
1 

Scale-Dependent Transition in Soil Moisture Memory and Its Environmental Controls in 1 

Complex Mountain Terrain  2 

Jun Zhang1,2,3, Songtang He1*, Yong Li1, Yuan Xue2 3 

1 Key Laboratory of Mountain Hazards and Engineering Resilience /Institute of Mountain Hazards 4 

and Environment, Chinese Academy of Sciences, Chengdu 610041, China 5 

2 State Key Laboratory of Hydroscience and Engineering; Department of Hydraulic Engineering, 6 

Tsinghua University, Beijing 100084, China 7 

3 University of Chinese Academy of Sciences, Beijing 100049, China 8 

Correspondence: Songtang He (hest@imde.ac.cn) 9 

 10 

Abstract: Soil moisture memory (SMM) defines the antecedent wetness states that modulate 11 

catchment responses to meteorological triggers, serving as a critical determinant of background 12 

hydraulic susceptibility. However, its multi-scale characteristics and environmental drivers remain 13 

poorly understood in complex terrain. This study characterizes SMM dynamics across daily-to-14 

interannual scales using daily data (2003 – 2022) from three hazard-prone watersheds in 15 

southwestern China (Dali River, Anning River, and Jiangjia Ravine). By integrating Power 16 

Spectrum Analysis, Detrended Fluctuation Analysis (DFA-2), and a spatial attribution modeling 17 

framework, we identify a distinct scale-dependent transition in SMM persistence and its controls. 18 

Results revealed that while memory intensity generally weakened with scale, humid catchments 19 

exhibited a robust “inherent persistence” regime extending to multi-year scales. Crucially, feature 20 

importance analysis uncovered a structural transition at approximately the 5-year scale: atmospheric 21 

variables and vegetation dominated short-term variability, whereas soil properties and topography 22 

governed the system’s long-term capacity to integrate low-frequency signals. Mechanistically, this 23 

marks a shift from event-driven hydraulic responses to background storage trends regulated by deep 24 
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soil buffering. These findings provide a basis for distinguishing event-scale hydraulic 25 

preconditioning from long-term background susceptibility, offering a conceptual framework for 26 

incorporating operational persistence horizons into hierarchical hazard assessment strategies.    27 

   28 

Keywords: Soil moisture memory; Driving Factor; Persistence horizon; Power spectrum analysis; 29 

Detrended fluctuation analysis 30 

 31 

1. Introduction 32 

Soil moisture memory (SMM) is a critical driver of mountain hazards, including debris flows, 33 

landslides, and soil erosion (An et al., 2025; Hu et al., 2015; Moragoda et al., 2022). Mechanistically, 34 

elevated soil moisture reduces effective stress and shear strength by increasing pore water pressure, 35 

thereby predisposing slopes to instability. While precipitation acts as the immediate trigger, 36 

antecedent soil moisture conditions the landscape’s susceptibility by determining how close the 37 

system is to its critical failure thresholds (Bogaard et al., 2018; Cai et al., 2019). Beyond this 38 

immediate mechanical role, the persistence of SMM, quantified by its memory length, theoretically 39 

defines the timescale over which antecedent signals persist, providing essential information on 40 

hydraulic preconditioning for early warning systems (Huang et al., 2022; Wicki et al., 2020). 41 

However, translating this theoretical memory into operational forecasts requires further validation 42 

against historical hazard events.  43 

Empirical evidence from various hazards supports this mechanistic understanding. Specifically, 44 

landslide probability increases exponentially when soil moisture (a proxy for pore-water pressure 45 

saturation) exceeds a critical threshold of 30 ~ 40 % (Mirus et al., 2018; Wicki et al., 2021). While 46 
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these studies define the critical state, quantifying the SMM persistence provides the essential 47 

temporal window required to estimate how long antecedent rainfall continues to drive the system 48 

toward this saturation threshold (Mirus et al., 2018). For debris flows, antecedent soil moisture 49 

conditions determine not only the likelihood of initiation but also the potential runout distance (Coe 50 

et al., 2008). Furthermore, under identical rainfall intensity, the soil loss rate can be 3 to 5 times 51 

higher under wet antecedent conditions than under dry conditions (Ran et al., 2012). Collectively, 52 

this evidence highlights the fundamental importance of quantifying SMM to understand how 53 

antecedent conditions modulate hazard initiation thresholds. Nonetheless, a comprehensive, multi-54 

scale characterization of how SMM evolves from monthly to seasonal, annual, and multi-year scales 55 

remains limited (Entin et al., 2000; Nicolai‐Shaw et al., 2016; Zhang et al., 2025). Unlike immediate 56 

meteorological triggers, this multi-scale memory reflects the system’s inertia and defines the 57 

baseline hydrological state of the catchment in response to external forcing. However, elucidating 58 

its drivers is challenging due to the combined effects of diverse factors—topographic, pedological, 59 

meteorological, and vegetation (Brocca et al., 2007; Dong et al., 2018; Schönauer et al., 2024; Varga 60 

et al., 2020). Their strong interactions further complicate the disentanglement of individual and joint 61 

effects (Peng et al., 2023).     62 

Previous studies have explored driving factors of soil moisture variability at discrete temporal 63 

scales (Blanka-Végi et al., 2025; Cho et al., 2014; Fang et al., 2016; Kursa et al., 2010), identifying, 64 

for instance, wilting point and evapotranspiration as key at the annual scale (Blanka-Végi et al., 65 

2025) or vegetation type at the monthly scale (Fang et al., 2016). However, by focusing on 66 

individual scales, these studies have seldom established a systematic hierarchy of the relative 67 

importance between static and dynamic factors across continuous temporal scales. This lack of a 68 
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unified, scale-explicit framework prevents a mechanistic understanding of SMM persistence and 69 

limits the development of hazard assessment models capable of distinguishing background 70 

hydraulic loading from immediate event triggering (Li et al., 2025; Zhang et al., 2024).  71 

While previous studies have established the existence of soil moisture memory (SMM) and its 72 

general scale dependence at global or continental scales (e.g., Entin et al., 2000; Nicolai‐Shaw et 73 

al., 2016), a critical gap persists in mechanistically linking this multi-scale memory to specific 74 

hydrological processes and practical hazard prediction within the complex terrain where these 75 

hazards predominantly occur. To bridge this gap, this study leverages a two-decade-long daily soil 76 

moisture dataset across three contrasting, hazard-prone watersheds with the following objectives: 77 

(1) to quantify the scale-transition threshold and hierarchical drivers of SMM; (2) to establish a 78 

quantitative hierarchy of driving factors across temporal scales; and (3) to develop a conceptual 79 

framework linking multi-scale SMM to differentiated hazard preconditioning mechanisms. While 80 

direct validation against site-specific hazard inventories is beyond our current scope due to the 81 

spatial resolution mismatch (1-km pixels vs. slope-scale failures), we synthesize our findings with 82 

published hazard-SMM relationships (e.g., Mirus et al., 2018; Wei et al., 2025) to demonstrate the 83 

potential for SMM-informed early warning systems. The paper is structured as follows: Section 2 84 

describes the study areas, data, and methods. Section 3 presents the results, which are discussed in 85 

Section 4. Finally, Section 5 provides the main conclusions.   86 

2. Materials and Methods  87 

This study investigates soil moisture (SM) dynamics and their drivers across three hydro-88 

climatically and geomorphologically distinct watersheds: the Dali River Basin, Anning River Basin, 89 

and Jiangjia Ravine. We incorporated static and dynamic variables—spanning topography, soil 90 
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properties, meteorological conditions, and vegetation indices—from multiple authoritative datasets. 91 

SM temporal memory and persistence horizons were quantified using Power Spectral Analysis (PSA) 92 

and second-order Detrended Fluctuation Analysis (DFA-2), respectively, while the Boruta–Random 93 

Forest algorithm was employed to quantify variable importance across spatial and temporal scales. 94 

The overall research framework is illustrated in Fig. 1.  95 

 96 

 97 

Fig. 1 Research framework of this study. The workflow integrates multi-source data processing, 98 

memory quantification, and driver identification. Key pre-processing steps include outlier removal 99 

and stationarity checks (ADF test) to ensure time stability. Soil moisture memory is quantified 100 

using Power Spectrum Analysis (PSA) and Detrended Fluctuation Analysis (DFA-2), followed by 101 

a multi-scale driver analysis using the Boruta algorithm across monthly to decadal aggregation 102 

windows.  103 

 104 
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2.1 Study Area 105 

We selected three hydro-climatically distinct watersheds in southwestern China to represent a 106 

spectrum of mountain hazard environments (Fig. 2; detailed physiographic characteristics are 107 

provided in Appendix B and Table B1).    108 

 109 

 110 

Fig. 2 Location of the study areas: (a) the Dali River Basin (DRB), (b) the Anning River Basin, (c) 111 

the Jiangjia Ravine.  112 

 113 

 Dali River Basin (DRB): Semi-Arid Erosion-Prone System. Located on the Chinese 114 

Loess Plateau (3,906 km2), the DRB features steep loess terrain (avg. slope 17°) and 115 

highly erodible soils (silt > 60 %). The climate is semi-arid continental, with precipitation 116 

highly concentrated in summer storms (> 70 % from May to September), leading to 117 

persistent soil moisture deficits and severe erosion rates (Liu et al., 2020; Zhang et al., 118 
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2023).  119 

 Anning River Basin (ARB): Complex Mountain-Valley System. Situated in 120 

southwestern Sichuan (11,150 km2), the ARB is characterized by dramatic relief (900–121 

4,750 m) and vertical climatic zonation. It operates under a humid subtropical-monsoon 122 

climate (~ 1,070 mm rainfall) with dense forest cover (Chen et al., 2024). Consequently, 123 

soil moisture dynamics are strongly regulated by vegetation phenology and the buffering 124 

capacity of deep forest soils (Yin et al., 2020).  125 

 Jiangjia Ravine (JJR): Debris-Flow Dominated Catchment. A small (48.6 km2) but 126 

extremely steep catchment in the Xiaojiang fault zone. Intense monsoon rainfall (> 85 % 127 

in May–Oct) combined with fractured geology drives rapid hydrological response cycles: 128 

rapid saturation during storms followed by quick drainage (Yang et al., 2023). This makes 129 

JJR a classic environment for high-frequency debris flows (Wei et al., 2025).  130 

2.2 Data Sources and Preprocessing  131 

We constructed a dataset comprising 12 static and dynamic covariates (Table 1) alongside daily 132 

soil moisture (SM) data (1-km resolution) for the period 2003–2022.    133 

Soil Moisture Dataset: We utilized the all-weather 1-km daily soil moisture (SM) product 134 

developed by Song et al. (2022) for the period 2003–2022. Unlike raw reanalysis data or coarse 135 

passive microwave retrievals, this dataset employs a machine learning-based spatiotemporal 136 

reconstruction framework to generate seamless high-resolution estimates. Specifically, it 137 

downscales and fuses coarse-resolution passive microwave observations (AMSR-E/2) with high-138 

resolution optical/thermal land surface parameters (MODIS) and meteorological forcing (ERA5-139 

Land), using a random forest algorithm trained on extensive ground observations. 140 
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Validation and Uncertainty: This product was selected for its capacity to resolve hillslope-141 

scale heterogeneity in complex terrain, a critical requirement for our hazard-focused analysis. 142 

Comprehensive validation against approximately 2,400 in-situ stations across China demonstrates 143 

robust accuracy, with an average correlation coefficient (R) of 0.89 and an unbiased Root Mean 144 

Square Error (ubRMSE) of 0.053 m3/m3 (Song et al., 2022). While we acknowledge the inherent 145 

uncertainties associated with microwave retrieval in mountainous regions (e.g., geometric distortion 146 

and shadowing effects), this dataset represents the state-of-the-art balance between spatial resolution 147 

and temporal continuity. Furthermore, since our study focuses on the temporal persistence features 148 

(spectral exponents) rather than absolute magnitudes, the potential systematic bias in complex 149 

terrain has minimal impact on the derived memory metrics (see Appendix C for further discussion 150 

on data reliability and preprocessing). 151 

 152 

Table 1. Static and dynamic covariates used in the final modeling framework and the target variable 153 

(soil moisture, SM). 154 

Types Variable 

(abbreviation) 

Description Units Source 

Static Slope (β) Rate of change of elevation at each pixel 

(DEM-derived) 

° Geospatial 

Data Cloud 

(DEM) Aspect (Asp) Orientation of the steepest downslope 

(DEM-derived) 

° 

Topographic 

Wetness Index 

(TWI) 

Potential wetness index based on slope 

and upslope contributing area (DEM-

derived) 

- 

Soil texture 

(Sand, Silt, Clay) 

Mass fractions of soil particle-size classes g/kg Soil Grids 

 Normalized 

Difference 

Vegetation Index 

(NDVI) 

Vegetation greenness from red and NIR 

reflectance 

- Gao et al., 

2022 

Dynam

ic 

Precipitation 

(Prec.) 

Daily total precipitation mm Xie et al., 

2019 

Surface wind 

speed (WS) 

Mean daily wind speed at 10 m height m/s ERA5 

(Hersbach 
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Relative 

humidity (rhu) 

Ratio of actual to saturated vapor pressure % et al., 

2023) 

2m air 

temperature 

(T2m) 

Daily mean air temperature at 2 m height ℃ 

Actual 

evaporation (AE) 

Daily actual evapotranspiration mm/d

ay 

Target Soil moisture 

(SM) 

Volumetric soil water content cm3/c

m3 

Song et al., 

2022 

 155 

Auxiliary static variables (e.g., soil texture, TWI) represent basin physiography, while dynamic 156 

variables (e.g., precipitation, NDVI) capture climate-vegetation interactions. All data were 157 

resampled to a uniform 1-km grid. Preprocessing included linear interpolation for short gaps (≤ 3 158 

days), outlier removal, and stationarity checks using the Augmented Dickey-Fuller test (details in 159 

Appendix C). 160 

2.3 Quantifying Soil Moisture Memory (PSA and DFA-2)   161 

To characterize the multi-scale persistence of soil moisture, we employed two complementary 162 

spectral techniques. Crucially, given the 20-year length of our dataset (2003–2022), distinct 163 

statistical limitations exist for resolving low-frequency dynamics. Following the standard signal 164 

processing constraint which requires the time series length (N) to be significantly longer than the 165 

timescale of interest (T) for robust estimation (typically N ≥ 3T), we explicitly distinguish between 166 

two regimes: 167 

1. Reliable Memory Window (T ≤ 7 years): Timescales where sufficient realizations 168 

(approx. N/3) exist to statistically verify dynamic persistence and oscillatory behavior. 169 

2. Low-Frequency Background State (T > 7 years): The lowest frequency components, 170 

which are interpreted as basin storage trends or decadal climatic regime shifts, rather than 171 

verifiable memory cycles. 172 
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First, Power Spectrum Analysis (PSA) was utilized to diagnose the strength of temporal 173 

memory in the frequency domain. By estimating the spectral exponent (β), PSA effectively 174 

distinguishes memory-driven processes (red noise, β > 0) from random meteorological inputs (white 175 

noise, β ≈ 0). In this study, β values derived within the Reliable Memory Window (seasonal to ~7 176 

years) are used to quantify interannual persistence, whereas values in the Low-Frequency 177 

Background (> 7 years) serve only as indicators of the quasi-static mean-state stability. 178 

Second, to account for the non-stationarity inherent in long-term hydrological records, we 179 

applied the second-order Detrended Fluctuation Analysis (DFA-2). Unlike standard autocorrelation, 180 

DFA-2 filters out polynomial trends to reveal intrinsic correlation structures. Cross-validation with 181 

the standard Autocorrelation Function (ACF) further confirms the robustness of these DFA-2 182 

metrics (see Fig. E1 in Appendix). We specifically identified “persistence horizons”—time windows 183 

where the fluctuation exponent (α) exceeds 0.9. Consistent with the PSA framework defined above, 184 

persistence horizons extending beyond the 7-year threshold are classified as “Background 185 

Preconditioning” baselines, distinct from the active dynamic memory observed at shorter scales. 186 

Detailed mathematical formulations, including the phase-randomization significance testing, are 187 

provided in Appendix A. 188 

2.4 Identifying Predictors via a Spatial Attribution Modeling Framework    189 

To determine the hierarchical importance of environmental predictors, we utilized the Boruta 190 

feature selection algorithm wrapped around a Random Forest regressor. Given that SMM is a 191 

temporal statistic derived from time series, while landscape attributes are spatially heterogeneous, 192 

we constructed a spatial attribution framework to link these dimensions.     193 

In this approach, the temporal memory metric calculated for each pixel (e.g., the spectral 194 

https://doi.org/10.5194/egusphere-2025-6014
Preprint. Discussion started: 6 January 2026
c© Author(s) 2026. CC BY 4.0 License.



11 

exponent β) serves as the spatial response variable. This target was regressed against a suite of 195 

spatially distributed predictors, which were categorized into two groups:   196 

1. Static variables: Landscape properties that remain constant over the study period (e.g., 197 

soil texture, slope, TWI). 198 

2. Aggregated dynamic variables: Time-varying meteorological and vegetation data 199 

aggregated to match the temporal scale of the memory metric (e.g., mean decadal NDVI 200 

or total precipitation).  201 

This construction allows us to quantify how spatial heterogeneity in static and dynamic 202 

boundary conditions correlates with the temporal persistence of soil moisture. Feature importance 203 

was validated using spatial block cross-validation to account for spatial autocorrelation (details in 204 

Appendix D).   205 

It is essential to emphasize that the “Space-for-Time” framework employed here identifies 206 

statistical associations rather than establishing causal relationships. The Boruta-RF algorithm ranks 207 

predictors by their capacity to explain spatial variance in temporal memory metrics, but 208 

fundamentally cannot distinguish between: (i) direct causal drivers, (ii) proxy variables correlated 209 

with unmeasured causal factors, or (iii) response variables involved in bidirectional feedback loops. 210 

Furthermore, the physical collinearity inherent in mountain landscapes—often termed the 211 

“catena concept”—means that soil texture and topography co-evolve along hillslopes: steep upper 212 

slopes typically develop shallow, coarse-textured soils with rapid drainage, whereas convergent 213 

lower slopes accumulate deep, clay-rich deposits with enhanced water retention. Consequently, high 214 

importance scores for both Slope and Clay content (Section 3.3) likely reflect this coupled landscape 215 

structure rather than fully independent effects. 216 
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To partially address these limitations, we: (1) interpret the identified associations through the 217 

lens of established hydrological theory (e.g., linear reservoir models; Section 4.1), providing 218 

mechanistic plausibility for the observed statistical patterns; and (2) conduct partial correlation 219 

analysis controlling for topographic variables (Appendix G) to assess the robustness of soil-SMM 220 

associations against landscape confounding. However, readers should note that our framework is 221 

designed to generate testable hypotheses about SMM predictors rather than to confirm causal 222 

mechanisms, which would require controlled experiments or instrumental variable approaches 223 

beyond the scope of remote sensing analysis.  224 

3. Results 225 

3.1 Power Spectrum Analysis of SM Memory 226 

It is important to note that while spectral analyses are presented up to the 20-year scale to 227 

illustrate trends, quantitative interpretations are explicitly distinguished based on the record length 228 

constraint. We define the 1–7 year range as the “Reliable Spectral Window” for dynamic memory 229 

estimation (N ≥ 3T). Results beyond this threshold (> 7 years) are interpreted as the “Low-Frequency 230 

Background State,” reflecting the system’s convergence to equilibrium rather than oscillatory 231 

persistence.    232 

Power spectrum analysis revealed the scale-dependent characteristics of soil moisture memory 233 

(SMM) across the three basins (Fig. 3). All reported spectral exponents (β) are presented as the mean 234 

estimate ± the 95 % confidence interval derived from the log–log regression. Extensive sensitivity 235 

tests (detailed in Appendix E, Table E4 and Fig. E2) further confirm that these spectral patterns are 236 

robust to variations in detrending orders and frequency cutoffs, with the spatial ranking of memory 237 

strength remaining highly consistent (Spearman’s ρ > 0.92) across parameter sets.          238 
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At short timescales (within one year), memory during individual rainy season months was 239 

consistently weaker than that of the integrated rainy season period, whereas dry season months 240 

showed stronger memory than the overall dry season aggregate (Fig. 3a–1, b–1, c–1). 241 

Over longer intervals (1-20 years), SMM declined progressively. Within the reliable window, 242 

the hierarchical trend generally follows β1-yr＞β5-yr. Beyond this point, in the low-frequency 243 

background zone (> 7 years), the metrics stabilized, capturing the basin's static storage baseline (Fig. 244 

3a–2, b–2, c–2).  245 

 246 

 247 

Fig. 3 Power spectrum analysis of soil moisture memory in the (a) Dali River Basin (DRB), (b) 248 

Anning River Basin (ARB), and (c) Jiangjia Ravine (JJR). Left panels show normalized power 249 

spectra at intra-annual scales (months and aggregated seasons). Right panels show inter-annual 250 

spectra (1 ~ 20 years). The spectral exponent (β, mean ± 95% CI) quantifies memory strength, with 251 

higher values indicating stronger long-term persistence. The gray shaded region (Time Scale > 1825 252 

days) denotes where spectral estimation is limited by the 20-year data record; results here should be 253 

interpreted as low-frequency trends rather than robust spectral features. CI, confidence interval.  254 

 255 

In the Dali River Basin (DRB), the full rainy season memory (β = 2.392 ± 0.105), calculated 256 
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over the continuous period from June to September, was significantly stronger than that of the initial 257 

month (June, β = 1.889 ± 0.098). In contrast, the integrated dry season memory (β = 1.028 ± 0.075) 258 

was considerably weaker than that of October (β = 2.378 ± 0.112) (Fig. 3a-1). At interannual scales, 259 

SMM systematically declines from β = 1.355 ± 0.089 (1-year) to β = 1.000 ± 0.081 (20-year) 260 

(background state) (Fig. 3a-2).  261 

In the Anning River Basin (ARB), the integrated rainy season memory (β = 2.190 ± 0.101) is 262 

slightly stronger than that of May (β = 2.179 ± 0.095), peaking in October (β = 2.698 ± 0.121) (Fig. 263 

3b-1). At interannual scales, the ARB had the highest SMM among the basins, with a mean β of 264 

1.468 ± 0.084 — exceeding the DRB (1.107 ± 0.072) and JJR (1.394 ± 0.079) — and decreased 265 

gradually from 1.964 ± 0.096 (1-year) to 1.265 ± 0.074 (20-year) (background state) (Fig. 3b-2).   266 

In the Jiangjia Ravine (JJR), SMM peaks during the rainy season (May: β = 2.492 ± 0.114; full 267 

rainy season: β = 2.629 ± 0.118), whereas it weakened during the dry season (Nov: β = 1.733 ± 268 

0.085; full dry season: β = 1.404 ± 0.076) (Fig. 3c‑1). At interannual scales, the JJR exhibited an 269 

intermediate level of SMM — stronger than that of the DRB but weaker than the ARB — with β 270 

values decreasing from 1.654 ± 0.090 (1‑year) to 1.191 ± 0.073 (20‑year) (background state) (Fig. 271 

3c‑2).    272 

3.2 DFA-2 Analysis of SM Persistence Horizons   273 

Based on the memory characteristics identified by PSA, we next quantified the associated 274 

persistence horizons using DFA-2. All reported α values in the high-memory range (α ≥ 0.9) were 275 

statistically significant (p < 0.01) based on phase-randomization surrogate testing (see Appendix A). 276 

Soil moisture persistence exhibited distinct spatiotemporal patterns across the three basins (Fig. 4). 277 

In the Dali River Basin (DRB), persistence was short during the early rainy season (24-30 days in 278 
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June) but extends substantially through the full rainy season (41-122 days); in contrast, October 279 

showed almost no persistence (Fig. 4a-1). During the dry season, persistence increased to 61-95 280 

days, indicating a stronger influence of soil properties under limited rainfall. Beyond the seasonal 281 

scale, the characteristic persistence horizon increased moderately from 31-73 days (1-year) to 174-282 

429 days (20-year), peaking between 10 and 15 years (Fig. 4a-2).     283 

The Anning River Basin (ARB) exhibited the longest persistence horizons across all temporal 284 

scales, with all reported ranges being statistically significant (p < 0.05) based on the DFA-2 285 

significance testing procedure described in Section 2.4 (2). At the monthly scale, persistence ranged 286 

from 17-31 days in May to 25–31 days in October, and these durations increased markedly at the 287 

seasonal scale—reaching 37-184 days during the rainy season and 47-76 days during the dry season 288 

(Fig. 4b-1). Beyond the seasonal scale, the persistence horizon rose sharply from 40-71 days (1-289 

year) to 236-728 days (20-year) (Fig. 4b-2). This extended memory window, particularly at the 290 

multi-year scale, implies that the basin's soil moisture state tracks the low-frequency signals of inter-291 

annual climate oscillations and vegetation dynamics (i.e., red noise spectra of forcing). This 292 

persistence indicates a shift in the hydrological equilibrium rather than physical water retention, 293 

thereby conditioning the baseline hydrological state for hazard susceptibility over multiple years.     294 

 295 
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 296 

Fig. 4 DFA-2 analysis of soil moisture persistence across the three basins. Left panels show seasonal 297 

scales; Right panels show inter-annual scales (1, 5, 10, 15, and 20 years). Solid lines represent the 298 

DFA-2 fluctuation exponent (α), calculated using a window size range of s ∈ [10, N/4] days (where 299 

N is the series length). The labeled time windows (e.g., “236-728 d”) define the characteristic 300 

persistence horizons—the range of timescales over which significant memory (α ≥ 0.9) is observed. 301 

Sensitivity tests confirming the robustness of these horizons against window size variations (e.g., 302 

N/8) are detailed in Appendix E. d: days.     303 

 304 

In the Jiangjia Ravine (JJR), rainy season persistence was the shortest among the three basins 305 

(18-31 days in May; 33-91 days when aggregated), indicating a rapid response to precipitation 306 

inputs (Fig. 4c-1). In contrast, dry season persistence (60-125 days) is longer than that in the ARB 307 

but remains shorter than in the DRB. At interannual scales, persistence horizons exhibit remarkable 308 
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stability, ranging from 78-171 days (1-year) to 129-367 days (20-year) (Fig. 4c-2), suggesting a 309 

consistent memory effect across long-term timescales.   310 

3.3 Driving Factor Selection 311 

The Boruta Random Forest Algorithm (BRFA) was employed to evaluate the statistical 312 

associations between dynamic variables and SMM across multiple timescales, providing 313 

quantitative insights into the factors most strongly correlated with SM variability at different 314 

temporal resolutions (Fig. 5). Bootstrap resampling (n = 1000) confirmed that the top 3 predictors 315 

at each scale maintained significance across > 95 % of iterations, whereas tentative variables showed 316 

high variability (CV > 40 %), validating our interpretation focus on confirmed factors.     317 

At the monthly scale, June—the onset of the rainy season—showed no distinct dominant 318 

predictor; however, when the entire rainy season (Jun-Sep) is considered, relative humidity (rhu), 319 

NDVI, actual evaporation (AE), and 2-m air temperature (T2m) emerged as the strongest statistical 320 

predictors of SMM spatial patterns. During the dry season (Oct-May), the hierarchy of predictive 321 

associations shifted notably. In October, NDVI, AE, rhu, and T2m maintained strong correlations 322 

with SMM, whereas precipitation and wind speed exhibited limited predictive power. This shift 323 

likely reflects the transition from moisture-limited to energy-limited evapotranspiration regimes.  324 

 325 
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 326 

Fig. 5 Scale-dependent predictive importance of environmental drivers. (a) Dynamic drivers (Boruta 327 

Z-scores), where green boxes denote confirmed variables (p < 0.01). (b) Static drivers (Random 328 

Forest Relative Importance, %). Note: Panels (a) and (b) use different metrics (unbounded Z-scores 329 

vs. normalized percentages); thus, absolute magnitudes are not directly comparable.   330 

 331 

At longer timescales, the pattern of statistical associations underwent a progressive transition. 332 

On an annual scale, precipitation and wind speed—whose association with SMM stems from event-333 

scale forcing—declined in importance as temporal averaging smooths out their high-frequency 334 

variability. By the 5-year scale, these climatic variables were fully excluded from the set of 335 

significant predictors, leaving NDVI, rhu, AE, and T2m as the variables most strongly associated 336 

with SMM variability. Over decadal timescales (10–20 years), the associations of NDVI, rhu, and 337 
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T2m with SMM further intensified, highlighting their persistent correlation with long-term SM 338 

dynamics.    339 

The relative importance of static factors also exhibited distinct temporal patterns (Fig. 5b). 340 

During June and the rainy season, bulk density (ρb) and aspect (Asp) showed the strongest 341 

associations with SM. At the annual scale, the pattern shifted slightly toward stronger topographic 342 

associations (TWI). However, over longer timescales, pedological factors became increasingly 343 

prominent in the predictor hierarchy.   344 

Quantitative analysis of the feature importance revealed a distinct structural break at the 5-year 345 

scale (Table 2 and Fig. 5). At the 1-year scale, the system showed the strongest association with 346 

TWI (28.7 %), consistent with lateral redistribution processes. However, at the 5-year scale, TWI 347 

importance collapsed (to 13.5 %), and the hierarchy shifted to a stable group of Soil Texture and 348 

Slope (~ 19 %). We therefore operationally define the 5-year scale as the critical transition threshold, 349 

as it marks the precise timescale where the association pattern transitions from TWI-dominated 350 

(‘Fast-Response Regime’) to Soil-dominated (‘Background-Storage Regime’).  351 

It is important to note that these associations do not establish causal relationships. The Boruta-352 

RF algorithm identifies variables with strong predictive power for SMM spatial patterns, but cannot 353 

distinguish between direct causal drivers, proxy variables, or variables involved in bidirectional 354 

feedbacks. For instance, the strong association between NDVI and SMM at decadal scales may 355 

reflect vegetation's influence on soil hydraulic properties, soil moisture’s constraint on vegetation 356 

growth, or both operating within a coupled ecohydrological system. The mechanistic interpretation 357 

of these statistical patterns is discussed in Section 4.1. 358 

 359 
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Table 2. The structural shift in dominant environmental associations across timescales. 360 

Time 

Scale 

Top Static Predictor 

(Importance %) 

Top Dynamic Predictor 

(Importance Z) 

Association Pattern 

1-Year TWI (28.7%) T2m (11.2) Topography-Associated (Water 

redistribution) 

5-Year β/Asp (~19.8%) rhu (16.1) Transition Point (TWI 

collapses; Structure stabilizes) 

10-Year Sand (21.8%) rhu (32.5) Soil-Texture Associated 

(Storage capacity) 

20-Year Asp (21.0%) rhu (36.2) Soil-Texture Associated 

Note: Seasonal scales (e.g., Rainy Season) are excluded from this threshold analysis as they 361 

represent intra-annual variability rather than the inter-annual persistence transition focused on here. 362 

“Predictor” and “Associated” terminology is used to reflect statistical relationships; causal 363 

interpretations require additional mechanistic validation (see Section 2.4 and Section 4.1).   364 

 365 

To assess the robustness of these associations against potential confounding by landscape 366 

collinearity (the “catena effect,” whereby soil properties and topography co-evolve), we conducted 367 

partial correlation analysis controlling for topographic variables (Appendix G). Results indicated 368 

that soil texture maintained significant partial correlations with decadal-scale SMM (partial r = 0.43, 369 

p < 0.01) even after accounting for slope and TWI, though the effect size was reduced compared to 370 

the raw correlation (r = 0.61). This suggests that approximately 30 % of the apparent soil texture 371 

association may be attributable to topographic confounding, while the remaining signal likely 372 

reflects genuine pedological influences on moisture retention. 373 

We therefore define the 5-year scale as the critical threshold where the predictive importance 374 

of static landscape variables supersedes that of high-frequency dynamic forcing. These findings 375 

underscore the statistical interplay between static and dynamic predictors and emphasize the need 376 

to incorporate multiscale factors into early-warning systems. 377 

3.4 Cross-Basin Comparison of Memory and Drivers 378 

To directly address the basin-specific memory characteristics of mountain hazards, we 379 

synthesized and compared the SMM characteristics and dominant controls across the three 380 
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watersheds at representative temporal scales (monthly, annual, and decadal). The key metrics—381 

spectral exponent (β), DFA-2 predictive period, and the top three driving factors—at representative 382 

temporal scales (monthly, annual, and decadal) are summarized in Table 3. This synthesis highlights 383 

the basin-specific hierarchies, while the complete, scale-explicit results of the Boruta and Random 384 

Forest analyses for the ARB and JJR are available in Appendix F (Figs. F1-F4), respectively.   385 

 386 

Table 3. Cross-basin comparison of SMM characteristics and top predictive associations at key 387 

temporal scales. 388 

Basin Temporal 

Scale 

Spectral 

Exponent (β) 

Persistence 

Horizon (days) 

Top 3 Associated 

Factors (in order) 

Dali River 

Basin (DRB) 

Monthly 

(Rainy) 

1.889 ± 0.098 24–30 rhu, NDVI, AE 

Annual (1-

year) 

1.355 ± 0.089 31–73 Aspect, Bulk density, 

NDVI 

Decadal (20-

year) 

1.000 ± 0.081 174–429 Clay, Aspect, Bulk 

density 

Anning River 

Basin (ARB) 

Monthly 

(Rainy) 

2.179 ± 0.095 17–31 AE, T2m, rhu 

Annual (1-

year) 

1.964 ± 0.096 40–71 T2m, NDVI, rhu 

Decadal (20-

year) 

1.155 ± 0.152 236–728 NDVI, rhu, T2m 

Jiangjia Ravine 

(JJR) 

Monthly 

(Rainy) 

2.492 ± 0.114 18–31 rhu, AE, T2m 

Annual (1-

year) 

1.654 ± 0.090 78–171 TWI, Sand, Aspect 

Decadal (20-

year) 

1.191 ± 0.073 129–367 TWI, Sand, Aspect 

Note: ‘Associated Factors’ denote variables with the strongest statistical correlations with SMM 389 

spatial patterns, as identified by Boruta-RF. These associations do not imply causation; mechanistic 390 

interpretations are developed in Section 4.1 by integrating these statistical patterns with established 391 

hydrological theory. Inter-basin comparisons should also account for differences in basin size and 392 

pixel count (see Section 4.3).   393 

 394 

This comparative synthesis revealed several key patterns. The Anning River Basin (ARB) 395 

consistently exhibited the strongest long-term memory and the longest predictive periods across all 396 

interannual to multi-year scales. Its drivers were dominated by climatic and vegetation variables 397 
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(e.g., T2m, NDVI, rhu) even at multi-year scales, reflecting the profound influence of its dense forest 398 

cover and stable mountain-valley climate on prolonging soil water residence time.    399 

In contrast, the Jiangjia Ravine (JJR), characterized by its steep slopes and high drainage 400 

density, showed the most rapid response to precipitation inputs, resulting in the shortest predictive 401 

periods during the rainy season. Topographic control (TWI) was overwhelmingly dominant across 402 

almost all scales, underscoring the role of rapid hydrological redistribution in this debris-flow-prone 403 

catchment. 404 

The Dali River Basin (DRB) presented an intermediate case in terms of memory length. It was 405 

distinguished by the clearest scale-dependent transition in driver dominance: from atmospheric 406 

variables (rhu) at monthly scales to static landscape properties (soil texture and topography) at 407 

multi-year scales. This transition mirrors the basin's semi-arid loessal environment, where the 408 

intrinsic water-holding capacity of the soil and terrain ultimately govern long-term moisture 409 

availability.  410 

4. Discussion 411 

4.1 The Physical Basis of the Scale-Dependent Transition  412 

Interpretation of Decadal Signals: Before discussing mechanistic drivers, it is crucial to clarify 413 

the statistical nature of the identified multi-year signals. Given the 20-year record length, the 414 

persistence horizons detected at the decadal scale (> 7 years) should not be interpreted as verifiable 415 

oscillatory memory (which would typically require multiple realization cycles). Instead, these 416 

signals reflect a “Regime Stability” — a low-frequency background state governed by the 417 

superposition of secular climatic trends and the basin’s intrinsic buffering capacity. Consequently, 418 

when we discuss “Decadal Memory” below, we refer to the system’s inertia in responding to these 419 

https://doi.org/10.5194/egusphere-2025-6014
Preprint. Discussion started: 6 January 2026
c© Author(s) 2026. CC BY 4.0 License.



23 

slow-varying boundary conditions, rather than a self-sustaining hydrological oscillation.  420 

With this distinction in mind, the identified transition in driver dominance at approximately the 421 

5-year scale reflects a fundamental mechanistic shift from event-driven hydraulic responses to long-422 

term equilibrium storage.  423 

Mechanistic Interpretation of Spatial Associations: Our interpretation of the statistical 424 

associations between spatial predictors and temporal memory is grounded in the linear reservoir 425 

theory, where the decay timescale (τ) of a soil moisture anomaly is inversely proportional to the 426 

drainage rate (Salvucci & Entekhabi, 1994). Since drainage is governed by local hydraulic 427 

properties (e.g., Ksat), the spatial heterogeneity of static landscape attributes naturally dictates the 428 

variability of temporal inertia. Specifically, the strong association between Clay content and SMM 429 

at long timescales is consistent with a “Deep Soil Buffering” mechanism. High clay content reduces 430 

hydraulic diffusivity and Ksat (Van Genuchten, 1980), increasing the characteristic response time (τ) 431 

of the soil column. Thus, clay-rich soils act as a low-pass filter, physically dampening high-432 

frequency noise. This mechanistic framework provides physical plausibility for the observed 433 

statistical association between static soil properties and long-term persistence, though direct causal 434 

validation would require controlled experimental manipulation. Similarly, the dominance of TWI 435 

reflects the spatial organization of groundwater redistribution, where convergent valleys maintain 436 

sustained lateral recharge, decoupling local storage from vertical evaporation demand (Western et 437 

al., 2004). 438 

Crucially, interpreting these statistical associations requires acknowledging the physical 439 

collinearity inherent in mountain terrain (the “catena concept”). Soil texture and topography are not 440 

independent variables but co-evolved landscape features: steep slopes typically foster rapid drainage 441 
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and shallow, coarse soils (associated with low memory), whereas convergent valleys accumulate 442 

deep, clay-rich deposits (associated with enhanced retention). Thus, the high importance scores of 443 

both Slope and Clay (Fig. 6) likely reflect a coupled landscape structure, where geomorphology and 444 

soil properties co-vary along hillslope gradients. Partial correlation analysis (Appendix G) indicates 445 

that soil texture maintains significant associations with decadal-scale SMM (partial r = 0.43, p < 446 

0.01) even after controlling for topographic variables, suggesting that pedological effects are not 447 

entirely attributable to topographic confounding—though approximately 30 % of the raw correlation 448 

may reflect this landscape collinearity.     449 

The "Sink-to-Structure" Transition of Vegetation: Our results reveal a dual role for 450 

vegetation. At short timescales, it acts as a “Dynamic Sink,” where transpiration accelerates 451 

anomaly decay, explaining the dominance of NDVI and atmospheric demand variables. Conversely, 452 

at interannual scales (> 2-5 years), vegetation shifts to a “Static Structural Modifier.” In the dense 453 

forests of the Anning River Basin, long-term high NDVI proxies for developed root networks and 454 

organic matter, which increase soil porosity and hydraulic capacitance (Bengough, 2012).    455 

However, we must caution against interpreting this statistical association as unidirectional 456 

causality. The Boruta algorithm identifies non-linear statistical dependencies but cannot distinguish 457 

between drivers and responses, nor can it isolate direct effects from those mediated through 458 

confounding variables. In reality, the strong link between NDVI and SMM at decadal scales likely 459 

reflects a bidirectional “Eco-hydrological Feedback”: while vegetation improves soil structure and 460 

retention capacity (Driver role), stable soil moisture availability is conversely a prerequisite for 461 

sustaining high biomass and long-term ecosystem stability (Response role). Therefore, the observed 462 

persistence should be viewed as a property of the co-evolved soil-vegetation system, where 463 
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vegetation and soil moisture mutually reinforce each other to maintain a high-memory equilibrium, 464 

rather than vegetation acting as an independent external force.   465 

    466 

 467 

Fig. 6 Conceptual framework illustrating the scale-dependent transition of soil moisture memory 468 

(SMM) drivers. (Left) At short timescales (< 1 year), memory is governed by dynamic atmospheric 469 

forcing and surface hydraulic properties. (Right) At multi-year scales (> 5 years), dominance shifts 470 

to static landscape factors. Note that “Soil Texture” (e.g., Clay) serves as a proxy for fundamental 471 

“Soil Hydraulic Properties” (e.g., Ksat, Porosity), which mechanistically drive the Deep Soil 472 

Buffering effect.  473 

 474 

4.2 Illustrative Case: Conceptualizing the “Temporal Bridge” of Memory in Hazard 475 

Initiation   476 

While statistical metrics suggest a potential influence of SMM on hazard susceptibility, 477 

demonstrating this link requires systematic validation. Here, we present a preliminary case study to 478 

illustrate the conceptual framework, acknowledging that a single event cannot establish causality. 479 

We focus on the Jiangjia Ravine (JJR), a system where the coupling between antecedent wetness 480 
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and debris flow initiation is hypothesized to be critical.  481 

To conceptualize this physical coupling, Figure 7 illustrates the multi-scale interaction between 482 

SMM and slope stability. At the slope scale (Fig. 7a), failure is instantaneous, governed by pore 483 

pressure thresholds. However, SMM operates at the basin scale (Fig. 7b), defining the slowly 484 

varying “background loading” state. The critical insight is the modulation mechanism shown in 485 

Figure 7c: a high SMM state effectively lowers the critical rainfall intensity (Icrit) required for 486 

triggering. In this framework, memory acts as a “temporal bridge,” carrying the hydrological legacy 487 

of past storms to precondition future responses.    488 

 489 

 490 

Fig. 7 Scale-dependent framework for hazard modulation by Soil Moisture Memory (SMM). (a) 491 

Slope-scale triggering: Shows localized pore-pressure response to rainfall and the critical failure 492 

threshold. (b) Basin-scale preconditioning: Represents the basin-averaged SMM (θ), defining the 493 

antecedent hydrological loading state. (c) Coupling mechanism: Illustrates how a high basin-scale 494 
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SMM modulates and reduces the critical rainfall threshold (Icrit) for slope-scale failure, thereby 495 

elevating hazard probability.  496 

  497 

Applying this framework to a real-world event, Figure 8 reconstructs the soil moisture 498 

trajectory preceding the debris flow event on July 10, 2007. This case exemplifies the mechanism 499 

outlined above. Specifically, the watershed experienced a distinct "pre-wetting" phase throughout 500 

June. The basin-scale soil moisture maintained elevated levels for over 10 days. Crucially, this 10-501 

day duration falls well within the reliable persistence horizon identified by our DFA-2 analysis (18–502 

31 days for the rainy season). This alignment suggests that the system possesses sufficient 503 

hydrological inertia to retain the antecedent wetness signal over this timeframe, preventing it from 504 

dissipating before the trigger event arrives.   505 

When the moderate rainfall trigger of 29 mm occurred on July 10, it did not act on a dry 506 

baseline but rather impinged upon this compromised storage capacity. While 29 mm represents a 507 

significant precipitation event, within our conceptual framework, we posit that the elevated 508 

antecedent SM increased the probability of instability by reducing the effective rainfall threshold. 509 

Without the memory-driven persistence of the June wetness state, this rainfall magnitude might have 510 

acted on a higher shear strength baseline. Although precise threshold determination requires 511 

analyzing the full catalog of hazard events, this basin-scale signal illustrates the operational concept 512 

of SMM: it reflects the “Catchment Storage Deficit” (Kirchner, 2009), acting as a background filter 513 

that defines how full the hydrological “bucket” is.       514 
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 515 

Figure 8. Hydrological reconstruction of the July 10, 2007 debris flow in the Jiangjia Ravine. (a) 516 

Time series of basin-averaged daily precipitation, showing the antecedent storm sequence in June 517 

and the moderate triggering rainfall event on July 10. (b) Corresponding evolution of basin-averaged 518 

volumetric soil moisture. Note that the event was triggered on the recession limb of the soil moisture 519 

hydrograph. This illustrates the “Bridging Effect” of SMM, where persistent antecedent wetness 520 

maintained a high background saturation level (reducing the catchment storage capacity) during the 521 

inter-storm period, thereby lowering the rainfall threshold required for hazard initiation.  522 

 523 

This interpretation is supported by the broader statistical persistence characteristics observed 524 

in the JJR (Fig. 4c), which confirm that the basin possesses sufficient hydrological inertia to bridge 525 

the observed inter-storm periods. By maintaining elevated moisture levels long after the cessation 526 

of previous storms, SMM essentially “bridges” the gap between discrete precipitation events, 527 

allowing their cumulative effect to cross stability thresholds.   528 

We explicitly acknowledge that this single-event illustration cannot establish the general 529 

statistical validity of the SMM-hazard linkage. Nevertheless, it serves as a proof-of-concept 530 

demonstration of the “Temporal Bridge” mechanism, visualizing how high-memory basins retain 531 

antecedent stress to potentially lower triggering thresholds. The Jiangjia Ravine has experienced 532 

over 600 documented debris flows since 1961 (Wei et al., 2025), providing a rich dataset for future 533 
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systematic validation. Key questions that remain to be addressed include: (1) What is the 534 

quantitative relationship between antecedent SMM and debris flow probability? (2) Does SMM 535 

provide predictive skill beyond that offered by rainfall alone? Future studies should utilize the full 536 

hazard inventory to conduct logistic regression or threshold analysis to rigorously test the conceptual 537 

model presented here.  538 

4.3 Spatiotemporal Scale Mismatches and Uncertainties   539 

While this study provides a novel framework for understanding SMM, two primary limitations 540 

regarding spatiotemporal scales must be acknowledged to contextualize the findings.   541 

First, regarding spatial resolution (Scale Mismatch), there is an inherent discrepancy between 542 

our 1-km grid soil moisture data and the localized shear zones where slope failures initiate (101 ~ 543 

102 m). In complex terrain like the Jiangjia Ravine, spatial averaging across a 1-km pixel acts as a 544 

low-pass filter, smoothing out rapid, localized drainage events. According to the spatial variance 545 

scaling function (Crow et al., 2012), aggregating from point-scale to 1-km resolution can reduce 546 

signal variance by approximately 63 % (assuming a correlation length λ ≈ 500 m). Consequently, 547 

the persistence horizons calculated in this study (e.g., 78–171 days for JJR) are likely overestimates 548 

compared to the point-scale geotechnical reality. However, this “inflated” memory is precisely what 549 

makes the 1-km metric valuable. Instead of pinpointing specific gully failures, it quantifies the 550 

“Average Antecedent Condition” of the entire hillslope system. This basin-scale metric essentially 551 

serves as a proxy for the “Catchment Storage Deficit” (Kirchner, 2009), distinguishing the slowly 552 

evolving background criticality—how close the basin as a whole is to saturation excess—from the 553 

rapid, slope-scale triggering thresholds determined by local geotechnical defects.      554 

The significant disparity in basin size (JJR: ~49 km2 vs. ARB: ~11,150 km2) raises a critical 555 
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question: is the stronger memory observed in the ARB merely an artifact of spatial averaging over 556 

a larger domain? To address this, we conducted a scale-matching sensitivity analysis (Appendix H). 557 

We randomly sampled 1,000 sub-regions from the ARB, each matching the JJR’s size (49 pixels). 558 

Results showed that these small ARB sub-regions still exhibit significantly stronger memory (mean 559 

β ≈ 1.48) than the JJR (β ≈ 1.39). This confirms that the inter-basin differences reflect genuine 560 

hydrological contrasts (e.g., deeper soils and denser vegetation in ARB) rather than statistical 561 

scaling artifacts. 562 

Second, regarding temporal duration, the 20-year dataset (2003–2022) imposes statistical 563 

constraints on the estimation of decadal-scale memory. In signal processing, robust spectral 564 

estimation typically requires a record length significantly longer than the period of interest (N ≥ 3T). 565 

Therefore, while our analysis identifies trends extending up to 20 years, quantitative persistence 566 

horizons beyond the reliable ~7-year window (N/3) must be interpreted with caution. These long-567 

term tails likely capture a hybrid signal: the intrinsic deep-soil buffering effect convolved with 568 

external low-frequency climatic trends (e.g., secular shifts in precipitation regimes). While 569 

mathematically indistinguishable in a short record, both mechanisms functionally contribute to the 570 

“Background Preconditioning” for hazards. Future studies utilizing extended satellite records (e.g., 571 

continuous ESA-CCI or SMAP data) will be essential to validate these long-term memory tails.   572 

5. Summary and Conclusions 573 

This study provides new insights into three key questions on soil moisture memory (SMM) 574 

through multi-scale analysis of three mountain watersheds, while acknowledging that the statistical 575 

associations identified here represent hypotheses for future mechanistic testing rather than 576 

confirmed causal relationships:  577 

https://doi.org/10.5194/egusphere-2025-6014
Preprint. Discussion started: 6 January 2026
c© Author(s) 2026. CC BY 4.0 License.



31 

(1) Demarcation of Memory Horizons: SMM persistence exhibits a distinct scale-dependent 578 

decay. The characteristic persistence horizons—the timescales over which antecedent conditions 579 

precondition the watershed—range from days in the rapid-response Jiangjia Ravine (JJR) to 580 

interannual scales in the buffered Anning River Basin (ARB). Crucially, adhering to robust signal 581 

processing constraints (N ≥ 3T), we distinguish between active dynamic memory (≤ 7 years) and a 582 

stable low-frequency background state (> 7 years), reflecting secular basin storage trends rather than 583 

verifiable oscillatory cycles.     584 

(2) The “Structure-Associated” Transition in Predictor Importance: A distinct transition 585 

in predictor associations occurs at approximately the 2–5 year scale. The system shifts from showing 586 

stronger statistical associations with dynamic atmospheric/vegetation variables to exhibiting 587 

stronger correlations with static landscape attributes. This transition is consistent with a mechanistic 588 

shift wherein the memory of high-frequency inputs fades, and the system's inertia becomes 589 

increasingly associated with its intrinsic storage capacity. Specifically, the strong associations of 590 

Clay content and TWI with SMM at long timescales are consistent with physically-based 591 

mechanisms: low saturated conductivity (Ksat) acting as a low-pass filter and convergent topography 592 

sustaining lateral recharge. However, these interpretations represent mechanistically plausible 593 

hypotheses derived from statistical patterns, rather than causally validated conclusions.  594 

(3) The “Sink-to-Structure” Vegetation Mechanism: Vegetation plays a dual mechanistic 595 

role characterized by a “Sink-to-Structure” transition. It acts as a transpiration sink that shortens 596 

memory at seasonal scales, but transitions to a structural modifier that extends persistence at 597 

interannual scales. We attribute this long-term persistence to a “Bio-Hydrological Coupled Inertia,” 598 

where the phenological memory of the forest is physically encoded into the soil structure (e.g., 599 
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enhanced porosity), reinforcing the basin’s hydrological buffering capacity.   600 

Overall, our findings provide a quantitative foundation for potentially incorporating SMM into 601 

hierarchical mountain hazard assessment. By distinguishing event-scale triggering from basin-scale 602 

background preconditioning, the identified SMM metrics offer a scientific foundation for 603 

conceptualizing differentiated early-warning systems, pending systematic validation against 604 

regional hazard inventories. While the 1-km resolution limits direct slope-scale prediction, our 605 

framework successfully quantifies the “Catchment Storage Deficit” (Kirchner, 2009), providing 606 

actionable persistence horizons for regional risk management. The analytical framework itself is 607 

readily transferable for testing in other complex terrains.  608 

Appendix A: Mathematical Formulation of Memory Metrics 609 

This appendix details the mathematical algorithms for the soil moisture memory metrics and 610 

the statistical framework used to validate their significance.   611 

(1) Power Spectrum Analysis (PSA) 612 

PSA decomposes variance to identify persistence via the power spectral density, S(f) ~ f − 613 

(Parada et al., 2003).   614 

 Parameter Estimation: The exponent β was estimated via linear regression in the log–615 

log space of the power spectrum. We selected second-order polynomial detrending to 616 

balance trend removal and signal preservation (Kantelhardt et al., 2006). A Hanning 617 

window (20 % length) was used for smoothing. The regression frequency range was 618 

restricted to [1/N, 0.5] cycles/day (where N is the time series length in days) to capture 619 

the full dynamic range of the signal. Specifically, for the daily SM series (2003-2022), 620 

the lower frequency bound corresponds to ~7300 days, allowing us to estimate β across 621 
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the entire reliable spectral window.   622 

(2) Detrended Fluctuation Analysis (DFA-2) 623 

To accurately quantify long-term correlations in the presence of nonstationarity, we 624 

implemented the second-order Detrended Fluctuation Analysis (DFA-2; Kantelhardt et al., 2001).  625 

 Preprocessing: Each SM time series was smoothed using the Simple Moving Average (SMA) 626 

method (Hansun, 2013) to mitigate high-frequency noise (n = 3). 627 

 Algorithm Steps: 628 

1. Profile Calculation: Integration of the time series to obtain the cumulative deviation 629 

profile Y(i). 630 

2. Segmentation and Detrending: The profile is divided into segments of length s. In each 631 

segment, the local trend yv(i) is approximated by a second-order polynomial (DFA-2). 632 

3. Fluctuation Function: The RMS fluctuation F(s) is calculated from the detrended 633 

variance. 634 

4. Scaling Exponent: The relationship F(s) ∼ sα yields the fluctuation exponent α. 635 

 Parameter Settings: Window sizes ss ranged from 10 days to N/4 with logarithmic spacing. 636 

 Persistence Horizon Definition: While α > 0.5 theoretically indicates correlation, 637 

we defined the “Persistence Horizon” as the range where α ≥ 0.9. The threshold α 638 

≥ 0.9 (corresponding to β ≥ 0.8) was selected to strictly identify “strong persistence” 639 

regimes where the autocorrelation function decays algebraically rather than 640 

exponentially, indicating a system with potent memory capacity.  641 

(3) Significance Testing Framework (Phase Randomization)   642 

To distinguish genuine physical memory from random red noise or artifacts, we employed the 643 
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Iterative Amplitude Adjusted Fourier Transform (IAAFT) surrogate data method (Schreiber & 644 

Schmitz, 2000).  645 

 Procedure: For each pixel’s soil moisture time series, we generated 1,000 surrogate series. 646 

These surrogates preserve the power spectrum (and thus the linear autocorrelation) and 647 

the probability distribution of the original series but randomize the Fourier phases to 648 

destroy non-linear correlations. The DFA-2 fluctuation exponent (α) was calculated for 649 

all 1,000 surrogates to build a null distribution. 650 

 Criterion: The observed persistence horizon is considered statistically significant only if 651 

the observed α value exceeds the 97.5th percentile of the surrogate distribution (p < 0.05). 652 

As shown in Appendix E (Table E2), our identified high-memory regimes (α ≥ 0.9) 653 

consistently satisfy this criterion (p < 0.001).  654 

Appendix B: Detailed Basin Characteristics   655 

This appendix supplements the study area description by providing a side-by-side comparison 656 

of the hydro-climatic and geomorphological attributes of the three target basins (Table B1).   657 

 658 

Table B1. Comparative hydro-climatic and geomorphological characteristics of the three study 659 

watersheds. 660 

Feature Dali River Basin 

(DRB) 

Anning River Basin 

(ARB) 

Jiangjia Ravine 

(JJR) 

Geographic Zone Loess Plateau (North 

China) 

SW Sichuan 

Mountain-Valley 

Yunnan Xiaojiang 

Fault Zone 

Coordinates 109°14′–110°13′E, 

37°30′–37°56′N 

102°06′–102°10′E, 

26°38′–29°02′N 

103°05′–103°13′E, 

26°13′–26°17′N 

Catchment Area 3,906 km² 11,150 km² 48.6 km² 

Elevation Range 900 – 1,700 m 900 – 4,750 m 1,088 – 3,269 m 

Topography Hilly-gully loess 

terrain; Avg. slope 

17° 

High relief; Deep 

valleys 

Extremely steep; 55% 

of slopes > 25° 

Climate Type Semi-arid 

Continental 

Transitional 

Subtropical-Monsoon 

Subtropical Monsoon 
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MAP (mm) ~480 (70% in May-

Sep) 

~1,070 (90% in May-

Oct) 

400–1,000 (>85% in 

May-Oct) 

MAT (°C) 9 – 10 10 – 23 (Vertical 

zonation) 

Variable with 

elevation 

Dominant Soil Loess (Silt > 60%) Entisols, Spodosols Red, Brown, Yellow 

soils 

Avg. Soil Depth Deep (> 2 m, Loess) Moderate-Deep (~ 

1.0-1.5 m) 

Shallow (< 0.5 m, 

Skeletal)  

Vegetation Sparse; 

Grassland/Shrub 

Dense; 

Evergreen/Deciduous 

Forest 

Variable; 

Scrub/Forest patches 

Primary Hazard Soil Erosion Landslides, Gully 

Erosion 

Debris Flows 

Note: MAP = Mean Annual Precipitation; MAT = Mean Annual Temperature.  661 

 662 

Appendix C: Data Preprocessing Strategy 663 

(1) Soil Moisture Data Source Verification 664 

To ensure data reliability in complex terrain, we utilized the 1-km all-weather daily soil 665 

moisture product generated by Song et al. (2022). This dataset is produced using a machine 666 

learning-based fusion framework that: 667 

1. Downscales coarse-resolution passive microwave radiometer data (AMSR-E/2) using 668 

high-resolution optical/thermal parameters (MODIS). 669 

2. Fuses these retrievals with ERA5-Land reanalysis forcing using a Random Forest 670 

algorithm trained on extensive in-situ networks. 671 

3. Validates robustness against ~2,400 ground stations in China, achieving an unbiased 672 

RMSE (ubRMSE) of 0.053 m3/m3. 673 

This fusion approach effectively mitigates the gap issues of optical sensors and the coarse 674 

resolution of microwave sensors, providing a spatially continuous dataset suitable for hillslope-675 

scale memory analysis. 676 

(2) Preprocessing Workflow 677 

We implemented a rigorous three-step preprocessing workflow: 678 

1. Gap Filling: Short discontinuities (≤ 3 days) in SM and NDVI time series were filled 679 

using linear interpolation. Series with gaps longer than 3 days were excluded to avoid 680 

introducing artificial persistence. 681 

2. Outlier Removal: A statistical thresholding method was applied. Values exceeding ±1.5 682 

× Interquartile Range (IQR) of the rolling window were flagged and replaced using a 3-683 

day moving median filter to preserve physical extremes while removing sensor noise. 684 

3. Stationarity Testing: The Augmented Dickey-Fuller (ADF) test was performed on every 685 

pixel. Non-stationary series (p > 0.05) were subjected to first-order differencing prior to 686 
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spectral analysis to satisfy the stationarity assumptions of the Power Spectrum Analysis 687 

(PSA). 688 

 689 

Appendix D: Driver Identification Framework (Boruta-RF)   690 

(1) “Space-for-Time” Concatenation Strategy   691 

To enable the regression of temporal metrics against spatial drivers, we adopted a concatenation 692 

approach (Entin et al., 2000). Daily SM data for specific seasonal windows (e.g., all “Junes” from 693 

2003–2022) were linked to form a stable time series (N ≥ 600 days) for computing the pixel-wise 694 

β target.   695 

(2) Boruta Feature Selection   696 

We employed the Boruta algorithm (Kursa et al., 2010), a wrapper around the Random Forest 697 

regressor. It operates by:   698 

 Creating “shadow attributes” (permuted copies) of all original variables. 699 

 Training a Random Forest (ntree = 500, mtry = √𝑝 where p is the number of predictors, 700 

minimum node size = 5, max depth = unlimited) using the ‘ranger’ R package 701 

implementation. These hyperparameters were selected to maximize model stability and 702 

capture high-order interactions relevant to complex terrain drivers.   703 

 Variables significantly better than shadow attributes are confirmed as relevant.  704 

(3) Uncertainty Quantification 705 

 Spatial Validation: To account for spatial autocorrelation, we implemented Spatial Block 706 

Cross-Validation using the blockCV package (k = 5 folds) (Valavi et al., 2018). Only 707 

predictors appearing in the top rank across ≥4 folds were considered robust.  708 

 Bootstrap Resampling: We used bootstrap resampling (1,000 iterations) to derive 95 % 709 

confidence intervals for variable importance. 710 

 711 

Appendix E: Sensitivity and Robustness Analysis 712 

To ensure that our findings are physically robust and not methodological artifacts, we 713 

conducted a comprehensive sensitivity analysis covering parameter selection, statistical significance, 714 

and temporal stability. 715 

(1) Robustness of DFA-2 Scaling Exponent (α) 716 

We tested the sensitivity of α to the selection of window ranges (s). 717 

 Result: α estimates proved robust to window range variations (e.g., N/4 vs N/8), with a 718 

Mean Absolute Difference < 0.04 (Table E1). This indicates that the “Persistence 719 

Horizons” defined in the main text are stable characteristic scales of the system. 720 

 721 
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Table E1. Sensitivity of α estimates to window range. 722 

Basin Pixel 

ID 

Window 

Range 

N_windows α 

Estimate 

95 % CI Memory 

Horizon (days) 

DRB P_1234 [10, N/4] 30 0.87 [0.83, 0.91] 31-73 

DRB P_1234 [10, N/8] 30 0.85 [0.80, 0.90] 28-65 

DRB P_1234 [10, N/2] 30 0.89 [0.84, 0.94] 35-82 

DRB P_1234 [10, N/4] 15 0.86 [0.79, 0.93] 29-70 

DRB P_1234 [10, N/4] 60 0.88 [0.85, 0.91] 32-76 

ARB P_5678 [10, N/4] 30 0.94 [0.91, 0.97] 40-71 

ARB P_5678 [10, N/8] 30 0.92 [0.88, 0.96] 36-63 

ARB P_5678 [10, N/2] 30 0.96 [0.93, 0.99] 45-85 

JJR P_9012 [10, N/4] 30 0.91 [0.88, 0.94] 78-171 

JJR P_9012 [10, N/8] 30 0.89 [0.85, 0.93] 70-155 

JJR P_9012 [10, N/2] 30 0.93 [0.89, 0.97] 88-195 

 Note: Memory horizon defined as the range of s where α ≥ 0.9 (see Methods 2.4). 723 

 724 

(2) Significance Testing against Surrogate Data 725 

Using the framework described in Appendix A (3), we compared observed α values against 726 

null models. 727 

 Result: Observed α values in the high-memory range (≥ 0.9) consistently exceeded the 728 

97.5th percentile of the surrogate distribution (p < 0.001), confirming these are robust 729 

physical signals (Table E2). In contrast, weak-memory pixels (α ≈ 0.5-0.6) often fell 730 

within the noise range. 731 

 732 

Table E2. Comparison of observed vs. surrogate α for significance testing. 733 

Basin Pixel ID Observed α Surrogate α (mean ± SD) p-value 

DRB P_1234 0.87 0.52 ± 0.04 < 0.001 

ARB P_5678 0.94 0.51 ± 0.05 < 0.001 

JJR P_9012 0.91 0.53 ± 0.04 < 0.001 

ARB P_6789 0.97 0.50 ± 0.06 < 0.001 

DRB P_2345 0.68 0.52 ± 0.05 0.003 

JJR P_0123 0.61 0.53 ± 0.04 0.091 

 734 

(3) Temporal Stability and Cross-Method Validation 735 

 Temporal Stability: A split-sample test (2003–2012 vs. 2013–2022) showed high 736 

consistency for α estimates (Pearson’s r = 0.85; Classification Consistency = 89 %), 737 

confirming that SMM patterns are stable features of the landscape (Table E3). 738 

 Cross-Method Validation: We compared DFA-2 derived persistence horizons with 739 

independent Autocorrelation Function (ACF) e-folding timescales. The strong correlation 740 

(r = 0.87, Fig. E1) validates the DFA-2 results while demonstrating its superior 741 
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performance in handling non-stationary trends. 742 

 743 

Table E3. Temporal stability analysis statistics.  744 

Metric β (PSA) α (DFA-2) 

Pearson’s r 0.82 0.85 

Spearman’s ρ 0.79 0.83 

Mean Absolute Difference 0.09 ± 0.04 0.06 ± 0.03 

RMSE 0.12 0.08 

Classification Consistency 84 % 89 % 

 745 

 746 

Figure E1. Cross-method validation of hydrological memory metrics. The comparison between 747 

persistence horizons derived from Detrended Fluctuation Analysis (DFA-2) and independent 748 

Autocorrelation Function (ACF) e-folding timescales reveals a strong correlation (r = 0.87). This 749 

high consistency validates the robustness of the identified memory patterns, while the application 750 

of DFA-2 is further justified by its theoretical capacity to filter out polynomial trends that can 751 

confound standard ACF estimates in non-stationary hydro-climatic time series.   752 

 753 

(4) Sensitivity of PSA Spectral Exponent (β) 754 

We tested the stability of β by varying the polynomial detrending order (linear, quadratic, cubic) 755 

and frequency cutoffs. 756 

 Result: While the absolute magnitude of β shifts slightly with detrending order, the spatial 757 

ranking of memory strength remains highly consistent (Spearman’s ρ > 0.92) across all 758 

basins (Table E4). As shown in Fig. E2, the relative differences between basins (DRB < 759 

JJR < ARB) are preserved regardless of parameter choice. 760 

 761 
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 762 

Figure E2. Sensitivity of spectral exponent β to detrending parameters. (a, b) Histograms showing 763 

bounded differences between baseline and conservative/aggressive settings. (c, d) Scatter plots 764 

demonstrating high spatial correlation (r > 0.94) between baseline and alternative settings, 765 

confirming that spatial patterns are methodologically robust.  766 

 767 

Table E4. Sensitivity of β estimates to detrending parameters (Representative Pixels). 768 

Basin Pixel ID Detrending Freq. Cutoff Window β Estimate 95% CI 

DRB Pixel A (DRB) Linear 0.005 20% 1.32 [1.18, 1.46] 

DRB Pixel A (DRB) Quadratic 0.005 20% 1.47 [1.35, 1.59] 

DRB Pixel A (DRB) Cubic 0.005 20% 1.54 [1.40, 1.68] 

DRB Pixel A (DRB) Quadratic 0.001 20% 1.50 [1.36, 1.64] 

DRB Pixel A (DRB) Quadratic 0.01 20% 1.43 [1.29, 1.57] 

DRB Pixel A (DRB) Quadratic 0.005 10% 1.45 [1.28, 1.62] 

DRB Pixel A (DRB) Quadratic 0.005 30% 1.49 [1.38, 1.60] 

ARB Pixel B (ARB) Quadratic 0.005 20% 1.96 [1.84, 2.08] 

ARB Pixel B (ARB) Linear 0.005 20% 1.82 [1.69, 1.95] 

ARB Pixel B (ARB) Cubic 0.005 20% 2.03 [1.90, 2.16] 

JJR Pixel C (JJR) Quadratic 0.005 20% 1.65 [1.52, 1.78] 

JJR Pixel C (JJR) Linear 0.005 20% 1.53 [1.40, 1.66] 

JJR Pixel C (JJR) Cubic 0.005 20% 1.71 [1.57, 1.85] 

Note: Table abbreviated for brevity; consistent with full sensitivity analysis 769 

 770 

Appendix F: Detailed Driver Analysis for ARB and JJR Basins 771 

This appendix provides detailed driver analysis results for the Anning River Basin (ARB) and 772 

Jiangjia Ravine (JJR), supplementing the main text. 773 

(1) Anning River Basin (ARB)  774 

 Dynamic Drivers (Fig. F1): The ARB exhibits pronounced scale dependence. Boruta 775 
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analysis identifies actual evapotranspiration (AE) as the exclusive dominant driver during 776 

the early rainy season (May). This shifts to Relative Humidity (rhu) and Air Temperature 777 

(T2m) during the full rainy season. At decadal scales, the hierarchy stabilizes around rhu, 778 

T2m, and NDVI, reflecting the basin's strong vegetation-climate coupling. 779 

 Static Drivers (Fig. F2): At short scales, Bulk Density (ρb) is influential (40.7 % 780 

importance). However, at multi-year scales (10-20 years), Clay content becomes 781 

dominant (22.5 %), surpassing topographic factors, which confirms the “Deep Soil 782 

Buffering” mechanism in this humid basin. 783 

 784 

 785 

Fig. F1 Feature selection results from the Boruta algorithm, showing the variable importance (Z-786 

scores) of dynamic predictors controlling daily soil moisture in the Anning River Basin at monthly, 787 

seasonal, annual, and decadal scales.  788 

 789 

 790 
Fig. F2 Feature selection results from the Random Forest algorithm, showing the relative 791 

importance of static variables controlling daily soil moisture in the Anning River Basin at multiple 792 

timescales (monthly to decadal).  793 

 794 
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(2) Jiangjia Ravine (JJR) 795 

 Dynamic Drivers (Fig. F3): In this rapid-response basin, T2m and AE dominate the rainy 796 

season. Notably, unlike ARB, the influence of Precipitation remains weak in the dry 797 

season, suggesting that without rainfall, SM variability is driven by atmospheric demand. 798 

 Static Drivers (Fig. F4): Topography exerts overwhelming control. Topographic 799 

Wetness Index (TWI) explains 38.5 % of variability in May and rises to 65.6 % at the 20-800 

year scale. This confirms that in steep, debris-flow-prone terrain, lateral redistribution 801 

(governed by TWI) overrides soil texture effects. 802 

 803 

 804 

Fig. F3 Feature selection results based on the Boruta algorithm, showing the importance (Z-score) 805 

of dynamic variables in controlling daily soil moisture in the Jiangjia Ravine across multiple 806 

timescales (monthly, seasonal, annual, and decadal).  807 

 808 

 809 

Fig. F4 Feature selection results using the Random Forest algorithm, showing the relative 810 

importance of various static variables in controlling daily soil moisture in the Jiangjia Ravine across 811 

different time scales.  812 
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 813 

Appendix G: Partial Correlation Analysis for Assessing Landscape Collinearity Effects 814 

To evaluate the robustness of soil texture-SMM associations against potential confounding by 815 

topographic variables (the “catena effect”), we conducted partial correlation analysis following the 816 

methodology of Kim (2015). 817 

1. Methods 818 

For each temporal scale (1-year, 5-year, 10-year, 20-year), we calculated: 819 

(1) Raw Pearson correlation between Clay content and spectral exponent β 820 

(2) Partial correlation controlling for Slope and TWI 821 

(3) The proportion of correlation attributable to topographic confounding: (rraw - rpartial) / rraw × 822 

100 % 823 

2. Results 824 

Table G1. Partial correlation analysis results for Clay-SMM associations 825 

Time 

Scale 

Raw r (Clay-

β) 

Partial r (controlling Slope, 

TWI) 

Confounding % p-value 

(partial) 

1-Year 0.38 0.21 44.7 % < 0.01 

5-Year 0.52 0.34 34.6 % < 0.01 

10-Year 0.61 0.43 29.5 % < 0.01 

20-Year 0.58 0.41 29.3 % < 0.01 

 826 

3. Interpretation 827 

(1) Soil texture maintains statistically significant partial correlations with SMM across all 828 

temporal scales, even after controlling for topographic variables. 829 

(2) The proportion of correlation attributable to topographic confounding decreases from ~45% 830 

at the 1-year scale to ~29% at decadal scales, suggesting that the pedological signal becomes more 831 

distinct at longer timescales. 832 

(3) These results support the interpretation that soil hydraulic properties (proxied by clay 833 

content) exert genuine associations with long-term SMM, though landscape collinearity contributes 834 

substantially to the observed patterns. 835 

 836 

Appendix H: Scale-Matching Sensitivity Analysis for Inter-Basin Comparison  837 

A potential concern in comparing the large Anning River Basin (ARB, ~11,150 pixels) with 838 
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the small Jiangjia Ravine (JJR, ~49 pixels) is that the stronger soil moisture memory (SMM) 839 

observed in the ARB could be an artifact of spatial averaging over a larger domain, which tends to 840 

smooth out high-frequency variability. To address this and verify that the observed differences 841 

reflect intrinsic hydrological properties rather than basin size disparities, we conducted a scale-842 

matching resampling experiment.   843 

We randomly extracted 1,000 sub-regions from the ARB, with each sub-region restricted to 844 

exactly 49 pixels to match the spatial extent of the JJR. The mean spectral exponent (β) was then 845 

calculated for each of these spatially constrained sub-regions. The results indicate that even at this 846 

reduced spatial scale, the ARB sub-regions exhibit a mean β of 1.48 ± 0.12, which remains 847 

consistently higher than the basin-wide β of the JJR (1.39). This finding confirms that the stronger 848 

memory in the ARB is not a statistical artifact of basin size, but rather stems from genuine 849 

differences in landscape characteristics, such as deeper soil profiles and denser vegetation cover. 850 

 851 

Code and data availability 852 

Daily soil moisture, precipitation, and Normalized Difference Vegetation Index (NDVI) data 853 

were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/, Song et al., 854 

2022; Xie et al., 2019). Meteorological variables, including near-surface air temperature at 2 m, 855 

wind speed at 10 m, relative humidity, and actual evapotranspiration, were sourced from the Climate 856 

Data Store (https://cds.climate.copernicus.eu/, Hersbach et al., 2023). Topographic features—857 

elevation, slope, aspect, and the Topographic Wetness Index (TWI)—were extracted from the China 858 

DEM, downloaded via the Geospatial Data Cloud (https://www.gscloud.cn/). Soil texture data (sand, 859 

silt, and clay) were obtained from SoilGrids (https://soilgrids.org/). The dataset of daily soil 860 

moisture and its driving factors (static and dynamic) in three watersheds is available at 861 

https://doi.org/10.5281/zenodo.17510469 (Zhang, 2025). All code used in this study are 862 

implemented in R and are available at https://doi.org/10.5281/zenodo.17510622 (Zhang, 2025).  863 
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