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Abstract. Satellite observations of nitrogen dioxide (NO,) are a valuable tool for estimating nitrogen oxides (NO,,) emissions
from point sources and can support carbon dioxide (CO2) monitoring through emission ratios. We assess the capability of
TROPOMI NO> measurements to quantify the temporal variability of NO, emissions from eighteen power plants in Europe
and the United States. Using the cross-sectional flux (CSF) method implemented in the ddeq Python library (version 1.1), we
derive top-down emissions and compare two NO,, chemistry corrections approaches: a “local” method based on MicroHH and
a “global” method based on GEOS-Chem simulations. Annual top-down estimates using the local approach agree well with
bottom-up estimates from the CORSO point source database, with a mean bias of 9+20% when aggregating sources within 30
km. A regression analysis yields a slope of 1.05£0.17 and a coefficient of determination of 0.68. The local correction yields
emissions that are 58+8% higher than the global approach. Satellite-based estimates successfully captured seasonal and short-
term variability in bottom-up emissions estimated from electricity generation in Europe and continuous emissions monitoring
systems (CEMS) in the USA. However, limitations remain due to reduced winter coverage, emissions below the detection
limit, overlapping plumes, and uncertainties in NO,, chemistry corrections especially for non-isolated facilities. Overall, our
findings demonstrate that satellite NO5 observations can effectively monitor the seasonality of NO, emissions from power
plants. Addressing remaining uncertainties will be essential for future emission monitoring systems and upcoming satellite

missions targeting both NO, and CO,.

1 Introduction

Anthropogenic emissions from power plants and industrial facilities are among the largest contributors to global emissions of
air pollutants and greenhouse gases (GHGs), including carbon dioxide (CO-2) and nitrogen oxides (NO,=NO5+NO) (Crippa
et al., 2024). These emissions negatively impact air quality and drive climate change, significantly affecting human health,
ecosystems, and global warming. Accurate and timely monitoring of these emissions is therefore essential for assessing
progress toward air quality standards and climate mitigation targets. In particular, identifying and quantifying emission hot

spots, i.e. cities, power plants and industrial facilities, is a key objective of the European CO5 Monitoring and Verification Sup-
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port (CO2MVS) system. This system aims to support the European Union’s climate policy by providing robust, independent
emission estimates based on satellite observations (Janssens-Maenhout et al., 2020).

Emission quantification methods can broadly be categorized into bottom-up and top-down approaches. Bottom-up methods
rely on direct measurements at emission sources using Continuous Emission Monitoring System networks (CEMS, e.g., Tang
et al., 2020) or on estimates derived from activity data (e.g., fuel consumption) combined with emission factors (e.g., Guevara
et al., 2024). While direct measurements based on CEMS can be accurate, they often have limited spatial and temporal coverage
since only large point sources are mandated to be equipped with these monitoring systems. Estimates based on activity data are
more scalable but typically involve larger uncertainties due to assumptions in emission factors and reporting practices (Super
et al., 2020). Both approaches depend heavily on data provided by facility operators, which may be incomplete or inconsistent
across regions. Top-down methods use atmospheric measurements such as remote sensing observations to infer point source
emissions by linking observed trace gas concentrations to emission rates through inverse modeling (e.g., Kaminski et al., 2022;
van der A et al., 2024) or mass balance techniques (e.g., Beirle et al., 2021; Kuhlmann et al., 2024; Hakkarainen et al., 2025;
Leguijt et al., 2025; Varon et al., 2018). These methods leverage satellite instruments such as the Tropospheric Monitoring
Instrument (TROPOMI) aboard Sentinel-5P, which provides high-resolution measurements of nitrogen dioxide (NO-), carbon
monoxide (CO), methane (CHy), and other trace gases (Veefkind et al., 2012). By combining satellite observations with wind
speed and atmospheric transport models, top-down approaches can offer independent, spatially resolved emission estimates.
However, the accuracy of top-down approaches is limited by uncertainties in satellite observations and restrictions in spatial
and temporal coverage (e.g., Santaren et al., 2025).

Given that CO2MVS envisions assimilating individual emission estimates at the time of satellite overpass, it is crucial to
assess whether temporal variability in emissions can be captured using instruments like TROPOMI. This capability would
enhance the system’s responsiveness to short-term changes in industrial activity, policy interventions, and episodic events such
as maintenance shutdowns or fuel switching. In this study, we focus on top-down estimates of NO,, emissions derived from
TROPOMI NOs, observations. We compare these satellite-based estimates with bottom-up emission inventories for Europe and
the United States of America (USA), examining their consistency and discrepancies. Furthermore, we analyze the seasonal
cycle of NO, emissions and assess how well satellite data reflect known temporal patterns from bottom-up sources. Finally,

we discuss the limitations of current top-down approaches and provide recommendations for methodological improvements.

2 Bottom-up emission estimates

This study analyzes emissions from a selection of large point sources: six power plants in Europe and twelve in the USA
(Table 1). These facilities were chosen for their high emission rates (>3 kt NO,, expressed as NOy a~!) and the availability
of high resolution temporal emission data derived from official sources (see paragraphs below). Annual bottom-up emission
estimates were obtained from the CORSO point source database (Guevara et al., 2024, 2025), which provides annual emissions
of CO2, NO,, CO, SO, and CHy4 for the year 2021. The database includes emissions from power generation, iron and steel

production and cement manufacturing per industrial facility at their exact geographical locations. For the European power
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Table 1. List of six power plants in Europe and twelve power plants in the USA analyzed in this study with emissions from CORSO point

source database in kt NO,, expressed as NOz a~!.

Power plant Country Longitude [°]  Latitude [°] Emissions [kt a ]
Belchatow Poland 19.326 51.266 25.8
Boxberg Germany 14.570 51.421 10.3
Kozienice Poland 21.465 51.664 10.7
Jéanschwalde Germany  14.458 51.836 11.6
Lippendorf Germany 12.373 51.184 7.1
Weisweiler Germany 6.324 50.839 10.0
Alcoa Allowance  USA -87.333 37.915 7.6
Colstrip USA -106.614 45.883 7.1
Gen J M Gavin USA -82.116 38.935 74
Hunter USA -111.029 39.175 10.0
Intermountain USA -112.580 39.510 9.7
James H Miller USA -87.060 33.632 6.7
Labadie USA -90.838 38.562 72
Martin Lake USA -94.571 32.261 8.8
Miami Fort USA -84.804 39.113 8.5
Milton R Young  USA -101.213 47.066 7.5
New Madrid USA -89.562 36.515 14.6
Thomas Hill USA -92.638 39.552 10.8

plants, information on annual emissions is directly derived from the integrated Industrial Reporting Database provided by the
European Environmental Agency (EEA, 2024), while for the U.S. power plants emissions are obtained from the Emissions
and Generation Resource Integrated Database (eGRIDv2021; US EPA, 2024). In addition to CORSO, we used the CAMS-
GLOB-ANT (version 6.2) inventory (Soulie et al., 2024), which provides gridded anthropogenic emissions at global scale
at 0.1° resolution for a total of 17 emission sectors, including power generation, manufacturing industry, road transport and
residential and commercial combustion activities, among others. CAMS-GLOB-ANT is used to complement the point source
data reported by CORSO and to provide context for regional background emissions.

For U.S. power plants, daily NO, emission reports were obtained from publicly available Clean Air Market Program Data
(CAMPD) of the U.S. Environmental Protection Agency (EPA). These reports are based on CEMS installed at the facilities,
providing high-frequency measurements of NO, emissions. For European power plants, only annual emission totals are avail-
able because daily or hourly emission measurements are not publicly accessible. We therefore estimate NO, emissions by

scaling annual totals using hourly actual electricity generation data from the ENTSO-E Transparency Platform (Hirth et al.,
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2018). This approach assumes a linear relationship between power output and NO,, emissions, which was also used by previous
studies (Nassar et al., 2022).

According to EPA and EEA performance specifications, reported NO,, emissions are required to have a relative accuracy
of 10% (10) or better (US EPA, 2023; Brinkmann et al., 2018). We therefore assume that daily, monthly and annual reported
NO, emissions are accurate to within £10% of the annual totals. For European hourly and monthly estimates, additional
uncertainties may arise from the assumed emission-power relationship and operational dynamics. However, for the purposes

of this study, we consider these uncertainties to be encompassed within the 10% range.

3 Top-down emission estimates

NO,, emissions of the European and U.S. power plants were estimated from NO5 column images retrieved from the TROPOMI
instrument aboard the Sentinel-5P satellite. TROPOMI is a nadir-viewing imaging spectrometer that measures back-scattered
solar irradiance in the ultra-violet, visible, near-infrared and shortwave spectral range. It provides daily global coverage at a
resolution of 3.5 km by 5 km at nadir, enabling the detection of localized NO5 emission plumes of individual power plants. Tro-
pospheric NO; vertical column densities (VCDs) are retrieved from the visible spectrum using differential optical absorption
spectroscopy (DOAS) that provides slant column densities (SCDs). Following a troposphere-stratosphere separation, SCDs
are converted to VCDs using air mass factors (AMFs) that correct for viewing geometry, surface reflectance, atmospheric
scattering and the vertical distribution of NO, (Veefkind et al., 2012; van Geffen et al., 2022).

NO,, emissions were estimated using the cross-sectional flux (CSF) method, implemented in the open-source Python library
for data-driven emission quantification (ddegq, Kuhlmann et al. (2024) for version 1.0). The ddeq library was originally de-
veloped for estimating CO5 and NO,, emissions from synthetic satellite images of the Copernicus CO5 Monitoring (CO2M)
mission (Kuhlmann et al., 2019, 2021). In the CoCO2 project, the library was extended with additional methods and was used
for benchmarking different approaches for emission quantification of hot spots (Hakkarainen et al., 2024; Santaren et al., 2025).
In this study, we use version 1.1 of the ddeq library, which includes several improvements over version 1.0. Notably, we have
merged the two cross-sectional flux methods implemented in the ddeq library: the CSF (cross-sectional flux) implementation,
which was originally developed by Kuhlmann et al. (2020) for CO2M, and the light cross-sectional flux (LCSF) implementa-
tion, which was originally developed by Zheng et al. (2020) for OCO-2 and modified for CO2M by Santaren et al. (2025). As
a result, the CSF implementation can now identify the plume location based on the wind direction at the source, a feature we

employed in this study.
3.1 Input data and pre-processing

The input data for emission quantification consists of the TROPOMI NO; data product (version 2.4.0) including the associated
auxiliary product, which provides the a priori NO profiles used in the AMF calculations. These datasets were obtained from

the Copernicus Dataspace for the year 2021. Meteorological input is obtained from the ERAS5 reanalysis product on single and
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pressure levels, including surface pressure, geopotential, temperature, specific humidity, mean surface net shortwave radiation
flux, and the zonal and meridional wind at 10 m, 100 m and on pressure levels (Hersbach et al., 2020).

The CSF method requires an estimate of the effective wind speed, i.e., the mean transport wind speed in the plume. To
compute this, ERAS pressure levels were first converted to height above the surface. Any height levels below the surface,
occasionally present in the dataset, were excluded. To enhance vertical resolution near the surface, wind vectors at 10 m and
100 m were incorporated into the profile. The effective wind speed was then calculated as weighted mean using the GNFR-A
standard emission profile for power plants (Brunner et al., 2019), which provides a suitable estimate of the NO,, distribution
near the source. The approach is more robust and consistent than using, for example, the mean wind within the planetary

boundary layer (PBL), which can be lower than the emission height, particularly in winter.
3.2 Cross-sectional flux method

The CSF method is used to estimate the NO,, emission rate () (in kg NO / s) from satellite observations. The emission rate is

calculated as

where f is the NO3-to-NO,, conversion factor, u is the effective wind speed, ¢ is the line density (in kg m~1), and D is the

correction term for NO,, decay during transport. The decay term is computed as

X

D =exp (——) , 2)

uT
where z is the distance from the source, and 7 is the NO,. chemical lifetime (Kuhlmann et al., 2024). The combined correction
factor ¢ = f/ D accounts for both the conversion of NO, to NO,, and the decay of NO,. during transport as described in Section
3.4.
The NO line density ¢ is derived by fitting a Gaussian curve with a linear background to the NO, column data in the plume

area downwind of each source. The fitted function is

_q (y—u)2>

202
where y is the across-wind direction, i and o are center position and standard width of the Gaussian curve, and m and b are

slope and intercept of the linear background.
The plume area used for fitting is defined by following the wind direction from 1 km to 30 km downwind of the source. In
the across-wind direction, the plume area extends 80 km perpendicular to the wind direction. This spatial window ensures that

the plume is sufficiently captured while minimizing interference from neighboring sources or background variability.
3.3 Air mass factor corrections

The air mass factors (AMFs) provided in the standard TROPOMI product are known to be biased in regions with strong local
enhancements (Griffin et al., 2019; Verhoelst et al., 2021; Douros et al., 2023). This is because the global TM5 chemistry
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transport model, which provides the NOy profiles, has a coarse horizontal resolution of 1°, which is not sufficient to resolve
narrow NOy plumes from individual point sources.

To address this limitation, we apply a correction to the AMFs using the averaging kernels (AKs) provided in the standard
product and a modified vertical NO5 profile (Eskes and Boersma, 2003). Specifically, we enhance the standard TMS5 NO,
profile by adding an NO» enhancement derived from Eq. (3) to the TMS5 profile. The enhancement is vertically distributed
according to the GNFR-A emission profile.

We recalculate the AMFs by applying the AKs to the modified NO;, profile. The corrected AMFs are then used to update the
NO; column densities. Subsequently, Equation (3) is re-fitted to the corrected NOs columns to obtain the AMF-corrected line

density ¢, which is used in the CSF method to compute the final NO, emission estimates.
3.4 NO, chemistry corrections

To derive NO,, emissions from NO, satellite observations, it is necessary to estimate the NOo-to-NO,, conversion factor f
and the NO,, chemical lifetime 7. In this study, we use a global approach, which is based on global chemistry transport
simulations with GEOS-Chem, and a local approach, which is based on plume-resolving simulations with the MicroHH large-

eddy simulation (LES) model for the Janschwalde power plant. We detail the two methods below.
3.4.1 Global approach: GEOS-Chem simulations

The emissions monitoring system developed for the CO2MVS capacity will be based on the Integrated Forecasting System
(IFS) operated by ECMWEF (Inness et al., 2013). One of the envisioned capabilities of CO2MVS is the assimilation of NO,
satellite observations to constrain CO> emission using emission ratios. However, the greenhouse gas monitoring system will
not perform full-chemistry simulations due to the high computational costs. Instead, a lightweight chemistry scheme based on
machine learning would be used for predicting NO5:NO,, concentration ratios and NO,, rate of change from meteorological
variables available within the IFS.

As part of the CORSO project, a prototype of this scheme was developed for Europe using training data from the GEOS-
Chem model. The machine learning model predicts NO5:NO,, concentration ratios from solar zenith angle, longitude, latitude,
height above surface, shortwave radiation, temperature, humidity and wind speed. To predict NO,, rate of change, the model
additionally requires NO,, concentrations as input. This prototype model is described and validated in detail by Schooling et al.
(2025).

In this study, we use an expanded version of the prototype, trained on global GEOS-Chem simulations for the year 2021 at a
resolution of 2° by 2.5°. Meteorological input parameters for the machine-learning model were taken from ERAS reanalysis.
To estimate the NO,, rate of change, we converted the modified NO profiles from the AMF calculation to NO,, using the
predicted NO5:NO,, concentration ratios from the machine-learning model. The NO, chemical lifetime is then calculated
using 7 = —[NO,.|/R, where [NO,] is the NO,, concentration (in molecules cm~3) and R is the rate of change (in molecules
cm ™3 s~1). Finally, the vertical profiles of ratios and lifetimes are weighted using the GNFR-A emission profile to compute

column-averaged NO2:NO,, ratios (f) and NO,, lifetimes (7).
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3.4.2 Local approach: MicroHH simulations

Recent high-resolution atmospheric chemistry simulations with the MicroHH LES model have shown that NO, chemistry
within emission plumes is highly complex, with chemical evolution strongly influenced by emission strength, wind speed,
amount of turbulent mixing with the background atmosphere, and time since emissions (Krol et al., 2024). As a consequence,
NO,, correction factors can vary significantly depending on the method and part of the plume used for emission quantification
(Hakkarainen et al., 2024).

To improve the accuracy of NO, emission estimates based on TROPOMI NO, observations, Meier et al. (2024) analyzed
these MicroHH simulations for four large point sources, including the Jinschwalde power plants in Europe. Based on these

simulations, an empirical formula was developed that predicts the NO,:NO- ratio f as a function of time since emissions:

f(t)=m-exp (-i) + fo, “4)

where m, r and fy are parameters fitted to the simulations. Furthermore, they also analyzed the lifetime in the simulations,
which varied from 1 to 5 hours with a mean value around 2.5 hours.

Since plume-resolving simulations for all power plants in this study are not available, we adopted the parameters derived for
the Jdnschwalde power plant (i.e.: m = 1.61+0.1, r = 1638+162 s, fy = 1.314+0.01). The power plant was simulated for 22 and
23 May 2018 with an annual NO,, emission rate of 18 kt (Krol et al., 2024), which is within the emission range of the power
plants analyzed here. Additionally, we apply a fixed lifetime of 2.5 hours for all sources.

This approach allows us to explore the spatial and temporal generalizability of high-resolution plume simulations conducted
at a single location. Although the empirical formula was originally developed using data from only two simulation days, its
application over a full year has already shown promising results with a significant reduction in the biases between bottom-up

and top-down emission estimates for the Belchatow and Jinschwalde power plants (Meier et al., 2024).
3.5 Quality filtering

To ensure the reliability of individual emission estimates, estimates were visually inspected to identify potential causes of
failure in the quantification process. Based on this assessment, we excluded all cases where either the shift or the standard
width of the fitted Gaussian curve exceeded 10 km. A large shift typically indicates a misalignment between the observed
plume and the wind direction used to define the plume axis, while an excessively broad standard width suggests that the fitting
algorithm may have captured a diffuse source region or background enhancement upstream of the actual emission source. We
also filter out estimates for wind speeds lower than 2.0 m s~1, because of the large relative uncertainty of the wind speed itself
and the NO,, chemistry correction factors. In particular, the correction factors are exceeding 3 for the local approach under low

wind speeds, which introduces substantial uncertainty and reduces the reliability of the emission estimates.
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3.6 Monthly and annual emission estimates

Various approaches have been proposed to compute monthly and annual emission estimates from individual estimates (Santaren
et al., 2025). One method involves fitting a smooth function through individual estimates to reconstruct a seasonal cycle, which
can then be integrated to obtain monthly and annual means (Kuhlmann et al., 2020). However, we found that the time series
of bottom-up reports is not consistently smooth, making this approach less suitable for our dataset. Another commonly used
method applies weighted averaging based on estimated uncertainties, but this introduces bias because the uncertainties in
the CSF method are proportional to the magnitude of the estimated emissions (see next section). As a result, lower emission
estimates, associated with smaller uncertainties, would receive disproportionately high weights, resulting in an underestimation
of the true emissions.

In this study, we therefore compute monthly emissions by calculating the arithmetic mean of all valid individual estimates
for each month. We deliberately avoid weighted averaging for the reasons outlined above. To derive annual emissions, we
linearly interpolate monthly means to fill gaps in months where no valid estimates are available. The final annual emission
value is calculated as the median of the twelve monthly values. This approach mitigates the risk of bias from isolated extreme

values, which can occur if only a single estimate is available in a given month, particularly in winter.
3.7 Uncertainties

The uncertainties in the top-down emission estimates are quantified using Monte Carlo simulations, which estimate the uncer-
tainty by generating an ensemble of the input parameters for the CSF method. The uncertainty of line density ¢ is derived from
fitting the Gaussian curve using the precision of the TROPOMI NO, product. This precision is used to create an ensemble of
line densities for each estimate. For wind speed, we assume an uncertainty of 1.0 m s~!, consistent with the validation of the
ERAS reanalysis product (e.g., Vanella et al., 2022; Potisomporn et al., 2023). To avoid negative wind speeds in the ensemble,
we use a lognormal distribution centered on the effective wind speed, with a standard deviation is 1.0 m s~ 1.

Wind speed uncertainty has a direct impact on the uncertainty of the chemistry correction, because it is required to calculate
the time since emissions used in Egs. (4) and (2). For the local chemistry approach, we additionally include the uncertainties
in the empirical parameters (m, r and fj) used for the NOs-to-NO,, conversion factor. The NO,, lifetime is modelled using a
lognormal distribution with a mean of 2.5 hours and a standard deviation of 0.6 hours, consistent with the distribution found
by Meier et al. (2024). For the global approach, we use an uncertainty of 0.10 for the ratio, which was obtained by comparing
the machine-learning with the GEOS-Chem simulations. The uncertainty in the rate of change is negligible compared to the
uncertainty in the time since emissions; therefore, it is not included.

To quantify the uncertainties in the estimated emissions, we compute 16", 50*"" and 84" percentile of the Monte Carlo
ensemble, corresponding to the median and the 10 confidence interval. For monthly and annual estimates, we account for a
temporal sampling error of 30%, which was estimated from the bottom-up time series and is consistent with previous studies
Hill and Nassar (2019). Finally, we include a systematic error of 10% to the monthly and annual values, which is added to the

overall uncertainty budget.
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4 Results
4.1 Example of emission at satellite overpass

The CSF method was applied to the six power plants in Europe and twelve power plants in the USA summarized in Table 1.
Figure 1 shows three examples of NO,, emission estimates derived from TROPOMI NOs, observations for the Janschwalde,
Miami Fort and Hunter power plants. The examples highlight some of the challenges associated with estimating NO,, emissions
from satellite observations.

For the Janschwalde power plant, the emission plume is clearly visible in the satellite image. Additional plumes from nearby
plants (Schwarze Pumpe and Boxberg) can also be identified south of Jinschwalde. The plume area (yellow polygon), limited
to 30 km downwind, effectively isolates the Jdnschwalde power plant, minimizing the interference from neighboring sources.
The across-plume NO- enhancement is well captured by the Gaussian curve, resulting in a top-down emission estimate of
16.24+4.7 kt a~! using the local chemistry approach. This value is slightly larger but consistent with the bottom-up estimate of
13.5+1.2kta"t.

In contrast, the Miami Fort power plant example shows no discernible plume in the TROPOMI NO5 image. On the day of
observation, the reported emissions were very low with only 2.3 kt a—! and wind speeds were relatively high with 5 m s~!,
likely dispersing the weak plume below the detection limit. The top-down estimate was flagged as invalid, because both the
center position and standard width of the Gaussian curve were larger than 10 km.

The third example is for the Hunter power plant and shows its emission plume with bottom-up reported emissions of 11.5 kt
a~!. There is also an additional enhancement from the Huntington power plant, which is located about 25 km north of Hunter
and has 6 kt a~! annual emissions. This case illustrates the complexity of accounting for NO,, chemistry in overlapping plumes.
For an inert gas, like CO, the enhancements from multiple sources would simply add up, and the total emission estimate would
reflect the sum of the individual contributions. However, for reactive species like NO,,, the chemistry correction introduces a
non-linear effect. Since the correction factor is dominated by the decay term, a stronger correction is necessary for older plumes
(cf. Sec. 4.3). In this example, the NO, from Huntington is significantly younger than the NO, from Hunter. Consequently,
the NO,, correction, assuming an older plume, strongly overcorrects the emission estimate. The resulting top-down estimate is

36.748.2 kt a~1, which is substantially higher than the combined bottom-up emissions of the two power plants.
4.2 Annual emissions

Figure 2 and Table 2 compare the annual NO, emission estimates from the bottom-up and top-down approaches for the 18
power plants. The bottom-up estimates are shown for the CAMS-GLOB-ANT inventory and the CORSO point source database.
CAMS-GLOB-ANT emissions are integrated for the energy sector and all other sectors within a radius of 30 km around the
power plant. CORSO emissions are shown for the power plant and for other facilities within a radius of 30 km. A radius of
30km was used because top-down emissions are estimated using TROPOMI measurements from up to 30 km downstream of

the facility. The top-down estimates use the local NO,, correction from the MicroHH simulations and the global correction
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Figure 1. Three examples of NO, emission estimates for (a) Jainschwalde, (b) Miami Fort and (c) Hunter power plant. The upper row shows
the TROPOMI NO- image with location of the plume area. The lower row shows the NO2 column densities in across-plume direction and

the fitted Gaussian curve.

50 (a) Europe (b) USA 50 (c)
1T
CAMS-GLOB-ANT all other sectors (<30 km) CORSO DB (others within 30 km) ###7. TROPOMI (local NO, approach) - ===1:1 line 5
40 s CAMS-GLOB-ANT energy production (<30 km) CORSO DB (facility) TROPOMI (global NO, approach) 's 0 ——Regression line ’/
~ r 2
—_ [e) 4
7 z y /
o B E30f g
% 30 Ii I = 30 / %
<
o 51
=N % I = [ | I S0l 7
2 ol ! l by o | | I : 4
% 1 I 1 T | IS | | I Bty o1l 1 1 210l
10 V] I I 1 i I 71 71 % 10
4 I 171 1 1% It ik 1 4 1| ¢ slope: 1.05+0.17
N VA | VAV ! A Y A VA VA VAN T RS
f oo = ¥ Lol s o =7~ == Ly = =53 (o o o o =k =20
g5 Ec £ =E EE 2B i £% £8 f3 S8 5§ g8 2 5§ ES ER RS 0 Jo 20 30 40 50
= §- §° g= g% h g\.—; 2o §T 5T Bz T 82 A EF 22 BT < CORSO DB (<30 km) [kt NO, a™']
CHE S A g S8 s E g z 3 g Eoz = £
2 2 oz &5 2 E = E 2 5 £ ¢ 5 £
S g g g £ = £ z E
8 o g 3 g
4 =

Figure 2. (a,b) Annual NO,, emissions from 18 power plants (in kt NO,, expressed as NOz a~ '), comparing bottom-up estimates from
CAMS-GLOB-ANT (split between power generation and all other sectors) and the CORSO database, with top-down estimates derived
from TROPOMI NO3, observations using local and global chemistry correction approach. Numbers in brackets indicate the number of valid
TROPOMI emission estimates in 2021 for each facility. (c) Scatter plot comparing bottom-up estimates from CORSO database (all within
30 km) with top-down from TROPOMI using local chemistry correction. For top-down estimates, error bars show 1o confidence interval

derived from Monte Carlo simulations.

from the GEOS-Chem simulations. To provide spatial context, Figure 3 shows maps of total NO,, emissions from the CAMS-
GLOB-ANT emission inventory and location of CORSO point sources in a 2° x2° region around each power station.

On average, total emissions from the CAMS-GLOB-ANT inventory are 70£100 % larger than those reported in the CORSO
database. The differences arise because CAMS-GLOB-ANT includes emissions not only from power plants, but also from

260 other relevant NO, combustion sources such as road transport, residential and commercial combustion and manufacturing
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Figure 3. Emission maps of NO,, emissions in a 2° x2° region around the power stations from the CAMS-GLOB-ANT inventory in 2021
(all sectors). Black crosses mark the locations of point sources in the CORSO database. The black circle shows a 30-km radius around the

facility location.

industry, while CORSO is limited to major power plant, iron/steel production sites and cements plants. When considering
only the CAMS-GLOB-ANT emissions reported for the power generation sector, differences with the CORSO database are
much lower 30£81%, although significant discrepancies still exist at specific sites. For instance, emissions in CAMS-GLOB-
ANT around Boxberg, which include the Schwarze Pumpe power plant, are only half of those reported in CORSO. Moreover,
CAMS-GLOB-ANT includes emissions of some power plants that were decommissioned prior to 2021, such as the Gorgas
power plant (reported at 4 kt a~! in CAMS-GLOB-ANT) east of James H Miller (Figure 3 ), which was permanently closed
in 2019. This is probably because the CAMS-GLOB-ANT is based on a version of the EDGAR inventory, which uses the
outdated CARMA version 3 power plant database from 2009 (Soulie et al., 2024), whereas the CORSO database uses reported
emissions from 2021. This issue has been resolved in more recent versions of EDGAR (Crippa et al., 2024). In addition, spatial
mismatches are evident in CAMS-GLOB-ANT with emission locations sometimes offset from actual stack coordinates, for
example, in the case of the Hunter power plant. This is also related to the use of CARMA in the EDGAR inventory. The spatial
analysis also shows that several facilities are located near urban areas or industrial complexes, as observed for Lippendorf,
Weisweiler, Miami Fort, and Labadie.

The top-down estimates using the local NO,, correction approach are 58+8% higher than those obtained with the global
approach, due to the larger correction factor of the local approach (see Section 4.3). When comparing CORSO bottom-up and
top-down approaches for individual power plants, the local approach yields emissions 34+34% larger. However, satellite-based

estimates are sensitive to the area surrounding the source. If we consider all point sources within 30 km of the power plant, the
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Table 2. Annual top-down and bottom-up NO,, emission estimates in kt NO,, expressed as NOz a~ 1.

Power plant CAMS-GLOB-ANT CORSO database TROPOMI NO,
(within 30 km) (facility)  (within 30 km) (local) (global)

Belchatow 24.1 25.8 259 24.0 15.1
Boxberg 7.6 10.3 16.5 13.7 8.4
Kozienice 13.3 10.7 10.8 13.1 8.3
Janschwalde 9.8 11.6 11.6 12.3 7.1
Lippendorf 13.4 7.1 7.5 10.4 6.0
Weisweiler 30.5 10.0 20.6 18.6 11.0
Alcoa Allowance 27.5 9.0 10.7 9.7 6.5
Colstrip 13.7 7.1 7.5 9.4 5.8
Gen J M Gavin 34.0 7.5 13.0 11.9 7.9
Hunter 14.9 10.0 16.0 223 14.2
Intermountain 11.7 9.6 9.6 10.9 6.7
James H Miller 30.5 6.7 6.9 8.1 53
Labadie 22.6 72 72 73 5.1
Martin Lake 27.9 8.8 12.5 9.5 6.2
Miami Fort 25.0 8.4 10.4 15.1 9.3
Milton R Young 12.7 7.5 10.9 12.2 8.1
New Madrid 9.1 14.5 14.5 17.7 11.9
Thomas Hill 8.7 10.8 10.8 104 6.7

local approach is only 94+20% larger than bottom-up estimates. In contrast, the global approach still yields top-down estimates
that are 314+12% lower than the bottom-up estimates within the same 30 km radius.

We find larger discrepancies for some power plants. For example, the Hunter power plant, which is located near the Hunt-
ington power plant (Figure 1c), the NO,, correction appears to systematically overestimate emissions. Similarly, for the Miami
Fort power plant, top-down estimates exceed bottom-up values (cf. Table 2). This facility is also surrounded by several nearby
point sources, which may contribute to the overcorrection effect similar to what was seen at Hunter. Additionally, emissions
during the summer months at Miami Fort were low and frequently below the satellite detection threshold (Figure 1b). Since
non-emitting days are not included when averaging, this may lead to an overestimation of annual emissions.

Figure 2c shows that the regression between CORSO bottom-up estimates (within 30 km) and local top-down estimates
yields a slope of 1.0640.17 and an intercept of 0.341.7 kt a—*, with a correlation coefficient of approximately 0.70, showing

good agreement.
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Figure 4. Comparison of NO, chemistry parameters used for estimating NO, emissions from TROPOMI NOs observations for the Jin-
schwalde power plant, using the local and global correction approach. Rows show wind speed u, NO2-to-NO,, conversion factor f, NO,,
decay correction term D, and the combined correction ¢ = f/D. The left column displays the time series of each parameter, while the right
column shows the same data sorted by wind speed. The shaded area shows the 68% confidence interval (CI) derived from the Monte Carlo

simulations.

4.3 Impact of NO, chemistry

To assess the influence of the NO,, chemistry on estimated emissions, Figure 4 shows the temporal variability and the relation-
ship between wind speed and the chemistry parameters (f, 1/D and ¢ = f /D) for the Jinschwalde power plant.

The conversion factor, f(t), derived from the local MicroHH simulations, shows strong temporal variability. This variability
is driven by changes in wind speed, which affect the estimated time since emissions in Eq. (4) for a fixed plume area up to
30 km downstream. At low wind speeds, the plume remains longer in the area, allowing more time for converting NO to
NO., resulting in lower conversion factors. Conversely, at higher wind speeds, less conversion occurs within the same area.
Consequently, the conversion factor increases from 1.3 to 2.2 as wind speeds increase from 1 to 16 m s~'. In contrast, the
temporal variability of the conversion factor f for the global approach, based on GEOS-Chem, shows less temporal variability.
The factor exhibits a weak seasonal cycle with smaller values during winter. However, it does not strongly depend on wind
speed, as the approach lacks explicit information about time since emissions. The mean value of 1.4 is slightly larger than the

background parameter fy = 1.31 from the MicroHH simulations.
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The decay correction term 1/D depends strongly on wind speed for both approaches, which is primarily driven by wind
speed directly influences the time since emission in Eq. (2). In fact, a constant lifetime of 2.5 h was used for the local approach.
The global approach has lifetimes of about 5 hours in summer and even longer lifetimes in winter. As expected, the correction
term is largest for low wind speeds, because more NO,, has decayed within the 30 km plume length. For the local approach,
the term ranges from 4.0 at I ms~! to 1.2 at 16 ms~!. For the global approach, the correction term is smaller with a mean
value of 1.1. The correction term can even become smaller than 1 in winter, indicating net NO,, production.

The combined term ¢ = f/D is dominated by the decay term with larger values for low wind speeds. It ranges from 2.4 to
6.6 for the local approach and 1.1 to 3.8 for the global approach. The difference explains the systematic offset between the
emission estimates using the two approaches. Importantly, the large correction factor associated with low wind speeds was the
reason for filtering out top-down estimates with wind speeds below 2 m s~!, because they introduce substantial uncertainty

and potential overestimation.
4.4 Time series of emissions

The number of valid satellite overpasses per year ranges from 38 to 170, depending on the cloud frequency at the location and
the isolation of the power plant. Fewer estimates are available for plants situated near other emission sources, as overlapping
plumes and interference often lead to quality filtering and data rejection. For all European power plants, the number of valid
top-down emission estimates during winter is notably low, with only 12% of the total valid estimates occurring in that season.
In January 2021, the Kozienice power plant is the only plant providing a valid estimate. For U.S. power plant, slightly more
valid estimates (16%) are available during winter (see Figure S4 in the supplement).

Figure 5 compares top-down and bottom-up NO, emission time series for six selected power plants. The time series for
all analyzed plants are shown in the supplement. The left column displays individual estimates, while the right column shows
monthly values. For European power plants, bottom-up estimates are derived from the CORSO annual values scaled by power
generation data, whereas for U.S. plants, daily NO, emissions directly taken from CEMS measurements. We further computed
relative mean bias (MB in %), reduced chi-squared values (Xfed) and Pearson correlation coefficient (r2) for each time series.

For the Janschwalde power plant, top-down estimates are slightly larger than bottom-up reports (MB ~ 5%). The correlation
coefficients are low (r2 ~ 0.3) preliminary due to the low variability of emissions of the plant. The reduced chi-squared value
is moderately high for individual estimates (2 4= 7.5), while the monthly value (x2 4= 1.5) is close to unity, suggesting that
the differences between bottom-up and top-down estimates are broadly consistent with their estimated uncertainties. The time
series for the Kozienice power plant shows generally similar performance, except for a pronounced outlier in January. This
outlier was not flagged by the automatic quality filtering, resulting in a large mean bias for monthly values and, consequently,
lower reduced chi-squared values and correlation coefficients (MB = 68%, X?ed= 4.0, 7%= 0.10). This highlights the importance
of robust quality filtering in top-down approaches.

The four U.S. power plants exhibit strong variability in reported emission, which is reflected in the top-down estimates
and results in high correlation coefficients (r? ranging from 0.51 to 0.84 for monthly values). The mean bias is small for

Intermountain and Thomas Hill (8%) but larger for New Madrid (27%). Reduced chi-squared values range from 10 to 20

14



335

https://doi.org/10.5194/egusphere-2025-6057
Preprint. Discussion started: 14 January 2026
(© Author(s) 2026. CC BY 4.0 License.

(a) Janschwalde (DE)

EGUsphere®

— 60 — 30
n MB = 6%, x%q = 7.5, 12 = 0.29 ——Bottom-up (hourly) ¢ Top-down (local, n = 87) | 7 —&—Top-down (local)
© © —¥—Bottom-up (facility)
%“‘ 40 %"‘ 20
E 20 }l | % I | l j l ll | £ 10 NLA
x x
% WW i | : L | & % o [MB = 5%, ¥2q=15,12=0.30
?an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec JFMAM]J] JASOND §
100 (b) Kozienice (PL) N
'T"— MB = 7%, x%q = 20.1, 12 = 0.13 ——Bottom-up (hourly) § Top-down (local, n = 88) "T \
c 75 © 40
] o
Z 50 z \l
- -
£ { { £ 20
3 25 1 1.1 S | ; ¢
z JW‘UUU\M ! ‘ ! ‘ ¥ j Z o [MB = 68%, Xy 5 4.0, 1 =010
?an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec JFMAM]JJASOND §
80 (c) Intermountain (US) 0 N
"T MB = 7%, Xfeg = 18.2, r? = 0.35 ——Bottom-up (daily) § Top-down (local, n = 170) T"_‘
© ©
~ 60 ~ 30
o o
Z 40 T [ Z 20
= 20 AR i P4 =10 ,3)‘\‘
g — ""{ w }'!EM s -ﬂ o : ; R S o [MB = 8% ¥, = 5.5,1 = 0.55
?an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec JFMAM]JJASOND 5
80 (d) New Madrid (US) 40 N
".‘H MB = 24%, x%4 = 10.6, r? = 0.41 ——Bottom-up (daily) ¢ Top-down (local, n = 136) | 7 b
© : «o /
~ 60 ~ 30 y/
o o
Z 40 1] i | I Z 20
h) J X~
= 20 }MM ] ok 4 10
% & i L]. h"| i ; | : j M % o [MB = 27%; Xy 5 3.7, 1 =[0.51
?an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec JFMAM]J] JASOND §
(e) Thomas Hill (US) N
— 60 — 30
i MB = 1%, X244 F 12.0, r2 = 0.40 ——Bottom-up (daily) § Top-down (local, n = 146) | 7
: 1 2,0 A
S 40 S 20 3
z | z | 4
2 g0k dil & 10
X X
S ‘ {3 ] WMMW i S o [MB = 8%, Koy = 2.0,1° = 0.84
?an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec J MAM]J] JASOND §
Miami Fort (US N
— 60 0 s — 30
n MB = 50%, &g = 15.2, 12 = 0.43 ——Bottom-up (daily) § Top-down (local, n = 64) | 7
© I © qp\‘\
%“‘ 40 I %” 20 NS \
] 20 H‘ i } rl' } k] 10 ')'/‘\K /'\"—4'
s [k ; PPy o !
% | i vy g 1 TP & 4 OMB=64%Xr'a"i"»:J -84 I
?an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec JFMAM]JJASOND 5
2021 Q

Figure 5. Time series of NO,, emission estimates from top-down (using the local NO,, correction approach) and bottom-up (based on reported

values for the power plant). The left column shows individual satellite overpass estimates (n indicates the number of overpasses used), while

the right column presents monthly averages. Error bars represent the 1o confidence interval derived from Monte Carlo simulations. Numbers

show relative mean bias (MB in %), reduced chi-squared values (x24) and Pearson correlation coefficient (r?) for each time series.

for individual overpasses and fall below 4 for monthly values, generally indicating good agreement at the monthly scale. The

Miami Fort power plant has a strong seasonal cycle with very low emissions reported from May to October. Top-down estimates
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capture this pattern, although the number of valid estimates is limited during summer, because emissions frequently fall below
the detection limit (e.g., Fig. 1b). While the correlation coefficient is high (r> = 0.84 for monthly values), the mean bias is quite
large (MB = 64%) due to the presence of other sources in the vicinity (see Fig. 3). This bias is reduced when considering all
point sources within 30 km (Table 2).

Figure 6 shows MBs, x2 ; and r? for individual estimates and monthly mean values (see Table S1 in the supplement for all
values). Since we compare bottom-up emissions for the power plant, MBs can be large when plants are not isolated because
top-down values are sensitive to surrounding sources, (cf. Fig.3). The correlation coefficients span a large range, with low
values for plants without a pronounced seasonal cycle and higher values for monthly averages. Reduced chi-squared values
are generally below 5 for monthly values (Y2, = 3.9, range: 1.5 to 11.5), with remaining deviation between top-down and
bottom-up driven by the mean bias, due to missing neighboring sources, and uncertainties in the top-down method such as

uncertainties in NOy columns (e.g., AMF correction), wind speed and NO,, chemistry correction.
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Figure 6. (a) Relative mean biases (MB), (b) reduced chi-squared values (X?»ed) and (c) Pearson correlation coefficients (r?) comparing the

time series of bottom-up and top-down NO, emissions at satellite overpass and for monthly values.

5 Discussion and conclusions

This study investigates the potential of satellite-based TROPOMI NO, observations to quantify the seasonal and daily vari-
ability of NO,, emissions from point sources. We focus on eighteen power plants in Europe and the United States of America.
Top-down emissions were derived using the cross-sectional flux method implemented in the ddeq Python library. To account
for NO,, chemistry, we compared two approaches for converting NO, to NO,, and for correcting for NO,, chemical lifetime:
a “local” correction extrapolated from plume-resolving MicroHH simulations, and a “global” correction interpolated from
GEOS-Chem simulations using a machine learning model. We evaluated the top-down estimates against bottom-up estimates
from the CAMS-GLOB-ANT and the newly developed CORSO point source database. The CORSO database uses emissions
data officially reported by the EEA in Europe and the EPA in the USA, providing more accurate representation of point sources.

16



360

365

370

375

380

385

390

https://doi.org/10.5194/egusphere-2025-6057
Preprint. Discussion started: 14 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

In contrast, the CAMS-GLOB-ANT inventory is based on the EDGAR inventory, which relies on country-level activity data
and emission factors, making it less reliable for facility-level comparison.

Our results show that annual NO, emissions can be determined from TROPOMI NO- observations with good accuracy
when using the local correction approach and by aggregating all CORSO point sources within a 30 km radius to account for
spatial representativeness. The comparison between the local and global correction approaches highlights the importance of
resolving NO, chemistry at the plume scale. The local correction approach generally yields higher emissions due to larger
correction factors, resulting in better agreement with the bottom-up estimates. However, the accuracy of these corrections
depends on the representativeness of the underlying two-day MicroHH simulations for the Jinschwalde power plant. Since
our study focused on Europe and the USA, regions with similar chemical environments, this approach seems to generalize
reasonable well. Nevertheless, further work is needed to assess the applicability in regions with different chemical regimes.
The spatial representativeness with a radius of 30 km was chosen because TROPOMI NO,, observations were used up to 30 km
downstream of the source. In practice, the spatial sensitivity might be smaller and depend on the alignment of the sources with
wind direction. The top-down approach is sensitive to the source in the radius depends on alignment of sources with wind
direction, and the area might actually be smaller. Overlapping plumes from nearby sources present an additional challenge.
Due to the dependency of NO,, chemistry on the time since emissions, such overlaps can lead to systematic overcorrection and
overestimation of emissions. To improve the comparison, it might be necessary to have spatial representivness depend on wind
direction using a smaller radius, resulting in lower values, and improve NO,, correction, likewise resulting in lower values.

Temporal variability in bottom-up emissions from the CORSO database was derived using electricity generation data for
Europe and CEMS for the USA. This variability is captured in satellite-based NO,, estimates, although some limitations
remain. Specifically, the detection limit of TROPOMI and the occurrence of non-emitting days can result in under-sampling
and potentially overestimation of monthly or annual emissions if not properly accounted for. Winter months pose additional
challenges due to frequent cloud cover, which reduces the number of valid satellite observations and increases uncertainty
during periods of high variability in emissions. Despite these challenges, our result demonstrate that satellite observations can
effectively resolve seasonal variability in NO, emissions at the facility level. Resolving short-term fluctuations remains more
difficult due to data gaps, if using only TROPOMI, and the often high uncertainty of individual estimates, necessitating careful
filtering and validation.

To support the development of a robust emissions monitoring system, improvements are needed in several areas: (1) better
treatment of source clusters and overlapping plumes, (2) refined NO,, chemistry corrections that can be applied globally, and
(3) enhanced quality filtering that reliably flags invalid estimates while retaining cases with emissions below the detection
limit. Addressing these challenges would enable the quantitative use of NOy observations for monitoring NO,, emissions and
for constraining co-emitted species such as COs. This is particularly relevant for upcoming satellite missions such as CO2M
(Sierk et al., 2021), GOSAT-GW (Tanimoto et al., 2025) and TANGO, which will measure both CO5 and NO,, as well as
for geostationary air quality missions, such as GEMS, TEMPO and Sentinel-4, aiming to provide high temporal resolution of

emissions.
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While this study focused on Europe and North America, regions with relatively well-documented emissions from stack
measurements, satellite observations offer a unique opportunity to constrain emissions in regions with higher uncertainties. As

such, they can play a critical role in improving global emission inventories for power plants and other industrial sources.

Code and data availability. Data used in this study are the CORSO point source database (DOI: https://doi.org/10.5281/zenodo.17206511,
Guevara et al., 2025), the CAMS-GLOB-ANT emission inventory (DOI: https://doi.org/10.24381/1d158bec, Copernicus Atmosphere Mon-
itoring Service, 2020), actual electricity generation data from the ENTSO-E Transparency Platform (available at https://transparency.entsoe.
eu/ (last access October 2025), Hirth et al., 2018), the TROPOMI NO; product version 2.4.0 (DOI: https://doi.org/10.5270/S5P-9bnp8qs8,
Copernicus Sentinel-5P (processed by ESA), 2021), ERAS hourly data on single levels (DOI: https://doi.org/10.24381/cds.adbb2d47, Coper-
nicus Climate Change Service, 2023b) and ERAS hourly data on pressure levels (DOI: https://doi.org/10.24381/cds.bd0915¢c6, Copernicus
Climate Change Service, 2023a). The bottom-up and top-down emission estimates generated in this study are available in the Supplement.
A code example for estimating NO,, emissions from TROPOMI NO, observations is provided in the supplement. The ddeg Python library
version 1.1 is available at https://gitlab.com/empa503/remote-sensing/ddeq (Kuhlmann et al., 2024, for Version 1.0).
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