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12 Abstract

13 This study demonstrates how increasing stratigraphic resolution in fault hazard analysis
14  fundamentally affects the calculated slip rates for seismic design. We investigate thin-skinned
15  normal faults offshore Israel, that pose significant hazards to major pipelines delivering gas to
16  onshore power plants. Previous studies, which measured displacements of a 350 ky horizon,
17  obtained slip rates of 0.25 mm/yr. However, based on higher-resolution seismic data, here we
18  measure displacements of a 14 ky horizon and obtain slip rates exceeding 2.4 mm/yr. This tenfold
19  increase in recent times indicates non-linear slip rates and raises the hypothesis that the rapid post-

20 glacial sea-level rise is the cause for the increased faulting. To examine this hypothesis, we extend
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21 our time window to the latest Pleistocene, demonstrating a correlation between sea-level
22 fluctuations and faulting variations. The subdivision of the latest Pleistocene section into glacial
23 and interglacial cycles is based on seismic analysis integrated with principles of sequence
24 stratigraphy. The conclusion that fault slip rates have increased after the last glacial period has
25 double importance. First, it raises the hypothesis that rapid sea-level rise is the cause for the
26 increased faulting - possibly due to changes in pore pressure along thin-skinned faults and
27  detachment surfaces; this is crucial for understanding the mechanics of thin-skinned faults.
28  Second, it highlights the importance of post-glacial stratigraphic horizons as seismic markers for
29  fault hazard analysis, especially in circum-Mediterranean margins, where the unstable Messinian

30 salt giant propels salt tectonics; this is crucial for geomarine hazard assessment.

31 1. Introduction

32 Building codes generally prohibit construction over active faults, but when pipelines or cables
33 must cross active faults, two measures are recommended. First, an optimal route crossing the least
34 hazardous faults should be selected. A method for that was recently presented by Laor and
35  Gvirtzman (2023), who classified all faults in their study area into relative hazard levels allowing
36 identification of the least hazardous faults. Second, site-specific surveys are needed to characterize
37  faults that are crossed by the selected route. One way to characterize faults is to apply a
38  probabilistic fault displacement hazard analysis (PFDHA, Youngs et al., 2003), following a
39  probabilistic approach developed for ground motion prediction (PSHA; Cornell, 1968; McGuire,
40 1976; Bender and Perkins, 1987). This procedure calculates displacement hazard curves
41  (probability versus displacement) for a given fault, based on knowledge of its earthquake
42 recurrence intervals (magnitude-frequency relations) and the distribution of displacements.

43 However, this knowledge is often limited and relies on weakly supported assumptions. In
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44  particular, for the shallow, thin-skinned faults studied here (offshore Israel), this approach is
45 unfeasible because it is uncertain whether these faults creep continuously or exhibit stick-slip
46 behavior. Moreover, even in cases of stick-slip motion, magnitude-frequency relationships are

47  unavailable, and therefore probabilistic models cannot be developed here.

48  In practice, site-specific surveys aiming to determine recent slip rates for seismic design measure
49  the displacement of the youngest possible stratigraphic horizon, which is frequently 10* or 10°
50 years old, depending on the available resolution of seismic and core/well data. Thus, hazard
51  surveys commonly provide average slip rates representing the recent tens or hundreds of thousands
52 of years. In this work, we demonstrate how increasing stratigraphic resolution affects fault hazard
53  assessment. In particular, we show that slip rates after the last glacial period have increased by an
54  order of magnitude. This somehow surprising result opens the gate for two interrelated discussions:
55 1) the possibility that climate-driven water and sediment loading may increase fault activity. 2)
56  The necessity of post-glacial stratigraphic markers in marine site-specific surveys aimed for

57  determining fault slip rates.

58  Our case study is the Levant continental margin, offshore Israel, which provides an ideal natural
59 laboratory for investigating thin-skinned normal faults propelled by salt tectonics (Fig. 1). The
60  widespread thin-skinned deformation across the Mediterranean Sea, due to the unstable Messinian

61  salt giant, calls for reexamination of our hypothesis at additional Mediterranean sites.
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Figure 1: (A) Regional elevation map. ESM- Eratosthenes Sea Mount. LB- Levant Basin. The study
area (shown in B) is marked in a red polygon. Digital elevation model from Hall (1994) and
Gvirtzman et al. (2015). (B) Location map of the study area offshore northern Israel. High-
resolution (20x20 m) colored bathymetric map derived from data collected for this study along the
seismic survey track. Black and pink lines show faults from Groups 1 and 2, respectively (Group
2 is the focus of this study), after Laor and Gvirtzman. (2023). The yellow line indicates the salt
pinch-out. White lines mark the seismic sections featured in this paper. F1-F4 denote the faults

analyzed herein.
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72 2. Background

73 2.1Thin-skinned tectonics offshore Israel

74  The lIsraeli continental shelf and slope comprise Plio-Quaternary siliciclastic sediments derived
75  from the Nile Delta through longshore currents (Emery et al., 1960; Gvirtzman and Buchbinder,
76 1978; Goldsmith and Golik, 1980; Carmel et al., 1985; Tibor et al., 1992; Buchbinder et al., 1993;
77 Buchbinder and Zilberman, 1997; Ben-Gai et al., 2005; Frey-Martinez et al., 2006; Segev et al.,
78  2006; Zviely et al., 2006, 2007; Klein et al., 2007; Schattner et al., 2015; Schattner and Lazar,
79  2016; Gadol et al., 2020; Zucker et al., 2021). This sedimentary package overlies the Messinian
80  evaporite sequence, which lies approximately 1 km below the seafloor. The Messinian salt layer,
81  deposited during the Messinian Salinity Crisis, reaches a maximum thickness of approximately
82 1.8 km in the deep basin and thins dramatically beneath the continental slope to a few tens of
83  meters (Netzeband et al., 2006; Cartwright and Jackson, 2008; Steinberg et al., 2011; Gvirtzman
84 etal., 2017; Manzi et al., 2018; Meilijson et al., 2018). The line at which the evaporitic sequence
85 thins below seismic resolution is termed the salt pinch-out line (Fig. 1b; Hsu et al., 1977; Rowan
86 et al., 1999; Ryan, 2009). Approximately 2.7 million years after cessation of salt deposition
87  (Pliocene-Gelasian transition), continental uplift and margin tilting initiated westward salt flow,
88  which in turn carries the overlying rock column basinward (Cartwright and Jackson, 2008; Elfassi
89 etal., 2019; Hamdani et al., 2021). This westward motion of rocks overriding the salt relative to

90 the stable salt-less upper slope produces extension and normal faulting.

91  The extensional zone exhibits hundreds of normal faults that offset the seafloor, creating tens of
92  meters high seabed steps (Neev et al., 1976; Ben-Avraham, 1978; Garfunkel et al., 1979; Mart and

93  Ben-Gai, 1982; Garfunkel, 1984; Garfunkel and Almagor, 1984; Tibor et al., 1992; Gradmann et
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94  al., 2005; Martinez et al., 2005; Bertoni and Cartwright, 2006; Loncke et al., 2006; Netzeband et
95 al., 2006; Mart and Ryan, 2007; Cartwright and Jackson, 2008; Clark and Cartwright, 2009;
96  Cartwright et al., 2012; Gvirtzman et al., 2013, 2015; Katz et al., 2015; Hubscher and Netzeband,
97  2017; Gadol et al., 2020; Ben Zeev and Gvirtzman, 2020; Hamdani et al., 2021; Laor and
98  Gvirtzman, 2023; Gadol et al., 2025; Laor and Gvirtzman, 2025). These faults form primarily
99  above the salt wedge, as documented in numerous studies. However, in the Dor structure area,
100  offshore northern Israel (Fig. 1b), a special group of listric faults is located landward of the salt
101 pinch-out line (Fault Group 2 in Laor and Gvirtzman, 2023). These faults have been classified
102 within the high hazard category because they are relatively big with relatively large displacements
103 of a 350 ky horizon, indicating high slip rates relative to surrounding faults (Laor and Gvirtzman,
104  2023). For comparison, recent (350 kyr) slip rates of faults located above the salt wedge (Group 1
105 in Laor and Gvirtzman, 2023) are approximately 0.05 mm/yr (Elfassi et al., 2019; Laor and
106  Gvirtzman, 2023), while recent (350 ky) slip rates of the big listric faults near Dor structure (Group
107  2; Fig. 1b) are approximately 0.25 mm/yr (Laor and Gvirtzman, 2023). Moreover, while slip rates
108  of the salt-wedge faults have decreased from 0.11 mm/y in the Gelasian (2.6-1.8 Ma) to 0.05 mm/yr
109  recently (350 kyr; Elfassi et al., 2019), the faults near the Dor structure reached high slip rates in

110  the past 350 ky.

111 2.2. The effect of glacial and interglacial periods on thin-skinned

112 deformation

113 Over the past decades, submarine mass failures have been widely investigated along continental
114  margins and are now recognized as one of the most significant geological processes shaping

115  continental slopes (Masson et al., 2006; Owen et al., 2007; Lee, 2009; Tappin, 2010; Katz et al.,
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116  2015; Gadol et al., 2020). The mechanisms of slope failure are generally explained by a
117  combination of preconditioning factors, such as rapid sediment accumulation, the presence of
118  methane hydrates, the build-up of high pore-water pressures, and triggers, including seismic
119  activity or changes in hydrostatic loading. In this context, fluctuations in sea level are increasingly
120  considered an important factor: sea-level fall reduces hydrostatic pressure and may destabilize gas
121 hydrates, while rapid sea-level rise enhances pore pressure and reduces slope stability (Paull et al.,
122 1996; Maslin et al., 2004; Trincardi et al., 2003; Wien et al., 2006). Nevertheless, the global
123 correlation between the frequency of submarine landslides and sea-level change remains debated

124  and has not yet been unequivocally demonstrated (Urlaub et al., 2013).

125  Recent studies suggest that sea-level rise may affect not only sediment stability but also shallow
126  tectonic activity. The additional water load imposed on continental shelves induces lithospheric
127  flexure, steepening of slopes, and enhanced shear stress along fault systems (Mitrovica & Peltier,
128  1991). Modeling results indicate that rapid Holocene sea-level rise was sufficient to increase
129  Coulomb failure stress by more than 1 MPa, a magnitude large enough to reactivate existing faults
130  (Luttrell and Sandwell, 2010; Brothers et al., 2013). Observations of reservoir-induced seismicity,
131 where rapid water loading has triggered earthquakes of up to Ms 6.5, further support the hypothesis
132 that eustatic sea-level rise can reactivate faults along continental margins (Simpson, 1976;

133 Talwani, 1997).

134 A prominent case study for the destabilization of a continental margin is the Holocene Storegga
135  Slide offshore Norway, one of the largest documented submarine landslides. This event occurred
136  during a period of accelerated sea-level rise, amplified by meltwater discharges from proglacial

137  lakes Agassiz—Ojibway in North America. The combination of rapid relative sea-level rise,
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138 increased pore pressure in slope sediments, and synchronous seismic activity is thought to have
139  triggered the catastrophic failure (Bryn et al., 2005; Haflidason et al., 2005; Bondevik et al., 2012).
140  The Storegga case thus illustrates how sea-level forcing, coupled with fault reactivation and slope
141  instability, can jointly produce large-scale submarine failures with far-reaching geohazard

142 implications (Smith et al., 2013).

143 Empirical data on the influence of sea-level fluctuations on thin-skinned marine faults remains
144  sparse, and it is still unclear whether the same processes that destabilize continental slopes operate
145  at larger scales in faults a few kilometers deep. Hydrostatic pressure perturbations generated by
146  water loading and unloading cycles are known to decay rapidly at depths shallower than 1 km
147  (Locat and Lee, 2002), while seismic monitoring typically targets deeper crustal levels. Although
148  some elastic flexural models suggest that water loading and unloading can modulate fault slip at
149  continental shelves, direct observational evidence is lacking. Consequently, the quantitative
150  impact of sea-level change on shallow fault systems remains uncertain. Addressing this knowledge
151 gap will require high-resolution geophysical data capable of distinguishing the relative roles of

152  sea-level variability and salt tectonic processes.
153 2.3 Marine construction standards

154  Modern offshore construction standards reflect the challenges and complexities associated with
155 installing infrastructure on the seabed, particularly in geologically dynamic settings. Unlike
156  onshore practice, where hazard mapping and fault characterization rely on decades of established
157  protocols, the marine environment lacks universally accepted procedures for hazard assessment
158  and infrastructure design (Laor and Gvirtzman, 2023). This gap is largely due to the intrinsic

159  difficulties in accessing, imaging, and dating marine faults, as well as the higher sedimentation
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160  and erosion rates characteristic of many continental margins (Kvalstad, 2007; Hough et al., 2011).
161  Consequently, decisions regarding the routing and protection of seafloor infrastructure (such as
162  pipelines or cables) often require the integration of multiple, high-resolution seismic and
163  bathymetric datasets, combined with site-specific geological and geotechnical investigations (Prior

164  and Hooper, 1999; Angell et al., 2003).

165 A key difference in offshore geohazard assessment is the reliance on extensive seismic mapping,
166 which is typically higher in both quality and quantity than comparable surveys on land. This
167  abundance enables regional-to-local-scale classification of fault activity and displacement hazards
168  without the need for exhaustive coring and stratigraphic dating for every fault encountered (Prior
169  and Hooper, 1999; Angell et al., 2003). In practice, the inability to definitively date fault activity
170  inthe marine environment has led some standards to treat all seabed-rupturing faults as potentially
171  active, adopting a precautionary, engineering-first approach (On, 2016). Alternatively,
172 probabilistic analyses comparable to those used in earthquake hazard assessment have been
173 adapted to estimate the expected frequency and size of fault displacement events, guiding both the
174  early planning and the detailed engineering phases of offshore projects (Wong and Stepp, 1998;

175  Youngs et al., 2003; Angell et al., 2003).

176 Recent approaches emphasize pragmatism and risk minimization at early planning stages. Laor
177 and Gvirtzman (2023) propose classifying offshore faults by measurable parameters such as recent
178  (e.g., 350 ky) vertical displacement and fault plane size, using broad seismic data coverage. This
179  method enables infrastructure planners, working under uncertainty, to route pipelines or cables
180 across zones of lowest apparent hazard, focusing costly site-specific studies only where

181  unavoidable crossings occur. Such pragmatic classification provides a functional hazard map
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182 explicitly designed for marine conditions, while acknowledging the current limits of fault activity

183  characterization at sea.

184  Understanding recent fault displacement rates is therefore essential for developing region-specific
185  offshore construction standards and for more accurately assessing the seismic and surface rupture
186  hazards posed by marine faults. Improved knowledge in this area will ultimately inform the design
187  of infrastructure and guide appropriate engineering adaptations to ensure both safety and resilience

188 in offshore developments.

189 3. Methods

190 3.1 High-resolution seismic reflection acquisition and processing

191 A high-resolution multi-channel seismic survey was conducted offshore northern central Israel in
192 June 2021 (Fig. 1). The survey consisted of eight seismic lines designed to cover the shelf edge
193  and upper slope area (200-1200 m water depths). The seismic data were acquired using a 0.5 to 3
194  kHz Geo Marine Survey Systems Sparker source (Geo-Source 400) deployed with a 48-channel
195  Geo Marine Survey Systems streamer, with a group interval of 3.25 meters. To ensure optimal
196  spatial sampling while profiling to a depth of up to ~200 m, a multi-pinging approach was applied,

197 including continuous recording, frequent source triggering, and post-survey trace truncation.

198  Raw seismic data were loaded into Emerson-Paradigm (now AspenTech SSE) software for
199  processing and interpretation. Geometry and common midpoint (CMP) binning at a 1.56 m spacing
200  were computed using custom MATLAB scripts and assigned to the data. Next, seismic traces were
201 filtered to enhance signal quality, followed by amplitude scaling to balance signal strength across

202  the dataset while preserving relative reflection amplitudes. Deconvolution steps, including de-

10
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203  signature and de-ghosting corrections, were performed using the ECHOS DeconQ module to
204  reduce source and receiver ghost effects. Finally, a pre-stack time migration was applied to focus

205  reflection events and improve structural interpretation.

206 3.2 Horizon dating using seismo- and sequence stratigraphy

207  Sequence stratigraphy deals with repetitive units where the depositional conditions that prevailed
208  during their sedimentation were similar, and they are bounded by erosional or non-depositional
209 unconformity surfaces (Galloway, 1989). These surfaces, which separate the units, formed during

210  sea-level fall or rise (Vail et al., 1977).

211 In this work, we identified unconformities that separate units with different seismic facies using
212 seismic interpretation and horizon picking. We defined sequence boundaries (SB) according to
213 Hunt and Tucker (1992) approach, so that they represent formation at the end of the regression.
214  The geometry of the SB reflections truncated the top set of the former reflections by Toplap or
215  Truncation geometry. The Truncation geometry is characterized by a high angle between the
216  truncated reflection and the erosional reflection, and usually forms erosional topography. The
217  Toplap geometry is characterized by a moderate angle and topography. Other criteria for SB

218 identification are the Onlap relationship in the foreset and topset regions on the erosional surface.
219 3.3 Calculating the history of displacement rates

220  To calculate the displacement accommodated by the fault during each period, we reconstructed
221 the displacement of the oldest horizon over time. The vertical displacement across faults was

222 measured for each geological horizon. The relative movement of the hanging wall against the

11
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223 footwall was reconstructed by calculating the cumulative offset of the earliest horizon and

224 representing it as a function of time (Fig. 2).
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226  Figure 2: The methodology for backward reconstruction of the oldest horizon movement along the
227  faults. The vertical offset was measured for each horizon, and the relative movement of the

228  hanging-wall block relative to the footwall block was reconstructed over time.

229  Slip rates for discrete time periods were determined by dividing the incremental displacement of
230 the basal reflection by the duration of each chronostratigraphic interval. This analytical procedure

231 was applied to four faults that exhibit clear displacement of all traced horizons.

232 4. Results

233 4.1 Chrono-Seismo-Sequence stratigraphy

234 Figure 3 shows the division of the Plio-Quaternary section into four units based on the seismo-

235  and bio-stratigraphy of Elfassi et al. (2019), with the base of Unit 4 dated to 350 ky (light blue).

12
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236

237  Figure 3: Seismic section from industry seismic data crossing the Group 2 faults (marked as black
238  lines; Laor and Gvirtzman, 2023). Division of the Plio-Quaternary section into four dated units is
239  based on Elfassi et al. (2019). Base unit 2 (blue horizon) is dated to 2.6 Ma; Base unit 3 (pink
240  horizon) is dated to 1.8 Ma; Base unit 4 (light blue horizon) is dated to 350 ka. For the location

241  of the line, see Figure 1.

242

243  Figure 4a further subdivides Unit 4 into four subunits (4a-4d), based on the new high-resolution
244  survey conducted in this study (details in the Methods section above). The base of the youngest
245  subunit 4d (yellow reflection) is interpreted as ‘Surface A’ identified by Neev et al. (1966),
246 Almagor et al. (2000), Schattner et al. (2010), and Gadol et al. (2025), marking the end of the Last
247  Glacial Maximum and the onset of sea-level rise. Recently, this horizon was further dated to

248  approximately 14 ky (Hamman et al., 2008; Gadol et al., 2025).

13
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250  Figure 4: (A) Subdivision of Unit 4 into four sub-units (4a-4d), based on a new high-resolution
251 seismic survey conducted in this study. Light blue horizon is dated to 350 ka (following Elfassi et
252 al., 2019); green horizon is dated to 250 ka (based on C); purple horizon is dated to 140 ka (based
253  on C); and the yellow horizon is dated to 14 ka (Neev et al., 1966; Almagor et al., 2000; and
254  Schattner et al., 2010; Gadol et al., 2025) (B) Detailed view of the shelf edge zone showing
255  geometries that were used to divide the section into sequences according to sequence stratigraphic
256  theory. (C) Global sea level curve showing glacial and interglacial cycles. Note the four sea-level

257  drops at approximately 350 ka, 250 ka, 140 ka, and 20 ka, which are used as sequence boundaries.
258

259  Based on sequence-stratigraphic principles, we identified the four horizons picked within Unit 4
260 as SBs underlain by truncations (red arrows; Fig 4b) of high-stand systems tracts (HST) and
261 overlain by onlap geometry (black arrows; Fig 4b) of transgressive systems tracts (TST). Since all
262 four horizons represent low sea level, and the yellow and turquoise horizons are dated to 14 ka and
263 350 ka, respectively, we interpret the intermediate horizons to 250 ka (green) and 140 ka (purple),
264  respectively, according to the global sea-level curve (Fig. 4c). In summary, we now have four

265  dated horizons corresponding to four major sea-level drops within the last 350 ky (Figure 4a-5).

15
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267  Figure 5: High-resolution seismic section conducted in this study. Faults analyzed in this study
268 are marked as black lines (same faults presented in Fig. 3). Subdivision of Unit 4 into four sub-
269  units (4a-4d). Base unit 4A (light blue horizon) is dated to 350 ka; Base unit 4B (green horizon) is
270  dated to 250 ka; Base unit 4C (purple horizon) is dated to 140 ka; Base unit 4D (yellow horizon)

271 s dated to 14 ka. For the location of the line, see Figure 1.

272

273 4.2 Displacement rates

274 First, we performed backward restoration of fault movement since 1.8 Ma on four faults identified
275 inthe industrial, relatively low-resolution seismic survey (e.g., Fig. 3); results of the displacement
276  history and displacement rates are shown in Fig. 6a-b. Then, we performed the same analysis on
277  the same faults (Fig. 5) utilizing the new stratigraphic subdivision of Unit 4 to 4a, 4b, 4c, and 4d
278  (Fig. 6¢-d). These results demonstrate that when slip rates are averaged over 350 ky, the obtained

279  values are 0.1-0.25 m/ky, whereas higher-resolution analysis reveals that these average values can

16
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280  be separated into much lower values for Units 4b-c and much higher values for Unit 4d. For

281  practical purposes, considering the most recent displacements, slip rates have increased 10-fold.
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283  Figure 6: (A) Displacement history of the 1.8 Ma horizon identified in the industrial, relatively
284  low-resolution seismic survey. (B) Displacement rates based on A. (C) Detailed presentation of
285  Unit 4 subdivided into four subunits (4B-4D), based on high-resolution data collected in this study.
286 (D) Detailed displacement rates of the subdivided Unit 4. Note the relatively high rates averaged

287  over the last 14 ky (Unit 4D).

288  In a wider view (Fig. 7), downslope faults located above the salt wedge (Group 1 in Laor and
289  Gvirtzman, 2023), indicate the highest slip rates during deposition of Unit 2 (2.6-1.8 Ma) and a
290 decrease ever since (Elfassi et al., 2019). However, upslope faults located landward of the salt

291 wedge (Group 2 in Laor and Gvirtzman, 2023) illustrate increased activity in the last 350 ky and

17
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292 especially in the last 14 ky. This result highlights the hazard posed by Group 2 even more than

293  estimated by Laor and Gvirtzman (2023).
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294
295  Figure 7: Summary graph of displacement rates throughout the entire history of salt tectonics in
296  the Levant Basin. Classification of faults into two groups follows Laor and Gvirtzman (2023).
297  Displacement rates for Group | were calculated by Elfassi et al. (2019), reached 0.11 m/ky,
298  averaged over the Unit 2 period (2.6 Ma-1.8 Ma). Displacement rates for Group |1 were calculated
299 in this study based on industrial data, reaching 0.25 m/ky averaged over the Unit 4 period (350
300 ka-present). When recalculated using the new high-resolution data from this study, Group Il

301  displacement rates average 2.4 m/ky over the last ~14 ky, a 10-fold increase compared to

302 calculations based on industrial data.
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303

304 5. Discussion

305 5.1 Sedimentation vs. displacement rates

306  Considering Unit 4 as a whole, its average sedimentation rate in the area of the analyzed faults is
307 2 m/ky (Laor and Gvirtzman, 2023), which is an order of magnitude faster than the average slip
308 rates (0.25 m/ky). This means that on a 350 ky scale, fault scarps are expected to be completely
309 buried. Therefore, the observed noticeable fault scarps (tens of meters high; Fig 8a) must indicate
310 that displacement rates are non-linear and that a very recent rapid slip has created a fault step that
311 has not yet been buried (Fig. 8a). However, a simple calculation shows that even the high slip rates
312  inferred for the last 14 ky are insufficient to explain the observed fault scarps unless the fault scarps
313  formed much after 14 ky. If faults move in a constant velocity (creep motion) of 2.5 m/ky, with a
314  burial rate of 2 m/ky (Laor and Gvirtzman, 2023), the expected height of the fault scarp after 14
315  ky should be ~7 m, whereas in reality the observed fault scarps are a few times larger. This means
316 that fault scarps must have formed in very recent seismic slip events or during recent rapid creep
317  (Fig. 8b). This conclusion is supported by the striking similarity between the displacement patterns
318  observed for the 14 ky horizon and the present-day bathymetric offset, which is approximately 25

319  m (Figure 8a).
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321 Figure 8: (A) Location of fault F2 (highlighted in black). (B) Displacement history of fault F2,
322 showing significant displacement at 14 ka. Based on displacement-to-sedimentation rate ratios
323  calculated for various scenarios described in the text, the most recent displacement on this fault

324  likely occurred within the last 14 ky (indicated by dashed pink line).

325

326 Two additional factors complicate the simple comparison between sedimentation and

327  displacement. First, several of the horizons used for offset measurements show truncation and may
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328  represent erosional unconformities. Any removal of a section across these surfaces would alter the
329  apparent offset and could either exaggerate or reduce the reconstructed slip. Second, the
330 assumption of constant sedimentation rates within subunits is an approximation. Rates may have
331  varied within Unit 4, and such variations would influence both burial and the interpreted timing of

332 scarp formation.

333  The preservation of large fault scarps may also reflect episodes of erosion or non-deposition on
334 the hanging wall or footwall. Submarine slides, which are common throughout the section, could
335 reset or locally enhance topography without requiring sustained high slip rates. These processes

336  offer alternative pathways to maintain relief even where average sedimentation is high.

337  The fault activity responsible for the current seafloor expression may have occurred much more
338  recently than 14 ky - potentially even within historical times - or represents a combination of
339  episodic slip events and varying sedimentation rates (Figure 8b). This temporal uncertainty has
340 important implications for seismic hazard assessment, as the preservation of the prominent fault
341  scarp indicates very recent fault activity that cannot be adequately constrained with our current

342  chronological framework.
343 5.2 Correlation with sea level changes

344  The remarkable preservation of the 25 m fault scarp on the present-day seafloor, despite high
345 sedimentation rates, raises a fundamental question: why did the activity of these faults rise so
346  dramatically during the last 14 ky? Our hypothesis is that this acceleration is intrinsically linked
347  to the steep post-glacial sea-level rise of 120 m. To further examine this hypothesis, we extended

348  our analysis backward in time and illustrated a correlation between sea-level changes and fault
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349  motion along three upslope faults (Fig. 9). The colored dashed lines in Figure 9b represent

350 reconstructed motion across the faults, with age anchors at 250 ky, 140 ky, and 14 Ky,

351  corresponding to peak glacial periods, and linear age interpolation between these points based on

352 relative unit thicknesses (Fig, 9a), assuming constant sedimentation rates within subunits.

353  Comparison of the fault motions to the sea-level curve indicates a noticeable correlation between

354  post-glacial sea-level rise and increased slip rates.
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356  Figure 9: (A) Example of subdivision into undated sub-units for one of the faults (F4). (B)
357  Correlation between displacement histories of F2, F3, and F4 faults and sea level change. Black
358 dotsindicate age anchor points. Between these points, the interpolated ages were calculated based
359  on the ratio of unit thickness to time. Fault activity rates increase during periods of sea level
360 change. Note that the displacements do not account for portions removed by erosion; therefore,

361 original displacements may have been originally larger (for example, at 140 ka).
362

363  Nonetheless, it is still uncertain whether the observed fault acceleration responds to the onset of
364  sea-level rise or legs sometime after the age of minimal sea level. This ambiguity stems from both
365 the resolution limits of the data and the unknown lag time between environmental forcing and
366  structural response. In any case, it seems clear that fault activity follows a cyclic pattern coinciding

367  with glacial-interglacial transitions.

368  Because sea level has been relatively stable over the last ~7 ky, any very recent slip that contributes
369 tothe present-day scarp height may require an additional trigger unrelated to eustatic forcing, such
370  as localized pore-pressure changes, internal salt-tectonic dynamics, or other short-term processes
371 not resolved here. In light of our results, we propose that coupling between sea-level fluctuations

372 and fault activity should be systematically tested along additional continental margins.
373 5.3 Implementation for hazard assessment

374 A fundamental challenge in offshore geohazard assessment arises when planned infrastructure
375  must cross fault zones. One approach is to apply probabilistic fault displacement hazard analysis

376 (PFDHA, Youngs et al., 2003), but this requires knowledge about magnitude-frequency
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377  relationships, which is frequently unavailable. A more common alternative is to base hazard
378  estimates on slip rates measured from displacements across the youngest possible stratigraphic
379  horizon; however, this is resolution-dependent, as illustrated here. While measurements of the 350
380 Ky horizonyield average values of 0.25 m/ky, the post-glacial stratigraphy indicates 10-fold higher
381  values. In addition, the observed correlation between sea-level rise and increased fault activity
382  during the late Pleistocene suggests that site-specific surveys must consider post-glacial slip rates,

383  atleast in thin-skinned faults, and possibly in other cases as well.

384  Continuing this line of thinking, we further raise the possibility that an additional increase in
385  stratigraphic resolution is needed to separate the rapid sea-level rise at 18-8 ka from the relatively
386  stable sea-level in the last 7 ky. Figure 10 illustrates that such a distinction between early and late
387  Holocene could further change the calculated slip rates, with higher values in the early interval
388  (sea-level rises) and lower values recently (stable sea-level). In other words, an additional increase
389 inresolution may ease planning by allowing the use of less strict values, calling for the integration
390  of ultra-high-resolution sub-seabed seismic with core dating. Conversely, despite our hypothesis
391  about increased faulting during sea level rise, increasing resolution may also work the other way
392 around and show that slip rates may have increased in the late Holocene; we will not know until

393 we measure.
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395  Figure 10: llustrated plot showing increased displacement rates for each time interval based on
396 average displacement rates. The green and red curves show two alternative scenarios for
397 variations in displacement rate over the last 14 ky, both yielding the same average rate. Note that
398  Option 1 (green) would provide relief in geohazard planning due to sea level stability in the late
399  Holocene, while Option 2 (red) would worsen it. This graph highlights the importance of enhanced

400 temporal resolution for geohazard assessment.

401

402 6. Conclusions

403  This study demonstrates that stratigraphic resolution has a fundamental impact on hazard

404  assessment for marine infrastructure crossing active fault zones. By increasing temporal resolution
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405  from 350 ky to 14 ky using high-resolution seismic reflection data, we obtained fault slip rates
406  more than 10 times higher than previously reported long-term averages. This finding reveals that
407  conventional hazard surveys, which rely on older stratigraphic horizons, may significantly

408  underestimate current fault activity and associated infrastructure risks.

409  The preservation of 25-meter fault scarps despite high sedimentation rates indicates very recent
410  fault activity, potentially within historical times. Our analysis shows a strong correlation between
411  glacial-interglacial sea-level cycles and fault displacement rates. We propose that pore pressure
412 changes during rapid sea-level rise destabilize fault zones, with broad implications for

413 Mediterranean continental margins underlain by Messinian salt deposits.

414  For infrastructure design, long-term averaged slip rates of 0.25 mm/yr may be inadequate
415 compared to recent rates exceeding 2.4 mm/yr. However, if sea-level forcing drives this
416  acceleration, current high rates may represent a transient peak, suggesting higher temporal

417  resolution could refine hazard estimates.

418 The coupling between climatic forcing and thin-skinned fault activity introduces new
419  considerations for geohazard forecasting. Our findings suggest fault activity may respond
420  predictably to environmental forcing, with direct implications for infrastructure planning during

421  continued anthropogenic sea-level rise.

422 Future research should extend this approach to additional Mediterranean sites and subdivide
423 Holocene sediments to quantify environmental-tectonic relationships, ultimately improving

424  predictive models for marine geohazard assessment.
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425 7. Data availability
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