

1 Scale-Dependent Transition in Soil Moisture Memory and Its Environmental Controls in

2 Complex Mountain Terrain

3 Jun Zhang^{1,2,3}, Songtang He^{1*}, Yong Li¹, Yuan Xue²

⁴ ¹ Key Laboratory of Mountain Hazards and Engineering Resilience /Institute of Mountain Hazards
⁵ and Environment, Chinese Academy of Sciences, Chengdu 610041, China

7 Tsinghua University, Beijing 100084, China

³ University of Chinese Academy of Sciences, Beijing 100049, China

⁹ Correspondence: Songtang He (hest@imde.ac.cn)

11 **Abstract:** Soil moisture memory (SMM) defines the antecedent wetness states that modulate
12 catchment responses to meteorological triggers, serving as a critical determinant of background
13 hydraulic susceptibility. However, its multi-scale characteristics and environmental drivers remain
14 poorly understood in complex terrain. This study characterizes SMM dynamics across daily-to-
15 interannual scales using daily data (2003 – 2022) from three hazard-prone watersheds in
16 southwestern China (Dali River, Anning River, and Jiangjia Ravine). By integrating Power
17 Spectrum Analysis, Detrended Fluctuation Analysis (DFA-2), and a spatial attribution modeling
18 framework, we identify a distinct scale-dependent transition in SMM persistence and its controls.
19 Results revealed that while memory intensity generally weakened with scale, humid catchments
20 exhibited a robust “inherent persistence” regime extending to multi-year scales. Crucially, feature
21 importance analysis uncovered a structural transition at approximately the 5-year scale: atmospheric
22 variables and vegetation dominated short-term variability, whereas soil properties and topography
23 governed the system’s long-term capacity to integrate low-frequency signals. Mechanistically, this
24 marks a shift from event-driven hydraulic responses to background storage trends regulated by deep

25 soil buffering. These findings provide a basis for distinguishing event-scale hydraulic
26 preconditioning from long-term background susceptibility, offering a conceptual framework for
27 incorporating operational persistence horizons into hierarchical hazard assessment strategies.

28

29 **Keywords:** Soil moisture memory; Driving Factor; Persistence horizon; Power spectrum analysis;
30 Detrended fluctuation analysis

31

32 **1. Introduction**

33 Soil moisture memory (SMM) is a critical driver of mountain hazards, including debris flows,
34 landslides, and soil erosion (An et al., 2025; Hu et al., 2015; Moragoda et al., 2022). Mechanistically,
35 elevated soil moisture reduces effective stress and shear strength by increasing pore water pressure,
36 thereby predisposing slopes to instability. While precipitation acts as the immediate trigger,
37 antecedent soil moisture conditions the landscape's susceptibility by determining how close the
38 system is to its critical failure thresholds (Bogaard et al., 2018; Cai et al., 2019). Beyond this
39 immediate mechanical role, the persistence of SMM, quantified by its memory length, theoretically
40 defines the timescale over which antecedent signals persist, providing essential information on
41 hydraulic preconditioning for early warning systems (Huang et al., 2022; Wicki et al., 2020).
42 However, translating this theoretical memory into operational forecasts requires further validation
43 against historical hazard events.

44 Empirical evidence from various hazards supports this mechanistic understanding. Specifically,
45 landslide probability increases exponentially when soil moisture (a proxy for pore-water pressure
46 saturation) exceeds a critical threshold of 30 ~ 40 % (Mirus et al., 2018; Wicki et al., 2021). While

47 these studies define the critical state, quantifying the SMM persistence provides the essential
48 temporal window required to estimate how long antecedent rainfall continues to drive the system
49 toward this saturation threshold (Mirus et al., 2018). For debris flows, antecedent soil moisture
50 conditions determine not only the likelihood of initiation but also the potential runout distance (Coe
51 et al., 2008). Furthermore, under identical rainfall intensity, the soil loss rate can be 3 to 5 times
52 higher under wet antecedent conditions than under dry conditions (Ran et al., 2012). Collectively,
53 this evidence highlights the fundamental importance of quantifying SMM to understand how
54 antecedent conditions modulate hazard initiation thresholds. Nonetheless, a comprehensive, multi-
55 scale characterization of how SMM evolves from monthly to seasonal, annual, and multi-year scales
56 remains limited (Entin et al., 2000; Nicolai-Shaw et al., 2016; Zhang et al., 2025). Unlike immediate
57 meteorological triggers, this multi-scale memory reflects the system's inertia and defines the
58 baseline hydrological state of the catchment in response to external forcing. However, elucidating
59 its drivers is challenging due to the combined effects of diverse factors—topographic, pedological,
60 meteorological, and vegetation (Brocca et al., 2007; Dong et al., 2018; Schönauer et al., 2024; Varga
61 et al., 2020). Their strong interactions further complicate the disentanglement of individual and joint
62 effects (Peng et al., 2023).

63 Previous studies have explored driving factors of soil moisture variability at discrete temporal
64 scales (Blanka-Végi et al., 2025; Cho et al., 2014; Fang et al., 2016; Kursa et al., 2010), identifying,
65 for instance, wilting point and evapotranspiration as key at the annual scale (Blanka-Végi et al.,
66 2025) or vegetation type at the monthly scale (Fang et al., 2016). However, by focusing on
67 individual scales, these studies have seldom established a systematic hierarchy of the relative
68 importance between static and dynamic factors across continuous temporal scales. This lack of a

69 unified, scale-explicit framework prevents a mechanistic understanding of SMM persistence and
70 limits the development of hazard assessment models capable of distinguishing background
71 hydraulic loading from immediate event triggering (Li et al., 2025; Zhang et al., 2024).

72 While previous studies have established the existence of soil moisture memory (SMM) and its
73 general scale dependence at global or continental scales (e.g., Entin et al., 2000; Nicolai-Shaw et
74 al., 2016), a critical gap persists in mechanistically linking this multi-scale memory to specific
75 hydrological processes and practical hazard prediction within the complex terrain where these
76 hazards predominantly occur. To bridge this gap, this study leverages a two-decade-long daily soil
77 moisture dataset across three contrasting, hazard-prone watersheds with the following objectives:
78 (1) to quantify the scale-transition threshold and hierarchical drivers of SMM; (2) to establish a
79 quantitative hierarchy of driving factors across temporal scales; and (3) to develop a conceptual
80 framework linking multi-scale SMM to differentiated hazard preconditioning mechanisms. While
81 direct validation against site-specific hazard inventories is beyond our current scope due to the
82 spatial resolution mismatch (1-km pixels vs. slope-scale failures), we synthesize our findings with
83 published hazard-SMM relationships (e.g., Mirus et al., 2018; Wei et al., 2025) to demonstrate the
84 potential for SMM-informed early warning systems. The paper is structured as follows: [Section 2](#)
85 describes the study areas, data, and methods. [Section 3](#) presents the results, which are discussed in
86 [Section 4](#). Finally, [Section 5](#) provides the main conclusions.

87 **2. Materials and Methods**

88 This study investigates soil moisture (SM) dynamics and their drivers across three hydro-
89 climatically and geomorphologically distinct watersheds: the Dali River Basin, Anning River Basin,
90 and Jiangjia Ravine. We incorporated static and dynamic variables—spanning topography, soil

91 properties, meteorological conditions, and vegetation indices—from multiple authoritative datasets.

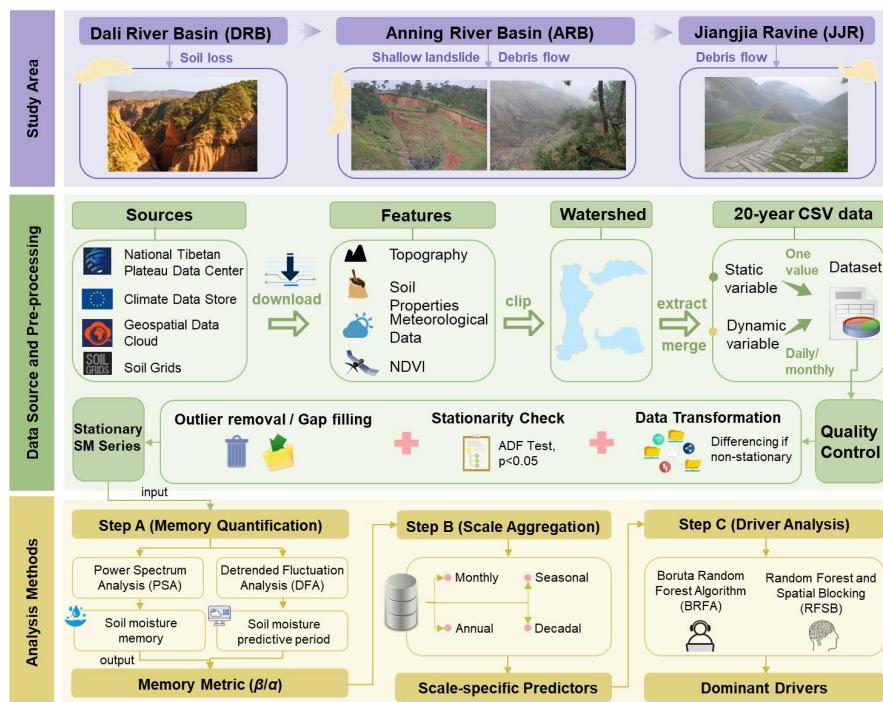
92 SM temporal memory and persistence horizons were quantified using Power Spectral Analysis (PSA)

93 and second-order Detrended Fluctuation Analysis (DFA-2), respectively, while the Boruta–Random

94 Forest algorithm was employed to quantify variable importance across spatial and temporal scales.

95 The overall research framework is illustrated in Fig. 1.

96



97

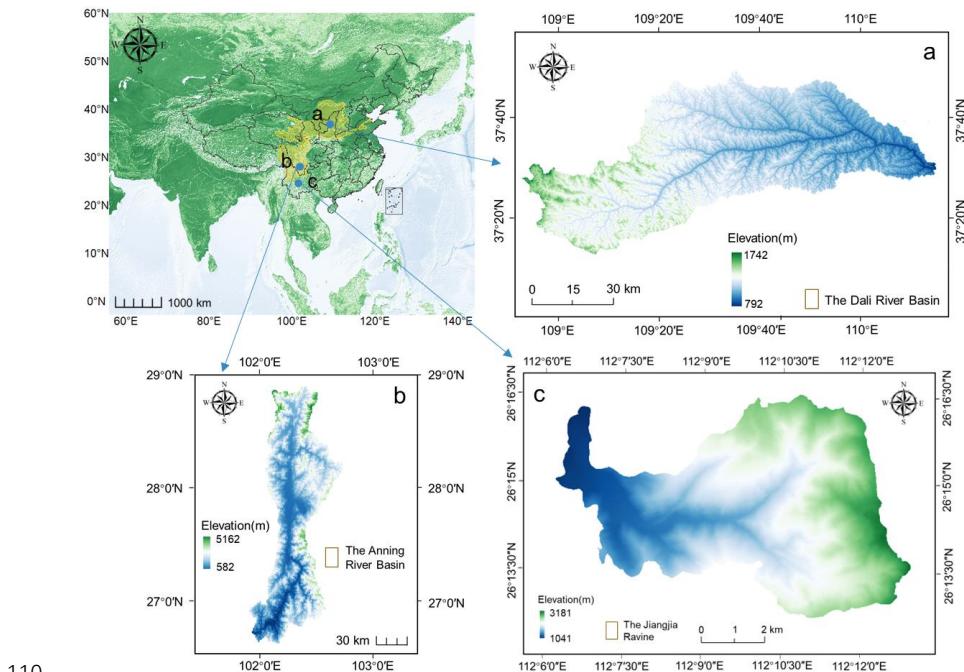
98 **Fig. 1** Research framework of this study. The workflow integrates multi-source data processing,
99 memory quantification, and driver identification. Key pre-processing steps include outlier removal
100 and stationarity checks (ADF test) to ensure time stability. Soil moisture memory is quantified
101 using Power Spectrum Analysis (PSA) and Detrended Fluctuation Analysis (DFA-2), followed by
102 a multi-scale driver analysis using the Boruta algorithm across monthly to decadal aggregation
103 windows.

104

105 **2.1 Study Area**

106 We selected three hydro-climatically distinct watersheds in southwestern China to represent a
107 spectrum of mountain hazard environments (Fig. 2; detailed physiographic characteristics are
108 provided in Appendix B and Table B1).

109



110
111 **Fig. 2** Location of the study areas: (a) the Dali River Basin (DRB), (b) the Anning River Basin, (c)
112 the Jiangjia Ravine.

113

114 • **Dali River Basin (DRB):** Semi-Arid Erosion-Prone System. Located on the Chinese
115 Loess Plateau ($3,906 \text{ km}^2$), the DRB features steep loess terrain (avg. slope 17°) and
116 highly erodible soils (silt > 60 %). The climate is semi-arid continental, with precipitation
117 highly concentrated in summer storms (> 70 % from May to September), leading to
118 persistent soil moisture deficits and severe erosion rates (Liu et al., 2020; Zhang et al.,

119

2023).

120

- **Anning River Basin (ARB):** Complex Mountain-Valley System. Situated in southwestern Sichuan ($11,150 \text{ km}^2$), the ARB is characterized by dramatic relief (900–4,750 m) and vertical climatic zonation. It operates under a humid subtropical-monsoon climate (~ 1,070 mm rainfall) with dense forest cover (Chen et al., 2024). Consequently, soil moisture dynamics are strongly regulated by vegetation phenology and the buffering capacity of deep forest soils (Yin et al., 2020).

126

- **Jiangjia Ravine (JJR):** Debris-Flow Dominated Catchment. A small (48.6 km^2) but extremely steep catchment in the Xiaojiang fault zone. Intense monsoon rainfall (> 85 % in May–Oct) combined with fractured geology drives rapid hydrological response cycles: rapid saturation during storms followed by quick drainage (Yang et al., 2023). This makes JJR a classic environment for high-frequency debris flows (Wei et al., 2025).

131

2.2 Data Sources and Preprocessing

132

We constructed a dataset comprising 12 static and dynamic covariates (Table 1) alongside daily soil moisture (SM) data (1-km resolution) for the period 2003–2022.

134

Soil Moisture Dataset: We utilized the all-weather 1-km daily soil moisture (SM) product developed by Song et al. (2022) for the period 2003–2022. Unlike raw reanalysis data or coarse passive microwave retrievals, this dataset employs a machine learning-based spatiotemporal reconstruction framework to generate seamless high-resolution estimates. Specifically, it downscales and fuses coarse-resolution passive microwave observations (AMSR-E/2) with high-resolution optical/thermal land surface parameters (MODIS) and meteorological forcing (ERA5-Land), using a random forest algorithm trained on extensive ground observations.

141 **Validation and Uncertainty:** This product was selected for its capacity to resolve hillslope-
142 scale heterogeneity in complex terrain, a critical requirement for our hazard-focused analysis.
143 Comprehensive validation against approximately 2,400 in-situ stations across China demonstrates
144 robust accuracy, with an average correlation coefficient (R) of 0.89 and an unbiased Root Mean
145 Square Error (ubRMSE) of 0.053 m^3/m^3 (Song et al., 2022). While we acknowledge the inherent
146 uncertainties associated with microwave retrieval in mountainous regions (e.g., geometric distortion
147 and shadowing effects), this dataset represents the state-of-the-art balance between spatial resolution
148 and temporal continuity. Furthermore, since our study focuses on the temporal persistence features
149 (spectral exponents) rather than absolute magnitudes, the potential systematic bias in complex
150 terrain has minimal impact on the derived memory metrics (see Appendix C for further discussion
151 on data reliability and preprocessing).

152
153 **Table 1.** Static and dynamic covariates used in the final modeling framework and the target variable
154 (soil moisture, SM).

Types	Variable (abbreviation)	Description	Units	Source
Static	Slope (β)	Rate of change of elevation at each pixel (DEM-derived)	$^{\circ}$	Geospatial Data Cloud
	Aspect (Asp)	Orientation of the steepest downslope (DEM-derived)	$^{\circ}$	(DEM)
Topographic Wetness Index (TWI)	Potential wetness index based on slope and upslope contributing area (DEM- derived)		-	
Soil texture (Sand, Silt, Clay)	Mass fractions of soil particle-size classes	g/kg	Soil Grids	
Normalized Difference Vegetation Index (NDVI)	Vegetation greenness from red and NIR reflectance	-	Gao et al., 2022	
Dynam ic	Precipitation (Prec.)	Daily total precipitation	mm	Xie et al., 2019
	Surface wind speed (WS)	Mean daily wind speed at 10 m height speed (WS)	m/s	ERA5 (Hersbach)

Relative humidity (rhu)	Ratio of actual to saturated vapor pressure	%	et al., (2023)
2m air temperature (T _{2m})	Daily mean air temperature at 2 m height	°C	
Actual evaporation (AE)	Daily actual evapotranspiration	mm/d	
Target Soil moisture (SM)	Volumetric soil water content	cm ³ /c m ³	Song et al., (2022)

155

156 Auxiliary static variables (e.g., soil texture, TWI) represent basin physiography, while dynamic
157 variables (e.g., precipitation, NDVI) capture climate-vegetation interactions. All data were
158 resampled to a uniform 1-km grid. Preprocessing included linear interpolation for short gaps (≤ 3
159 days), outlier removal, and stationarity checks using the Augmented Dickey-Fuller test (details in
160 [Appendix C](#)).

161 **2.3 Quantifying Soil Moisture Memory (PSA and DFA-2)**

162 To characterize the multi-scale persistence of soil moisture, we employed two complementary
163 spectral techniques. Crucially, given the 20-year length of our dataset (2003–2022), distinct
164 statistical limitations exist for resolving low-frequency dynamics. Following the standard signal
165 processing constraint which requires the time series length (N) to be significantly longer than the
166 timescale of interest (T) for robust estimation (typically $N \geq 3T$), we explicitly distinguish between
167 two regimes:

168 1. **Reliable Memory Window ($T \leq 7$ years):** Timescales where sufficient realizations
169 (approx. $N/3$) exist to statistically verify dynamic persistence and oscillatory behavior.

170 2. **Low-Frequency Background State ($T > 7$ years):** The lowest frequency components,
171 which are interpreted as basin storage trends or decadal climatic regime shifts, rather than
172 verifiable memory cycles.

173 First, Power Spectrum Analysis (PSA) was utilized to diagnose the strength of temporal
174 memory in the frequency domain. By estimating the spectral exponent (β), PSA effectively
175 distinguishes memory-driven processes (red noise, $\beta > 0$) from random meteorological inputs (white
176 noise, $\beta \approx 0$). In this study, β values derived within the Reliable Memory Window (seasonal to ~ 7
177 years) are used to quantify interannual persistence, whereas values in the Low-Frequency
178 Background (> 7 years) serve only as indicators of the quasi-static mean-state stability.

179 Second, to account for the non-stationarity inherent in long-term hydrological records, we
180 applied the second-order Detrended Fluctuation Analysis (DFA-2). Unlike standard autocorrelation,
181 DFA-2 filters out polynomial trends to reveal intrinsic correlation structures. Cross-validation with
182 the standard Autocorrelation Function (ACF) further confirms the robustness of these DFA-2
183 metrics (see [Fig. E1](#) in Appendix). We specifically identified “persistence horizons”—time windows
184 where the fluctuation exponent (α) exceeds 0.9. Consistent with the PSA framework defined above,
185 persistence horizons extending beyond the 7-year threshold are classified as “Background
186 Preconditioning” baselines, distinct from the active dynamic memory observed at shorter scales.
187 Detailed mathematical formulations, including the phase-randomization significance testing, are
188 provided in [Appendix A](#).

189 **2.4 Identifying Predictors via a Spatial Attribution Modeling Framework**

190 To determine the hierarchical importance of environmental predictors, we utilized the Boruta
191 feature selection algorithm wrapped around a Random Forest regressor. Given that SMM is a
192 temporal statistic derived from time series, while landscape attributes are spatially heterogeneous,
193 we constructed a spatial attribution framework to link these dimensions.

194 In this approach, the temporal memory metric calculated for each pixel (e.g., the spectral

195 exponent β) serves as the spatial response variable. This target was regressed against a suite of

196 spatially distributed predictors, which were categorized into two groups:

197 1. **Static variables:** Landscape properties that remain constant over the study period (e.g.,

198 soil texture, slope, TWI).

199 2. **Aggregated dynamic variables:** Time-varying meteorological and vegetation data

200 aggregated to match the temporal scale of the memory metric (e.g., mean decadal NDVI

201 or total precipitation).

202 This construction allows us to quantify how spatial heterogeneity in static and dynamic

203 boundary conditions correlates with the temporal persistence of soil moisture. Feature importance

204 was validated using spatial block cross-validation to account for spatial autocorrelation (details in

205 [Appendix D](#)).

206 It is essential to emphasize that the “Space-for-Time” framework employed here identifies

207 statistical associations rather than establishing causal relationships. The Boruta-RF algorithm ranks

208 predictors by their capacity to explain spatial variance in temporal memory metrics, but

209 fundamentally cannot distinguish between: (i) direct causal drivers, (ii) proxy variables correlated

210 with unmeasured causal factors, or (iii) response variables involved in bidirectional feedback loops.

211 Furthermore, the physical collinearity inherent in mountain landscapes—often termed the

212 “catena concept”—means that soil texture and topography co-evolve along hillslopes: steep upper

213 slopes typically develop shallow, coarse-textured soils with rapid drainage, whereas convergent

214 lower slopes accumulate deep, clay-rich deposits with enhanced water retention. Consequently, high

215 importance scores for both Slope and Clay content (Section 3.3) likely reflect this coupled landscape

216 structure rather than fully independent effects.

217 To partially address these limitations, we: (1) interpret the identified associations through the
218 lens of established hydrological theory (e.g., linear reservoir models; Section 4.1), providing
219 mechanistic plausibility for the observed statistical patterns; and (2) conduct partial correlation
220 analysis controlling for topographic variables (Appendix G) to assess the robustness of soil-SMM
221 associations against landscape confounding. However, readers should note that our framework is
222 designed to generate testable hypotheses about SMM predictors rather than to confirm causal
223 mechanisms, which would require controlled experiments or instrumental variable approaches
224 beyond the scope of remote sensing analysis.

225 **3. Results**

226 **3.1 Power Spectrum Analysis of SM Memory**

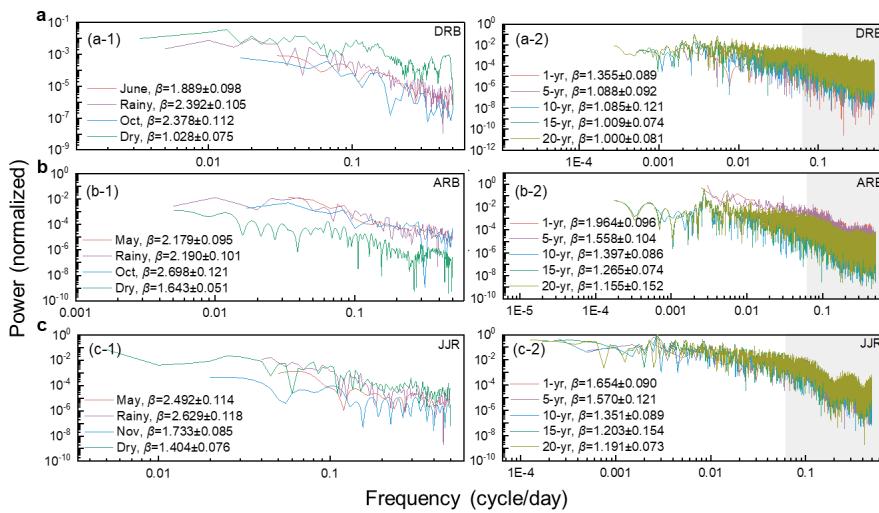
227 It is important to note that while spectral analyses are presented up to the 20-year scale to
228 illustrate trends, quantitative interpretations are explicitly distinguished based on the record length
229 constraint. We define the 1–7 year range as the “Reliable Spectral Window” for dynamic memory
230 estimation ($N \geq 3T$). Results beyond this threshold (> 7 years) are interpreted as the “Low-Frequency
231 Background State,” reflecting the system’s convergence to equilibrium rather than oscillatory
232 persistence.

233 Power spectrum analysis revealed the scale-dependent characteristics of soil moisture memory
234 (SMM) across the three basins (Fig. 3). All reported spectral exponents (β) are presented as the mean
235 estimate \pm the 95 % confidence interval derived from the log–log regression. Extensive sensitivity
236 tests (detailed in Appendix E, Table E4 and Fig. E2) further confirm that these spectral patterns are
237 robust to variations in detrending orders and frequency cutoffs, with the spatial ranking of memory
238 strength remaining highly consistent (Spearman’s $\rho > 0.92$) across parameter sets.

239 At short timescales (within one year), memory during individual rainy season months was
240 consistently weaker than that of the integrated rainy season period, whereas dry season months
241 showed stronger memory than the overall dry season aggregate (Fig. 3a-1, b-1, c-1).

242 Over longer intervals (1-20 years), SMM declined progressively. Within the reliable window,
243 the hierarchical trend generally follows $\beta_{1\text{-yr}} > \beta_{5\text{-yr}}$. Beyond this point, in the low-frequency
244 background zone (> 7 years), the metrics stabilized, capturing the basin's static storage baseline (Fig.
245 3a-2, b-2, c-2).

246



247
248 **Fig. 3** Power spectrum analysis of soil moisture memory in the (a) Dali River Basin (DRB), (b)
249 Anning River Basin (ARB), and (c) Jiangjia Ravine (JJR). Left panels show normalized power
250 spectra at intra-annual scales (months and aggregated seasons). Right panels show inter-annual
251 spectra ($1 \sim 20$ years). The spectral exponent (β , mean \pm 95% CI) quantifies memory strength, with
252 higher values indicating stronger long-term persistence. The gray shaded region (Time Scale > 1825
253 days) denotes where spectral estimation is limited by the 20-year data record; results here should be
254 interpreted as low-frequency trends rather than robust spectral features. CI, confidence interval.
255

256 In the Dali River Basin (DRB), the full rainy season memory ($\beta = 2.392 \pm 0.105$), calculated

257 over the continuous period from June to September, was significantly stronger than that of the initial
258 month (June, $\beta = 1.889 \pm 0.098$). In contrast, the integrated dry season memory ($\beta = 1.028 \pm 0.075$)
259 was considerably weaker than that of October ($\beta = 2.378 \pm 0.112$) (Fig. 3a-1). At interannual scales,
260 SMM systematically declines from $\beta = 1.355 \pm 0.089$ (1-year) to $\beta = 1.000 \pm 0.081$ (20-year)
261 (background state) (Fig. 3a-2).

262 In the Anning River Basin (ARB), the integrated rainy season memory ($\beta = 2.190 \pm 0.101$) is
263 slightly stronger than that of May ($\beta = 2.179 \pm 0.095$), peaking in October ($\beta = 2.698 \pm 0.121$) (Fig.
264 3b-1). At interannual scales, the ARB had the highest SMM among the basins, with a mean β of
265 1.468 ± 0.084 — exceeding the DRB (1.107 ± 0.072) and JJR (1.394 ± 0.079) — and decreased
266 gradually from 1.964 ± 0.096 (1-year) to 1.265 ± 0.074 (20-year) (background state) (Fig. 3b-2).

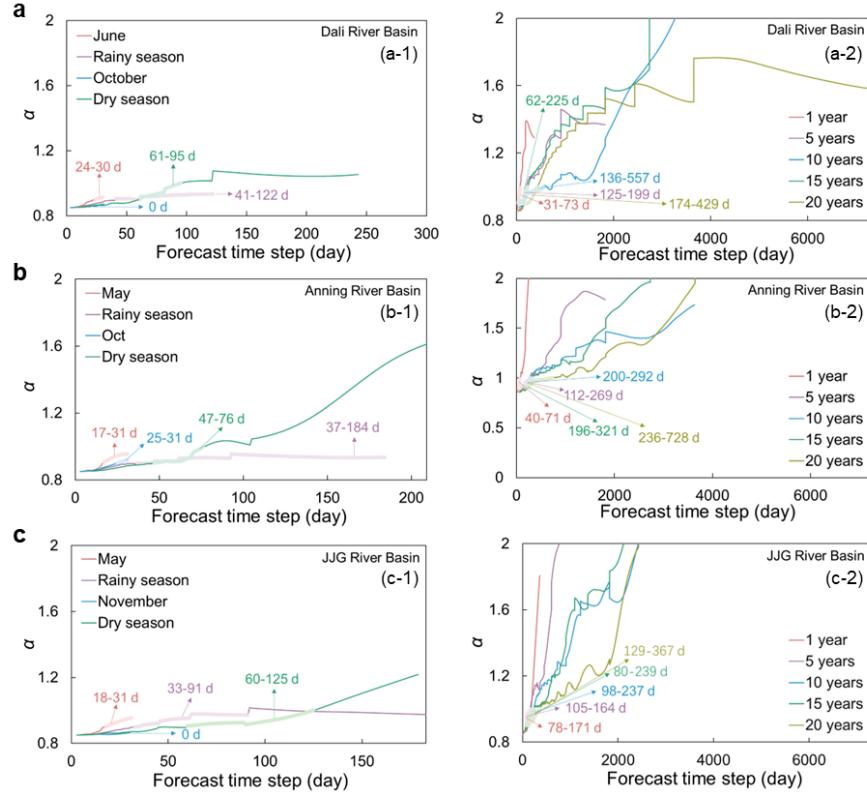
267 In the Jiangjia Ravine (JJR), SMM peaks during the rainy season (May: $\beta = 2.492 \pm 0.114$; full
268 rainy season: $\beta = 2.629 \pm 0.118$), whereas it weakened during the dry season (Nov: $\beta = 1.733 \pm$
269 0.085 ; full dry season: $\beta = 1.404 \pm 0.076$) (Fig. 3c-1). At interannual scales, the JJR exhibited an
270 intermediate level of SMM — stronger than that of the DRB but weaker than the ARB — with β
271 values decreasing from 1.654 ± 0.090 (1-year) to 1.191 ± 0.073 (20-year) (background state) (Fig.
272 3c-2).

273 **3.2 DFA-2 Analysis of SM Persistence Horizons**

274 Based on the memory characteristics identified by PSA, we next quantified the associated
275 persistence horizons using DFA-2. All reported α values in the high-memory range ($\alpha \geq 0.9$) were
276 statistically significant ($p < 0.01$) based on phase-randomization surrogate testing (see Appendix A).
277 Soil moisture persistence exhibited distinct spatiotemporal patterns across the three basins (Fig. 4).
278 In the Dali River Basin (DRB), persistence was short during the early rainy season (24-30 days in

279 June) but extends substantially through the full rainy season (41-122 days); in contrast, October
280 showed almost no persistence ([Fig. 4a-1](#)). During the dry season, persistence increased to 61-95
281 days, indicating a stronger influence of soil properties under limited rainfall. Beyond the seasonal
282 scale, the characteristic persistence horizon increased moderately from 31-73 days (1-year) to 174-
283 429 days (20-year), peaking between 10 and 15 years ([Fig. 4a-2](#)).

284 The Anning River Basin (ARB) exhibited the longest persistence horizons across all temporal
285 scales, with all reported ranges being statistically significant ($p < 0.05$) based on the DFA-2
286 significance testing procedure described in Section 2.4 (2). At the monthly scale, persistence ranged
287 from 17-31 days in May to 25-31 days in October, and these durations increased markedly at the
288 seasonal scale—reaching 37-184 days during the rainy season and 47-76 days during the dry season
289 ([Fig. 4b-1](#)). Beyond the seasonal scale, the persistence horizon rose sharply from 40-71 days (1-
290 year) to 236-728 days (20-year) ([Fig. 4b-2](#)). This extended memory window, particularly at the
291 multi-year scale, implies that the basin's soil moisture state tracks the low-frequency signals of inter-
292 annual climate oscillations and vegetation dynamics (i.e., red noise spectra of forcing). This
293 persistence indicates a shift in the hydrological equilibrium rather than physical water retention,
294 thereby conditioning the baseline hydrological state for hazard susceptibility over multiple years.
295



296

297 **Fig. 4** DFA-2 analysis of soil moisture persistence across the three basins. Left panels show seasonal
 298 scales; Right panels show inter-annual scales (1, 5, 10, 15, and 20 years). Solid lines represent the
 299 DFA-2 fluctuation exponent (α), calculated using a window size range of $s \in [10, N/4]$ days (where
 300 N is the series length). The labeled time windows (e.g., “236-728 d”) define the characteristic
 301 persistence horizons—the range of timescales over which significant memory ($\alpha \geq 0.9$) is observed.
 302 Sensitivity tests confirming the robustness of these horizons against window size variations (e.g.,
 303 $N/8$) are detailed in [Appendix E](#). d: days.

304

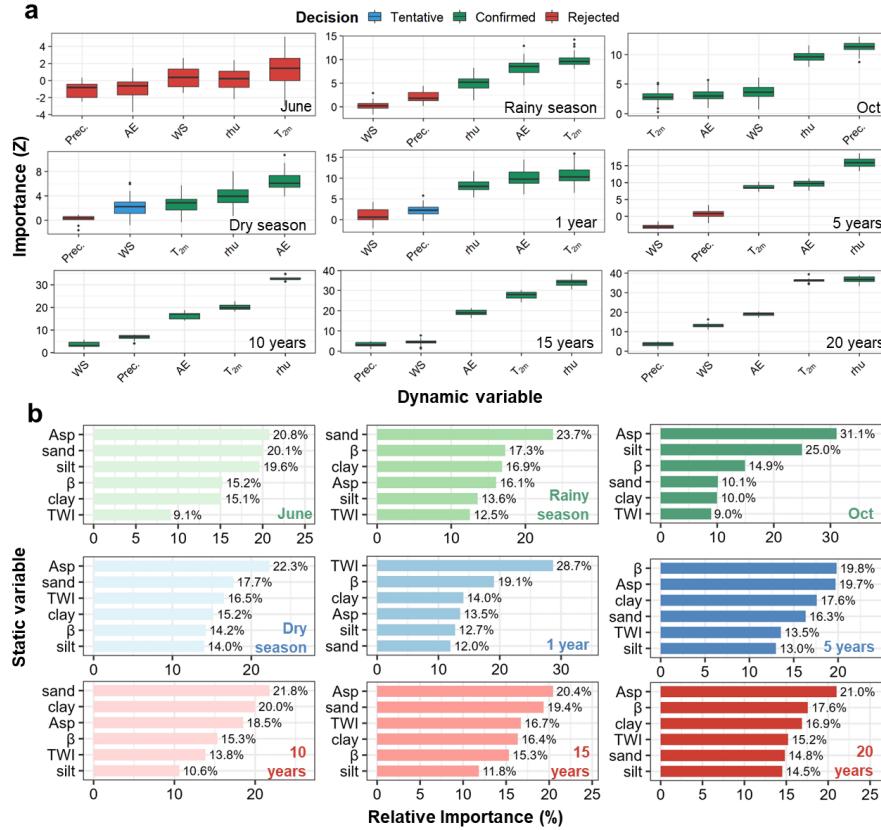
305 In the Jiangjia Ravine (JJR), rainy season persistence was the shortest among the three basins
 306 (18-31 days in May; 33-91 days when aggregated), indicating a rapid response to precipitation
 307 inputs ([Fig. 4c-1](#)). In contrast, dry season persistence (60-125 days) is longer than that in the ARB
 308 but remains shorter than in the DRB. At interannual scales, persistence horizons exhibit remarkable

309 stability, ranging from 78-171 days (1-year) to 129-367 days (20-year) (Fig. 4c-2), suggesting a
310 consistent memory effect across long-term timescales.

311 **3.3 Driving Factor Selection**

312 The Boruta Random Forest Algorithm (BRFA) was employed to evaluate the statistical
313 associations between dynamic variables and SMM across multiple timescales, providing
314 quantitative insights into the factors most strongly correlated with SM variability at different
315 temporal resolutions (Fig. 5). Bootstrap resampling ($n = 1000$) confirmed that the top 3 predictors
316 at each scale maintained significance across $> 95\%$ of iterations, whereas tentative variables showed
317 high variability (CV $> 40\%$), validating our interpretation focus on confirmed factors.

318 At the monthly scale, June—the onset of the rainy season—showed no distinct dominant
319 predictor; however, when the entire rainy season (Jun-Sep) is considered, relative humidity (rhu),
320 NDVI, actual evaporation (AE), and 2-m air temperature (T_{2m}) emerged as the strongest statistical
321 predictors of SMM spatial patterns. During the dry season (Oct-May), the hierarchy of predictive
322 associations shifted notably. In October, NDVI, AE, rhu, and T_{2m} maintained strong correlations
323 with SMM, whereas precipitation and wind speed exhibited limited predictive power. This shift
324 likely reflects the transition from moisture-limited to energy-limited evapotranspiration regimes.
325



326

327 **Fig. 5** Scale-dependent predictive importance of environmental drivers. (a) Dynamic drivers (Boruta
328 Z-scores), where green boxes denote confirmed variables ($p < 0.01$). (b) Static drivers (Random
329 Forest Relative Importance, %). **Note:** Panels (a) and (b) use different metrics (unbounded Z-scores
330 vs. normalized percentages); thus, absolute magnitudes are not directly comparable.

331

332 At longer timescales, the pattern of statistical associations underwent a progressive transition.

333 On an annual scale, precipitation and wind speed—whose association with SMM stems from event-

334 scale forcing—declined in importance as temporal averaging smooths out their high-frequency

335 variability. By the 5-year scale, these climatic variables were fully excluded from the set of

336 significant predictors, leaving NDVI, rhu, AE, and T_{2m} as the variables most strongly associated

337 with SMM variability. Over decadal timescales (10–20 years), the associations of NDVI, rhu, and

338 T2m with SMM further intensified, highlighting their persistent correlation with long-term SM
339 dynamics.

340 The relative importance of static factors also exhibited distinct temporal patterns (Fig. 5b).
341 During June and the rainy season, bulk density (ρ_b) and aspect (Asp) showed the strongest
342 associations with SM. At the annual scale, the pattern shifted slightly toward stronger topographic
343 associations (TWI). However, over longer timescales, pedological factors became increasingly
344 prominent in the predictor hierarchy.

345 Quantitative analysis of the feature importance revealed a distinct structural break at the 5-year
346 scale (Table 2 and Fig. 5). At the 1-year scale, the system showed the strongest association with
347 TWI (28.7 %), consistent with lateral redistribution processes. However, at the 5-year scale, TWI
348 importance collapsed (to 13.5 %), and the hierarchy shifted to a stable group of Soil Texture and
349 Slope (~ 19 %). We therefore operationally define the 5-year scale as the critical transition threshold,
350 as it marks the precise timescale where the association pattern transitions from TWI-dominated
351 ('Fast-Response Regime') to Soil-dominated ('Background-Storage Regime').

352 It is important to note that these associations do not establish causal relationships. The Boruta-
353 RF algorithm identifies variables with strong predictive power for SMM spatial patterns, but cannot
354 distinguish between direct causal drivers, proxy variables, or variables involved in bidirectional
355 feedbacks. For instance, the strong association between NDVI and SMM at decadal scales may
356 reflect vegetation's influence on soil hydraulic properties, soil moisture's constraint on vegetation
357 growth, or both operating within a coupled ecohydrological system. The mechanistic interpretation
358 of these statistical patterns is discussed in Section 4.1.

359

360

Table 2. The structural shift in dominant environmental associations across timescales.

Time Scale	Top Static Predictor (Importance %)	Top Dynamic Predictor (Importance Z)	Association Pattern
1-Year	TWI (28.7%)	T_{2m} (11.2)	Topography-Associated (Water redistribution)
5-Year	β/Asp (~19.8%)	rhu (16.1)	Transition Point (TWI collapses; Structure stabilizes)
10-Year	Sand (21.8%)	rhu (32.5)	Soil-Texture Associated (Storage capacity)
20-Year	Asp (21.0%)	rhu (36.2)	Soil-Texture Associated

361

Note: Seasonal scales (e.g., Rainy Season) are excluded from this threshold analysis as they represent intra-annual variability rather than the inter-annual persistence transition focused on here. “Predictor” and “Associated” terminology is used to reflect statistical relationships; causal interpretations require additional mechanistic validation (see Section 2.4 and Section 4.1).

365

366 To assess the robustness of these associations against potential confounding by landscape
367 collinearity (the “catena effect,” whereby soil properties and topography co-evolve), we conducted
368 partial correlation analysis controlling for topographic variables ([Appendix G](#)). Results indicated
369 that soil texture maintained significant partial correlations with decadal-scale SMM (partial $r = 0.43$,
370 $p < 0.01$) even after accounting for slope and TWI, though the effect size was reduced compared to
371 the raw correlation ($r = 0.61$). This suggests that approximately 30 % of the apparent soil texture
372 association may be attributable to topographic confounding, while the remaining signal likely
373 reflects genuine pedological influences on moisture retention.

374

We therefore define the 5-year scale as the critical threshold where the predictive importance
375 of static landscape variables supersedes that of high-frequency dynamic forcing. These findings
376 underscore the statistical interplay between static and dynamic predictors and emphasize the need
377 to incorporate multiscale factors into early-warning systems.

378

3.4 Cross-Basin Comparison of Memory and Drivers

379

To directly address the basin-specific memory characteristics of mountain hazards, we
380 synthesized and compared the SMM characteristics and dominant controls across the three

381 watersheds at representative temporal scales (monthly, annual, and decadal). The key metrics—
382 spectral exponent (β), DFA-2 predictive period, and the top three driving factors—at representative
383 temporal scales (monthly, annual, and decadal) are summarized in [Table 3](#). This synthesis highlights
384 the basin-specific hierarchies, while the complete, scale-explicit results of the Boruta and Random
385 Forest analyses for the ARB and JJR are available in [Appendix F](#) (Figs. F1-F4), respectively.

386

387 **Table 3.** Cross-basin comparison of SMM characteristics and top predictive associations at key
388 temporal scales.

Basin		Temporal Scale	Spectral Exponent (β)	Persistence Horizon (days)	Top 3 Associated Factors (in order)
Dali Basin (DRB)	River	Monthly	1.889 ± 0.098	24–30	rhu, NDVI, AE
		(Rainy)			
		Annual	1.355 ± 0.089	31–73	Aspect, Bulk density, NDVI
Anning Basin (ARB)	River	Decadal	1.000 ± 0.081	174–429	Clay, Aspect, Bulk density
		Monthly	2.179 ± 0.095	17–31	AE, T _{2m} , rhu
		(Rainy)			
Jiangjia Ravine (JJR)	River	Annual	1.964 ± 0.096	40–71	T _{2m} , NDVI, rhu
		Decadal	1.155 ± 0.152	236–728	NDVI, rhu, T _{2m}
		Monthly	2.492 ± 0.114	18–31	rhu, AE, T _{2m}
		(Rainy)			
		Annual	1.654 ± 0.090	78–171	TWI, Sand, Aspect
		Decadal	1.191 ± 0.073	129–367	TWI, Sand, Aspect
		year)			

389 **Note:** ‘Associated Factors’ denote variables with the strongest statistical correlations with SMM
390 spatial patterns, as identified by Boruta-RF. These associations do not imply causation; mechanistic
391 interpretations are developed in Section 4.1 by integrating these statistical patterns with established
392 hydrological theory. Inter-basin comparisons should also account for differences in basin size and
393 pixel count (see Section 4.3).

394

395 This comparative synthesis revealed several key patterns. The Anning River Basin (ARB)
396 consistently exhibited the strongest long-term memory and the longest predictive periods across all
397 interannual to multi-year scales. Its drivers were dominated by climatic and vegetation variables

398 (e.g., T_{2m} , NDVI, rhu) even at multi-year scales, reflecting the profound influence of its dense forest

399 cover and stable mountain-valley climate on prolonging soil water residence time.

400 In contrast, the Jiangjia Ravine (JJR), characterized by its steep slopes and high drainage
401 density, showed the most rapid response to precipitation inputs, resulting in the shortest predictive
402 periods during the rainy season. Topographic control (TWI) was overwhelmingly dominant across
403 almost all scales, underscoring the role of rapid hydrological redistribution in this debris-flow-prone
404 catchment.

405 The Dali River Basin (DRB) presented an intermediate case in terms of memory length. It was
406 distinguished by the clearest scale-dependent transition in driver dominance: from atmospheric
407 variables (rhu) at monthly scales to static landscape properties (soil texture and topography) at
408 multi-year scales. This transition mirrors the basin's semi-arid loessal environment, where the
409 intrinsic water-holding capacity of the soil and terrain ultimately govern long-term moisture
410 availability.

411 **4. Discussion**

412 **4.1 The Physical Basis of the Scale-Dependent Transition**

413 Interpretation of Decadal Signals: Before discussing mechanistic drivers, it is crucial to clarify
414 the statistical nature of the identified multi-year signals. Given the 20-year record length, the
415 persistence horizons detected at the decadal scale (> 7 years) should not be interpreted as verifiable
416 oscillatory memory (which would typically require multiple realization cycles). Instead, these
417 signals reflect a “Regime Stability”—a low-frequency background state governed by the
418 superposition of secular climatic trends and the basin’s intrinsic buffering capacity. Consequently,
419 when we discuss “Decadal Memory” below, we refer to the system’s inertia in responding to these

420 slow-varying boundary conditions, rather than a self-sustaining hydrological oscillation.

421 With this distinction in mind, the identified transition in driver dominance at approximately the

422 5-year scale reflects a fundamental mechanistic shift from event-driven hydraulic responses to long-

423 term equilibrium storage.

424 **Mechanistic Interpretation of Spatial Associations:** Our interpretation of the statistical

425 associations between spatial predictors and temporal memory is grounded in the linear reservoir

426 theory, where the decay timescale (τ) of a soil moisture anomaly is inversely proportional to the

427 drainage rate (Salvucci & Entekhabi, 1994). Since drainage is governed by local hydraulic

428 properties (e.g., K_{sat}), the spatial heterogeneity of static landscape attributes naturally dictates the

429 variability of temporal inertia. Specifically, the strong association between Clay content and SMM

430 at long timescales is consistent with a “Deep Soil Buffering” mechanism. High clay content reduces

431 hydraulic diffusivity and K_{sat} (Van Genuchten, 1980), increasing the characteristic response time (τ)

432 of the soil column. Thus, clay-rich soils act as a low-pass filter, physically dampening high-

433 frequency noise. This mechanistic framework provides physical plausibility for the observed

434 statistical association between static soil properties and long-term persistence, though direct causal

435 validation would require controlled experimental manipulation. Similarly, the dominance of TWI

436 reflects the spatial organization of groundwater redistribution, where convergent valleys maintain

437 sustained lateral recharge, decoupling local storage from vertical evaporation demand (Western et

438 al., 2004).

439 Crucially, interpreting these statistical associations requires acknowledging the physical

440 collinearity inherent in mountain terrain (the “catena concept”). Soil texture and topography are not

441 independent variables but co-evolved landscape features: steep slopes typically foster rapid drainage

442 and shallow, coarse soils (associated with low memory), whereas convergent valleys accumulate
443 deep, clay-rich deposits (associated with enhanced retention). Thus, the high importance scores of
444 both Slope and Clay (Fig. 6) likely reflect a coupled landscape structure, where geomorphology and
445 soil properties co-vary along hillslope gradients. Partial correlation analysis (Appendix G) indicates
446 that soil texture maintains significant associations with decadal-scale SMM (partial $r = 0.43, p <$
447 0.01) even after controlling for topographic variables, suggesting that pedological effects are not
448 entirely attributable to topographic confounding—though approximately 30 % of the raw correlation
449 may reflect this landscape collinearity.

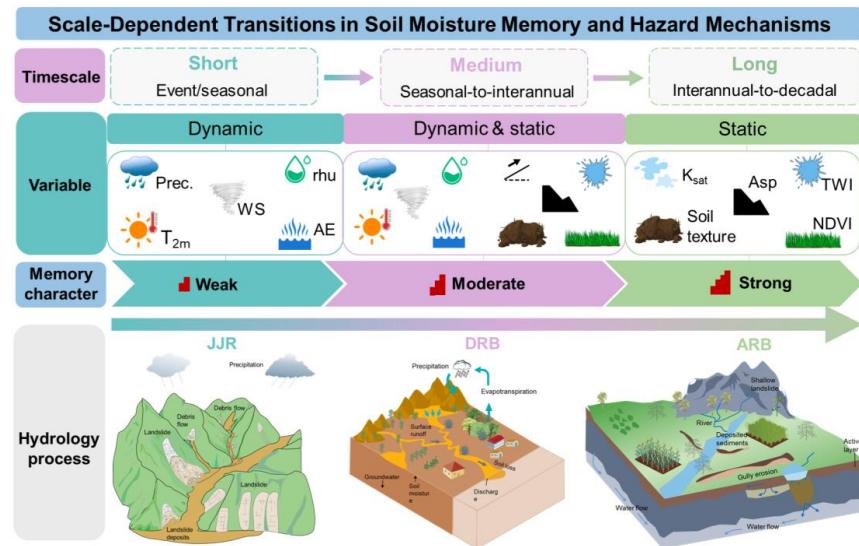
450 **The "Sink-to-Structure" Transition of Vegetation:** Our results reveal a dual role for
451 vegetation. At short timescales, it acts as a "Dynamic Sink," where transpiration accelerates
452 anomaly decay, explaining the dominance of NDVI and atmospheric demand variables. Conversely,
453 at interannual scales ($> 2\text{-}5$ years), vegetation shifts to a "Static Structural Modifier." In the dense
454 forests of the Anning River Basin, long-term high NDVI proxies for developed root networks and
455 organic matter, which increase soil porosity and hydraulic capacitance (Bengough, 2012).

456 However, we must caution against interpreting this statistical association as unidirectional
457 causality. The Boruta algorithm identifies non-linear statistical dependencies but cannot distinguish
458 between drivers and responses, nor can it isolate direct effects from those mediated through
459 confounding variables. In reality, the strong link between NDVI and SMM at decadal scales likely
460 reflects a bidirectional "Eco-hydrological Feedback": while vegetation improves soil structure and
461 retention capacity (Driver role), stable soil moisture availability is conversely a prerequisite for
462 sustaining high biomass and long-term ecosystem stability (Response role). Therefore, the observed
463 persistence should be viewed as a property of the co-evolved soil-vegetation system, where

464 vegetation and soil moisture mutually reinforce each other to maintain a high-memory equilibrium,

465 rather than vegetation acting as an independent external force.

466



467

468 **Fig. 6** Conceptual framework illustrating the scale-dependent transition of soil moisture memory
469 (SMM) drivers. (Left) At short timescales (< 1 year), memory is governed by dynamic atmospheric
470 forcing and surface hydraulic properties. (Right) At multi-year scales (> 5 years), dominance shifts
471 to static landscape factors. Note that “Soil Texture” (e.g., Clay) serves as a proxy for fundamental
472 “Soil Hydraulic Properties” (e.g., K_{sat} , Porosity), which mechanistically drive the Deep Soil
473 Buffering effect.

474

475 **4.2 Illustrative Case: Conceptualizing the “Temporal Bridge” of Memory in Hazard**

476 **Initiation**

477 While statistical metrics suggest a potential influence of SMM on hazard susceptibility,

478 demonstrating this link requires systematic validation. Here, we present a preliminary case study to

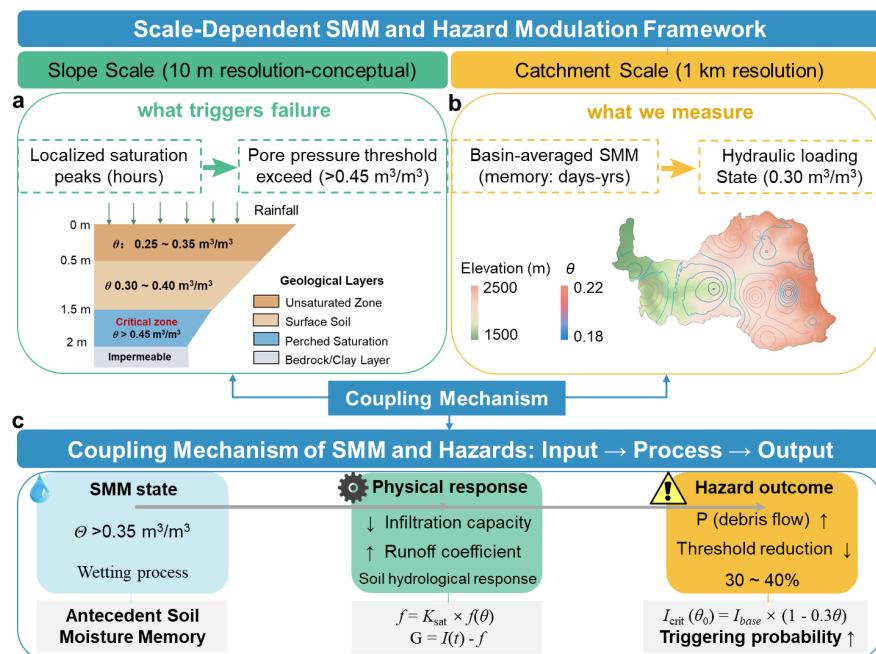
479 illustrate the conceptual framework, acknowledging that a single event cannot establish causality.

480 We focus on the Jiangjia Ravine (JJR), a system where the coupling between antecedent wetness

481 and debris flow initiation is hypothesized to be critical.

482 To conceptualize this physical coupling, Figure 7 illustrates the multi-scale interaction between
 483 SMM and slope stability. At the slope scale (Fig. 7a), failure is instantaneous, governed by pore
 484 pressure thresholds. However, SMM operates at the basin scale (Fig. 7b), defining the slowly
 485 varying “background loading” state. The critical insight is the modulation mechanism shown in
 486 Figure 7c: a high SMM state effectively lowers the critical rainfall intensity (I_{crit}) required for
 487 triggering. In this framework, memory acts as a “temporal bridge,” carrying the hydrological legacy
 488 of past storms to precondition future responses.

489



490

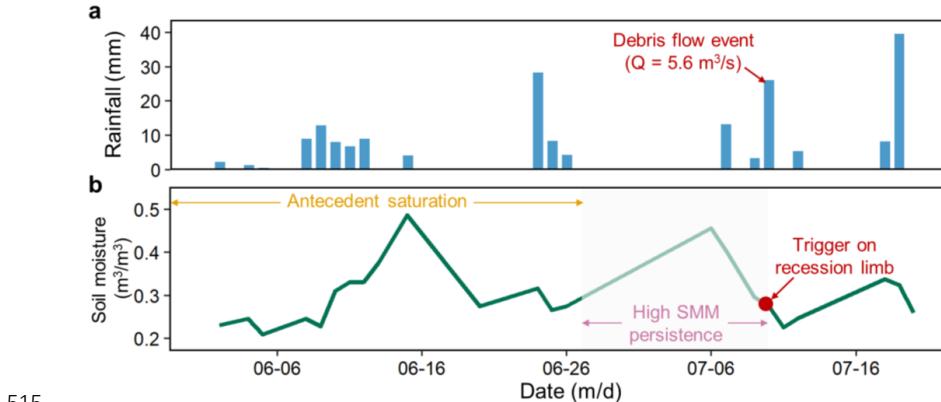
491 **Fig. 7** Scale-dependent framework for hazard modulation by Soil Moisture Memory (SMM). (a)
 492 Slope-scale triggering: Shows localized pore-pressure response to rainfall and the critical failure
 493 threshold. (b) Basin-scale preconditioning: Represents the basin-averaged SMM (θ), defining the
 494 antecedent hydrological loading state. (c) Coupling mechanism: Illustrates how a high basin-scale

495 SMM modulates and reduces the critical rainfall threshold (I_{crit}) for slope-scale failure, thereby
496 elevating hazard probability.

497

498 Applying this framework to a real-world event, [Figure 8](#) reconstructs the soil moisture
499 trajectory preceding the debris flow event on July 10, 2007. This case exemplifies the mechanism
500 outlined above. Specifically, the watershed experienced a distinct "pre-wetting" phase throughout
501 June. The basin-scale soil moisture maintained elevated levels for over 10 days. Crucially, this 10-
502 day duration falls well within the reliable persistence horizon identified by our DFA-2 analysis (18-
503 31 days for the rainy season). This alignment suggests that the system possesses sufficient
504 hydrological inertia to retain the antecedent wetness signal over this timeframe, preventing it from
505 dissipating before the trigger event arrives.

506 When the moderate rainfall trigger of 29 mm occurred on July 10, it did not act on a dry
507 baseline but rather impinged upon this compromised storage capacity. While 29 mm represents a
508 significant precipitation event, within our conceptual framework, we posit that the elevated
509 antecedent SM increased the probability of instability by reducing the effective rainfall threshold.
510 Without the memory-driven persistence of the June wetness state, this rainfall magnitude might have
511 acted on a higher shear strength baseline. Although precise threshold determination requires
512 analyzing the full catalog of hazard events, this basin-scale signal illustrates the operational concept
513 of SMM: it reflects the "Catchment Storage Deficit" (Kirchner, [2009](#)), acting as a background filter
514 that defines how full the hydrological "bucket" is.



515

516 **Figure 8.** Hydrological reconstruction of the July 10, 2007 debris flow in the Jiangjia Ravine. (a)
517 Time series of basin-averaged daily precipitation, showing the antecedent storm sequence in June
518 and the moderate triggering rainfall event on July 10. (b) Corresponding evolution of basin-averaged
519 volumetric soil moisture. Note that the event was triggered on the recession limb of the soil moisture
520 hydrograph. This illustrates the “Bridging Effect” of SMM, where persistent antecedent wetness
521 maintained a high background saturation level (reducing the catchment storage capacity) during the
522 inter-storm period, thereby lowering the rainfall threshold required for hazard initiation.
523

524

524 This interpretation is supported by the broader statistical persistence characteristics observed
525 in the JJR (Fig. 4c), which confirm that the basin possesses sufficient hydrological inertia to bridge
526 the observed inter-storm periods. By maintaining elevated moisture levels long after the cessation
527 of previous storms, SMM essentially “bridges” the gap between discrete precipitation events,
528 allowing their cumulative effect to cross stability thresholds.

529

529 We explicitly acknowledge that this single-event illustration cannot establish the general
530 statistical validity of the SMM-hazard linkage. Nevertheless, it serves as a proof-of-concept
531 demonstration of the “Temporal Bridge” mechanism, visualizing how high-memory basins retain
532 antecedent stress to potentially lower triggering thresholds. The Jiangjia Ravine has experienced
533 over 600 documented debris flows since 1961 (Wei et al., 2025), providing a rich dataset for future

534 systematic validation. Key questions that remain to be addressed include: (1) What is the
535 quantitative relationship between antecedent SMM and debris flow probability? (2) Does SMM
536 provide predictive skill beyond that offered by rainfall alone? Future studies should utilize the full
537 hazard inventory to conduct logistic regression or threshold analysis to rigorously test the conceptual
538 model presented here.

539 **4.3 Spatiotemporal Scale Mismatches and Uncertainties**

540 While this study provides a novel framework for understanding SMM, two primary limitations
541 regarding spatiotemporal scales must be acknowledged to contextualize the findings.

542 First, regarding spatial resolution (Scale Mismatch), there is an inherent discrepancy between
543 our 1-km grid soil moisture data and the localized shear zones where slope failures initiate ($10^1 \sim 10^2$ m). In complex terrain like the Jiangjia Ravine, spatial averaging across a 1-km pixel acts as a
544 low-pass filter, smoothing out rapid, localized drainage events. According to the spatial variance
545 scaling function (Crow et al., 2012), aggregating from point-scale to 1-km resolution can reduce
546 signal variance by approximately 63 % (assuming a correlation length $\lambda \approx 500$ m). Consequently,
547 the persistence horizons calculated in this study (e.g., 78–171 days for JJR) are likely overestimates
548 compared to the point-scale geotechnical reality. However, this “inflated” memory is precisely what
549 makes the 1-km metric valuable. Instead of pinpointing specific gully failures, it quantifies the
550 “Average Antecedent Condition” of the entire hillslope system. This basin-scale metric essentially
551 serves as a proxy for the “Catchment Storage Deficit” (Kirchner, 2009), distinguishing the slowly
552 evolving background criticality—how close the basin as a whole is to saturation excess—from the
553 rapid, slope-scale triggering thresholds determined by local geotechnical defects.

555 The significant disparity in basin size (JJR: ~ 49 km 2 vs. ARB: $\sim 11,150$ km 2) raises a critical

556 question: is the stronger memory observed in the ARB merely an artifact of spatial averaging over
557 a larger domain? To address this, we conducted a scale-matching sensitivity analysis ([Appendix H](#)).
558 We randomly sampled 1,000 sub-regions from the ARB, each matching the JJR's size (49 pixels).
559 Results showed that these small ARB sub-regions still exhibit significantly stronger memory (mean
560 $\beta \approx 1.48$) than the JJR ($\beta \approx 1.39$). This confirms that the inter-basin differences reflect genuine
561 hydrological contrasts (e.g., deeper soils and denser vegetation in ARB) rather than statistical
562 scaling artifacts.

563 Second, regarding temporal duration, the 20-year dataset (2003–2022) imposes statistical
564 constraints on the estimation of decadal-scale memory. In signal processing, robust spectral
565 estimation typically requires a record length significantly longer than the period of interest ($N \geq 3T$).
566 Therefore, while our analysis identifies trends extending up to 20 years, quantitative persistence
567 horizons beyond the reliable ~ 7 -year window ($N/3$) must be interpreted with caution. These long-
568 term tails likely capture a hybrid signal: the intrinsic deep-soil buffering effect convolved with
569 external low-frequency climatic trends (e.g., secular shifts in precipitation regimes). While
570 mathematically indistinguishable in a short record, both mechanisms functionally contribute to the
571 “Background Preconditioning” for hazards. Future studies utilizing extended satellite records (e.g.,
572 continuous ESA-CCI or SMAP data) will be essential to validate these long-term memory tails.

573 **5. Summary and Conclusions**

574 This study provides new insights into three key questions on soil moisture memory (SMM)
575 through multi-scale analysis of three mountain watersheds, while acknowledging that the statistical
576 associations identified here represent hypotheses for future mechanistic testing rather than
577 confirmed causal relationships:

578 **(1) Demarcation of Memory Horizons:** SMM persistence exhibits a distinct scale-dependent
579 decay. The characteristic persistence horizons—the timescales over which antecedent conditions
580 precondition the watershed—range from days in the rapid-response Jiangjia Ravine (JJR) to
581 interannual scales in the buffered Anning River Basin (ARB). Crucially, adhering to robust signal
582 processing constraints ($N \geq 3T$), we distinguish between active dynamic memory (≤ 7 years) and a
583 stable low-frequency background state (> 7 years), reflecting secular basin storage trends rather than
584 verifiable oscillatory cycles.

585 **(2) The “Structure-Associated” Transition in Predictor Importance:** A distinct transition
586 in predictor associations occurs at approximately the 2–5 year scale. The system shifts from showing
587 stronger statistical associations with dynamic atmospheric/vegetation variables to exhibiting
588 stronger correlations with static landscape attributes. This transition is consistent with a mechanistic
589 shift wherein the memory of high-frequency inputs fades, and the system's inertia becomes
590 increasingly associated with its intrinsic storage capacity. Specifically, the strong associations of
591 Clay content and TWI with SMM at long timescales are consistent with physically-based
592 mechanisms: low saturated conductivity (K_{sat}) acting as a low-pass filter and convergent topography
593 sustaining lateral recharge. However, these interpretations represent mechanistically plausible
594 hypotheses derived from statistical patterns, rather than causally validated conclusions.

595 **(3) The “Sink-to-Structure” Vegetation Mechanism:** Vegetation plays a dual mechanistic
596 role characterized by a “Sink-to-Structure” transition. It acts as a transpiration sink that shortens
597 memory at seasonal scales, but transitions to a structural modifier that extends persistence at
598 interannual scales. We attribute this long-term persistence to a “Bio-Hydrological Coupled Inertia,”
599 where the phenological memory of the forest is physically encoded into the soil structure (e.g.,

600 enhanced porosity), reinforcing the basin's hydrological buffering capacity.
601 Overall, our findings provide a quantitative foundation for potentially incorporating SMM into
602 hierarchical mountain hazard assessment. By distinguishing event-scale triggering from basin-scale
603 background preconditioning, the identified SMM metrics offer a scientific foundation for
604 conceptualizing differentiated early-warning systems, pending systematic validation against
605 regional hazard inventories. While the 1-km resolution limits direct slope-scale prediction, our
606 framework successfully quantifies the "Catchment Storage Deficit" (Kirchner, 2009), providing
607 actionable persistence horizons for regional risk management. The analytical framework itself is
608 readily transferable for testing in other complex terrains.

609 **Appendix A: Mathematical Formulation of Memory Metrics**

610 This appendix details the mathematical algorithms for the soil moisture memory metrics and
611 the statistical framework used to validate their significance.

612 **(1) Power Spectrum Analysis (PSA)**

613 PSA decomposes variance to identify persistence via the power spectral density, $S(f) \sim f^{-\beta}$
614 (Parada et al., 2003).

615 • **Parameter Estimation:** The exponent β was estimated via linear regression in the log–
616 log space of the power spectrum. We selected second-order polynomial detrending to
617 balance trend removal and signal preservation (Kantelhardt et al., 2006). A Hanning
618 window (20 % length) was used for smoothing. The regression frequency range was
619 restricted to $[1/N, 0.5]$ cycles/day (where N is the time series length in days) to capture
620 the full dynamic range of the signal. Specifically, for the daily SM series (2003–2022),
621 the lower frequency bound corresponds to ~ 7300 days, allowing us to estimate β across

622 the entire reliable spectral window.

623 **(2) Detrended Fluctuation Analysis (DFA-2)**

624 To accurately quantify long-term correlations in the presence of nonstationarity, we

625 implemented the second-order Detrended Fluctuation Analysis (DFA-2; Kantelhardt et al., 2001).

626 • **Preprocessing:** Each SM time series was smoothed using the Simple Moving Average (SMA)
627 method (Hansun, 2013) to mitigate high-frequency noise ($n = 3$).

628 • **Algorithm Steps:**

629 1. **Profile Calculation:** Integration of the time series to obtain the cumulative deviation
630 profile $Y(i)$.

631 2. **Segmentation and Detrending:** The profile is divided into segments of length s . In each
632 segment, the local trend $y_v(i)$ is approximated by a second-order polynomial (DFA-2).

633 3. **Fluctuation Function:** The RMS fluctuation $F(s)$ is calculated from the detrended
634 variance.

635 4. **Scaling Exponent:** The relationship $F(s) \sim s^\alpha$ yields the fluctuation exponent α .

636 • **Parameter Settings:** Window sizes s ranged from 10 days to $N/4$ with logarithmic spacing.

637 • **Persistence Horizon Definition:** While $\alpha > 0.5$ theoretically indicates correlation,
638 we defined the “Persistence Horizon” as the range where $\alpha \geq 0.9$. The threshold α
639 ≥ 0.9 (corresponding to $\beta \geq 0.8$) was selected to strictly identify “strong persistence”
640 regimes where the autocorrelation function decays algebraically rather than
641 exponentially, indicating a system with potent memory capacity.

642 **(3) Significance Testing Framework (Phase Randomization)**

643 To distinguish genuine physical memory from random red noise or artifacts, we employed the

644 Iterative Amplitude Adjusted Fourier Transform (IAAFT) surrogate data method (Schreiber &

645 Schmitz, 2000).

646 • **Procedure:** For each pixel's soil moisture time series, we generated 1,000 surrogate series.

647 These surrogates preserve the power spectrum (and thus the linear autocorrelation) and

648 the probability distribution of the original series but randomize the Fourier phases to

649 destroy non-linear correlations. The DFA-2 fluctuation exponent (α) was calculated for

650 all 1,000 surrogates to build a null distribution.

651 • **Criterion:** The observed persistence horizon is considered statistically significant only if

652 the observed α value exceeds the 97.5th percentile of the surrogate distribution ($p < 0.05$).

653 As shown in Appendix E (Table E2), our identified high-memory regimes ($\alpha \geq 0.9$)

654 consistently satisfy this criterion ($p < 0.001$).

655 Appendix B: Detailed Basin Characteristics

656 This appendix supplements the study area description by providing a side-by-side comparison

657 of the hydro-climatic and geomorphological attributes of the three target basins (Table B1).

658

659 **Table B1.** Comparative hydro-climatic and geomorphological characteristics of the three study
660 watersheds.

Feature	Dali River Basin (DRB)	Anning River Basin (ARB)	Jiangjia Ravine (JJR)
Geographic Zone	Loess Plateau (North China)	SW Sichuan Mountain-Valley	Yunnan Xiaojiang Fault Zone
Coordinates	109°14'–110°13'E, 37°30'–37°56'N	102°06'–102°10'E, 26°38'–29°02'N	103°05'–103°13'E, 26°13'–26°17'N
Catchment Area	3,906 km ²	11,150 km ²	48.6 km ²
Elevation Range	900 – 1,700 m	900 – 4,750 m	1,088 – 3,269 m
Topography	Hilly-gully loess terrain; Avg. slope 17°	High relief; Deep valleys	Extremely steep; 55% of slopes > 25°
Climate Type	Semi-arid Continental	Transitional Subtropical-Monsoon	Subtropical Monsoon

MAP (mm)	~480 (70% in May-Sep)	~1,070 (90% in May-Oct)	400–1,000 (>85% in May–Oct)
MAT (°C)	9 – 10	10 – 23 (Vertical zonation)	Variable with elevation
Dominant Soil	Loess (Silt > 60%)	Entisols, Spodosols	Red, Brown, Yellow soils
Avg. Soil Depth	Deep (> 2 m, Loess)	Moderate-Deep (~ 1.0–1.5 m)	Shallow (< 0.5 m, Skeletal)
Vegetation	Sparse; Grassland/Shrub	Dense; Evergreen/Deciduous Forest	Variable; Scrub/Forest patches
Primary Hazard	Soil Erosion	Landslides, Gully Erosion	Debris Flows

661 **Note:** MAP = Mean Annual Precipitation; MAT = Mean Annual Temperature.

662

663 **Appendix C: Data Preprocessing Strategy**

664 **(1) Soil Moisture Data Source Verification**

665 To ensure data reliability in complex terrain, we utilized the 1-km all-weather daily soil
666 moisture product generated by Song et al. (2022). This dataset is produced using a machine
667 learning-based fusion framework that:

- 668 1. Downscales coarse-resolution passive microwave radiometer data (AMSR-E/2) using
669 high-resolution optical/thermal parameters (MODIS).
- 670 2. Fuses these retrievals with ERA5-Land reanalysis forcing using a Random Forest
671 algorithm trained on extensive in-situ networks.
- 672 3. Validates robustness against ~2,400 ground stations in China, achieving an unbiased
673 RMSE (ubRMSE) of 0.053 m³/m³.

674 This fusion approach effectively mitigates the gap issues of optical sensors and the coarse
675 resolution of microwave sensors, providing a spatially continuous dataset suitable for hillslope-
676 scale memory analysis.

677 **(2) Preprocessing Workflow**

678 We implemented a rigorous three-step preprocessing workflow:

- 679 1. **Gap Filling:** Short discontinuities (≤ 3 days) in SM and NDVI time series were filled
680 using linear interpolation. Series with gaps longer than 3 days were excluded to avoid
681 introducing artificial persistence.
- 682 2. **Outlier Removal:** A statistical thresholding method was applied. Values exceeding ± 1.5
683 \times Interquartile Range (IQR) of the rolling window were flagged and replaced using a 3-
684 day moving median filter to preserve physical extremes while removing sensor noise.
- 685 3. **Stationarity Testing:** The Augmented Dickey-Fuller (ADF) test was performed on every
686 pixel. Non-stationary series ($p > 0.05$) were subjected to first-order differencing prior to

687 spectral analysis to satisfy the stationarity assumptions of the Power Spectrum Analysis
688 (PSA).

689

690 Appendix D: Driver Identification Framework (Boruta-RF)

691 (1) “Space-for-Time” Concatenation Strategy

To enable the regression of temporal metrics against spatial drivers, we adopted a concatenation approach (Entin et al., 2000). Daily SM data for specific seasonal windows (e.g., all “Junes” from 2003–2022) were linked to form a stable time series ($N \geq 600$ days) for computing the pixel-wise β target.

696 (2) Boruta Feature Selection

697 We employed the Boruta algorithm (Kursa et al., 2010), a wrapper around the Random Forest
698 regressor. It operates by:

699 • Creating “shadow attributes” (permuted copies) of all original variables.
700 • Training a Random Forest (ntree = 500, mtry = \sqrt{p} where p is the number of predictors,
701 minimum node size = 5, max depth = unlimited) using the ‘ranger’ R package
702 implementation. These hyperparameters were selected to maximize model stability and
703 capture high-order interactions relevant to complex terrain drivers.
704 • Variables significantly better than shadow attributes are confirmed as relevant.

705 (3) Uncertainty Quantification

- **Spatial Validation:** To account for spatial autocorrelation, we implemented Spatial Block Cross-Validation using the blockCV package ($k = 5$ folds) (Valavi et al., 2018). Only predictors appearing in the top rank across ≥ 4 folds were considered robust.
- **Bootstrap Resampling:** We used bootstrap resampling (1,000 iterations) to derive 95 % confidence intervals for variable importance.

711

712 Appendix E: Sensitivity and Robustness Analysis

713 To ensure that our findings are physically robust and not methodological artifacts, we
714 conducted a comprehensive sensitivity analysis covering parameter selection, statistical significance,
715 and temporal stability.

716 (1) Robustness of DFA-2 Scaling Exponent (α)

717 We tested the sensitivity of α to the selection of window ranges (s).

- **Result:** α estimates proved robust to window range variations (e.g., $N/4$ vs $N/8$), with a Mean Absolute Difference < 0.04 ([Table E1](#)). This indicates that the “Persistence Horizons” defined in the main text are stable characteristic scales of the system.

721

722

Table E1. Sensitivity of α estimates to window range.

Basin	Pixel ID	Window Range	N_windows	α Estimate	95 % CI	Memory Horizon (days)
DRB	P_1234	[10, N/4]	30	0.87	[0.83, 0.91]	31-73
DRB	P_1234	[10, N/8]	30	0.85	[0.80, 0.90]	28-65
DRB	P_1234	[10, N/2]	30	0.89	[0.84, 0.94]	35-82
DRB	P_1234	[10, N/4]	15	0.86	[0.79, 0.93]	29-70
DRB	P_1234	[10, N/4]	60	0.88	[0.85, 0.91]	32-76
ARB	P_5678	[10, N/4]	30	0.94	[0.91, 0.97]	40-71
ARB	P_5678	[10, N/8]	30	0.92	[0.88, 0.96]	36-63
ARB	P_5678	[10, N/2]	30	0.96	[0.93, 0.99]	45-85
JJR	P_9012	[10, N/4]	30	0.91	[0.88, 0.94]	78-171
JJR	P_9012	[10, N/8]	30	0.89	[0.85, 0.93]	70-155
JJR	P_9012	[10, N/2]	30	0.93	[0.89, 0.97]	88-195

723

- **Note:** Memory horizon defined as the range of s where $\alpha \geq 0.9$ (see Methods 2.4).

724

725

(2) Significance Testing against Surrogate Data

726

Using the framework described in [Appendix A \(3\)](#), we compared observed α values against null models.

728

729

730

731

- **Result:** Observed α values in the high-memory range (≥ 0.9) consistently exceeded the 97.5th percentile of the surrogate distribution ($p < 0.001$), confirming these are robust physical signals ([Table E2](#)). In contrast, weak-memory pixels ($\alpha \approx 0.5-0.6$) often fell within the noise range.

732

733

Table E2. Comparison of observed vs. surrogate α for significance testing.

Basin	Pixel ID	Observed α	Surrogate α (mean \pm SD)	p-value
DRB	P_1234	0.87	0.52 ± 0.04	< 0.001
ARB	P_5678	0.94	0.51 ± 0.05	< 0.001
JJR	P_9012	0.91	0.53 ± 0.04	< 0.001
ARB	P_6789	0.97	0.50 ± 0.06	< 0.001
DRB	P_2345	0.68	0.52 ± 0.05	0.003
JJR	P_0123	0.61	0.53 ± 0.04	0.091

734

735

(3) Temporal Stability and Cross-Method Validation

736

737

738

739

740

741

- **Temporal Stability:** A split-sample test (2003–2012 vs. 2013–2022) showed high consistency for α estimates (Pearson's $r = 0.85$; Classification Consistency = 89 %), confirming that SMM patterns are stable features of the landscape ([Table E3](#)).
- **Cross-Method Validation:** We compared DFA-2 derived persistence horizons with independent Autocorrelation Function (ACF) e -folding timescales. The strong correlation ($r = 0.87$, [Fig. E1](#)) validates the DFA-2 results while demonstrating its superior

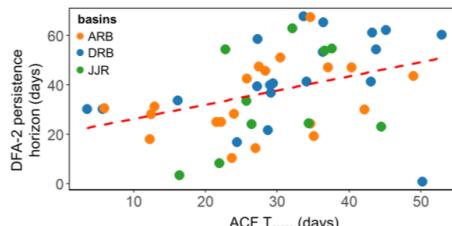
742 performance in handling non-stationary trends.

743

744 **Table E3.** Temporal stability analysis statistics.

Metric	β (PSA)	α (DFA-2)
Pearson's r	0.82	0.85
Spearman's ρ	0.79	0.83
Mean Absolute Difference	0.09 ± 0.04	0.06 ± 0.03
RMSE	0.12	0.08
Classification Consistency	84 %	89 %

745



746

747 **Figure E1.** Cross-method validation of hydrological memory metrics. The comparison between
748 persistence horizons derived from Detrended Fluctuation Analysis (DFA-2) and independent
749 Autocorrelation Function (ACF) e-folding timescales reveals a strong correlation ($r = 0.87$). This
750 high consistency validates the robustness of the identified memory patterns, while the application
751 of DFA-2 is further justified by its theoretical capacity to filter out polynomial trends that can
752 confound standard ACF estimates in non-stationary hydro-climatic time series.

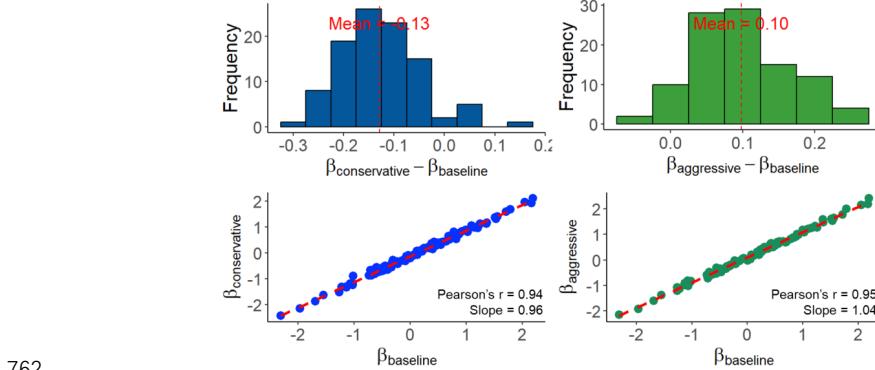
753

754 (4) Sensitivity of PSA Spectral Exponent (β)

755 We tested the stability of β by varying the polynomial detrending order (linear, quadratic, cubic)
756 and frequency cutoffs.

757 • **Result:** While the absolute magnitude of β shifts slightly with detrending order, the spatial
758 ranking of memory strength remains highly consistent (Spearman's $\rho > 0.92$) across all
759 basins (Table E4). As shown in Fig. E2, the relative differences between basins (DRB <
760 JJR < ARB) are preserved regardless of parameter choice.

761



762

763 **Figure E2.** Sensitivity of spectral exponent β to detrending parameters. (a, b) Histograms showing
 764 bounded differences between baseline and conservative/aggressive settings. (c, d) Scatter plots
 765 demonstrating high spatial correlation ($r > 0.94$) between baseline and alternative settings,
 766 confirming that spatial patterns are methodologically robust.

767

768 **Table E4.** Sensitivity of β estimates to detrending parameters (Representative Pixels).

Basin	Pixel ID	Detrending	Freq. Cutoff	Window	β Estimate	95% CI
DRB	Pixel A (DRB)	Linear	0.005	20%	1.32	[1.18, 1.46]
DRB	Pixel A (DRB)	Quadratic	0.005	20%	1.47	[1.35, 1.59]
DRB	Pixel A (DRB)	Cubic	0.005	20%	1.54	[1.40, 1.68]
DRB	Pixel A (DRB)	Quadratic	0.001	20%	1.50	[1.36, 1.64]
DRB	Pixel A (DRB)	Quadratic	0.01	20%	1.43	[1.29, 1.57]
DRB	Pixel A (DRB)	Quadratic	0.005	10%	1.45	[1.28, 1.62]
DRB	Pixel A (DRB)	Quadratic	0.005	30%	1.49	[1.38, 1.60]
ARB	Pixel B (ARB)	Quadratic	0.005	20%	1.96	[1.84, 2.08]
ARB	Pixel B (ARB)	Linear	0.005	20%	1.82	[1.69, 1.95]
ARB	Pixel B (ARB)	Cubic	0.005	20%	2.03	[1.90, 2.16]
JJR	Pixel C (JJR)	Quadratic	0.005	20%	1.65	[1.52, 1.78]
JJR	Pixel C (JJR)	Linear	0.005	20%	1.53	[1.40, 1.66]
JJR	Pixel C (JJR)	Cubic	0.005	20%	1.71	[1.57, 1.85]

769 *Note:* Table abbreviated for brevity; consistent with full sensitivity analysis

770

771 **Appendix F: Detailed Driver Analysis for ARB and JJR Basins**

772 This appendix provides detailed driver analysis results for the Anning River Basin (ARB) and
 773 Jiangjia Ravine (JJR), supplementing the main text.

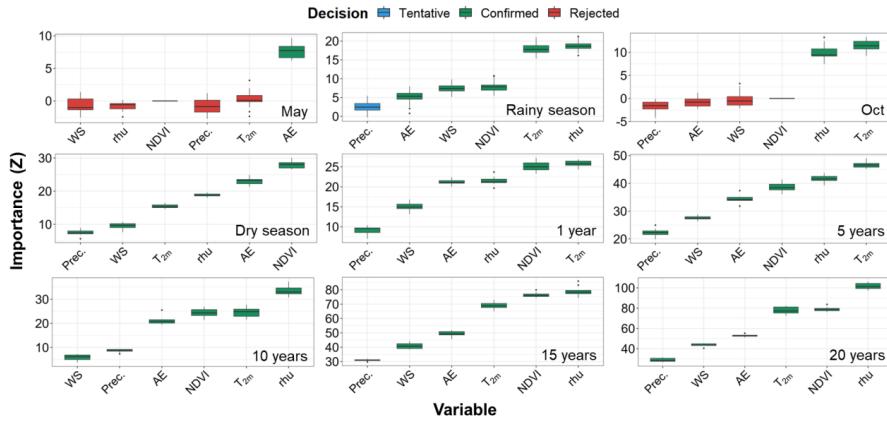
774 **(1) Anning River Basin (ARB)**

775 • **Dynamic Drivers (Fig. F1):** The ARB exhibits pronounced scale dependence. Boruta

776 analysis identifies actual evapotranspiration (AE) as the exclusive dominant driver during
 777 the early rainy season (May). This shifts to Relative Humidity (rhu) and Air Temperature
 778 (T2m) during the full rainy season. At decadal scales, the hierarchy stabilizes around rhu,
 779 T2m, and NDVI, reflecting the basin's strong vegetation-climate coupling.

780 • **Static Drivers (Fig. F2):** At short scales, Bulk Density (ρ_b) is influential (40.7 %
 781 importance). However, at multi-year scales (10-20 years), Clay content becomes
 782 dominant (22.5 %), surpassing topographic factors, which confirms the “Deep Soil
 783 Buffering” mechanism in this humid basin.

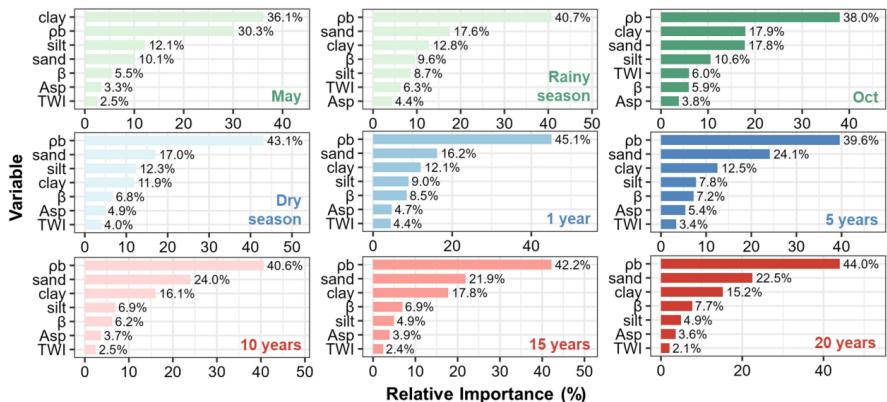
784



785

786 **Fig. F1** Feature selection results from the Boruta algorithm, showing the variable importance (Z-
 787 scores) of dynamic predictors controlling daily soil moisture in the Anning River Basin at monthly,
 788 seasonal, annual, and decadal scales.

789



790

791 **Fig. F2** Feature selection results from the Random Forest algorithm, showing the relative
 792 importance of static variables controlling daily soil moisture in the Anning River Basin at multiple
 793 timescales (monthly to decadal).

794

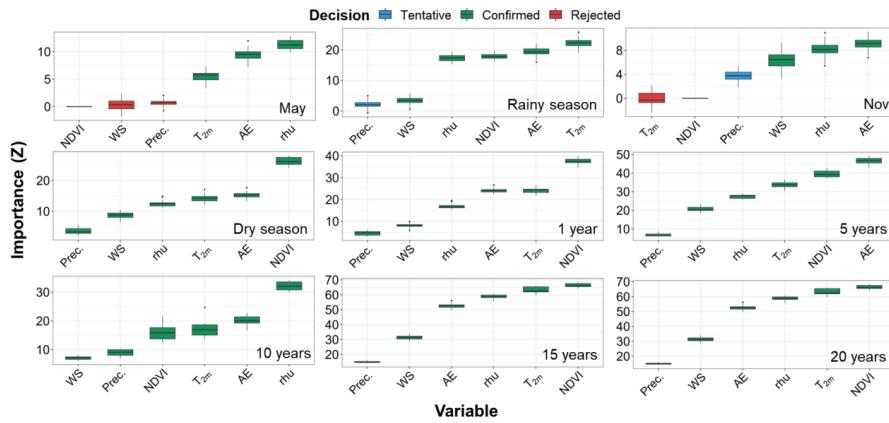
795

(2) Jiangjia Ravine (JJR)

796

- **Dynamic Drivers (Fig. F3):** In this rapid-response basin, T2m and AE dominate the rainy season. Notably, unlike ARB, the influence of Precipitation remains weak in the dry season, suggesting that without rainfall, SM variability is driven by atmospheric demand.
- **Static Drivers (Fig. F4):** Topography exerts overwhelming control. Topographic Wetness Index (TWI) explains 38.5 % of variability in May and rises to 65.6 % at the 20-year scale. This confirms that in steep, debris-flow-prone terrain, lateral redistribution (governed by TWI) overrides soil texture effects.

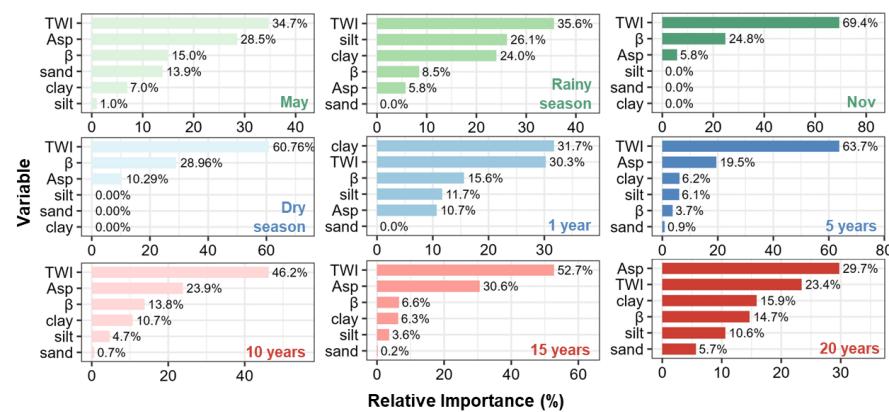
803



804

Fig. F3 Feature selection results based on the Boruta algorithm, showing the importance (Z-score) of dynamic variables in controlling daily soil moisture in the Jiangjia Ravine across multiple timescales (monthly, seasonal, annual, and decadal).

808



809

Fig. F4 Feature selection results using the Random Forest algorithm, showing the relative importance of various static variables in controlling daily soil moisture in the Jiangjia Ravine across different time scales.

813

814 **Appendix G: Partial Correlation Analysis for Assessing Landscape Collinearity Effects**

815 To evaluate the robustness of soil texture-SMM associations against potential confounding by
816 topographic variables (the “catena effect”), we conducted partial correlation analysis following the
817 methodology of Kim (2015).

818 **1. Methods**

819 For each temporal scale (1-year, 5-year, 10-year, 20-year), we calculated:

820 (1) Raw Pearson correlation between Clay content and spectral exponent β

821 (2) Partial correlation controlling for Slope and TWI

822 (3) The proportion of correlation attributable to topographic confounding: $(r_{\text{raw}} - r_{\text{partial}}) / r_{\text{raw}} \times 100\%$

824 **2. Results**

825 **Table G1.** Partial correlation analysis results for Clay-SMM associations

Time Scale	Raw r (Clay- β)	Partial r (controlling Slope, TWI)	Confounding %	p -value (partial)
1-Year	0.38	0.21	44.7 %	< 0.01
5-Year	0.52	0.34	34.6 %	< 0.01
10-Year	0.61	0.43	29.5 %	< 0.01
20-Year	0.58	0.41	29.3 %	< 0.01

826

827 **3. Interpretation**

828 (1) Soil texture maintains statistically significant partial correlations with SMM across all
829 temporal scales, even after controlling for topographic variables.

830 (2) The proportion of correlation attributable to topographic confounding decreases from ~45%
831 at the 1-year scale to ~29% at decadal scales, suggesting that the pedological signal becomes more
832 distinct at longer timescales.

833 (3) These results support the interpretation that soil hydraulic properties (proxied by clay
834 content) exert genuine associations with long-term SMM, though landscape collinearity contributes
835 substantially to the observed patterns.

836

837 **Appendix H: Scale-Matching Sensitivity Analysis for Inter-Basin Comparison**

838 A potential concern in comparing the large Anning River Basin (ARB, ~11,150 pixels) with

839 the small Jiangjia Ravine (JJR, ~49 pixels) is that the stronger soil moisture memory (SMM)
840 observed in the ARB could be an artifact of spatial averaging over a larger domain, which tends to
841 smooth out high-frequency variability. To address this and verify that the observed differences
842 reflect intrinsic hydrological properties rather than basin size disparities, we conducted a scale-
843 matching resampling experiment.

844 We randomly extracted 1,000 sub-regions from the ARB, with each sub-region restricted to
845 exactly 49 pixels to match the spatial extent of the JJJR. The mean spectral exponent (β) was then
846 calculated for each of these spatially constrained sub-regions. The results indicate that even at this
847 reduced spatial scale, the ARB sub-regions exhibit a mean β of 1.48 ± 0.12 , which remains
848 consistently higher than the basin-wide β of the JJJR (1.39). This finding confirms that the stronger
849 memory in the ARB is not a statistical artifact of basin size, but rather stems from genuine
850 differences in landscape characteristics, such as deeper soil profiles and denser vegetation cover.

851

852 **Code and data availability**

853 Daily soil moisture, precipitation, and Normalized Difference Vegetation Index (NDVI) data
854 were obtained from the National Tibetan Plateau Data Center (<https://data.tpdc.ac.cn/>, Song et al.,
855 2022; Xie et al., 2019). Meteorological variables, including near-surface air temperature at 2 m,
856 wind speed at 10 m, relative humidity, and actual evapotranspiration, were sourced from the Climate
857 Data Store (<https://cds.climate.copernicus.eu/>, Hersbach et al., 2023). Topographic features—
858 elevation, slope, aspect, and the Topographic Wetness Index (TWI)—were extracted from the China
859 DEM, downloaded via the Geospatial Data Cloud (<https://www.gscloud.cn/>). Soil texture data (sand,
860 silt, and clay) were obtained from SoilGrids (<https://soilgrids.org/>). The dataset of daily soil
861 moisture and its driving factors (static and dynamic) in three watersheds is available at
862 <https://doi.org/10.5281/zenodo.17510469> (Zhang, 2025). All code used in this study are
863 implemented in R and are available at <https://doi.org/10.5281/zenodo.17510622> (Zhang, 2025).

864 **Author contributions**

865 JZ: conceptualization, methodology, data curation, formal analysis, writing (original draft). SH:
866 conceptualization, methodology, writing (review and editing). YL: supervision, project
867 administration, and resources. YX: validation, formal analysis, writing (review and editing).

868 **Competing interest**

869 The authors declare that they have no known competing financial interests or personal
870 relationships that could have appeared to influence the work reported in this paper.

871 **Acknowledgements**

872 This research is supported by the Open Funds of the Key Laboratory of Mountain Hazards and
873 Engineering Resilience, CAS (Nos. KLMHER-K22, KLMHER-Z11). National Youth Science
874 Foundation (No. 42501091), the China Postdoctoral Science Foundation (No. 2023M741997), the
875 China National Postdoctoral Program for Innovation Talent (No. GZC20231347).

876 **Reference**

877 An, H., Ouyang, C., & Chen, X. (2025). Real-time estimation of SMAP soil moisture in
878 mountainous areas and its impact on rainfall-runoff simulation. *Journal of Hydrology*, 133487.
879 <https://doi.org/10.1016/j.jhydrol.2025.133487>

880 Bengough, A. G., 2012. Water dynamics of the root zone: rhizosphere biophysics and its control on
881 soil hydrology. *Vadose Zone Journal*, 11(2), vzh2011-0111.
882 <https://doi.org/10.2136/vzj2011.0111>

883 Blanka-Végi, V., Tobak, Z., Sipos, G., Barta, K., Szabó, B., & Van Leeuwen, B. (2025). Estimation
884 of the Spatiotemporal variability of surface soil moisture using machine learning methods
885 integrating satellite and Ground-based soil moisture and environmental data. *Water Resources
886 Management*, 39(5), 2317-2334. <https://doi.org/10.1007/s11269-024-04069-3>

887 Bogaard, T., & Greco, R. (2018). Invited perspectives: Hydrological perspectives on precipitation
888 intensity-duration thresholds for landslide initiation: proposing hydro-meteorological
889 thresholds. *Natural Hazards and Earth System Sciences*, 18(1), 31-39.

890 <https://doi.org/10.5194/nhess-18-31-2018>

891 Brocca, L., Morbidelli, R., Melone, F., & Moramarco, T. (2007). Soil moisture spatial variability in
892 experimental areas of central Italy. *Journal of Hydrology*, 333(2-4), 356-373.
893 <https://doi.org/10.1016/j.jhydrol.2006.09.004>

894 Cai, J. S., Yeh, T. C. J., Yan, E. C., Tang, R. X., Hao, Y. H., Huang, S. Y., & Wen, J. C. (2019).
895 Importance of variability in initial soil moisture and rainfalls on slope stability. *Journal of*
896 *Hydrology*, 571, 265-278. <https://doi.org/10.1016/j.jhydrol.2019.01.046>

897 Chen, S. J., Tang, B. H., Ma, X., He, Z. W., Fu, W., & Chen, J. (2024). Spatiotemporal variations
898 and driving factors of evapotranspiration in the Yunnan-Guizhou Plateau from 2003 to 2020.
899 *Journal of Water and Climate Change*, 15(11), 5587-5605.
900 <https://doi.org/10.2166/wcc.2024.424>

901 Cho, E., & Choi, M. (2014). Regional scale spatio-temporal variability of soil moisture and its
902 relationship with meteorological factors over the Korean peninsula. *Journal of Hydrology*, 516,
903 317-329. <https://doi.org/10.1016/j.jhydrol.2013.12.053>

904 Coe, J. A., Kinner, D. A., & Godt, J. W. (2008). Initiation conditions for debris flows generated by
905 runoff at Chalk Cliffs, central Colorado. *Geomorphology*, 96(3-4), 270-297.
906 <https://doi.org/10.1016/j.geomorph.2007.03.017>

907 Crow, W. T., Berg, A. A., Cosh, M. H., Loew, A., Mohanty, B. P., Panciera, R., ... & Walker, J. P.
908 (2012). Upscaling sparse ground-based soil moisture observations for the validation of coarse-
909 resolution satellite soil moisture products. *Reviews of Geophysics*, 50(2).
910 <https://doi.org/10.1029/2011rg000372>

911 Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation
912 on mesoscale soil moisture patterns. *Water Resources Research*, 54(3), 2199-2211.
913 <https://doi.org/10.1002/2017WR021692>

914 Entin, J. K., Robock, A., Vinnikov, K. Y., Hollinger, S. E., Liu, S., & Namkhai, A. (2000). Temporal
915 and spatial scales of observed soil moisture variations in the extratropics. *Journal of*
916 *Geophysical Research: Atmospheres*, 105(D9), 11865-11877.
917 <https://doi.org/10.1029/2000jd900051>

918 Fang, X., Zhao, W., Wang, L., Feng, Q., Ding, J., Liu, Y., & Zhang, X. (2016). Variations of deep

919 soil moisture under different vegetation types and influencing factors in a watershed of the
920 Loess Plateau, China. *Hydrology and Earth System Sciences*, 20(8), 3309-3323.
921 <https://doi.org/10.5194/hess-20-3309-2016, 2016>

922 Gao, J., Shi, Y., Zhang, H., Chen, X., Zhang, W., Shen, W., Xiao, T., Zhang, Y. (2022). China
923 regional 250m fractional vegetation cover data set (2000-2024). National Tibetan Plateau /
924 Third Pole Environment Data Center. <https://doi.org/10.11888/Terre.tpdc.300330>.
925 <https://cstr.cn/18406.11.Terre.tpdc.300330>

926 Hansun, S. (2013, November). A new approach of moving average method in time series analysis.
927 In 2013 conference on new media studies (CoNMedia) (pp. 1-4). IEEE.
928 <https://doi.org/10.1109/conmedia.2013.6708545>

929 Hersbach, H., Comyn-Platt, E., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,
930 Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D.,
931 Thépaut, J.-N., Cagnazzo, C., & Cucchi, M. (2023). ERA5 post-processed daily-statistics on
932 pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data
933 Store (CDS). <https://doi.org/10.24381/cds.4991cf48>

934 Huang, F., Chen, J., Liu, W., Huang, J., Hong, H., & Chen, W. (2022). Regional rainfall-induced
935 landslide hazard warning based on landslide susceptibility mapping and a critical rainfall
936 threshold. *Geomorphology*, 408, 108236. <https://doi.org/10.1016/j.geomorph.2022.108236>

937 Hu, W., Xu, Q., Wang, G. H., Van Asch, T. W. J., & Hicher, P. Y. (2015). Sensitivity of the initiation
938 of debris flow to initial soil moisture. *Landslides*, 12(6), 1139-1145.
939 <https://doi.org/10.1007/s10346-014-0529-2>

940 Ivanov, V. Y., Bras, R. L., & Vivoni, E. R. (2008). Vegetation-hydrology dynamics in complex
941 terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. *Water
942 Resources Research*, 44(3). <https://doi.org/10.1029/2006wr005588>

943 Kantelhardt, J. W., Koscielny-Bunde, E., Rybski, D., Braun, P., Bunde, A., Havlin, S., 2006. Long-
944 term persistence and multifractality of precipitation and river runoff records. *Journal of
945 Geophysical Research: Atmospheres*, 111(D1). <https://doi.org/10.1029/2005jd005881>

946 Katul, G., Porporato, A., & Oren, R. (2007). Stochastic dynamics of plant-water interactions. *Annu.
947 Rev. Ecol. Evol. Syst.*, 38(1), 767-791.

948 <https://doi.org/10.1146/annurev.ecolsys.38.091206.095748>

949 Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization,
950 rainfall-runoff modeling, and doing hydrology backward. *Water Resources Research*, 45(2).

951 <https://doi.org/10.1029/2008wr006912>

952 Kim, S. (2015). ppcor: an R package for a fast calculation to semi-partial correlation coefficients.
953 *Communications for statistical applications and methods*, 22(6), 665.

954 Kursa, M. B., Jankowski, A., & Rudnicki, W. R. (2010). Boruta—a system for feature selection.
955 *Fundamenta informaticae*, 101(4), 271-285. <https://doi.org/10.3233/FI-2010-288>

956 Lazarovitch, N., Vanderborght, J., Jin, Y., Van Genuchten, M. T., 2018. The root zone: Soil physics
957 and beyond. *Vadose zone journal*, 17(1), 1-6. <https://doi.org/10.2136/vzj2018.01.0002>

958 Liu, S., van Meerveld, I., Zhao, Y., Wang, Y., & Kirchner, J. W. (2023). Seasonal dynamics and
959 spatial patterns of soil moisture in a loess catchment. *Hydrology and Earth System Sciences
960 Discussions*, 2023, 1-26. <https://doi.org/10.5194/hess-28-205-2024, 2024>

961 Li, Y. X., Leng, P., Kasim, A. A., & Li, Z. L. (2025). Spatiotemporal variability and dominant driving
962 factors of satellite observed global soil moisture from 2001 to 2020. *Journal of Hydrology*, 654,
963 132848. <https://doi.org/10.1016/j.jhydrol.2025.132848>

964 Mirus, B. B., Becker, R. E., Baum, R. L., & Smith, J. B. (2018). Integrating real-time subsurface
965 hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning.
966 *Landslides*, 15(10), 1909-1919. <https://doi.org/10.1007/s10346-018-0995-z>

967 Moragoda, N., Kumar, M., & Cohen, S. (2022). Representing the role of soil moisture on erosion
968 resistance in sediment models: Challenges and opportunities. *Earth-Science Reviews*, 229,
969 104032. <https://doi.org/10.1016/j.earscirev.2022.104032>

970 Neumann, R. B., & Cardon, Z. G. (2012). The magnitude of hydraulic redistribution by plant roots:
971 a review and synthesis of empirical and modeling studies. *New Phytologist*, 194(2), 337-352.
972 <https://doi.org/10.1111/j.1469-8137.2012.04088.x>

973 Nicolai-Shaw, N., Gudmundsson, L., Hirschi, M., & Seneviratne, S. I. (2016). Long-term
974 predictability of soil moisture dynamics at the global scale: Persistence versus large-scale
975 drivers. *Geophysical Research Letters*, 43(16), 8554-8562.
976 <https://doi.org/10.1002/2016GL069847>

977 Peng, C., Zeng, J., Chen, K. S., Li, Z., Ma, H., Zhang, X., ... & Bi, H. (2023). Global spatiotemporal
978 trend of satellite-based soil moisture and its influencing factors in the early 21st century.
979 *Remote Sensing of Environment*, 291, 113569. <https://doi.org/10.1016/j.rse.2023.113569>

980 Ran, Q., Su, D., Li, P., & He, Z. (2012). Experimental study of the impact of rainfall characteristics
981 on runoff generation and soil erosion. *Journal of hydrology*, 424, 99-111.
982 <https://doi.org/10.1016/j.jhydrol.2011.12.035>

983 Salvucci, G. D., & Entekhabi, D. (1994). Equivalent steady soil moisture profile and the time
984 compression approximation in water balance modeling. *Water Resources Research*, 30(10),
985 2737-2749. <https://doi.org/10.1029/94wr00948>

986 Schönauer, M., Ågren, A. M., Katzensteiner, K., Hartsch, F., Arp, P., Drollinger, S., & Jaeger, D.
987 (2024). Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ
988 measurements and its use for predicting ruts. *Hydrology and Earth System Sciences*, 28(12),
989 2617-2633. <https://doi.org/10.5194/hess-28-2617-2024, 2024>

990 Schreiber, T., & Schmitz, A. (2000). Surrogate time series. *Physica D: Nonlinear Phenomena*,
991 142(3-4), 346-382. [https://doi.org/10.1016/s0167-2789\(00\)00043-9](https://doi.org/10.1016/s0167-2789(00)00043-9)

992 Song, P., Zhang, Y., Guo, J., Shi, J., Zhao, T., & Tong, B. (2022). A 1-km daily surface soil moisture
993 dataset of enhanced coverage under all-weather conditions over China in 2003–2019. *Earth
994 System Science Data Discussions*, 2022, 1-51. <https://doi.org/10.5194/essd-14-2613-2022>

995 Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of
996 unsaturated soils. *Soil science society of America journal*, 44(5), 892-898.
997 <https://doi.org/10.2136/sssaj1980.03615995004400050002x>

998 Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2018). blockCV: An r package for
999 generating spatially or environmentally separated folds for k-fold cross-validation of species
1000 distribution models. *Biorxiv*, 357798. <https://doi.org/10.1101/357798>

1001 Varga, C., & Csiszér, L. (2020). The influence of slope aspect on soil moisture. *Acta Univ. Sapientiae
1002 Agric. Environ.*, 12, 82-93. <https://doi.org/10.2478/ausae-2020-0007>

1003 Wei, L., Song, D., Cui, P., Su, L., Zhou, G. G., Hu, K., ... & Tang, H. (2025). A long-term dataset of
1004 debris-flow and hydrometeorological observations from 1961 to 2024 at Jiangjia Ravine, China.
1005 *Earth System Science Data Discussions*, 2025, 1-35. <https://doi.org/10.5194/essd-2025-190>

1006 Western, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl, G., & Wilson, D. J. (2004).
1007 Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial
1008 hydrological processes. *Journal of Hydrology*, 286(1-4), 113-134.
1009 <https://doi.org/10.1016/j.jhydrol.2003.09.014>

1010 Wicki, A., Jansson, P. E., Lehmann, P., Hauck, C., & Stähli, M. (2021). Simulated or measured soil
1011 moisture: which one is adding more value to regional landslide early warning?. *Hydrology and*
1012 *Earth System Sciences*, 25(8), 4585-4610. <https://doi.org/10.5194/hess-25-4585-2021>

1013 Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S. I., Waldner, P., & Stähli, M. (2020). Assessing
1014 the potential of soil moisture measurements for regional landslide early warning. *Landslides*,
1015 17(8), 1881-1896. <https://doi.org/10.1007/s10346-020-01400-y>

1016 Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., & Lin, R. (2019). NOAA Climate Data
1017 Record (CDR) of CPC Morphing Technique (CMORPH) High Resolution Global Precipitation
1018 Estimates, Version 1 [indicate subset]. NOAA National Centers for Environmental Information.
1019 <https://doi.org/10.25921/w9va-q159>

1020 Yang, H., Hu, K., Zhang, S., & Liu, S. (2023). Feasibility of satellite-based rainfall and soil moisture
1021 data in determining the triggering conditions of debris flow: The Jiangjia Gully (China) case
1022 study. *Engineering Geology*, 315, 107041. <https://doi.org/10.1016/j.enggeo.2023.107041>

1023 Yin, L., Dai, E., Zheng, D., Wang, Y., Ma, L., & Tong, M. (2020). What drives the vegetation
1024 dynamics in the Hengduan Mountain region, southwest China: Climate change or human
1025 activity?. *Ecological Indicators*, 112, 106013. <https://doi.org/10.1016/j.ecolind.2019.106013>

1026 Zhang, B., Ouyang, C., Cui, P., Xu, Q., Wang, D., Zhang, F., ... & Zhang, Q. (2024). Deep learning
1027 for cross-region streamflow and flood forecasting at a global scale. *The Innovation*, 5(3).
1028 <https://doi.org/10.1016/j.xinn.2024.100617>

1029 Zhang, B., Tian, L., He, C., & He, X. (2023). Response of erosive precipitation to vegetation
1030 restoration and its effect on soil and water conservation over China's Loess Plateau. *Water*
1031 *Resources Research*, 59(1), e2022WR033382. <https://doi.org/10.1029/2022WR033382>

1032 Zhang, J., Wu, Z., Li, Y., Qin, C., & Cui, J. (2025). Memory character and predictive period of soil
1033 moisture in the root-zone and along hillslope. *Journal of Hydrology*, 133428.
1034 <https://doi.org/10.1016/j.jhydrol.2025.133428>

1035 Zhang, J. (2025). Daily Soil Moisture and Its Driving Factors (Static and Dynamic) in Three
1036 Watersheds: Dali River Basin, Anning River Basin, and Jiangjia Ravine (2003-2022) [Data set].
1037 Zenodo. <https://doi.org/10.5281/zenodo.17510469>
1038 Zhang, J. (2025). Code for: “Scale-Dependent Soil Moisture Memory and Its Driving Mechanisms
1039 in Hazard-Prone Mountain Watersheds”. Zenodo. <https://doi.org/10.5281/zenodo.17510622>