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11 Abstract: Soil moisture memory (SMM) defines the antecedent wetness states that modulate
12 catchment responses to meteorological triggers, serving as a critical determinant of background
13 hydraulic susceptibility. However, its multi-scale characteristics and environmental drivers remain
14 poorly understood in complex terrain. This study characterizes SMM dynamics across daily-to-
15  interannual scales using daily data (2003 —2022) from three hazard-prone watersheds in
16  southwestern China (Dali River, Anning River, and Jiangjia Ravine). By integrating Power
17 Spectrum Analysis, Detrended Fluctuation Analysis (DFA-2), and a spatial attribution modeling
18  framework, we identify a distinct scale-dependent transition in SMM persistence and its controls.
19  Results revealed that while memory intensity generally weakened with scale, humid catchments
20  exhibited a robust “inherent persistence” regime extending to multi-year scales. Crucially, feature
21 importance analysis uncovered a structural transition at approximately the 5-year scale: atmospheric
22  variables and vegetation dominated short-term variability, whereas soil properties and topography
23 governed the system’s long-term capacity to integrate low-frequency signals. Mechanistically, this

24 marks a shift from event-driven hydraulic responses to background storage trends regulated by deep
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25  soil buffering. These findings provide a basis for distinguishing event-scale hydraulic
26  preconditioning from long-term background susceptibility, offering a conceptual framework for
27  incorporating operational persistence horizons into hierarchical hazard assessment strategies.

28

29  Keywords: Soil moisture memory; Driving Factor; Persistence horizon; Power spectrum analysis;
30 Detrended fluctuation analysis

31

32  1.Introduction

33 Soil moisture memory (SMM) is a critical driver of mountain hazards, including debris flows,
34 landslides, and soil erosion (An et al., 2025; Hu et al., 2015; Moragoda et al., 2022). Mechanistically,
35  elevated soil moisture reduces eftective stress and shear strength by increasing pore water pressure,
36  thereby predisposing slopes to instability. While precipitation acts as the immediate trigger,
37  antecedent soil moisture conditions the landscape’s susceptibility by determining how close the
38 system is to its critical failure thresholds (Bogaard et al., 2018; Cai et al., 2019). Beyond this
39  immediate mechanical role, the persistence of SMM, quantified by its memory length, theoretically
40  defines the timescale over which antecedent signals persist, providing essential information on
41 hydraulic preconditioning for early warning systems (Huang et al., 2022; Wicki et al., 2020).
42  However, translating this theoretical memory into operational forecasts requires further validation
43 against historical hazard events.

44 Empirical evidence from various hazards supports this mechanistic understanding. Specifically,
45  landslide probability increases exponentially when soil moisture (a proxy for pore-water pressure

46  saturation) exceeds a critical threshold of 30 ~ 40 % (Mirus et al., 2018; Wicki et al., 2021). While
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47  these studies define the critical state, quantifying the SMM persistence provides the essential
48  temporal window required to estimate how long antecedent rainfall continues to drive the system
49  toward this saturation threshold (Mirus et al., 2018). For debris flows, antecedent soil moisture
50  conditions determine not only the likelihood of initiation but also the potential runout distance (Coe
51 et al., 2008). Furthermore, under identical rainfall intensity, the soil loss rate can be 3 to 5 times
52  higher under wet antecedent conditions than under dry conditions (Ran et al., 2012). Collectively,
53  this evidence highlights the fundamental importance of quantifying SMM to understand how
54 antecedent conditions modulate hazard initiation thresholds. Nonetheless, a comprehensive, multi-
55  scale characterization of how SMM evolves from monthly to seasonal, annual, and multi-year scales
56 remains limited (Entin et al., 2000; Nicolai-Shaw et al., 2016; Zhang et al., 2025). Unlike immediate
57  meteorological triggers, this multi-scale memory reflects the system’s inertia and defines the
58  baseline hydrological state of the catchment in response to external forcing. However, elucidating
59 its drivers is challenging due to the combined effects of diverse factors—topographic, pedological,
60 meteorological, and vegetation (Brocca et al., 2007; Dong et al., 2018; Schonauer et al., 2024; Varga
61  etal., 2020). Their strong interactions further complicate the disentanglement of individual and joint
62  effects (Peng et al., 2023).

63 Previous studies have explored driving factors of soil moisture variability at discrete temporal
64 scales (Blanka-Végi et al., 2025; Cho et al., 2014; Fang et al., 2016; Kursa et al., 2010), identifying,
65  for instance, wilting point and evapotranspiration as key at the annual scale (Blanka-Végi et al.,
66  2025) or vegetation type at the monthly scale (Fang et al., 2016). However, by focusing on
67  individual scales, these studies have seldom established a systematic hierarchy of the relative

68  importance between static and dynamic factors across continuous temporal scales. This lack of a
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69  unified, scale-explicit framework prevents a mechanistic understanding of SMM persistence and
70  limits the development of hazard assessment models capable of distinguishing background
71  hydraulic loading from immediate event triggering (Li et al., 2025; Zhang et al., 2024).

72 While previous studies have established the existence of soil moisture memory (SMM) and its
73 general scale dependence at global or continental scales (e.g., Entin et al., 2000; Nicolai-Shaw et
74  al, 2016), a critical gap persists in mechanistically linking this multi-scale memory to specific
75  hydrological processes and practical hazard prediction within the complex terrain where these
76  hazards predominantly occur. To bridge this gap, this study leverages a two-decade-long daily soil
77  moisture dataset across three contrasting, hazard-prone watersheds with the following objectives:
78 (1) to quantify the scale-transition threshold and hierarchical drivers of SMM; (2) to establish a
79  quantitative hierarchy of driving factors across temporal scales; and (3) to develop a conceptual
80  framework linking multi-scale SMM to differentiated hazard preconditioning mechanisms. While
81  direct validation against site-specific hazard inventories is beyond our current scope due to the
82  spatial resolution mismatch (1-km pixels vs. slope-scale failures), we synthesize our findings with
83  published hazard-SMM relationships (e.g., Mirus et al., 2018; Wei et al., 2025) to demonstrate the
84  potential for SMM-informed early warning systems. The paper is structured as follows: Section 2
85 describes the study areas, data, and methods. Section 3 presents the results, which are discussed in
86  Section 4. Finally, Section 5 provides the main conclusions.

87 2. Materials and Methods

88 This study investigates soil moisture (SM) dynamics and their drivers across three hydro-
89  climatically and geomorphologically distinct watersheds: the Dali River Basin, Anning River Basin,

90  and Jiangjia Ravine. We incorporated static and dynamic variables—spanning topography, soil
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properties, meteorological conditions, and vegetation indices—from multiple authoritative datasets.

SM temporal memory and persistence horizons were quantified using Power Spectral Analysis (PSA)

and second-order Detrended Fluctuation Analysis (DFA-2), respectively, while the Boruta—Random

Forest algorithm was employed to quantify variable importance across spatial and temporal scales.

The overall research framework is illustrated in Fig. 1.
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Fig. 1 Research framework of this study. The workflow integrates multi-source data processing,
memory quantification, and driver identification. Key pre-processing steps include outlier removal
and stationarity checks (ADF test) to ensure time stability. Soil moisture memory is quantified
using Power Spectrum Analysis (PSA) and Detrended Fluctuation Analysis (DFA-2), followed by
a multi-scale driver analysis using the Boruta algorithm across monthly to decadal aggregation

windows.
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2.1 Study Area

EGUsphere®

We selected three hydro-climatically distinct watersheds in southwestern China to represent a

spectrum of mountain hazard environments (Fig. 2; detailed physiographic characteristics are

provided in Appendix B and Table B1).
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Fig. 2 Location of the study areas: (a) the Dali River Basin (DRB), (b) the Anning River Basin, (c)

the Jiangjia Ravine.

*  Dali River Basin (DRB): Semi-Arid Erosion-Prone System. Located on the Chinese

Loess Plateau (3,906 km?), the DRB features steep loess terrain (avg. slope 17°) and

highly erodible soils (silt > 60 %). The climate is semi-arid continental, with precipitation

highly concentrated in summer storms (> 70 % from May to September), leading to

persistent soil moisture deficits and severe erosion rates (Liu et al., 2020; Zhang et al.,
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2023).

* Anning River Basin (ARB): Complex Mountain-Valley System. Situated in
southwestern Sichuan (11,150 km?), the ARB is characterized by dramatic relief (900—
4,750 m) and vertical climatic zonation. It operates under a humid subtropical-monsoon
climate (~ 1,070 mm rainfall) with dense forest cover (Chen et al., 2024). Consequently,
soil moisture dynamics are strongly regulated by vegetation phenology and the buffering
capacity of deep forest soils (Yin et al., 2020).

e Jiangjia Ravine (JJR): Debris-Flow Dominated Catchment. A small (48.6 km?) but
extremely steep catchment in the Xiaojiang fault zone. Intense monsoon rainfall (> 85 %
in May-Oct) combined with fractured geology drives rapid hydrological response cycles:
rapid saturation during storms followed by quick drainage (Yang et al., 2023). This makes
JIR a classic environment for high-frequency debris flows (Wei et al., 2025).

2.2 Data Sources and Preprocessing

We constructed a dataset comprising 12 static and dynamic covariates (Table 1) alongside daily
soil moisture (SM) data (1-km resolution) for the period 2003-2022.

Soil Moisture Dataset: We utilized the all-weather 1-km daily soil moisture (SM) product
developed by Song et al. (2022) for the period 2003-2022. Unlike raw reanalysis data or coarse
passive microwave retrievals, this dataset employs a machine learning-based spatiotemporal
reconstruction framework to generate seamless high-resolution estimates. Specifically, it
downscales and fuses coarse-resolution passive microwave observations (AMSR-E/2) with high-
resolution optical/thermal land surface parameters (MODIS) and meteorological forcing (ERAS-

Land), using a random forest algorithm trained on extensive ground observations.
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141 Validation and Uncertainty: This product was selected for its capacity to resolve hillslope-
142  scale heterogeneity in complex terrain, a critical requirement for our hazard-focused analysis.
143  Comprehensive validation against approximately 2,400 in-situ stations across China demonstrates
144  robust accuracy, with an average correlation coefficient (R) of 0.89 and an unbiased Root Mean
145  Square Error (ubRMSE) of 0.053 m3/m? (Song et al., 2022). While we acknowledge the inherent
146  uncertainties associated with microwave retrieval in mountainous regions (e.g., geometric distortion
147  and shadowing effects), this dataset represents the state-of-the-art balance between spatial resolution
148  and temporal continuity. Furthermore, since our study focuses on the temporal persistence features
149  (spectral exponents) rather than absolute magnitudes, the potential systematic bias in complex
150  terrain has minimal impact on the derived memory metrics (see Appendix C for further discussion

151  on data reliability and preprocessing).

152
153  Table 1. Static and dynamic covariates used in the final modeling framework and the target variable
154 (soil moisture, SM).

Types  Variable Description Units Source
(abbreviation)
Static Slope (f) Rate of change of elevation at each pixel ° Geospatial
(DEM-derived) Data Cloud
Aspect (Asp) Orientation of the steepest downslope ° (DEM)
(DEM-derived)
Topographic Potential wetness index based on slope -

Wetness Index and upslope contributing area (DEM-

(TWI) derived)

Soil texture Mass fractions of soil particle-size classes  g/kg  Soil Grids
(Sand, Silt, Clay)

Normalized Vegetation greenness from red and NIR - Gao et al.,
Difference reflectance 2022
Vegetation Index
(NDVI)
Dynam Precipitation Daily total precipitation mm Xie etal.,
ic (Prec.) 2019
Surface wind Mean daily wind speed at 10 m height m/s ERAS
speed (WS) (Hersbach
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Relative Ratio of actual to saturated vapor pressure % etal.,
humidity (rhu) 2023)
2m air Daily mean air temperature at 2 m height  °C
temperature
(Tom)
Actual Daily actual evapotranspiration mm/d
evaporation (AE) ay
Target  Soil moisture Volumetric soil water content cm’/c  Songetal.,

(SM) m’ 2022

155

156 Auxiliary static variables (e.g., soil texture, TWI) represent basin physiography, while dynamic

157  variables (e.g., precipitation, NDVI) capture climate-vegetation interactions. All data were

158  resampled to a uniform 1-km grid. Preprocessing included linear interpolation for short gaps (<3

159  days), outlier removal, and stationarity checks using the Augmented Dickey-Fuller test (details in

160  Appendix C).
161 2.3 Quantifying Soil Moisture Memory (PSA and DFA-2)

162 To characterize the multi-scale persistence of soil moisture, we employed two complementary

163  spectral techniques. Crucially, given the 20-year length of our dataset (2003-2022), distinct

164  statistical limitations exist for resolving low-frequency dynamics. Following the standard signal

165  processing constraint which requires the time series length (V) to be significantly longer than the

166  timescale of interest (7) for robust estimation (typically N > 37), we explicitly distinguish between

167  two regimes:

168 1. Reliable Memory Window (7 < 7 years): Timescales where sufficient realizations
169 (approx. N/3) exist to statistically verify dynamic persistence and oscillatory behavior.
170 2. Low-Frequency Background State (7' > 7 years): The lowest frequency components,
171 which are interpreted as basin storage trends or decadal climatic regime shifts, rather than
172 verifiable memory cycles.
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173 First, Power Spectrum Analysis (PSA) was utilized to diagnose the strength of temporal
174  memory in the frequency domain. By estimating the spectral exponent (5), PSA effectively
175  distinguishes memory-driven processes (red noise, > 0) from random meteorological inputs (white
176  noise, f = 0). In this study, S values derived within the Reliable Memory Window (seasonal to ~7
177  years) are used to quantify interannual persistence, whereas values in the Low-Frequency
178  Background (> 7 years) serve only as indicators of the quasi-static mean-state stability.

179 Second, to account for the non-stationarity inherent in long-term hydrological records, we
180  applied the second-order Detrended Fluctuation Analysis (DFA-2). Unlike standard autocorrelation,
181  DFA-2 filters out polynomial trends to reveal intrinsic correlation structures. Cross-validation with
182  the standard Autocorrelation Function (ACF) further confirms the robustness of these DFA-2
183  metrics (see Fig. E1 in Appendix). We specifically identified “persistence horizons”—time windows
184  where the fluctuation exponent () exceeds 0.9. Consistent with the PSA framework defined above,
185  persistence horizons extending beyond the 7-year threshold are classified as “Background
186  Preconditioning” baselines, distinct from the active dynamic memory observed at shorter scales.
187  Detailed mathematical formulations, including the phase-randomization significance testing, are
188  provided in Appendix A.

189 2.4 Identifying Predictors via a Spatial Attribution Modeling Framework

190 To determine the hierarchical importance of environmental predictors, we utilized the Boruta
191 feature selection algorithm wrapped around a Random Forest regressor. Given that SMM is a
192  temporal statistic derived from time series, while landscape attributes are spatially heterogeneous,
193  we constructed a spatial attribution framework to link these dimensions.

194 In this approach, the temporal memory metric calculated for each pixel (e.g., the spectral

10
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195  exponent f) serves as the spatial response variable. This target was regressed against a suite of

196  spatially distributed predictors, which were categorized into two groups:

197 1. Static variables: Landscape properties that remain constant over the study period (e.g.,
198 soil texture, slope, TWI).

199 2. Aggregated dynamic variables: Time-varying meteorological and vegetation data
200 aggregated to match the temporal scale of the memory metric (e.g., mean decadal NDVI
201 or total precipitation).

202 This construction allows us to quantify how spatial heterogeneity in static and dynamic

203  boundary conditions correlates with the temporal persistence of soil moisture. Feature importance

204  was validated using spatial block cross-validation to account for spatial autocorrelation (details in

205  Appendix D).

206 It is essential to emphasize that the “Space-for-Time” framework employed here identifies

207  statistical associations rather than establishing causal relationships. The Boruta-RF algorithm ranks

208  predictors by their capacity to explain spatial variance in temporal memory metrics, but

209  fundamentally cannot distinguish between: (i) direct causal drivers, (ii) proxy variables correlated

210  with unmeasured causal factors, or (iii) response variables involved in bidirectional feedback loops.

211 Furthermore, the physical collinearity inherent in mountain landscapes—often termed the

212 “catena concept”—means that soil texture and topography co-evolve along hillslopes: steep upper

213 slopes typically develop shallow, coarse-textured soils with rapid drainage, whereas convergent

214 lower slopes accumulate deep, clay-rich deposits with enhanced water retention. Consequently, high

215  importance scores for both Slope and Clay content (Section 3.3) likely reflect this coupled landscape

216  structure rather than fully independent effects.

11
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217 To partially address these limitations, we: (1) interpret the identified associations through the
218  lens of established hydrological theory (e.g., linear reservoir models; Section 4.1), providing
219  mechanistic plausibility for the observed statistical patterns; and (2) conduct partial correlation
220  analysis controlling for topographic variables (Appendix G) to assess the robustness of soil-SMM
221  associations against landscape confounding. However, readers should note that our framework is
222  designed to generate testable hypotheses about SMM predictors rather than to confirm causal
223  mechanisms, which would require controlled experiments or instrumental variable approaches

224 beyond the scope of remote sensing analysis.

225 3. Results

226 3.1 Power Spectrum Analysis of SM Memory

227 It is important to note that while spectral analyses are presented up to the 20-year scale to
228  illustrate trends, quantitative interpretations are explicitly distinguished based on the record length
229  constraint. We define the 1-7 year range as the “Reliable Spectral Window” for dynamic memory
230  estimation (N >37). Results beyond this threshold (> 7 years) are interpreted as the “Low-Frequency
231  Background State,” reflecting the system’s convergence to equilibrium rather than oscillatory
232 persistence.

233 Power spectrum analysis revealed the scale-dependent characteristics of soil moisture memory
234 (SMM) across the three basins (Fig. 3). All reported spectral exponents () are presented as the mean
235  estimate + the 95 % confidence interval derived from the log—log regression. Extensive sensitivity
236 tests (detailed in Appendix E, Table E4 and Fig. E2) further confirm that these spectral patterns are
237  robust to variations in detrending orders and frequency cutoffs, with the spatial ranking of memory

238  strength remaining highly consistent (Spearman’s p > 0.92) across parameter sets.

12
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239 At short timescales (within one year), memory during individual rainy season months was
240  consistently weaker than that of the integrated rainy season period, whereas dry season months
241  showed stronger memory than the overall dry season aggregate (Fig. 3a-1, b-1, c-1).

242 Over longer intervals (1-20 years), SMM declined progressively. Within the reliable window,
243  the hierarchical trend generally follows fi.y: > fs5.y. Beyond this point, in the low-frequency
244 background zone (> 7 years), the metrics stabilized, capturing the basin's static storage baseline (Fig.

245 3a-2,b-2, c-2).
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248  Fig. 3 Power spectrum analysis of soil moisture memory in the (a) Dali River Basin (DRB), (b)
249  Anning River Basin (ARB), and (c) Jiangjia Ravine (JJR). Left panels show normalized power
250  spectra at intra-annual scales (months and aggregated seasons). Right panels show inter-annual
251 spectra (1 ~ 20 years). The spectral exponent (£, mean + 95% CI) quantifies memory strength, with
252 higher values indicating stronger long-term persistence. The gray shaded region (Time Scale > 1825
253  days) denotes where spectral estimation is limited by the 20-year data record; results here should be

254 interpreted as low-frequency trends rather than robust spectral features. CI, confidence interval.
255
256 In the Dali River Basin (DRB), the full rainy season memory (f = 2.392 £ 0.105), calculated

13
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257  over the continuous period from June to September, was significantly stronger than that of the initial
258  month (June, f=1.889 £ 0.098). In contrast, the integrated dry season memory (f = 1.028 £+ 0.075)
259  was considerably weaker than that of October (f=2.378 + 0.112) (Fig. 3a-1). At interannual scales,
260  SMM systematically declines from g = 1.355 + 0.089 (1-year) to f = 1.000 = 0.081 (20-year)
261  (background state) (Fig. 3a-2).

262 In the Anning River Basin (ARB), the integrated rainy season memory (f =2.190 + 0.101) is
263 slightly stronger than that of May (£ = 2.179 £ 0.095), peaking in October (f =2.698 + 0.121) (Fig.
264 3b-1). At interannual scales, the ARB had the highest SMM among the basins, with a mean f of
265 1.468 + 0.084 — exceeding the DRB (1.107 £ 0.072) and JJR (1.394 + 0.079) — and decreased
266  gradually from 1.964 + 0.096 (1-year) to 1.265 + 0.074 (20-year) (background state) (Fig. 3b-2).
267 In the Jiangjia Ravine (JJR), SMM peaks during the rainy season (May: f=2.492 + 0.114; full
268  rainy season: f = 2.629 + 0.118), whereas it weakened during the dry season (Nov: f = 1.733 +
269  0.085; full dry season: = 1.404 + 0.076) (Fig. 3c-1). At interannual scales, the JJR exhibited an
270  intermediate level of SMM — stronger than that of the DRB but weaker than the ARB — with

271 values decreasing from 1.654 + 0.090 (1-year) to 1.191 + 0.073 (20-year) (background state) (Fig.

272 3c-2).
273 3.2 DFA-2 Analysis of SM Persistence Horizons
274 Based on the memory characteristics identified by PSA, we next quantified the associated

275  persistence horizons using DFA-2. All reported a values in the high-memory range (a > 0.9) were

276  statistically significant (p < 0.01) based on phase-randomization surrogate testing (see Appendix A).

277  Soil moisture persistence exhibited distinct spatiotemporal patterns across the three basins (Fig. 4).

278  In the Dali River Basin (DRB), persistence was short during the early rainy season (24-30 days in

14
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279  June) but extends substantially through the full rainy season (41-122 days); in contrast, October
280  showed almost no persistence (Fig. 4a-1). During the dry season, persistence increased to 61-95
281  days, indicating a stronger influence of soil properties under limited rainfall. Beyond the seasonal
282 scale, the characteristic persistence horizon increased moderately from 31-73 days (1-year) to 174-
283 429 days (20-year), peaking between 10 and 15 years (Fig. 4a-2).

284 The Anning River Basin (ARB) exhibited the longest persistence horizons across all temporal
285  scales, with all reported ranges being statistically significant (p < 0.05) based on the DFA-2
286  significance testing procedure described in Section 2.4 (2). At the monthly scale, persistence ranged
287  from 17-31 days in May to 25-31 days in October, and these durations increased markedly at the
288  seasonal scale—reaching 37-184 days during the rainy season and 47-76 days during the dry season
289  (Fig. 4b-1). Beyond the seasonal scale, the persistence horizon rose sharply from 40-71 days (1-
290  year) to 236-728 days (20-year) (Fig. 4b-2). This extended memory window, particularly at the
291  multi-year scale, implies that the basin's soil moisture state tracks the low-frequency signals of inter-
292  annual climate oscillations and vegetation dynamics (i.e., red noise spectra of forcing). This
293  persistence indicates a shift in the hydrological equilibrium rather than physical water retention,

294 thereby conditioning the baseline hydrological state for hazard susceptibility over multiple years.

295
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297  Fig. 4 DFA-2 analysis of soil moisture persistence across the three basins. Left panels show seasonal

298  scales; Right panels show inter-annual scales (1, 5, 10, 15, and 20 years). Solid lines represent the

299  DFA-2 fluctuation exponent (a), calculated using a window size range of s € [10, N/4] days (where

300 N is the series length). The labeled time windows (e.g., “236-728 d”) define the characteristic

301  persistence horizons—the range of timescales over which significant memory (a > 0.9) is observed.

302  Sensitivity tests confirming the robustness of these horizons against window size variations (e.g.,

303  N/8) are detailed in Appendix E. d: days.

304

305 In the Jiangjia Ravine (JJR), rainy season persistence was the shortest among the three basins

306  (18-31 days in May; 33-91 days when aggregated), indicating a rapid response to precipitation

307  inputs (Fig. 4c-1). In contrast, dry season persistence (60-125 days) is longer than that in the ARB

308  but remains shorter than in the DRB. At interannual scales, persistence horizons exhibit remarkable
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309  stability, ranging from 78-171 days (1-year) to 129-367 days (20-year) (Fig. 4c-2), suggesting a

310  consistent memory effect across long-term timescales.
311 3.3 Driving Factor Selection

312 The Boruta Random Forest Algorithm (BRFA) was employed to evaluate the statistical
313  associations between dynamic variables and SMM across multiple timescales, providing
314  quantitative insights into the factors most strongly correlated with SM variability at different
315  temporal resolutions (Fig. 5). Bootstrap resampling (n = 1000) confirmed that the top 3 predictors
316  ateach scale maintained significance across > 95 % of iterations, whereas tentative variables showed
317  high variability (CV > 40 %), validating our interpretation focus on confirmed factors.

318 At the monthly scale, June—the onset of the rainy season—showed no distinct dominant
319  predictor; however, when the entire rainy season (Jun-Sep) is considered, relative humidity (rhu),
320  NDVI, actual evaporation (AE), and 2-m air temperature (T2m) emerged as the strongest statistical
321  predictors of SMM spatial patterns. During the dry season (Oct-May), the hierarchy of predictive
322  associations shifted notably. In October, NDVI, AE, rhu, and T>n maintained strong correlations
323  with SMM, whereas precipitation and wind speed exhibited limited predictive power. This shift

324 likely reflects the transition from moisture-limited to energy-limited evapotranspiration regimes.

325
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Fig. 5 Scale-dependent predictive importance of environmental drivers. (a) Dynamic drivers (Boruta
Z-scores), where green boxes denote confirmed variables (p < 0.01). (b) Static drivers (Random
Forest Relative Importance, %). Note: Panels (a) and (b) use different metrics (unbounded Z-scores

vs. normalized percentages); thus, absolute magnitudes are not directly comparable.

At longer timescales, the pattern of statistical associations underwent a progressive transition.

On an annual scale, precipitation and wind speed—whose association with SMM stems from event-

scale forcing—declined in importance as temporal averaging smooths out their high-frequency

variability. By the 5-year scale, these climatic variables were fully excluded from the set of

significant predictors, leaving NDVI, rhu, AE, and T as the variables most strongly associated

with SMM variability. Over decadal timescales (10-20 years), the associations of NDVI, rhu, and
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338  T2m with SMM further intensified, highlighting their persistent correlation with long-term SM
339  dynamics.

340 The relative importance of static factors also exhibited distinct temporal patterns (Fig. 5b).
341  During June and the rainy season, bulk density (pb) and aspect (Asp) showed the strongest
342  associations with SM. At the annual scale, the pattern shifted slightly toward stronger topographic
343  associations (TWI). However, over longer timescales, pedological factors became increasingly
344 prominent in the predictor hierarchy.

345 Quantitative analysis of the feature importance revealed a distinct structural break at the 5-year
346  scale (Table 2 and Fig. 5). At the 1-year scale, the system showed the strongest association with
347  TWI (28.7 %), consistent with lateral redistribution processes. However, at the 5-year scale, TWI
348  importance collapsed (to 13.5 %), and the hierarchy shifted to a stable group of Soil Texture and
349  Slope (~ 19 %). We therefore operationally define the 5-year scale as the critical transition threshold,
350 as it marks the precise timescale where the association pattern transitions from TWI-dominated
351  (‘Fast-Response Regime’) to Soil-dominated (‘Background-Storage Regime”).

352 It is important to note that these associations do not establish causal relationships. The Boruta-
353  RF algorithm identifies variables with strong predictive power for SMM spatial patterns, but cannot
354  distinguish between direct causal drivers, proxy variables, or variables involved in bidirectional
355  feedbacks. For instance, the strong association between NDVI and SMM at decadal scales may
356  reflect vegetation's influence on soil hydraulic properties, soil moisture’s constraint on vegetation
357  growth, or both operating within a coupled ecohydrological system. The mechanistic interpretation
358  of these statistical patterns is discussed in Section 4.1.

359
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360 Table 2. The structural shift in dominant environmental associations across timescales.

Time Top Static Predictor Top Dynamic Predictor  Association Pattern

Scale (Importance %) (Importance Z)

I-Year  TWI (28.7%) Tom (11.2) Topography-Associated (Water
redistribution)

5-Year  f/Asp (~19.8%) rhu (16.1) Transition Point (TWI
collapses; Structure stabilizes)

10-Year Sand (21.8%) rhu (32.5) Soil-Texture Associated
(Storage capacity)

20-Year Asp (21.0%) rhu (36.2) Soil-Texture Associated

361  Note: Seasonal scales (e.g., Rainy Season) are excluded from this threshold analysis as they
362  represent intra-annual variability rather than the inter-annual persistence transition focused on here.
363  “Predictor” and “Associated” terminology is used to reflect statistical relationships; causal
364  interpretations require additional mechanistic validation (see Section 2.4 and Section 4.1).

365

366 To assess the robustness of these associations against potential confounding by landscape

367  collinearity (the “catena effect,” whereby soil properties and topography co-evolve), we conducted

368  partial correlation analysis controlling for topographic variables (Appendix G). Results indicated

369  thatsoil texture maintained significant partial correlations with decadal-scale SMM (partial = 0.43,

370  p<0.01) even after accounting for slope and TWI, though the effect size was reduced compared to

371  the raw correlation (» = 0.61). This suggests that approximately 30 % of the apparent soil texture

372  association may be attributable to topographic confounding, while the remaining signal likely

373  reflects genuine pedological influences on moisture retention.

374 We therefore define the 5-year scale as the critical threshold where the predictive importance

375  of static landscape variables supersedes that of high-frequency dynamic forcing. These findings

376  underscore the statistical interplay between static and dynamic predictors and emphasize the need

377  to incorporate multiscale factors into early-warning systems.
378 3.4 Cross-Basin Comparison of Memory and Drivers

379 To directly address the basin-specific memory characteristics of mountain hazards, we

380 synthesized and compared the SMM characteristics and dominant controls across the three

20
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381  watersheds at representative temporal scales (monthly, annual, and decadal). The key metrics—
382  spectral exponent (), DFA-2 predictive period, and the top three driving factors—at representative
383  temporal scales (monthly, annual, and decadal) are summarized in Table 3. This synthesis highlights
384  the basin-specific hierarchies, while the complete, scale-explicit results of the Boruta and Random

385  Forest analyses for the ARB and JJR are available in Appendix F (Figs. F1-F4), respectively.

386
387  Table 3. Cross-basin comparison of SMM characteristics and top predictive associations at key
388  temporal scales.

Basin Temporal Spectral Persistence Top 3 Associated
Scale Exponent (f) Horizon (days) Factors (in order)
Dali River Monthly 1.889 +0.098 24-30 rhu, NDVI, AE
Basin (DRB) (Rainy)
Annual (I- 1.355+0.089  31-73 Aspect, Bulk density,
year) NDVI
Decadal (20- 1.000 +0.081 174-429 Clay, Aspect, Bulk
year) density
Anning River Monthly 2.179 £ 0.095 17-31 AE, Tom, thu
Basin (ARB) (Rainy)
Annual (1- 1.964+0.096  40-71 Tam, NDVI, rhu
year)
Decadal (20- 1.155+0.152  236-728 NDVI, rhu, Tom
year)
Jiangjia Ravine Monthly 2.492+0.114 18-31 rhu, AE, Tom
(JJIR) (Rainy)
Annual (1- 1.654+0.090 78-171 TWI, Sand, Aspect
year)
Decadal (20- 1.191 +£0.073 129-367 TWI, Sand, Aspect
year)

389  Note: ‘Associated Factors’ denote variables with the strongest statistical correlations with SMM
390  spatial patterns, as identified by Boruta-RF. These associations do not imply causation; mechanistic
391  interpretations are developed in Section 4.1 by integrating these statistical patterns with established
392  hydrological theory. Inter-basin comparisons should also account for differences in basin size and
393  pixel count (see Section 4.3).

394

395 This comparative synthesis revealed several key patterns. The Anning River Basin (ARB)

396  consistently exhibited the strongest long-term memory and the longest predictive periods across all

397  interannual to multi-year scales. Its drivers were dominated by climatic and vegetation variables
21
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398  (e.g., Tom, NDVI, rhu) even at multi-year scales, reflecting the profound influence of its dense forest
399  cover and stable mountain-valley climate on prolonging soil water residence time.

400 In contrast, the Jiangjia Ravine (JJR), characterized by its steep slopes and high drainage
401  density, showed the most rapid response to precipitation inputs, resulting in the shortest predictive
402  periods during the rainy season. Topographic control (TWI) was overwhelmingly dominant across
403  almost all scales, underscoring the role of rapid hydrological redistribution in this debris-flow-prone
404 catchment.

405 The Dali River Basin (DRB) presented an intermediate case in terms of memory length. It was
406  distinguished by the clearest scale-dependent transition in driver dominance: from atmospheric
407  variables (rhu) at monthly scales to static landscape properties (soil texture and topography) at
408  multi-year scales. This transition mirrors the basin's semi-arid loessal environment, where the
409 intrinsic water-holding capacity of the soil and terrain ultimately govern long-term moisture
410  availability.

411 4. Discussion
412 4.1 The Physical Basis of the Scale-Dependent Transition

413 Interpretation of Decadal Signals: Before discussing mechanistic drivers, it is crucial to clarify
414 the statistical nature of the identified multi-year signals. Given the 20-year record length, the
415  persistence horizons detected at the decadal scale (> 7 years) should not be interpreted as verifiable
416  oscillatory memory (which would typically require multiple realization cycles). Instead, these
417  signals reflect a “Regime Stability” —a low-frequency background state governed by the
418  superposition of secular climatic trends and the basin’s intrinsic buffering capacity. Consequently,

419  when we discuss “Decadal Memory” below, we refer to the system’s inertia in responding to these
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420  slow-varying boundary conditions, rather than a self-sustaining hydrological oscillation.

421 With this distinction in mind, the identified transition in driver dominance at approximately the
422 5-year scale reflects a fundamental mechanistic shift from event-driven hydraulic responses to long-
423 term equilibrium storage.

424 Mechanistic Interpretation of Spatial Associations: Our interpretation of the statistical
425  associations between spatial predictors and temporal memory is grounded in the linear reservoir
426  theory, where the decay timescale (z) of a soil moisture anomaly is inversely proportional to the
427  drainage rate (Salvucci & Entekhabi, 1994). Since drainage is governed by local hydraulic
428  properties (e.g., Ksa), the spatial heterogeneity of static landscape attributes naturally dictates the
429  variability of temporal inertia. Specifically, the strong association between Clay content and SMM
430  atlong timescales is consistent with a “Deep Soil Buffering” mechanism. High clay content reduces
431  hydraulic diffusivity and K. (Van Genuchten, 1980), increasing the characteristic response time (7)
432 of the soil column. Thus, clay-rich soils act as a low-pass filter, physically dampening high-
433  frequency noise. This mechanistic framework provides physical plausibility for the observed
434 statistical association between static soil properties and long-term persistence, though direct causal
435  validation would require controlled experimental manipulation. Similarly, the dominance of TWI
436  reflects the spatial organization of groundwater redistribution, where convergent valleys maintain
437  sustained lateral recharge, decoupling local storage from vertical evaporation demand (Western et
438  al., 2004).

439 Crucially, interpreting these statistical associations requires acknowledging the physical
440  collinearity inherent in mountain terrain (the “catena concept”). Soil texture and topography are not

441  independent variables but co-evolved landscape features: steep slopes typically foster rapid drainage
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442  and shallow, coarse soils (associated with low memory), whereas convergent valleys accumulate
443 deep, clay-rich deposits (associated with enhanced retention). Thus, the high importance scores of
444 both Slope and Clay (Fig. 6) likely reflect a coupled landscape structure, where geomorphology and
445  soil properties co-vary along hillslope gradients. Partial correlation analysis (Appendix G) indicates
446  that soil texture maintains significant associations with decadal-scale SMM (partial » = 0.43, p <
447  0.01) even after controlling for topographic variables, suggesting that pedological effects are not
448  entirely attributable to topographic confounding—though approximately 30 % of the raw correlation
449  may reflect this landscape collinearity.

450 The "Sink-to-Structure" Transition of Vegetation: Our results reveal a dual role for
451  vegetation. At short timescales, it acts as a “Dynamic Sink,” where transpiration accelerates
452  anomaly decay, explaining the dominance of NDVI and atmospheric demand variables. Conversely,
453 at interannual scales (> 2-5 years), vegetation shifts to a “Static Structural Modifier.” In the dense
454 forests of the Anning River Basin, long-term high NDVI proxies for developed root networks and
455 organic matter, which increase soil porosity and hydraulic capacitance (Bengough, 2012).

456 However, we must caution against interpreting this statistical association as unidirectional
457  causality. The Boruta algorithm identifies non-linear statistical dependencies but cannot distinguish
458  between drivers and responses, nor can it isolate direct effects from those mediated through
459  confounding variables. In reality, the strong link between NDVI and SMM at decadal scales likely
460  reflects a bidirectional “Eco-hydrological Feedback”: while vegetation improves soil structure and
461  retention capacity (Driver role), stable soil moisture availability is conversely a prerequisite for
462  sustaining high biomass and long-term ecosystem stability (Response role). Therefore, the observed

463  persistence should be viewed as a property of the co-evolved soil-vegetation system, where
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464 vegetation and soil moisture mutually reinforce each other to maintain a high-memory equilibrium,

465  rather than vegetation acting as an independent external force.

466
Scale-Dependent Transitions in Soil Moisture Memory and Hazard Mechanisms
= " Short e Long
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468  Fig. 6 Conceptual framework illustrating the scale-dependent transition of soil moisture memory
469  (SMM) drivers. (Left) At short timescales (< 1 year), memory is governed by dynamic atmospheric
470  forcing and surface hydraulic properties. (Right) At multi-year scales (> 5 years), dominance shifts
471 to static landscape factors. Note that “Soil Texture” (e.g., Clay) serves as a proxy for fundamental
472 “Soil Hydraulic Properties” (e.g., Ksa, Porosity), which mechanistically drive the Deep Soil

473  Buffering effect.
474
475 4.2 Illustrative Case: Conceptualizing the “Temporal Bridge” of Memory in Hazard

476 Initiation

477 While statistical metrics suggest a potential influence of SMM on hazard susceptibility,

478  demonstrating this link requires systematic validation. Here, we present a preliminary case study to

479  illustrate the conceptual framework, acknowledging that a single event cannot establish causality.

480  We focus on the Jiangjia Ravine (JJR), a system where the coupling between antecedent wetness
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and debris flow initiation is hypothesized to be critical.

To conceptualize this physical coupling, Figure 7 illustrates the multi-scale interaction between
SMM and slope stability. At the slope scale (Fig. 7a), failure is instantaneous, governed by pore
pressure thresholds. However, SMM operates at the basin scale (Fig. 7b), defining the slowly
varying “background loading” state. The critical insight is the modulation mechanism shown in
Figure 7c: a high SMM state effectively lowers the critical rainfall intensity (/crit) required for
triggering. In this framework, memory acts as a “temporal bridge,” carrying the hydrological legacy

of past storms to precondition future responses.

Scale-Dependent SMM and Hazard Modulation Framework
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Fig. 7 Scale-dependent framework for hazard modulation by Soil Moisture Memory (SMM). (a)
Slope-scale triggering: Shows localized pore-pressure response to rainfall and the critical failure
threshold. (b) Basin-scale preconditioning: Represents the basin-averaged SMM (0), defining the

antecedent hydrological loading state. (¢) Coupling mechanism: Illustrates how a high basin-scale
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495  SMM modulates and reduces the critical rainfall threshold (/i) for slope-scale failure, thereby

496  elevating hazard probability.
497

498 Applying this framework to a real-world event, Figure 8 reconstructs the soil moisture
499  trajectory preceding the debris flow event on July 10, 2007. This case exemplifies the mechanism
500  outlined above. Specifically, the watershed experienced a distinct "pre-wetting" phase throughout
501  June. The basin-scale soil moisture maintained elevated levels for over 10 days. Crucially, this 10-
502  day duration falls well within the reliable persistence horizon identified by our DFA-2 analysis (18-
503 31 days for the rainy season). This alignment suggests that the system possesses sufficient
504 hydrological inertia to retain the antecedent wetness signal over this timeframe, preventing it from
505  dissipating before the trigger event arrives.

506 When the moderate rainfall trigger of 29 mm occurred on July 10, it did not act on a dry
507  baseline but rather impinged upon this compromised storage capacity. While 29 mm represents a
508  significant precipitation event, within our conceptual framework, we posit that the elevated
509  antecedent SM increased the probability of instability by reducing the effective rainfall threshold.
510  Without the memory-driven persistence of the June wetness state, this rainfall magnitude might have
511  acted on a higher shear strength baseline. Although precise threshold determination requires
512  analyzing the full catalog of hazard events, this basin-scale signal illustrates the operational concept
513  of SMM: it reflects the “Catchment Storage Deficit” (Kirchner, 2009), acting as a background filter

514  that defines how full the hydrological “bucket” is.
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516  Figure 8. Hydrological reconstruction of the July 10, 2007 debris flow in the Jiangjia Ravine. (a)
517  Time series of basin-averaged daily precipitation, showing the antecedent storm sequence in June
518  and the moderate triggering rainfall event on July 10. (b) Corresponding evolution of basin-averaged
519  volumetric soil moisture. Note that the event was triggered on the recession limb of the soil moisture
520  hydrograph. This illustrates the “Bridging Effect” of SMM, where persistent antecedent wetness
521  maintained a high background saturation level (reducing the catchment storage capacity) during the

522  inter-storm period, thereby lowering the rainfall threshold required for hazard initiation.

523

524 This interpretation is supported by the broader statistical persistence characteristics observed
525  inthe JJR (Fig. 4c), which confirm that the basin possesses sufficient hydrological inertia to bridge
526  the observed inter-storm periods. By maintaining elevated moisture levels long after the cessation
527  of previous storms, SMM essentially “bridges” the gap between discrete precipitation events,
528  allowing their cumulative effect to cross stability thresholds.

529 We explicitly acknowledge that this single-event illustration cannot establish the general
530  statistical validity of the SMM-hazard linkage. Nevertheless, it serves as a proof-of-concept
531  demonstration of the “Temporal Bridge” mechanism, visualizing how high-memory basins retain
532  antecedent stress to potentially lower triggering thresholds. The Jiangjia Ravine has experienced

533  over 600 documented debris flows since 1961 (Wei et al., 2025), providing a rich dataset for future
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534  systematic validation. Key questions that remain to be addressed include: (1) What is the
535  quantitative relationship between antecedent SMM and debris flow probability? (2) Does SMM
536  provide predictive skill beyond that offered by rainfall alone? Future studies should utilize the full
537  hazard inventory to conduct logistic regression or threshold analysis to rigorously test the conceptual
538  model presented here.

539 4.3 Spatiotemporal Scale Mismatches and Uncertainties

540 While this study provides a novel framework for understanding SMM, two primary limitations
541  regarding spatiotemporal scales must be acknowledged to contextualize the findings.

542 First, regarding spatial resolution (Scale Mismatch), there is an inherent discrepancy between
543  our 1-km grid soil moisture data and the localized shear zones where slope failures initiate (10" ~
544 102 m). In complex terrain like the Jiangjia Ravine, spatial averaging across a 1-km pixel acts as a
545  low-pass filter, smoothing out rapid, localized drainage events. According to the spatial variance
546  scaling function (Crow et al., 2012), aggregating from point-scale to 1-km resolution can reduce
547  signal variance by approximately 63 % (assuming a correlation length 2 = 500 m). Consequently,
548  the persistence horizons calculated in this study (e.g., 78—171 days for JJIR) are likely overestimates
549  compared to the point-scale geotechnical reality. However, this “inflated” memory is precisely what
550  makes the 1-km metric valuable. Instead of pinpointing specific gully failures, it quantifies the
551  “Average Antecedent Condition” of the entire hillslope system. This basin-scale metric essentially
552  serves as a proxy for the “Catchment Storage Deficit” (Kirchner, 2009), distinguishing the slowly
553  evolving background criticality—how close the basin as a whole is to saturation excess—from the
554 rapid, slope-scale triggering thresholds determined by local geotechnical defects.

555 The significant disparity in basin size (JJR: ~49 km? vs. ARB: ~11,150 km?) raises a critical
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556  question: is the stronger memory observed in the ARB merely an artifact of spatial averaging over
557  alarger domain? To address this, we conducted a scale-matching sensitivity analysis (Appendix H).
558  We randomly sampled 1,000 sub-regions from the ARB, each matching the JIR’s size (49 pixels).
559  Results showed that these small ARB sub-regions still exhibit significantly stronger memory (mean
560 B = 1.48) than the JJR (8 = 1.39). This confirms that the inter-basin differences reflect genuine
561  hydrological contrasts (e.g., deeper soils and denser vegetation in ARB) rather than statistical
562  scaling artifacts.

563 Second, regarding temporal duration, the 20-year dataset (2003-2022) imposes statistical
564  constraints on the estimation of decadal-scale memory. In signal processing, robust spectral
565  estimation typically requires a record length significantly longer than the period of interest (N > 37).
566  Therefore, while our analysis identifies trends extending up to 20 years, quantitative persistence
567  horizons beyond the reliable ~7-year window (N/3) must be interpreted with caution. These long-
568  term tails likely capture a hybrid signal: the intrinsic deep-soil buffering effect convolved with
569  external low-frequency climatic trends (e.g., secular shifts in precipitation regimes). While
570  mathematically indistinguishable in a short record, both mechanisms functionally contribute to the
571  “Background Preconditioning” for hazards. Future studies utilizing extended satellite records (e.g.,
572  continuous ESA-CCI or SMAP data) will be essential to validate these long-term memory tails.
573 5. Summary and Conclusions

574 This study provides new insights into three key questions on soil moisture memory (SMM)
575  through multi-scale analysis of three mountain watersheds, while acknowledging that the statistical
576  associations identified here represent hypotheses for future mechanistic testing rather than

577  confirmed causal relationships:
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578 (1) Demarcation of Memory Horizons: SMM persistence exhibits a distinct scale-dependent
579  decay. The characteristic persistence horizons—the timescales over which antecedent conditions
580  precondition the watershed—range from days in the rapid-response Jiangjia Ravine (JJR) to
581 interannual scales in the buffered Anning River Basin (ARB). Crucially, adhering to robust signal
582  processing constraints (N > 37), we distinguish between active dynamic memory (< 7 years) and a
583  stable low-frequency background state (> 7 years), reflecting secular basin storage trends rather than
584  verifiable oscillatory cycles.

585 (2) The “Structure-Associated” Transition in Predictor Importance: A distinct transition
586  inpredictor associations occurs at approximately the 2—5 year scale. The system shifts from showing
587  stronger statistical associations with dynamic atmospheric/vegetation variables to exhibiting
588  stronger correlations with static landscape attributes. This transition is consistent with a mechanistic
589  shift wherein the memory of high-frequency inputs fades, and the system's inertia becomes
590 increasingly associated with its intrinsic storage capacity. Specifically, the strong associations of
591  Clay content and TWI with SMM at long timescales are consistent with physically-based
592  mechanisms: low saturated conductivity (Ksa) acting as a low-pass filter and convergent topography
593  sustaining lateral recharge. However, these interpretations represent mechanistically plausible
594 hypotheses derived from statistical patterns, rather than causally validated conclusions.

595 (3) The “Sink-to-Structure” Vegetation Mechanism: Vegetation plays a dual mechanistic
596  role characterized by a “Sink-to-Structure” transition. It acts as a transpiration sink that shortens
597  memory at seasonal scales, but transitions to a structural modifier that extends persistence at
598 interannual scales. We attribute this long-term persistence to a “Bio-Hydrological Coupled Inertia,”

599  where the phenological memory of the forest is physically encoded into the soil structure (e.g.,
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600  enhanced porosity), reinforcing the basin's hydrological buffering capacity.

601 Overall, our findings provide a quantitative foundation for potentially incorporating SMM into
602  hierarchical mountain hazard assessment. By distinguishing event-scale triggering from basin-scale
603  background preconditioning, the identified SMM metrics offer a scientific foundation for
604  conceptualizing differentiated early-warning systems, pending systematic validation against
605  regional hazard inventories. While the 1-km resolution limits direct slope-scale prediction, our
606  framework successfully quantifies the “Catchment Storage Deficit” (Kirchner, 2009), providing
607  actionable persistence horizons for regional risk management. The analytical framework itself is
608  readily transferable for testing in other complex terrains.

609  Appendix A: Mathematical Formulation of Memory Metrics

610 This appendix details the mathematical algorithms for the soil moisture memory metrics and

611  the statistical framework used to validate their significance.
612 (1) Power Spectrum Analysis (PSA)

613 PSA decomposes variance to identify persistence via the power spectral density, S(f) ~ /7

614  (Parada et al., 2003).

615 *  Parameter Estimation: The exponent § was estimated via linear regression in the log—
616 log space of the power spectrum. We selected second-order polynomial detrending to
617 balance trend removal and signal preservation (Kantelhardt et al., 2006). A Hanning
618 window (20 % length) was used for smoothing. The regression frequency range was
619 restricted to [1/N, 0.5] cycles/day (where N is the time series length in days) to capture
620 the full dynamic range of the signal. Specifically, for the daily SM series (2003-2022),
621 the lower frequency bound corresponds to ~7300 days, allowing us to estimate f across
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622 the entire reliable spectral window.
623 (2) Detrended Fluctuation Analysis (DFA-2)
624 To accurately quantify long-term correlations in the presence of nonstationarity, we

625  implemented the second-order Detrended Fluctuation Analysis (DFA-2; Kantelhardt et al., 2001).

626 *  Preprocessing: Each SM time series was smoothed using the Simple Moving Average (SMA)

627 method (Hansun, 2013) to mitigate high-frequency noise (n = 3).

628 ¢ Algorithm Steps:

629 1. Profile Calculation: Integration of the time series to obtain the cumulative deviation
630 profile Y(i).

631 2. Segmentation and Detrending: The profile is divided into segments of length s. In each
632 segment, the local trend y,(i) is approximated by a second-order polynomial (DFA-2).

633 3. Fluctuation Function: The RMS fluctuation F(s) is calculated from the detrended
634 variance.

635 4.  Scaling Exponent: The relationship F(s) ~ s* yields the fluctuation exponent a.

636 *  Parameter Settings: Window sizes ss ranged from 10 days to N/4 with logarithmic spacing.
637 ¢  Persistence Horizon Definition: While o > 0.5 theoretically indicates correlation,
638 we defined the “Persistence Horizon” as the range where & = 0.9. The threshold a
639 > 0.9 (corresponding to > 0.8) was selected to strictly identify “strong persistence”
640 regimes where the autocorrelation function decays algebraically rather than
641 exponentially, indicating a system with potent memory capacity.

642 (3) Significance Testing Framework (Phase Randomization)

643 To distinguish genuine physical memory from random red noise or artifacts, we employed the
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Iterative Amplitude Adjusted Fourier Transform (IAAFT) surrogate data method (Schreiber &

Schmitz, 2000).

*  Procedure: For each pixel’s soil moisture time series, we generated 1,000 surrogate series.

These surrogates preserve the power spectrum (and thus the linear autocorrelation) and

the probability distribution of the original series but randomize the Fourier phases to

destroy non-linear correlations. The DFA-2 fluctuation exponent () was calculated for

all 1,000 surrogates to build a null distribution.

*  Criterion: The observed persistence horizon is considered statistically significant only if

the observed o value exceeds the 97.5th percentile of the surrogate distribution (p < 0.05).

As shown in Appendix E (Table E2), our identified high-memory regimes (a > 0.9)

consistently satisfy this criterion (p < 0.001).

Appendix B: Detailed Basin Characteristics

This appendix supplements the study area description by providing a side-by-side comparison

of the hydro-climatic and geomorphological attributes of the three target basins (Table B1).

Table B1. Comparative hydro-climatic and geomorphological characteristics of the three study

watersheds.

Feature Dali River Basin Anning River Basin  Jiangjia Ravine
(DRB) (ARB) JJR)

Geographic Zone Loess Plateau (North ~ SW Sichuan Yunnan Xiaojiang
China) Mountain-Valley Fault Zone

Coordinates 109°14'-110°13'E, 102°06'-102°10'E, 103°05'-103°13'E,
37°30'-37°56'N 26°38'-29°02'N 26°13'-26°17'N

Catchment Area 3,906 km? 11,150 km? 48.6 km?

Elevation Range 900 — 1,700 m 900 — 4,750 m 1,088 — 3,269 m

Topography Hilly-gully loess High relief; Deep Extremely steep; 55%
terrain; Avg. slope valleys of slopes > 25°
17°

Climate Type Semi-arid Transitional Subtropical Monsoon
Continental Subtropical-Monsoon
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MAP (mm)

MAT (°C)

Dominant Soil

Avg. Soil Depth

Vegetation

Primary Hazard

~480 (70% in May-
Sep)

9-10

Loess (Silt > 60%)

Deep (> 2 m, Loess)

Sparse;
Grassland/Shrub

Soil Erosion

~1,070 (90% in May-
Oct)

10 — 23 (Vertical
zonation)

Entisols, Spodosols

Moderate-Deep (~
1.0-1.5 m)

Dense;
Evergreen/Deciduous
Forest

Landslides, Gully

Erosion

400-1,000 (>85% in
May-Oct)

Variable with
elevation

Red, Brown, Yellow
soils

Shallow (< 0.5 m,
Skeletal)

Variable;
Scrub/Forest patches

Debris Flows

Note: MAP = Mean Annual Precipitation; MAT = Mean Annual Temperature.

Appendix C: Data Preprocessing Strategy

(1) Soil Moisture Data Source Verification

To ensure data reliability in complex terrain, we utilized the 1-km all-weather daily soil

moisture product generated by Song et al. (2022). This dataset is produced using a machine

learning-based fusion framework that:

1. Downscales coarse-resolution passive microwave radiometer data (AMSR-E/2) using

high-resolution optical/thermal parameters (MODIS).

2. Fuses these retrievals with ERA5-Land reanalysis forcing using a Random Forest

algorithm trained on extensive in-situ networks.

3. Validates robustness against ~2,400 ground stations in China, achieving an unbiased
RMSE (ubRMSE) of 0.053 m*/m>.

This fusion approach effectively mitigates the gap issues of optical sensors and the coarse

resolution of microwave sensors, providing a spatially continuous dataset suitable for hillslope-

scale memory analysis.

(2) Preprocessing Workflow

We implemented a rigorous three-step preprocessing workflow:

1.  Gap Filling: Short discontinuities (< 3 days) in SM and NDVI time series were filled
using linear interpolation. Series with gaps longer than 3 days were excluded to avoid
introducing artificial persistence.

2. Outlier Removal: A statistical thresholding method was applied. Values exceeding +1.5
x Interquartile Range (IQR) of the rolling window were flagged and replaced using a 3-
day moving median filter to preserve physical extremes while removing sensor noise.

3. Stationarity Testing: The Augmented Dickey-Fuller (ADF) test was performed on every

pixel. Non-stationary series (p > 0.05) were subjected to first-order differencing prior to
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spectral analysis to satisfy the stationarity assumptions of the Power Spectrum Analysis
(PSA).

Appendix D: Driver Identification Framework (Boruta-RF)

(1) “Space-for-Time” Concatenation Strategy

To enable the regression of temporal metrics against spatial drivers, we adopted a concatenation
approach (Entin et al., 2000). Daily SM data for specific seasonal windows (e.g., all “Junes” from

2003-2022) were linked to form a stable time series (N = 600 days) for computing the pixel-wise

p target.
(2) Boruta Feature Selection
We employed the Boruta algorithm (Kursa et al., 2010), a wrapper around the Random Forest

regressor. It operates by:

*  Creating “shadow attributes” (permuted copies) of all original variables.

e  Training a Random Forest (ntree = 500, mtry = \/5 where p is the number of predictors,
minimum node size = 5, max depth = unlimited) using the ‘ranger’ R package
implementation. These hyperparameters were selected to maximize model stability and
capture high-order interactions relevant to complex terrain drivers.

*  Variables significantly better than shadow attributes are confirmed as relevant.

(3) Uncertainty Quantification

*  Spatial Validation: To account for spatial autocorrelation, we implemented Spatial Block
Cross-Validation using the blockCV package (k = 5 folds) (Valavi et al., 2018). Only
predictors appearing in the top rank across >4 folds were considered robust.

*  Bootstrap Resampling: We used bootstrap resampling (1,000 iterations) to derive 95 %

confidence intervals for variable importance.

Appendix E: Sensitivity and Robustness Analysis

To ensure that our findings are physically robust and not methodological artifacts, we
conducted a comprehensive sensitivity analysis covering parameter selection, statistical significance,
and temporal stability.

(1) Robustness of DFA-2 Scaling Exponent («)

We tested the sensitivity of o to the selection of window ranges (s).

*  Result: o estimates proved robust to window range variations (e.g., N/4 vs N/8), with a
Mean Absolute Difference < 0.04 (Table El). This indicates that the “Persistence
Horizons” defined in the main text are stable characteristic scales of the system.

36



https://doi.org/10.5194/egusphere-2025-6014
Preprint. Discussion started: 6 January 2026

(© Author(s) 2026. CC BY 4.0 License.

722

723
724

725

726

727

728
729
730
731

732
733

734

735

736
737
738
739
740
741

Table E1. Sensitivity of a estimates to window range.

EGUsphere\

Basin  Pixel Window N_windows a 95 % CI Memory
1D Range Estimate Horizon (days)
DRB P 1234 [10, N/4] 30 0.87 [0.83,0.91] 31-73
DRB P 1234 [10, N/8] 30 0.85 [0.80, 0.90] 28-65
DRB P 1234 [10,N/2] 30 0.89 [0.84, 0.94] 35-82
DRB P 1234 [10, N/4] 15 0.86 [0.79, 0.93] 29-70
DRB P 1234 [10, N/4] 60 0.88 [0.85,0.91] 32-76
ARB P _5678 [10, N/4] 30 0.94 [0.91, 0.97] 40-71
ARB P 5678 [10, N/8] 30 0.92 [0.88, 0.96] 36-63
ARB P _5678 [10,N/2] 30 0.96 [0.93,0.99] 45-85
JJR P 9012 [10, N/4] 30 0.91 [0.88, 0.94] 78-171
JJR P 9012 [10, N/8] 30 0.89 [0.85, 0.93] 70-155
JJR  P_9012 [10, N/2] 30 0.93 [0.89, 0.97] 88-195

Note: Memory horizon defined as the range of s where a > 0.9 (see Methods 2.4).

(2) Significance Testing against Surrogate Data

Using the framework described in Appendix A (3), we compared observed a values against

null models.

Result: Observed a values in the high-memory range (> 0.9) consistently exceeded the
97.5th percentile of the surrogate distribution (p < 0.001), confirming these are robust

physical signals (Table E2). In contrast, weak-memory pixels (e =~ 0.5-0.6) often fell

within the noise range.

Table E2. Comparison of observed vs. surrogate o for significance testing.

Basin Pixel ID Observed a Surrogate o (mean + SD) p-value
DRB P 1234 0.87 0.52+0.04 <0.001
ARB P_5678 0.94 0.51+0.05 <0.001
JIR P 9012 0.91 0.53+0.04 <0.001
ARB P_6789 0.97 0.50 £ 0.06 <0.001
DRB P 2345 0.68 0.52+0.05 0.003

JIR P 0123 0.61 0.53+£0.04 0.091

(3) Temporal Stability and Cross-Method Validation
Temporal Stability: A split-sample test (2003—2012 vs. 2013-2022) showed high
consistency for a estimates (Pearson’s » = 0.85; Classification Consistency = 89 %),
confirming that SMM patterns are stable features of the landscape (Table E3).

Cross-Method Validation: We compared DFA-2 derived persistence horizons with

independent Autocorrelation Function (ACF) e-folding timescales. The strong correlation
(r = 0.87, Fig. El) validates the DFA-2 results while demonstrating its superior
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Table E3. Temporal stability analysis statistics.
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Metric B (PSA) o (DFA-2)
Pearson’s r 0.82 0.85
Spearman’s p 0.79 0.83
Mean Absolute Difference 0.09 = 0.04 0.06 +£0.03
RMSE 0.12 0.08
Classification Consistency 84 % 89 %
basins 3
601 * ARB e * % oo .
3 ® DRB L4 " o o
§§ ® JR . _"_’.."
é % 40 e e - .o 1B
o . * ® R
10 20 30 40 50
ACF T, (days)

Figure E1. Cross-method validation of hydrological memory metrics. The comparison between

persistence horizons derived from Detrended Fluctuation Analysis (DFA-2) and independent

Autocorrelation Function (ACF) e-folding timescales reveals a strong correlation (» = 0.87). This

high consistency validates the robustness of the identified memory patterns, while the application

of DFA-2 is further justified by its theoretical capacity to filter out polynomial trends that can

confound standard ACF estimates in non-stationary hydro-climatic time series.

(4) Sensitivity of PSA Spectral Exponent (f)

We tested the stability of ff by varying the polynomial detrending order (linear, quadratic, cubic)

and frequency cutoffs.

*  Result: While the absolute magnitude of S shifts slightly with detrending order, the spatial

ranking of memory strength remains highly consistent (Spearman’s p > 0.92) across all
basins (Table E4). As shown in Fig. E2, the relative differences between basins (DRB <
JIR < ARB) are preserved regardless of parameter choice.
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Figure E2. Sensitivity of spectral exponent f to detrending parameters. (a, b) Histograms showing

bounded differences between baseline and conservative/aggressive settings. (¢, d) Scatter plots

demonstrating high spatial correlation (» > 0.94) between baseline and alternative settings,

confirming that spatial patterns are methodologically robust.

Table E4. Sensitivity of £ estimates to detrending parameters (Representative Pixels).

Basin Pixel ID Detrending Freq. Cutoff Window g Estimate 95% CI
DRB Pixel A (DRB) Linear 0.005 20% 1.32 [1.18, 1.46]
DRB Pixel A(DRB)  Quadratic 0.005 20% 1.47 [1.35,1.59]
DRB Pixel A (DRB) Cubic 0.005 20% 1.54 [1.40, 1.68]
DRB Pixel A(DRB)  Quadratic 0.001 20% 1.50 [1.36, 1.64]
DRB Pixel A(DRB)  Quadratic 0.01 20% 1.43 [1.29,1.57]
DRB Pixel A(DRB)  Quadratic 0.005 10% 1.45 [1.28, 1.62]
DRB Pixel A(DRB)  Quadratic 0.005 30% 1.49 [1.38,1.60]
ARB Pixel B(ARB)  Quadratic 0.005 20% 1.96 [1.84,2.08]
ARB Pixel B (ARB) Linear 0.005 20% 1.82 [1.69, 1.95]
ARB Pixel B (ARB) Cubic 0.005 20% 2.03 [1.90, 2.16]
JJR  Pixel C(JJR)  Quadratic 0.005 20% 1.65 [1.52,1.78]
JJR  Pixel C (JIR) Linear 0.005 20% 1.53 [1.40, 1.66]
JJR  Pixel C (JIR) Cubic 0.005 20% 1.71 [1.57,1.85]

Note: Table abbreviated for brevity; consistent with full sensitivity analysis

Appendix F: Detailed Driver Analysis for ARB and JJR Basins

This appendix provides detailed driver analysis results for the Anning River Basin (ARB) and

Jiangjia Ravine (JJR), supplementing the main text.

(1) Anning River Basin (ARB)

Dynamic Drivers (Fig. F1): The ARB exhibits pronounced scale dependence. Boruta
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776 analysis identifies actual evapotranspiration (AE) as the exclusive dominant driver during
77 the early rainy season (May). This shifts to Relative Humidity (rhu) and Air Temperature
778 (T2m) during the full rainy season. At decadal scales, the hierarchy stabilizes around rhu,
779 T2m, and NDVI, reflecting the basin's strong vegetation-climate coupling.

780 *  Static Drivers (Fig. F2): At short scales, Bulk Density (pp) is influential (40.7 %
781 importance). However, at multi-year scales (10-20 years), Clay content becomes
782 dominant (22.5 %), surpassing topographic factors, which confirms the “Deep Soil
783 Buffering” mechanism in this humid basin.
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786  Fig. F1 Feature selection results from the Boruta algorithm, showing the variable importance (Z-
787  scores) of dynamic predictors controlling daily soil moisture in the Anning River Basin at monthly,
788 seasonal, annual, and decadal scales.

789
cIaEv]- 36.1% pb 40.7% pb { I 38 0%
pb - 30.3% sand 17.6% clay - n— 17.9%
silt - 12.1% clay 12.8% sand - I———— 17.8%
sand - 10.1% %- 9.6% Silt - I— 10.6%
B 5.5% silt 8.7% Rainy | TWI- mm6.0%
Asp+  33% M TWI- 6.3% B+ W 59%
WL 2ok, M| Aspi aaw _ Season] aspimmask  Oct
0 10 20 30 40 0 10 20 30 40 50 0 10 20 30 40
b - 431% pb 45.1% pb { I 39 6%
o sand- 17.0% sand- 16.2% sand - I—— 24.1%
5 siltd 12.3% clay < 12.1% clay - m—— 12.5%
© clay 11.9% silt+ 9.0% silt < m——7.8%
& E 6.8% oy | o B 8.5% Ak - 7.2%
Asp 4.9% Sp - 4.7% Sp 5.4%
> ARl dow season | w14 [ 4.4% . 1year | Tl mmsav 5 years
0 10 20 30 40 50 0 20 40 0 10 20 30 40
pb 40.6% pb4 42.2% pb - I 44.0%
sand o 24.0% sand - 21.9% sand - IEE—— 22.5%
clay A 16.1% clay 17.8% Clay - IE— 15.2%
silt 6.9% ;{- 6.9% F —.7%
B 6.2% silt 4.9% Asi 4 -4.9%
Asp A 3.7% Asp+ 3.9% sSp - ME3.6%
WL 25 10years | TWi m2d% 15years | TWil mz2.i% 20 years
0 10 20 30 40 50 0 10 20 30 40 50 0 20 40
790 Relative Importance (%)

791  Fig. F2 Feature selection results from the Random Forest algorithm, showing the relative
792  importance of static variables controlling daily soil moisture in the Anning River Basin at multiple
793  timescales (monthly to decadal).
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Dynamic Drivers (Fig. F3): In this rapid-response basin, T2m and AE dominate the rainy
season. Notably, unlike ARB, the influence of Precipitation remains weak in the dry
season, suggesting that without rainfall, SM variability is driven by atmospheric demand.
Static Drivers (Fig. F4): Topography exerts overwhelming control. Topographic
Wetness Index (TWI) explains 38.5 % of variability in May and rises to 65.6 % at the 20-
year scale. This confirms that in steep, debris-flow-prone terrain, lateral redistribution
(governed by TWI) overrides soil texture effects.
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Fig. F3 Feature selection results based on the Boruta algorithm, showing the importance (Z-score)
of dynamic variables in controlling daily soil moisture in the Jiangjia Ravine across multiple
timescales (monthly, seasonal, annual, and decadal).
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Fig. F4 Feature selection results using the Random Forest algorithm, showing the relative

importance of various static variables in controlling daily soil moisture in the Jiangjia Ravine across
different time scales.
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Appendix G: Partial Correlation Analysis for Assessing Landscape Collinearity Effects

To evaluate the robustness of soil texture-SMM associations against potential confounding by

topographic variables (the “catena effect”), we conducted partial correlation analysis following the

methodology of Kim (2015).

1. Methods

For each temporal scale (1-year, 5-year, 10-year, 20-year), we calculated:

(1) Raw Pearson correlation between Clay content and spectral exponent /5

(2) Partial correlation controlling for Slope and TWI

(3) The proportion of correlation attributable to topographic confounding: (Fraw - Fpartial) / Traw X

100 %
2. Results
Table G1. Partial correlation analysis results for Clay-SMM associations

Time Raw r (Clay- Partial r (controlling Slope, Confounding % p-value
Scale )} TWI) (partial)
1-Year 0.38 0.21 44.7 % <0.01
5-Year 0.52 0.34 34.6 % <0.01
10-Year 0.61 0.43 29.5% <0.01
20-Year 0.58 0.41 293 % <0.01

3. Interpretation

(1) Soil texture maintains statistically significant partial correlations with SMM across all

temporal scales, even after controlling for topographic variables.

(2) The proportion of correlation attributable to topographic confounding decreases from ~45%

at the 1-year scale to ~29% at decadal scales, suggesting that the pedological signal becomes more

distinct at longer timescales.

(3) These results support the interpretation that soil hydraulic properties (proxied by clay

content) exert genuine associations with long-term SMM, though landscape collinearity contributes

substantially to the observed patterns.

Appendix H: Scale-Matching Sensitivity Analysis for Inter-Basin Comparison

A potential concern in comparing the large Anning River Basin (ARB, ~11,150 pixels) with
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839  the small Jiangjia Ravine (JJR, ~49 pixels) is that the stronger soil moisture memory (SMM)
840  observed in the ARB could be an artifact of spatial averaging over a larger domain, which tends to
841 smooth out high-frequency variability. To address this and verify that the observed differences
842  reflect intrinsic hydrological properties rather than basin size disparities, we conducted a scale-
843  matching resampling experiment.

844 We randomly extracted 1,000 sub-regions from the ARB, with each sub-region restricted to
845  exactly 49 pixels to match the spatial extent of the JJR. The mean spectral exponent (5) was then
846  calculated for each of these spatially constrained sub-regions. The results indicate that even at this
847  reduced spatial scale, the ARB sub-regions exhibit a mean f of 1.48 + (.12, which remains
848  consistently higher than the basin-wide f of the JJR (1.39). This finding confirms that the stronger
849  memory in the ARB is not a statistical artifact of basin size, but rather stems from genuine
850  differences in landscape characteristics, such as deeper soil profiles and denser vegetation cover.

851

852  Code and data availability

853 Daily soil moisture, precipitation, and Normalized Difference Vegetation Index (NDVI) data
854  were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/, Song et al.,
855  2022; Xie et al., 2019). Meteorological variables, including near-surface air temperature at 2 m,
856  wind speed at 10 m, relative humidity, and actual evapotranspiration, were sourced from the Climate
857  Data Store (https://cds.climate.copernicus.eu/, Hersbach et al., 2023). Topographic features—
858 elevation, slope, aspect, and the Topographic Wetness Index (TWI)—were extracted from the China
859  DEM, downloaded via the Geospatial Data Cloud (https://www.gscloud.cn/). Soil texture data (sand,
860  silt, and clay) were obtained from SoilGrids (https://soilgrids.org/). The dataset of daily soil
861  moisture and its driving factors (static and dynamic) in three watersheds is available at
862  https://doi.org/10.5281/zenodo.17510469 (Zhang, 2025). All code used in this study are

863  implemented in R and are available at https://doi.org/10.5281/zenodo.17510622 (Zhang, 2025).
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