top-down estimates against bottom-up estimates

from the CAMS-GLOB-ANT and the newly developed CORSO point source database. The CORSO database uses emissions355

data officially reported by the EEA in Europe and the EPA in the USA, providing more accurate representation of point sources.
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In contrast, the CAMS-GLOB-ANT inventory is based on the EDGAR inventory, which relies on country-level activity data

and emission factors, making it less reliable for facility-level comparison.

Our results show that annual NOx emissions can be determined from TROPOMI NO2 observations with good accuracy

when using the local correction approach and by aggregating all CORSO point sources within a 30 km radius to account for360

spatial representativeness. The comparison between the local and global correction approaches highlights the importance of

resolving NOx chemistry at the plume scale. The local correction approach generally yields higher emissions due to larger

correction factors, resulting in better agreement with the bottom-up estimates. However, the accuracy of these corrections

depends on the representativeness of the underlying two-day MicroHH simulations for the Jänschwalde power plant. Since

our study focused on Europe and the USA, regions with similar chemical environments, this approach seems to generalize365

reasonable well. Nevertheless, further work is needed to assess the applicability in regions with different chemical regimes.

The spatial representativeness with a radius of 30 km was chosen because TROPOMI NO2 observations were used up to 30 km

downstream of the source. In practice, the spatial sensitivity might be smaller and depend on the alignment of the sources with

wind direction. The top-down approach is sensitive to the source in the radius depends on alignment of sources with wind

direction, and the area might actually be smaller. Overlapping plumes from nearby sources present an additional challenge.370

Due to the dependency of NOx chemistry on the time since emissions, such overlaps can lead to systematic overcorrection and

overestimation of emissions. To improve the comparison, it might be necessary to have spatial representivness depend on wind

direction using a smaller radius, resulting in lower values, and improve NOx correction, likewise resulting in lower values.

Temporal variability in bottom-up emissions from the CORSO database was derived using electricity generation data for

Europe and CEMS for the USA. This variability is captured in satellite-based NOx estimates, although some limitations375

remain. Specifically, the detection limit of TROPOMI and the occurrence of non-emitting days can result in under-sampling

and potentially overestimation of monthly or annual emissions if not properly accounted for. Winter months pose additional

challenges due to frequent cloud cover, which reduces the number of valid satellite observations and increases uncertainty

during periods of high variability in emissions. Despite these challenges, our result demonstrate that satellite observations can

effectively resolve seasonal variability in NOx emissions at the facility level. Resolving short-term fluctuations remains more380

difficult due to data gaps, if using only TROPOMI, and the often high uncertainty of individual estimates, necessitating careful

filtering and validation.

To support the development of a robust emissions monitoring system, improvements are needed in several areas: (1) better

treatment of source clusters and overlapping plumes, (2) refined NOx chemistry corrections that can be applied globally, and

(3) enhanced quality filtering that reliably flags invalid estimates while retaining cases with emissions below the detection385

limit. Addressing these challenges would enable the quantitative use of NO2 observations for monitoring NOx emissions and

for constraining co-emitted species such as CO2. This is particularly relevant for upcoming satellite missions such as CO2M

(Sierk et al., 2021), GOSAT-GW (Tanimoto et al., 2025) and TANGO, which will measure both CO2 and NO2, as well as

for geostationary air quality missions, such as GEMS, TEMPO and Sentinel-4, aiming to provide high temporal resolution of

emissions.390
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While this study focused on Europe and North America, regions with relatively well-documented emissions from stack

measurements, satellite observations offer a unique opportunity to constrain emissions in regions with higher uncertainties. As

such, they can play a critical role in improving global emission inventories for power plants and other industrial sources.
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Climate Change Service, 2023a). The bottom-up and top-down emission estimates generated in this study are available in the Supplement.400
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