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Abstract. Urban expansion in rapidly growing cities increases exposure to natural hazards but remains difficult to monitor in

regions with limited data. This challenge is amplified in places such as Metropolitan Lima, where global datasets of urban areas

lack precision along complex and rapidly changing city boundaries. As a result, recent growth in informal and peripheral zones

is not well defined. This study introduces a practical application of a semi-supervised mapping approach that combines satellite

imagery with partially labeled information and targeted manual refinement to identify new built-up areas in Metropolitan Lima5

from 2016 to 2025. The method improves the detection of small and fragmented structures, including emerging informal

settlements that global datasets frequently miss. Results show that Metropolitan Lima expanded by approximately 76 km2

during the study period. A portion of this growth occurred in coastal zones exposed to tsunamis, in areas with medium to high

landslide susceptibility, and on soil types where strong ground shaking is amplified during large earthquakes. These findings

highlight the continued concentration of people and infrastructure in hazard-prone terrain.10

1 Introduction

Urbanization is one of the main drivers of territorial transformation in the 21st century. Since 1985, urban areas worldwide have

expanded rapidly, often without the spatial, social, or environmental planning required for sustainable growth (Huang and Xu,

2022). This process has altered land-use patterns, increased resource consumption, and heightened population exposure to nat-

ural and climate-related hazards (UN-Habitat, 2024). Today, more than one billion people live in informal settlements—nearly15

one-quarter of the global urban population—where access to basic services, secure land tenure, resilient infrastructure, and po-

litical representation remains limited. Global analyses indicate a strong correlation between the proportion of informal urban

development and climate vulnerability (ρ = 0.82), and a negative correlation with climate preparedness (ρ =−0.64) (UN-

Habitat, 2024). These findings highlight that the most excluded populations are simultaneously the most exposed and the least

equipped to adapt or recover from environmental disasters.20

On a global scale, urban growth between 1985 and 2015 has been largely inefficient in terms of land use. Recent analyses

based on high-resolution satellite imagery and population datasets show that newly developed urban areas accommodate fewer
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people per hectare than pre-existing urban zones (Taubenböck et al., 2025). This trend toward low-density, sprawling urbaniza-

tion increases per capita infrastructure demand and contributes to higher emissions. Maintaining historical levels of land-use

efficiency could have accommodated an additional 1.466 billion people without consuming more land. Using deep learning25

methods, researchers have classified global urban forms into 138 morphological patterns, revealing a dominance of dispersed

and fragmented configurations associated with peripheral or suburban development, while only a small fraction of cities exhibit

compact and mixed morphologies (Debray et al., 2025). As suitable land becomes scarcer, informal expansion increasingly

takes place in environmentally fragile and high-risk areas—such as riverbanks, steep slopes, and floodplains—thereby ampli-

fying the exposure of vulnerable populations to natural hazards. Consequently, balancing urban development with disaster-risk30

reduction has emerged as a complex and urgent planning challenge (Espinoza and Fort, 2020).

Remote sensing and machine learning have become indispensable tools for urban monitoring, enabling large-scale analysis

of satellite and aerial imagery (Gram-Hansen et al., 2019; Tingzon et al., 2020; Assarkhaniki et al., 2021; Fallatah et al., 2022;

Marconcini et al., 2021). In rapidly expanding cities, these technologies support detailed mapping of informal settlements and

risk-prone zones (Li and Liu, 2020; Moya et al., 2022; Das et al., 2022; Mansour et al., 2023; Moya et al., 2024; Kesavan35

et al., 2024). Among these, deep learning (DL) has shown particular promise due to its strong capabilities in feature extraction

and spatial pattern recognition (Yue et al., 2022; Bruno Adriano et al.; Wei et al., 2022; Geiß et al., 2020; Ding et al., 2022;

Yokoya et al., 2024; Qiao et al., 2025). Despite these advances, most existing approaches rely on fully supervised learning,

which demands extensive and highly accurate training data. However, in many regions—such as Peru—reliable datasets are

limited or incomplete, constraining the effectiveness of machine learning-based urban footprint mapping (Kuffer et al., 2016).40

To overcome these limitations, recent studies have explored semi-supervised learning approaches (Wang et al., 2022; Guo et al.;

Shi et al., 2022; Saha et al., 2021). Nevertheless, these methods have been analyzed mainly in developed countries, where urban

patterns related to informal construction are largely absent. In parallel, considerable global efforts have been made to compile

large-scale training datasets for land-use mapping. The World Settlement Footprint (WSF) products provide 10-m resolution

built-up extents using optical and SAR data (German Aerospace Center, 2023), while the Global Human Settlement Layer45

offers built-up surfaces derived from Sentinel-2 imagery (Pesaresi et al., 2024). Furthermore, Microsoft’s Global Building

Footprints deliver building-level maps at continental scales. Such datasets are essential for understanding the global impact

of urbanization on natural resources, exposure to hazards, and sustainable planning, enabling governments and organizations

to make informed decisions. However, although these global-scale products are valuable for continental or national analyses,

their accuracy decreases at finer spatial scales, such as the district level. For instance, Figure 1 illustrates an urbanized area on50

the outskirts of Lima, Peru, where a significant portion of informal settlements is missing from global-scale urban maps. This

limitation underscores the need for localized, adaptable approaches capable of capturing fine-scale urban growth dynamics in

data-scarce contexts.

In Lima, most informal urban growth occurs along the city’s periphery, where state control and spatial planning are weak.

These areas are frequently affected by land trafficking, with plots subdivided and sold without formal property rights (Dammert-55

Guardia et al., 2025). Housing is typically self-built and non-engineered, increasing vulnerability to earthquakes. Many set-

tlements expand on steep slopes using pircas (dry-stone walls) to create flat surfaces, which remain unstable during seismic
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Figure 1. Built-up areas in the outskirts of Metropolitan Lima. Panels (a) and (d) show built-up areas identified by visual inspection (red).

Panels (b) and (e) display built-up areas from the World Settlement Footprint (blue), and panels (c) and (f) show those identified by Mi-

crosoft’s Global Building Footprint (green). Basemaps: Google, ©2024 MAXAR Technologies.

events (Santa-Cruz et al., 2021; Ita et al., 2023, 2024). Basic services such as water, sewage, and electricity are often absent

in the early years, compounding exposure to health and environmental risks. In several peripheral districts, delinquency and

land ownership disputes also emerge. Due to their fragmented growth and limited spatial data, these boundary zones are poorly60

represented in existing urban maps, yet they constitute critical areas for monitoring. Accurately delineating these zones is

technically challenging because of their heterogeneous morphology and rapid change, but doing so is essential for effective

urban planning and disaster-risk management. This priority aligns with one of Peru’s four national development objectives for

2050—the promotion of a sustainable territory—as outlined in the National Strategic Development Plan (CEPLAN, 2023).

In this study, we present a practical methodology based on semi-supervised segmentation to improve urban footprint mapping65

along the boundaries of Metropolitan Lima, Peru. The approach integrates open-source datasets—including Sentinel-2 imagery,

OpenStreetMap (OSM), and publicly available local government data—providing a scalable and transferable framework for

monitoring urban expansion in data-scarce regions. The remainder of this paper is organized as follows. Section 2 describes

the proposed approach, Section 3 presents the experimental results for Metropolitan Lima, Section 4 analyzes the growth of

exposure against natural hazards, and Section 5 offers a critical interpretation of urban growth patterns, and the scope and70

limitations of the proposed approach, followed by the main conclusions in Section 6.
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Figure 2. Examples of urban conglomeration maps for the cities of (a) Arequipa, (b) Cusco, (c) Lambayeque, and (d) La Libertad.

2 Proposed built-up mapping approach

Consider an image X ∈ Rw×h×c, where w and h denote the spatial dimensions (width and height), and c indicates the number

of spectral bands. Each pixel is defined by its position (i, j), and its spectral values are represented by the vector Xij = x ∈ Rc.

The main objective is to determine whether Xij belongs to the urban class (Yij = 1) or the non-urban class (Yij =−1). In75

this formulation, the category of a subset I ⊂ {(i, j)} of pixels is known in advance. The proposed methodology to classify

the whole image involves three main steps: (i) using a closed boundary to increase the labeled subset I , (ii) applying a semi-

supervised scheme to calibrate a discriminant function, and (iii) classifying the entire set of pixels {(i, j)}.

2.1 Closed boundary

Let us define the set Ip = {(i, j) | Yij = 1,(i, j) ∈ I} as the subset of pixels labeled as urban areas. Similarly, In = {(i, j) |80

Yij =−1,(i, j) ∈ I} represents the subset of pixels labeled as non-urban areas. The initial labeled set I is typically derived

from outdated built-up maps provided by local governments or open-access sources such as OpenStreetMap (QuickOSM,

2025). Consequently, most of its elements belong to Ip. The non-urban samples, on the other hand, generally correspond

to vegetation or open-space areas within the city. Because these data sources do not fully capture recent urban expansion, the

closed boundary step is introduced to roughly approximate the most recent urban extent prior to model calibration, and increase85

the size of I .

Given the scarcity of fine-grained urban maps, traditional urban studies in developing countries often rely on urban agglom-

eration maps (Vilela and Moschella, 2017; Peirano et al., 2023), which consist of closed polygons that encompass the built-up

areas (Fig. 2). These polygons can be used to automatically increase the number of non-urban samples. Let Ω =
⋃

i Pi denote

the union of a set of planar polygon areas. If (i, j) /∈ Ω, then Yij =−1; that is, all pixels in the study area that are located90

outside the polygons will be labeled as non-urban to increase the training set. In the specific context of this study, Ω is con-

structed from the urban agglomeration maps. Users may directly employ these maps or adapt them—for instance, by applying

buffers or manually editing the polygons—to better approximate the actual urban extent. This strategy enables the generation
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of additional reliable non-urban samples without requiring pixel-level manual labeling, thereby strengthening the subsequent

semi-supervised calibration process.95

2.2 Discriminant function and its calibration

Consider a classifier function g : Rw×h×c → Bw×h, where B = {1,−1}, used to generate a binary image B ∈ Bw×h. The

objective is to calibrate g so that B accurately represents the spatial distribution of built-up areas. For this purpose, the method

proposed by Kiryo et al. (2017) is adopted. To quantify the similarity between the predicted value Bij from the discriminant

function and the true label Yij at pixel (i, j), we introduce the following loss function l : R2 → R:100

l(Bij ,Yij) =
1

1 + e5YijBij
(1)

If only training samples of built-up areas are used, the Non-Negative Positive-Unlabeled (NNPU) risk estimator proposed by

Kiryo et al. (2017) can be applied:

R̃NNPU
pu (g) = πpEp[l(Bij ,+1)] +max

{
0, Eu[l(Bij ,−1)−πpEp[l(Bij ,−1)]

}
, (2)

where πp is the prior probability of the urban samples, and Ep[l(Bij ,+1)] represents the expected loss when built-up areas are105

considered as class +1, and is approximated as described below.

Ep[l(Bij ,+1)] =
1
np

∑

(i,j)∈Ip

l(tij ,+1) (3)

Likewise, Ep[l(Bij ,−1)] denotes the expected loss when built-up areas are treated as class −1, and Eu[l(Bij ,−1)] represents

the expected loss when the unlabeled samples are treated as class −1:

Ep[l(Bij ,−1)] =
1
np

∑

(i,j)∈Ip

l(tij ,−1) (4)110

Eu[l(Bij ,−1) =
1

npc

∑

(i,j)∈Ic
p

l(tij ,−1) (5)

where Ic
p denotes the complement of Ip. These expectations jointly define the empirical components of the NNPU risk function,

allowing the model to balance the contributions of labeled and unlabeled samples during optimization. Note also that Equation

(2) uses both labeled and unlabeled pixels. In the specific context of this study, training samples of non-built-up areas are also

available (e.g., vegetation or pixels outside the closed boundary). Therefore, a second loss term for Non-Negative Negative-115

Unlabeled (NNNU) learning is introduced to take advantage of these additional negative samples.
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R̃NNNU
pu (g) = πnEn[l(Bij ,−1)] +max

{
0, Eu[l(Bij ,+1)−πnEn[l(Bij ,+1)]

}
, (6)

where πm = 1−πp is the prior probability of non-urban samples. This complementary formulation enhances model robustness

by explicitly incorporating reliable non-urban information into the semi-supervised training process. A combined risk function

is then proposed:120

R̃(g) = max
{

R̃NNPU
pu (g), R̃NNNU

nu (g)
}

. (7)

This formulation allows the model to adaptively focus on the most informative supervision signal, balancing the contribution

of both positive and negative classes. Finally, the optimal discriminant function is obtained by solving

ĝ = argmin
g∈G

R̃(g), (8)

where G denotes the set of candidate discriminant functions. The optimal function ĝ minimizes the combined risk defined in125

Equation (7), yielding a calibrated model capable of distinguishing built-up and non-built-up pixels under limited supervision.

3 Urban growth in Metropolitan Lima

We evaluate the performance of the proposed approach in quantifying urban growth in Metropolitan Lima. The city has un-

dergone rapid and mostly unregulated expansion, altering its physical and socio-economic structure over the past century

(Espinoza and Fort, 2020; Sobrino et al., 2023). Lima is a suitable case study due to its heterogeneous urban form, informal130

expansion, and limited spatial data.

3.1 Dataset

Sentinel-2 satellite imagery was used as input for the model. One image per year from 2016 to 2025 was selected (Table 1).

For each year, the image corresponds to the period between January and March, when cloud coverage is minimal. All scenes

belong to the 18LTM Sentinel-2 tile code, which covers most of Metropolitan Lima (Figure 3a). The blue, green, red, and135

near-infrared bands from the L2A Surface Reflectance product were used. Random image patches of size 512×512×4 (width,

height, bands) were extracted within the study area to built I .

Regarding the samples of built-up areas (Ip), the main source was the urban block dataset from the 2017 National Census

(National Institute of Statistics and Informatics (INEI), 2017). This information was complemented with building footprints

from OpenStreetMap (QuickOSM, 2025) and urban growth clusters identified by Moya et al. (2024). That study used radar140

satellite imagery to detect 25 recently urbanized areas showing significant backscatter change. Its results were constrained by

topography and speckle noise, but the dataset remains valuable because it documents newly formed informal clusters across
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Table 1. Sentinel-2 acquisition dates for Metropolitan Lima

Acquisition date Acquisition date Acquisition date

2016-03-27 2019-04-11 2022-04-30

2017-02-20 2020-04-20 2023-01-25

2018-04-11 2021-04-20 2024-02-14

2025-01-14

Figure 3. (a) Metropolitan Lima. The inset shows the location of the study area within Peru. Red tones indicate built-up areas, white tones

represent unlabeled pixels within the closed boundary polygons, and black pixels correspond to non–built-up areas within Lima Metropolitan.

The white dashed rectangle delineates the extent of the Sentinel-2 imagery used in the study. Closer views of a consolidated urban area, a

peripheral area, and a non-urban area are shown in panels (b), (c), and (d), respectively. Basemaps (b,c & d): Copernicus Sentinel data [2024]

Lima, increasing the diversity of Ip samples. The set In was derived from the urban conglomerate of Metropolitan Lima, which

was manually delineated following standard procedures for urban planning studies, and serves here as the closed boundary Ω.

In addition, green areas from OpenStreetMap were included to define In. Figures 3b–3d illustrate three sample locations:145

within the city center, along the urban boundary, and outside the closed boundary.
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Figure 4. U-Net architecture with a ResNet-152 encoder. The input image is progressively encoded into high-level semantic features through

residual blocks and then decoded to generate a detailed segmentation mask. Dashed arrows represent skip connections that merge encoder

and decoder feature maps to recover spatial detail. Red dashed polygons highlight the bottleneck region, and blue dashed polygons delineate

the encoder and decoder components.

3.2 Classifier model

We employed a U-Net segmentation model (Ronneberger et al., 2015) with a ResNet-152 backbone (He et al., 2016) to generate

pixel-level classification maps. U-Net is a convolutional neural network designed for semantic segmentation. In our configu-

ration, ResNet-152 acts as the encoder, extracting hierarchical image features through 152 layers organized into Bottleneck150

blocks. These residual blocks compress and expand feature dimensions to maintain computational efficiency while preserving

spatial information. Residual connections link the blocks, preventing accuracy loss in deep networks. Figure 4 illustrates the

encoder–decoder process used to produce the segmentation mask.

For model calibration, only images recorded after 2021 were used to include the built-up areas detected by Moya et al. (2024).

Thus, the images from 2021 and 2024 were selected to extract 12,000 random samples (Figure 3b–3d). Using two acquisition155

dates introduces temporal variability in the samples, which helps the model generalize better to different urban conditions. The

Adam optimization algorithm was used to update the model weights, with a learning rate of 5× 10−5, batch size of 32, and

200 epochs. From the study area and available datasets, the cardinalities of Ip and In are approximately 2.4 million and 25.4
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Figure 5. Iterative human-in-the-loop workflow for weakly supervised segmentation, adopted from Yokoya et al. (2024). Labeled data and

manual annotations are progressively refined through CNN training, mapping, and targeted review.

million pixels, respectively. The entire study area contains about 40 million pixels. Therefore, the prior probability πp used in

the loss functions (Eqs. 2 and 6) must lie within the following range:160

2.4
40

≤πp ≤
40− 25.4

40

0.06≤πp ≤ 0.37 (9)

These bounds reflect two limiting interpretations of the unlabeled pixels: if all are considered non-urban, urban pixels account

for only 6% of the whole study area; conversely, if all are considered urban, the proportion increases to 37%. Accordingly, πp

was adjusted empirically within the range defined in Equation (9). To improve segmentation accuracy, additional labeled sam-

ples were progressively incorporated following the workflow proposed by Yokoya et al. (2024) (Figure 5). After each training165

cycle, segmentation outputs were evaluated both quantitatively and through visual inspection. Areas showing inconsistent or

unsatisfactory results were manually corrected. When required, new polygons were delineated with adequate spatial precision

to enhance local consistency. The revised samples were integrated into the training dataset, and the model was retrained iter-

atively. Approximately 600 polygons were annotated through this human-in-the-loop process, adding about 490,000 labeled

pixels (0.5% of the total training data). After the iterative calibration, 70% of the samples were used for training and 30% for170

validation. Figure 6 shows the training and validation losses, both exhibiting stable convergence toward the final epochs.

To assess the performance of our model, we compared our results with the World Settlement Footprint (WSF) 2019 (German

Aerospace Center, 2023). The WSF is a global 10 m resolution binary mask delineating human settlements. It was generated

by the German Aerospace Center (DLR) using multitemporal Sentinel-1 and Sentinel-2 imagery from 2019 through a binary

Random Forest classification. From the Lima region, 20 validation samples were randomly selected: (i) five from the city175

center, where WSF shows high accuracy (consolidated samples); (ii) ten around the closed urban boundary with high urban

coverage (peripheral samples); (iii) three around the boundary with limited urban presence (remote samples); and (iv) two

from the ocean. Peripheral and remote samples correspond to areas where informal urban expansion is most active. For these

samples, the built-up areas were delineated manually by visual inspection of high-resolution satellite imagery (examples in

Figure 7). It is important to note that WSF underwent post-processing to remove roads (German Aerospace Center, 2023),180
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Figure 6. Variation of the risk function (Equation 7) across epochs during the calibration process, using a learning rate of 5× 10−5 and

πp = 0.35. The blue line denotes the risk computed from the training set, and the red line represents the risk computed from the validation

set.

whereas our model considers roads as built-up areas. For a fair comparison, road pixels were excluded from the validation

process. Model performance and WSF accuracy were evaluated using precision, recall, and the F1 score metrics.

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)185

F1 = 2 · Precision ·Recall
Precision + Recall

, (12)

where TP , FP , and FN denote the numbers of true positives, false positives, and false negatives, respectively. For a given

class i (urban or non-urban), precision is the fraction of pixels classified as class i that are correctly identified. Conversely,

recall represents the fraction of pixels belonging to class i that are correctly detected.190

The accuracy scores of our model and the WSF urban map are summarized in Table 2. In consolidated urban areas, when

considering average scores, the WSF outperforms our model in recall by 2% and in F1 by 1%, but underperforms in precision
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Figure 7. Comparison of built-up areas obtained from the proposed methodology, the WSF product, and the reference built-up map. Built-up

areas detected by our method are shown in green (right), those from the WSF are shown in blue (middle), and the reference built-up areas

are shown in red (left). Basemaps: Basemaps: Google, ©2024 MAXAR Technologies.

by 2%. This result is expected since WSF effectively represents consolidated urban zones worldwide. In peripheral areas, our

model outperforms WSF in recall by 12% and in F1 by 2%, while underperforming in precision by 4%. In remote areas, the

improvement is more significant: our model exceeds WSF in recall by 37% and in F1 by 12%, with a 4% decrease in precision.195

These results indicate that the proposed model is particularly effective in detecting emerging urban growth zones, which aligns

with the main objective of this study. It is also noteworthy that the largest performance gap favoring WSF (17%) occurs in
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Table 2. Validation results comparing WSF and CNN-based classification across different areas in Lima.

Type Area Model Precision Recall F1-Score

U NU Av. U NU Av. U NU Av.

Consolidated
WSF 0.8483 0.7833 0.8158 0.8174 0.8187 0.8180 0.8326 0.8006 0.8166

Ours 0.7680 0.9066 0.8373 0.9464 0.6454 0.7959 0.8479 0.7540 0.8010

Peripheral
WSF 0.7295 0.9180 0.8238 0.6061 0.9515 0.7788 0.6621 0.9345 0.7983

Ours 0.5810 0.9881 0.7846 0.9526 0.8518 0.9022 0.7218 0.9149 0.8183

Remote
WSF 0.3989 0.9928 0.6958 0.1605 0.9979 0.5792 0.2289 0.9953 0.6121

Ours 0.3132 0.9994 0.6563 0.9268 0.9824 0.9546 0.4682 0.9908 0.7295

Ocean
WSF - 1 - - 1 - - 1 -

Ours - 1 - - 1 - - 1 -

consolidated areas for non-urban recall, whereas the largest improvement from our model (77%) appears in remote areas for

urban recall.

3.3 Results200

Once the model was calibrated, built-up areas were detected for each of the selected Sentinel-2 images (Section 3.1). Figure 8

shows the built-up extent by 2025, where blue tones represent areas existing in 2016 and red tones denote growth between

2016 and 2025. The insets provide detailed views of the urban boundaries in 2021 and 2024, when high-resolution imagery is

available for this study, showing that the model successfully delineates built-up limits and their temporal evolution. Overall,

Lima’s urban footprint expanded by approximately 76.45 km2 during this period (Figure 9). Annual expansion peaked between205

2016 and 2017, reaching 18.67 km2, followed by a gradual slowdown until 2021. A renewed acceleration was observed from

2022 onward, indicating the continued dynamism of urban expansion. The spatial distribution of growth shows a clear outward

pattern concentrated in peripheral districts, consistent with previous reports of Lima’s horizontal expansion. This trend high-

lights the limited containment capacity of existing urban boundaries and the persistent demand for new residential areas at the

city’s margins.210

At the district level, the spatial distribution of urban expansion reveals pronounced heterogeneity across Lima’s metropolitan

area (Figure 10). During the study period, Carabayllo recorded the highest cumulative increase in urbanized area (approxi-

mately 11.4 km2), followed by Lurín (7.5 km2), Pachacamac (7.4 km2), Punta Hermosa (5.0 km2), Cieneguilla (5.0 km2),

Villa María del Triunfo (4.8 km2), Ventanilla (4.4 km2), Lurigancho (4.0 km2), San Juan de Lurigancho (4.0 km2), and Puente

Piedra (3.1 km2). These results highlight that the most substantial cumulative growth between 2016 and 2025 occurred in215

peripheral districts.
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© OpenStreetMap contributors 

Figure 8. Spatial distribution of urban growth in Metropolitan Lima from 2016 to 2025. Blue tones indicate built-up areas present in 2016,

and red tones depict the growth that occurred between 2016 and 2025. Insets show closer views of the predictions for 2021 and 2024.

Basemaps of insets: Basemaps: Google, ©2024 MAXAR Technologies.

4 Hazard exposure and socioeconomic growth type

To quantify the growth in exposure to natural hazards, urban expansion was analyzed in relation to flood susceptibility, land-

slide susceptibility, seismic microzonation, and tsunami inundation zones. The tsunami inundation map represents the expected

flooding extent from a potential Mw 9.0 earthquake off the coast of Lima, prepared by the Directorate of Hydrography and220
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Figure 9. Cumulative increase in urbanized area between 2016 and 2025 in Metropolitan Lima.
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Figure 10. (a) Increase in urbanized area between 2016 and 2025 by district. Lighter shades indicate earlier phases of expansion, while

darker tones represent more recent growth. (b) Spatial distribution of districts in Metropolitan Lima. Shade intensity denotes the total urban

growth between 2016 and 2025. SJL: San Juan de Lurigancho; SJM: San Juan de Miraflores; SMP: San Martin de Porres; VES: Villa El

Salvador; VMT: Villa Maria del Triunfo; CML: Carmen de la Legua-Reynoso.
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Figure 11. (a) Tsunami inundation map for Metropolitan Lima (Directorate of Hydrography and Navigation – Peruvian Navy, 2025). The

inset shows a closer view of urban growth in the bay area of the District of Ventanilla, where red tones indicate zones subject to tsunami

inundation. Basemaps of insets: Google, ©2025 MAXAR Technologies.(b) Landslide susceptibility classification for Metropolitan Lima

(Villacorta Chambi et al., 2015). (c) Seismic microzonation map (Gonzales et al., 2023).

Navigation of Peru (DHN, 2014) (Figure 11a). The landslide susceptibility map proposed by Villacorta Chambi et al. (2015)

classifies the territory into five categories—very low, low, medium, high, and very high—according to the probability of oc-

currence (Figure 11b). The map indicates that the eastern sectors of the city are highly vulnerable to mass movements such as

rockfalls and mudslides (huaycos). Approximately 35% of Lima’s territory is classified as having high or very high suscepti-

bility to landslides.225

The seismic microzonation (SM) map characterizes the soil deposits of Metropolitan Lima based on their mechanical and

dynamic properties (Calderon et al., 2014; Gonzales et al., 2023; Calderon et al., 2025) (Figure 11c). It includes five zones:

SM Zone I corresponds to rock formations with different degrees of fracturing (excluding steep slopes), dense to very dense

alluvial gravels, and sedimentary deposits with gravelly layers at shallow depths; SM Zone II comprises medium-dense to

dense sands and medium-to-stiff silty–clayey soils; SM Zone III includes coastal deposits of deep loose to medium-dense230

sands and soft to medium silts and clays; SM Zone IV is characterized by thick aeolian sands and loose marine deposits prone

to liquefaction, as well as steep rocky slopes due to their high geological risk; and SM Zone V includes landfills and waste-

material deposits resulting from anthropogenic activities throughout Metropolitan Lima. This classification also incorporates

vibrational parameters obtained from geophysical surveys, such as the fundamental site period and the average shear-wave

velocity in the upper 30 m (Vs30). Accordingly, SM Zone I is characterized by short fundamental periods (shorter than 0.2235

s) or flat H/V spectral ratios and the highest Vs30 values (on the order of 550–650 m/s), whereas SM Zone IV exhibits the
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longest fundamental periods recorded in Metropolitan Lima (slightly exceeding 1 s) and the lowest Vs30 values in the city (on

the order of 250 m/s). These contrasts clearly demonstrate the strong spatial variability of seismic amplification patterns driven

by the diverse geological conditions across Metropolitan Lima.
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Figure 12. (a) Distribution of urban growth between 2016 and 2025 by clusters. (b) Cumulative urban growth by year in tsunami-prone

coastal areas. (c) Cumulative urban growth by year across different landslide susceptibility levels. (d) Cumulative urban growth by year

across different seismic microzonation classes.

Regarding tsunami exposure, approximately 4 km2 of new urban area was developed within coastal zones exposed to240

tsunamis between 2016 and 2025 (Figure 12b). The District of Ventanilla experienced the largest expansion within tsunami-

prone areas (inset in Figure 11a), particularly in its northern sector, where urban growth has intensified in recent years. The

second largest expansion occurred in the District of Callao, where new land has been gained from the sea through natural

sediment deposition and anthropogenic reclamation. These reclaimed areas are now occupied by residential and industrial
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developments. Urban expansion within landslide-susceptible zones was even greater: nearly 30 km2 of new development over-245

laps areas with medium (Type III) to very high (Type V) susceptibility (Figure 12c), while zones classified as low or very

low exceed 40 km2. Notably, more than 36.5% of recent urban growth lacks detailed seismic microzonation coverage, un-

derscoring a major gap in the current framework for integrated urban planning and seismic risk assessment (Figure 12d). In

addition, approximately 12.5 km2 of new construction occurred on soils classified as SM Zone IV and SM Zone V, where

strong ground-motion amplification, liquefaction potential, and/or geotechnical instability are expected.250
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Figure 13. Cumulative urban growth by socioeconomic type between 2016 and 2025. A substantial portion remains unclassified due to

limited population data in informal settlements.

In 2020, the National Institute of Statistics and Informatics (INEI) released a fine-scale socioeconomic stratification of Lima

and Callao at the block level. Household per capita income was estimated from the 2017 Population and Housing Census,

complemented by household surveys and auxiliary data sources (National Institute of Statistics and Informatics (INEI), 2020).

Additional variables—such as distance to schools, health centers, and district capitals—were included to strengthen the spatial

estimations. The study classifies urban households into five income groups: high, medium-high, medium, medium-low, and255

low. Our results show that about 75% of newly urbanized areas lack a defined socioeconomic classification, reflecting limited

demographic coverage in informal and peripheral settlements (Figure 13). Among classified areas, most of the expansion

occurred in low (5.6 km2) and medium-low (3.5 km2) income zones, corresponding to the lowest socioeconomic levels. This

pattern highlights an increasing concentration of urban expansion in areas associated with higher levels of social vulnerability.
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5 Discussion260

This study shows that semi-supervised learning offers a practical and scalable solution for mapping the urban footprint in data-

scarce environments. The NNPU-based model accurately delineated built-up areas from incomplete geocoded data, helping

to close the gap between global-scale products and the demand for locally detailed urban information. By combining limited

reference data with Sentinel-2 imagery, the model captured Lima’s heterogeneous urban fabric, including informal settlements

often omitted from global datasets such as the World Settlement Footprint (WSF).265

This study builds upon the work presented in Moya et al. (2024), where large clusters of recent settlements were identi-

fied through changes in the backscatter of SAR satellite imagery. Because SAR systems are side-looking, their images are

affected by geometric distortions and limited visibility in areas of complex topography—such as the steep hills and narrow

valleys that dominate Lima’s periphery. Consequently, not all settlements were captured in those SAR-based analyses. Here,

we map the entire spectrum of new urban areas to produce more comprehensive estimates of the exposed population, including270

small clusters that could not be detected previously due to speckle noise in SAR images. Spatially, Lima’s urban expansion

between 2016 and 2025 (≈76 km2) reflects persistent outward growth concentrated in peripheral districts such as Carabayllo,

Lurín, and Pachacamac. These areas illustrate the common pattern of peri-urban sprawl in Latin American cities, where weak

land regulation and speculative land trafficking drive rapid settlement beyond formal planning control. Our total estimate of

8.3 km2 per year contrasts with earlier studies. Espinoza and Fort (2020) reported an increase of about 200 km2 between275

2000 and 2018 (≈11 km2/year), based on manually delineated urban agglomeration polygons that encompass built-up areas.

Similarly, the National Center for Strategic Planning (CEPLAN) (2023) estimated a growth of 100 km2 between 2014 and

2018 (≈25 km2/year), notably higher than the previous estimate. A closer comparison reveals substantial differences in the

delineation of urban agglomerations, highlighting a key source of uncertainty when different criteria are applied to define urban

boundaries. Remote sensing–based approaches, by contrast, are less affected by such subjective interpretations.280

Our findings have important implications for more efficient and sustainable land planning and management. Official datasets

are often outdated or incomplete, partly due to limited road access, steep slopes, and insufficient safety conditions. In contrast,

our results provide accurate, up-to-date information on built-up areas, enabling a clearer understanding of socio-spatial dy-

namics within the urban fabric. They can also support efforts to mitigate land trafficking. Field surveys indicate that early land

occupations frequently consist of temporary and uninhabited dwellings (Moya et al., 2024). Over time, as these plots are infor-285

mally commercialized, new occupants settle and later request formal land tenure. The proposed model can help identify such

early-stage occupations, allowing authorities to prevent illegal land trafficking and reduce the associated violence and criminal

activity (Vera, 2018; Pimentel-Sanchez, 2021; Dammert-Guardia et al., 2025). Additionally, implementing this methodology

would enable more timely detection of informal expansion and facilitate early warnings for communities exposed to natural

hazards.290

The integration of hazard information revealed that nearly 30 km2 of new urban development occurred within areas of

medium to high landslide susceptibility. In contrast, the largest share—about 45 km2—is located in zones classified as very low

or low susceptibility. At first glance, these results appear to contradict those of Moya et al. (2024), who reported that informal
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urban growth is mainly concentrated in high and very high susceptibility areas. This difference arises from the analytical scale:

our study is pixel based, whereas Moya et al. (2024) conducted a cluster-based analysis. In their approach, if any portion of a295

cluster overlapped a high or very high susceptibility zone, the entire cluster was classified accordingly. Moreover, Moya et al.

(2024) could not detect small clusters, while our method captures these smaller settlements, which are numerous across the

study area (Figure 12a).

Urban exposure to tsunami hazards increased by approximately 4 km2 during the study period. These coastal areas require

special consideration in urban development and land-use planning. Tsunami evacuation routes must be clearly communicated to300

residents, and the urban fabric should ensure that all neighborhoods have direct access to safe evacuation zones. Communities

located near the shoreline should also be aware that, following a major earthquake, evacuation should begin immediately

without waiting for an official warning. Past earthquakes have shown that reclaimed land is highly susceptible to liquefaction

(Kramer, 1996; Konagai et al., 2013); furthermore, previous reports indicate that the District of Callao experienced liquefaction

during past seismic events (Alva-Hurtado and Ortiz-Salas, 2020). Therefore, detailed geotechnical assessments are needed for305

the recently developed areas in the District of Callao, as these conditions will directly influence the foundation design of new

constructions.

It is important to emphasize that the seismic microzonation map considered in this study (Calderon et al., 2025) builds upon

the original soil seismic classification developed in 2004 and subsequently updated between 2011 and 2021, at an average rate

of approximately five districts per year. Consequently, several of the districts evaluated at that time did not yet include the310

urban expansion areas documented in this study. The largest currently urbanized zones that still lack seismic classification are

located in the districts of Ventanilla, Carabayllo, and Punta Hermosa. In the case of Ventanilla, an urban expansion area of

approximately 1.09 km2 is observed in the eastern sector of the district, near the coastline, which formerly constituted part of

a protected wetland zone. At present, this area is being used for residential and industrial purposes, severely compromising the

conservation of local flora and fauna. The uncontrolled anthropogenic fill used for urbanization, combined with the presence315

of a shallow groundwater table, may significantly increase the susceptibility to soil liquefaction and seismic amplification. In

the northern sector of Carabayllo, an expansion area of approximately 3.5 km2 reveals multiple geotechnical concerns. The

largest portion of this growth is located on former agricultural land near the Chillón River, where the soil profile, although

predominantly of alluvial origin, is associated with a high groundwater level. Additionally, urbanization has expanded into

zones adjacent to hillsides that were previously exploited as construction-material quarries. After quarry closure, anthropogenic320

filling, land subdivision, and land sales for residential use were carried out. This practice is particularly hazardous, as buildings

in these areas are founded on poorly compacted and heterogeneous fill materials with unknown dynamic behavior under seismic

loading. A particularly critical case is the urbanization of the Río Seco ravine, which becomes active during intense summer

rainfall associated with El Niño phenomena, generating debris flows from highlands. The most recent activation of this ravine

occurred in 2023 during Cyclone Yaku. Finally, an urban expansion area of approximately 4.56 km2 has been identified in the325

district of Punta Hermosa, located in southern Metropolitan Lima. This expansion is concentrated near a ravine that, similar

to the Río Seco case, becomes active during periods of intense rainfall. The ongoing urbanization process has altered the

natural transport routes of sediments and debris, increasing susceptibility to flooding and mass movement processes. The cases
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described above clearly demonstrate the urgent need for governmental policies that regulate urban expansion in areas unsuitable

for real estate development. Furthermore, it is crucial to promote the systematic updating of microzonation and multi-hazard330

risk studies, particularly for seismic and meteorological phenomena, in newly urbanized areas. This will provide the diagnostic

tools required to support disaster risk management policies and to minimize future impacts on both human life and property.

The socioeconomic segmentation results further highlight that approximately 75% of the newly urbanized area remains

undefined in terms of socioeconomic type due to gaps in demographic and census coverage in peripheral and informal settle-

ments. Among classified zones, expansion is dominated by low (5 km2) and medium-low (4 km2) income strata, highlighting335

a pattern of socioeconomic segregation that extends Lima’s inequality toward its periphery. This concentration of expansion in

lower-income zones indicates that recent urban growth is reinforcing patterns of social inequality and spatial marginalization

at the city’s edges.

Methodologically, the improved recall in peripheral and remote areas—where the WSF underperforms—demonstrates the

model’s ability to detect small and fragmented structures typical of informal settlements. The iterative human-in-the-loop340

refinement effectively enhanced local consistency without requiring exhaustive manual labeling. Despite these advantages, the

approach has several limitations. The 10 m resolution of Sentinel-2 imagery constrains the detection of fine-scale features,

and residual cloud contamination may cause localized classification errors. The reliance on open-source data, while beneficial

for reproducibility, can introduce positional inaccuracies and inconsistent labels. Finally, although the model performs well

for Lima, its transferability to other cities depends on the similarity of their urban morphologies and spectral characteristics.345

Retraining with region-specific samples remains necessary to ensure generalization.

Overall, this study helps bridge the gap between urban remote sensing and disaster risk management in the Global South.

The proposed framework enables urban planners and local authorities to quantify and monitor unregulated urbanization using

open data and modest computational resources. By identifying where and how Lima continues to expand into hazard-prone

zones, the approach supports the formulation of proactive, risk-informed planning measures aligned with Peru’s 2050 National350

Development Plan, which aims to promote a sustainable and resilient territory.

6 Conclusions

This study presented a semi-supervised segmentation framework for mapping urban expansion in Metropolitan Lima using

Sentinel-2 imagery and weakly labeled data. By integrating incomplete reference information with a NNPU-based learning

scheme and targeted human-in-the-loop refinement, the approach produced detailed and internally consistent built-up maps355

that overcome key limitations of global products such as the World Settlement Footprint. The method proved particularly

effective in peripheral and rapidly evolving areas, where informal settlements are common and conventional datasets tend to

underrepresent recent construction. Between 2016 and 2025, Metropolitan Lima expanded by approximately 76 km2, with

growth concentrated in Carabayllo, Lurín, Pachacámac, and other districts undergoing active land subdivision. A portion of

this growth occurred within zones exposed to natural hazards: about 4 km2 in tsunami-prone coastal areas and nearly 30 km2 in360

medium-to-high landslide susceptibility zones. Additional development covering approximately 15.5 km2 took place on soils
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classified as Type IV and Type V in seismic microzonation studies, where strong ground amplification and potential instability

are expected. These findings underscore the need for risk-informed land-use planning and the systematic incorporation of

hazard information in urban management decisions.

The results also highlight the importance of this framework for detecting early-stage land occupations, which in Lima often365

begin as temporary, uninhabited structures and later evolve into consolidated informal settlements. Early identification of such

occupations may support interventions aimed at reducing land trafficking, improving territorial governance, and mitigating

the social and environmental impacts associated with unregulated urban expansion. Overall, this study demonstrates that semi-

supervised learning provides a viable and scalable pathway for improving urban footprint mapping in data-scarce environments.

The resulting products can support local governments in monitoring urban growth, evaluating exposure to natural hazards, and370

designing strategies consistent with Peru’s 2050 National Development Plan.
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