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Abstract. East Asia is a major source of fossil fuel emissions and strongly influences regional and global CO: concentrations.
Quantifying natural carbon sinks in this region is therefore essential for improving climate projections and informing mitigation
strategies. We estimated the Net Ecosystem Exchange (NEE) and ocean carbon fluxes over East Asia (18.5°N-54°N, 73°E—
146°E) during 20102019 using a Bayesian inversion framework. The GEOS-Chem chemical transport model was combined
with GOSAT ACOS v9.0 XCO:z retrievals, and region-specific prior uncertainties were assigned using standard deviations
from land and ocean models. Posterior estimates show enhanced carbon uptake relative to the prior, with NEE increasing from
—0.17 £ 0.08 to —0.31 + 0.06 PgC yr! and ocean uptake changing slightly from —0.20 + 0.03 to —0.21 £+ 0.03 PgC yr .
Simulated CO2 concentrations based on posterior fluxes agreed better with independent observations than those from prior
fluxes. Most subregions in East Asia acted as net carbon sinks over the past decade. Enhanced Vegetation Index (EVI) trends
also support strengthened carbon uptake. However, several regions showed temporary net carbon releases in 2015-2016, likely
linked to the strong 2015/16 El Nifio. East Asia released a net flux of +3.45 PgC yr! to the atmosphere during 2010-2019.
Natural sinks offset only ~13.6% of fossil fuel emissions, leaving a substantial residual source. Despite strengthened posterior
sinks, they remain insufficient to counter regional emissions, sustaining elevated CO: levels and continued outflow from East

Asia.

1 Introduction

Carbon dioxide (COz) is the most important anthropogenic greenhouse gas (GHG), with atmospheric concentrations
having risen from the pre-industrial level of 280 ppm to 426 ppm in 2025 (Joos and Spahni, 2008; Lan et al., 2025). To achieve
the Paris Agreement’s goal of limiting global temperature rise to below 1.5 °C above pre-industrial levels (UNFCCC, 2015),
effective carbon management is imperative. This entails not only controlling anthropogenic emissions but also improving our
understanding of carbon sink mechanisms, as major natural sinks such as vegetation and oceans currently absorb roughly half
of global emissions (Friedlingstein et al., 2023). However, significant uncertainties remain regarding the capacity and
dynamics of these natural sinks (IPCC, 2023). This problem is particularly acute in East Asia, one of the world's fastest-

growing carbon-emitting regions (Gilfillan and Marland, 2021). Despite its critical role, previous studies have struggled to
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accurately estimate regional carbon flux due to the limited number of in situ COz observation sites in Asia compared to Europe
or North America (Park and Kim, 2020), which poses a limitation to the accuracy of inverse modeling and regional flux
estimates.

Carbon fluxes are commonly estimated using two main approaches: top-down and bottom-up. Top-down methods
infer surface fluxes by applying inverse techniques to atmospheric CO2 concentration data, whereas bottom-up methods
combine observations with statistical upscaling or process-based models (Jung et al., 2020; Kondo et al., 2020; Sitch et al.,
2008, 2015). Among top-down techniques, atmospheric inversions driven by a chemical transport model (CTM) are widely
used (Basu et al., 2018; Nassar et al., 2011; Palmer et al., 2003; Peylin et al., 2013).

Since in situ CO2 measurements are highly precise (typical observational errors <0.2 ppm), they have been extensively
used in inversion frameworks (Baker et al., 2006; Deng and Chen, 2011; Gurney et al., 2003; Jiang et al., 2013; Monteil et al.,
2020; Peylin et al., 2013). Their major limitation is sparse spatial coverage, especially over data-poor regions such as the
oceans and much of Africa. Satellite retrievals, by contrast, provide broad spatial coverage: for example, GOSAT has a
footprint approximately 10.5 km in diameter with an observation error of about 1 ppm (Kulawik et al., 2019). Whereas Wang
et al. (2019) excluded oceanic soundings because of larger uncertainties associated with glint-mode retrievals(Wunch et al.,
2017), the present study adopts a different strategy. We use both land and ocean observations and explicitly account for the
instrument error reported in the GOSAT product. By weighting each sounding by its stated uncertainty, we retain more
measurements while limiting the influence of noisier data, thereby improving spatial coverage for flux estimation.

Although many studies have targeted East Asia, most focus on China and provide limited quantitative assessment of
flux uncertainties. For example, Wang et al. (2020) estimated Chinese carbon fluxes from in situ data, assigning prior
uncertainties of 50% for land and 40% for ocean, which were prescribed as simple percentage values rather than derived from
data variability. Thompson et al. (2016) used a seven-model inversion ensemble for Asia, but applied inconsistent prior fluxes
and uncertainties across models. Jiang et al. (2013) estimated carbon uptake in China using ground observations. In their
framework, land prior uncertainties were derived from net primary production, while a uniform prior uncertainty was assumed
for the ocean.

Here, we explicitly treat uncertainties in both terrestrial and oceanic fluxes. Terrestrial uncertainties are derived from
the standard deviation of the TRENDY ensemble (Sitch et al., 2015), and ocean flux uncertainties are based on the standard
deviation among ocean models contributing to the Global Carbon Project (Friedlingstein et al., 2023). Given the central role
of error specification in inverse modeling, this data-informed approach yields a more consistent quantification of prior
uncertainties and enhances the robustness of posterior flux estimates. Using this framework, we estimate East Asian carbon
fluxes from GOSAT XCO: retrievals and introduce an uncertainty structure that varies by region and domain (land/ocean).
These refinements aim to provide a more accurate assessment of regional carbon fluxes than previous studies, supporting

evidence-based policymaking and climate-mitigation strategies.
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2 Data and methods
2.1 Forward model

We used GEOS-Chem v13.1.0 as a forward model to relate atmospheric COz concentrations to surface fluxes for
optimization in the inverse modeling framework. GEOS-Chem is a global 3D chemical transport model driven by
meteorological inputs from the Goddard Earth Observing System (GEOS) of NASA’s Global Modeling and Assimilation
Office (GMAO). The CO: simulation in GEOS-Chem was originally developed by Suntharalingam et al. (2004) and later
updated by Nassar et al., (2010, 2013). For high-resolution CO: simulations over East Asia, we used the nested-grid version
of GEOS-Chem, which is driven by MERRA-2 meteorological data with a 0.5° x 0.625° horizontal resolution and 47 vertical
levels from the surface to 0.01 hPa. The simulation domain covers East Asia (18.5°N—54°N, 73°E-146°E), with boundary
conditions derived from the global 2° x 2.5° simulation.

The model used monthly anthropogenic CO2 emissions from the Open-source Data Inventory for Anthropogenic CO»
(ODIAC2020b; Oda and Maksyutov, 2011; Oda et al., 2018) and weekly biomass burning emissions derived from the Global
Fire Emissions Database version 4.1 (GFEDv4; Randerson et al., 2018). The model also includes CO2 emissions from shipping
and aviation, as well as chemical production from the oxidation of carbon monoxide (CO), methane (CH4), and non-methane
volatile organic compounds (NMVOCs). The model simulates COz sinks as a first-order process using monthly NEE from the
Dynamic Land Ecosystem Model (DLEM,; Tian et al., 2010; You et al., 2022) and monthly ocean CO: fluxes from the Finite-
Element Sea ice—Ocean Model coupled with the Regulated Ecosystem Model (FESOM-REcoM; Schourup-Kristensen et al.,
2018).

Our study focused on optimizing NEE and ocean exchange fluxes. Following common practice in inverse modeling,
we assumed no errors in fossil fuel and biomass burning fluxes (e.g., Chevallier et al., 2019; Gurney et al., 2002; Peters et al.,
2007). To optimize fluxes consistent with administrative boundaries, we performed tagged CO: simulations that allowed us to
independently track COz originating from each region (Figure 1). These defined regions comprise the Korean Peninsula, China,
Mongolia, Taiwan, Japan, and parts of the Northwest Pacific. After a five-year spin-up starting from January 2005, the model
simulations were conducted from January 2010 to December 2019 to incorporate GOSAT observations, which became

available starting in 2009.
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Figure 1. Spatial domains defined in this study for regional analysis over East Asia (18.5°N-54°N, 73°E-146°E), including Mongolia,
China (six subregions), the Korean Peninsula, Japan, Taiwan, and the Northwest Pacific. Red triangles indicate surface CO2
observation sites from the WDCGG network, and blue stars represent TCCON stations.

2.1 Inverse model

To infer surface fluxes from atmospheric CO2 concentrations, we employ an inverse modeling framework based on
optimal estimation theory (Rodgers, 2000). Observed concentrations of CO:, assembled into an observation vector y, are
related to the sources and sinks of CO2 (assembled in a state vector x) through the Jacobian matrix K, as described by the
following equation:
y=Kx+ ¢ 1)

The Jacobian matrix K represents the forward model introduced in the previous section. Under the linear
approximation, it links variations in the state vector to corresponding changes in the modeled concentrations. The state vector
x represents the annual sink/source originating from vegetation and the ocean, while the observation vector y is defined by
GOSAT XCO:z (Sect. 2.3). The error vector € includes contributions from measurement accuracy, representation error, and
errors in model parameters. The ensemble characteristics of these errors are described by the observation error covariance (S,),
which is represented as the sum of the covariance matrices from individual sources of error.

The fundamental principle of an optimal estimation inverse method is to minimize a cost function J(x) :

Jo) = v = Kx)TS;1 (v — Kx) + (x — x,)"Sg " (x — x4) @
where x, is the a priori state vector and S, is the error covariance matrix for the a priori state vector (x,). The optimized a

posteriori state vector (X) is given as follows:
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2= x,+ (KTS;'K + S,)"1KTS;1(y — Kx,) 3)

The superscript T indicates the matrix transpose. The a posteriori error covariance matrix S, which describes the
uncertainty of the optimized state estimate, is given by the following expression.

S=(KTS;'K +5;9)71 @)

2.3 Error specification
2.3.1 A priori error covariance (Sa)

The a priori error covariance matrix (S,) is constructed with the squares of the a priori uncertainties (ca) as its diagonal
elements. In this study, the ¢, values for terrestrial fluxes are derived from the standard deviation of NEE across eight land
models (CABLE-POP, CARDAMOM, CLASSIC, DLEM, EDv3, IBIS, OCN, and YIBS) participating in the Trends in Net
Land-Atmosphere Carbon Exchange (TRENDY) project (Sitch et al., 2008). TRENDY is an ensemble of terrestrial biosphere
models forced by common meteorological inputs. Similarly, the c. values for ocean fluxes are defined using the standard
deviation from a ten-model ocean ensemble (ACCESS, CESM, CNRM, FESOM, IPSL, MOM, MPIOM, MRI, NEMO, and
NORESM) contributing to the Global Carbon Budget project (Friedlingstein et al., 2023). The resulting annual o, values for
each region are summarized in Table 1.

Only a few previous inversion studies have implemented time-varying prior uncertainties at seasonal or monthly
scales (e.g., Baker et al., 2006). However, allowing o, to vary interannually provides a more consistent representation of how
flux uncertainty evolves in response to climate variability. This configuration enables the inversion to account for year-to-year
changes in terrestrial and oceanic fluxes, rather than relying on a stationary error structure. In our sensitivity test, time-invariant
uncertainties produced regional flux differences that averaged about 12.4% relative to the time-varying case. While this
sensitivity analysis does not by itself demonstrate that the time-varying configuration is more realistic, it indicates that allowing

0, to vary in time can have a non-negligible influence on the inferred regional fluxes.

Table 1. Annual a priori uncertainty (o,) for regional fluxes (TgC yr™). The values are derived from the standard deviation across
TRENDY biosphere models (Sitch et al., 2008), except for the Northwest Pacific region, which is estimated from the ocean model
ensemble contributing to the Global Carbon Budget (Friedlingstein et al., 2023).

Year  Korean Japan North North East South South North Mongolia Taiwan North

peninsula China east China Central west west west

China China China China Pacific
2010 8.7 13.0 228  30.1 437  38.6 52.1 16.5 12.4 1.3 33.0
2011 6.8 102 237 172 363 512 347 15.0 13.9 1.1 30.8
2012 10.3 103 357 235 358 334 46.3 14.3 32.1 1.3 319
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2013 8.7 7.9 322 18.1 34.8 28.9 46.8 22.4 36.7 1.1 31.5
2014 9.2 8.3 28.1 21.0 38.0 318 28.3 12.6 26.9 1.0 31.6
2015 8.6 124 282 237 37.1 354 30.2 23.4 29.1 1.2 27.4
2016 6.0 9.2 31.1 26.7 453 36.4 29.6 31.6 15.5 0.9 26.0
2017 9.1 6.5 36.2 318 34.5 23.0 23.1 19.0 18.5 1.0 30.4
2018 5.8 149 297 241 404 369 33.9 18.0 29.6 1.3 30.9
2019 54 8.7 31.3 19.4 554 482 45.7 16.0 25.8 1.3 27.4
Mean 7.8 10.1 299  23.6 40.1 36.4 37.1 18.9 24.0 1.2 30.1

2.3.2 Observational error covariance (So)

The total observation error covariance, S, includes contributions from forward model (CTM) error, representation
error, and instrument error (So = Sm+ Sr + Si). The forward model errors are estimated from the relative residual standard
deviation (RRSD) of the difference between the model and observation, as represented by (Kx—y)/y (Palmer et al., 2003). It is
assumed that the mean model bias arises from errors in the a priori sources, and that the variance reflects uncertainty associated
with the model. Representation errors are assigned as 1% of the observed concentration (approximately 4 ppm), consistent
with the magnitude reported in previous studies. Kaminski et al. (2010) used an ad hoc variability of 3 ppm, Gerbig et al. (2003)
reported representation errors of similar magnitude (~3 ppm), and Tolk et al. (2008) recommended values of around 3 ppm

depending on model resolution.

2.4 Observations

GOSAT is a greenhouse gas observation satellite launched in February 2009, operating in a sun-synchronous orbit.
Compared to OCO-2, which was launched in 2015, GOSAT has a longer period of available data, making it commonly used
in top-down emission estimation studies (Jiang et al., 2022; Byrne et al., 2019; Liu et al., 2021; Houweling et al., 2015).
GOSAT provides column-averaged dry-air mole fractions of COa, referred to as XCOs.

We use the Atmospheric CO2 Observations from Space (ACOS) Version 9.0 Level 2 Lite product (Taylor et al., 2022),
covering the period from January 2010 to December 2019. This dataset includes bias correction, with a global mean bias of
less than 0.2 ppm (Taylor et al., 2022). It has a spatial resolution of 10.5 km % 10.5 km at nadir and is regridded to 2° x 2.5°
(Global) or 0.5° x 0.625° (East Asia) to match GEOS-Chem resolution. To ensure data reliability, only retrievals with a quality
flag of zero were used, where a value of 0 denotes "good" quality and a value of 1 denotes "bad" quality. The XCOz uncertainty
was used to construct the observational error covariance (Section 2.3.2). The averaging kernel, pressure weighting function,
and a priori profile are used to construct the transformed model XCO., incorporating observational sensitivity based on Eq. (5)

(Connor et al., 2008).
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XCO%”=XC0§1+Z]h]aCOZJ(xm—xa)] (5)

Here, XCOY* is transformed model XCOz, and XCO¥ is the a priori XCO2 from GOSAT/ACOS Version 9.0 Level 2
Lite product. h; is the pressure weighting function and ac,, ; is the column averaging kernel of GOSAT/ACOS v9r. x,,
represents the model-simulated vertical COz profile, and x, is the a priori COz profile from GOSAT/ACOS v9r.

We used independent ground-based observations to validate our estimates of COz fluxes in the model. They include
World Data Centre for Greenhouse Gases (WDCGGQG), operated by the Japan Meteorological Agency (JMA) under the Global
Atmosphere Watch (GAW) program of the World Meteorological Organization (WMO), provides high-precision CO2
concentration data from ground-based stations worldwide. These observations undergo rigorous calibration and quality control
procedures, making them highly suitable as an independent benchmark for evaluating model performance. Within the study
domain (18.5°N-54°N, 73°E—~146°E), a total of eight WDCGG stations with sufficient temporal coverage were identified after
applying the RMSE-based filtering criterion described in Section 3. The locations of the WDCGG stations are shown in Figure
1 (red triangles).

Total Carbon Column Observing Network (TCCON; Wunch et al., 2011) provides ground-based measurements of
column-averaged COz concentrations (XCO2) using Fourier transform spectrometers. In this study, we used the GGG2020
product, which includes a priori COz vertical profiles necessary for generating modeled XCO: from atmospheric transport
models. Within the spatial domain of this study and over the relevant time period, three TCCON sites were available for

evaluation. The locations of the TCCON stations are shown in Figure 1 (blue stars).

3 Evaluation (a priori vs. a posteriori)

To evaluate the reliability of the inversion results, we compared the simulated CO2 concentrations from both the prior
and posterior flux with independent observational datasets, namely WDCGG and TCCON, which were not assimilated into
the inversion system (Feng et al., 2020; Jiang et al., 2021; Jin et al., 2018; Wang et al., 2019). This approach allows for an
objective assessment of the inversion performance.

Three statistical metrics were employed for the evaluation: correlation coefficient (R), root mean square error (RMSE), and
normalized mean bias (NMB), which quantify the linear relationship, overall error magnitude, and systematic bias between
the modeled and observed COz concentrations, respectively.

To ensure that the evaluation reflects large-scale, well-mixed COz variability rather than local influences or large
representation errors, sites with model-observation RMSE exceeding 7.0 ppm were excluded. This threshold approximately
corresponds to the annual amplitude of the seasonal cycle at Mauna Loa, a globally representative background site. Errors
exceeding this threshold suggest that the station is influenced by sub-grid variability that GEOS-Chem cannot resolve at its

native resolution, making such sites unsuitable for model evaluation. Following the approach of Jiang et al. (2022), which

7



195

200

205

210

215

https://doi.org/10.5194/egusphere-2025-5971
Preprint. Discussion started: 19 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

excluded sites with inadequate model performance, we removed three WDCGG stations (KIS, HKG, and HKO), representing
Kisai (Japan), Hong Kong Hok Tsui (China), and Hong Kong King's Park (China). All TCCON stations met the performance
criterion and were retained.

We evaluated the inversion results using eight WDCGG and three TCCON observation sites (Sect. 2.4). Since
WDCGG provides point-based ground-level measurements, we selected the nearest model grid cell based on the latitude,
longitude, and altitude of each observation site for comparison. Among the WDCGG sites, all except YON showed
improvements in all three statistical metrics, correlation coefficient (R), root mean square error (RMSE), and normalized mean
bias (NMB), after the inversion (Table 2). The YON site, located at the southernmost edge of the domain, lies on a small island
(~28.9 km?), which likely introduced substantial represent errors due to the mismatch with the coarser model resolution.

For the TCCON observations, which represent column-averaged COz concentrations, we computed the modeled XCOz using
Eq. (5) to ensure a consistent comparison. All three TCCON sites showed improvements across all evaluation metrics.

The posterior simulation improved the overall model performance, reducing the mean RMSE from 3.08 to 2.94 ppm
and the mean NMB from 0.33 % to 0.28 %, while maintaining a high correlation (R = 0.95). Although the overall improvements
were moderate, they represent consistent enhancements at 10 of the 11 sites and are statistically significant. A paired t-test
across all WDCGG and TCCON sites confirmed significant improvements after the inversion: the correlation coefficient
increased (AR = +0.005, p = 0.012), the normalized mean bias decreased (ANMB = —0.03 %, p = 0.037), and the RMSE
decreased by 0.15 ppm on average (p = 0.006). Furthermore, both overestimations (positive NMB at most sites) and
underestimations (negative NMB at LLN and TAP) were reduced after optimization, suggesting that the improvement was not
coincidental but systematic. A moderate level of improvement, which is commonly reported in COz inversion studies, arises
because COz fields are already well constrained by the background state, while the remaining discrepancies are primarily
attributed to transport and representation errors. For instance, Kou et al. (2023) reported only marginal improvements (RMSE:
2.65 — 2.63 ppm; R: 0.66 — 0.66; MAE: 2.03 — 2.02 ppm), emphasizing that such modest statistical changes are typical in

atmospheric COz inversions.

Table 2. Evaluation metrics for prior and posterior CO; concentrations using ground-based observations

Observation R NMB (%) RMSE (ppm)
Prior Posterior Prior Posterior Prior Posterior

WDCGG

AMY 0.95 0.95 1.27 1.21 5.87 5.54
DDR 0.95 0.96 0.57 0.51 0.57 0.51
LLN 0.97 0.97 -0.34 -0.33 3.01 2.99
RYO 0.95 0.96 0.49 0.43 3.31 3.03
TAP 0.92 0.93 -0.85 -0.79 4.85 4.59
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UUM 0.92 0.93 0.35 0.28 3.61 341
WLG 0.95 0.96 0.26 0.18 2.6 2.29
YON 0.99 0.99 0.11 0.13 1.1 1.22
TCCON

JS 0.97 0.97 0.44 0.43 2.34 2.26
RJ 0.92 0.92 0.70 0.70 3.58 3.56
TK 0.93 0.93 0.61 0.59 2.99 2.87

Uncertainty Reduction (UR) is a key metric for evaluating the performance of inverse modeling, as it quantifies the

reduction in prior uncertainty (Deng et al., 2007). It is defined as :

UR = (1 —“f’;) x 100 (6)

Oprior

The UR in China is relatively high, likely due to its large spatial extent, which allows for the inclusion of a greater
number of GOSAT XCO:z pixels, indicating that it is more effectively constrained. In contrast, Taiwan, being much smaller in
size, includes relatively fewer GOSAT XCO: pixels, resulting in a weaker constraint. UR of regional carbon flux estimates
varies substantially across time and space (Deng et al., 2014; Takagi et al., 2011). Over ocean regions, the UR is lower than
over land, primarily due to the limited spatial coverage of GOSAT over the ocean and the higher uncertainty associated with
satellite observations in these areas (Wunch et al., 2017). This spatial pattern is consistent with the findings of Deng et al.
(2014), who demonstrated that UR is closely related to the spatial coverage of GOSAT XCO2 observations. Similarly, Jiang
et al. (2021) reported that UR over land ranged from 5.9% to 27.2%, whereas ocean UR remained relatively low, ranging from
0.12% to 3.7%. Such large spatial variations in UR highlight its strong dependence on observational density. These results
suggest that dense and spatially extensive observational coverage is essential for achieving a stronger constraint on regional

carbon fluxes.

Table 3. Mean uncertainty reduction rate (UR) for each region for the period 2010-2019

Region UR
(%)
Korean peninsula 3.80
Japan 8.91
North China 41.14
Northeast China 57.02
East China 35.50
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South Central China 36.36
Southwest China 28.84
Northwest China 20.74
Mongolia 21.67
Taiwan 0.00
Northwest Pacific 0.66

4 Regional a posteriori CO2 flux and its annual variability

This section describes regional changes in prior and posterior estimates of carbon fluxes. The 10-year mean NEE
increased from —0.17 + 0.08 PgC yr! to -0.31 £ 0.06 PgC yr! (Figure 2a, b), while oceanic uptake showed a slight increase
from —0.20 = 0.03 PgC yr! to —0.21 £ 0.03 PgC yr !, although this change lies within the range of prior uncertainty and is
therefore not statistically significant (Figure 2a, b). Most regions exhibited a trend toward enhanced carbon uptake, as shown

in the difference map (Figure 2c).

(a) Prior (b) Posterior

=02 -0.1 00 0.1 02
PgC yr!

Figure 2. Regional carbon fluxes over East Asia averaged for the period 2010-2019 from (a) the prior estimate, (b) the posterior
estimate, and (c) their difference (posterior — prior). Negative values indicate net carbon uptake (sink), and positive values indicate
net carbon emissions (source).

In particular, Mongolia, characterized by its vast grasslands, initially showed very weak carbon uptake of —-0.01 PgC
yr~! in the prior estimate, which increased to —0.05 PgC yr~' in the posterior. Most regions in China experienced increases in
carbon uptake, although the magnitude of enhancement varied across subregions. In contrast, carbon uptake weakened in

Southwest China, while Northeast China remained nearly neutral with little change from the prior estimate. On the Korean
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Peninsula, carbon uptake increased, and Japan exhibited a similar level of enhancement. Taiwan, however, showed little to no
change. Oceanic regions showed no substantial change.

Terrestrial carbon uptake responds non-linearly to complex environmental drivers such as drought and El Nifio events
(Yue et al., 2017). As a result, vegetation indices cannot perfectly represent variations in carbon fluxes. Despite these
limitations, carbon uptake remains fundamentally linked to photosynthetic activity, and the Enhanced Vegetation Index (EVI)
provides one of the most practical and widely used proxies for photosynthesis by reflecting vegetation greenness. (Noumonvi
and Ferlan, 2020) also demonstrated that EVI serves as one of the best satellite-based indicators of NEE, even though it cannot
fully capture respiration-related processes or short-term environmental stress. Previous studies (e.g., Wang et al., 2020; Jiang
et al., 2021) have used satellite-derived vegetation indices such as EVI, NDVI, and LAI to estimate carbon fluxes. These
analyses were generally conducted at coarse spatial scales, typically at continental or subcontinental levels, without resolving
fine-scale regional heterogeneity. Following this approach, our comparison also focuses on the domain-averaged behavior.
Figure 3 presents the time series of domain-averaged EVI with seasonal variations removed. This increasing trend in EVI
suggests enhanced vegetation activity, supporting our finding of increased carbon uptake across most regions of East Asia.

Similarly, Wang et al. (2020) attributed China’s substantial carbon uptake to the annual rise in vegetation indices.

0.200 -

0.195

0.190

0.185 -

EVI (Deseasonalized)

0.180 -

y =0.131e-03 x + 0.183

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Year

Figure 3. Time series of the domain-averaged Enhanced Vegetation Index (EVI) after removing seasonality. The red dashed line
indicates the linear trend fitted to the deseasonalized EVI values.

We examine regional interannual variability and associated supporting evidence, such as ENSO and EVI, that may
help explain observed flux patterns. Notably, 2015-2016 coincided with one of the three strongest Super El Nifio events on
record (1982-83, 1997-98, and 2015-16; Ren et al., 2017; WMO, 2017). ENSO (EI Nifio—Southern Oscillation) is known to

influence photosynthesis and carbon uptake by altering temperature and precipitation patterns (Cox et al., 2013; Fang et al.,

11
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2017; Wang et al., 2013; Wang et al., 2014). Accordingly, we focus on ENSO-related impacts, and extend the analysis of EVI
by conducting correlation analyses to assess its temporal relationship with fluxes.

Figure 4 presents annual COz fluxes for all regions considered in this study over 2010-2019, allowing for direct
comparison of prior and posterior estimates across East Asia. The Korean Peninsula acted as a weak carbon sink with low
interannual variability. For all years, posterior estimates consistently showed stronger uptake than prior estimates. Japan
exhibited a similar pattern, with posterior values exceeding prior ones, and overall low variability. In Mongolia, prior estimates
indicated a weak sink, while posterior estimates showed markedly enhanced uptake. Except for 2017, which showed a shift
toward a weak source, all years suggested a sink. In Taiwan, posterior fluxes were comparable to or slightly lower than the
prior, and overall fluxes remained relatively stable. Notably, both prior and posterior estimates indicated decreased carbon
uptake during 2015-2016, coinciding with the Super El Nifio. Bastos et al. (2018) reported that this event substantially reduced
terrestrial carbon uptake globally by suppressing ecosystem productivity, within our study domain the influence of El Nifio
was mainly concentrated over China, where several studies (Ma et al., 2018; Zhai et al., 2016) consistently reported a
characteristic south-flood north-drought pattern (Zhai et al., 2016).

In northern China (North, Northwest, and Northeast China), precipitation deficits prevailed during the 2015 El Nifio
peak, especially in North China, where severe summer droughts were reported (Zhai et al., 2016), followed by near-normal or
slightly wetter conditions in 2016 (Ma et al., 2018). These anomalies are consistent with our results, which indicate a transition
from carbon release in 2015 (0.008 PgC yr') to weak carbon uptake in 2016 (—0.005 PgC yr!; Figure 4). In Northwest China,
by contrast, the residual effects of the 2015-2016 El Nifio brought unusually high rainfall during 2016 (Lu et al., 2019),
particularly in spring and autumn, when precipitation exceeded 150% of the climatological mean (Ma et al., 2018). As noted
by Liu et al. (2024), vegetation in arid regions tends to respond positively to increased moisture availability, and our posterior
flux estimates indeed indicate sustained or even enhanced carbon uptake during this period. Specifically, the mean flux during
2015-2016 (—0.078 PgC yr!) was more negative than the decadal mean excluding those years (—0.054 PgC yr!), suggesting
strengthened carbon uptake under wetter conditions. In Northeast China, interannual flux variability was large, with strong
uptake in 2016, but the statistical correlation with ENSO remained insignificant (p > 0.05; Ma et al., 2018). This region
encompasses diverse vegetation types and spans arid to humid zones (see Jiang et al., 2022; Fig. 1b), potentially explaining its
high interannual flux variability.

In southern China (East, South Central, and Southwest China), the El Nifio—induced precipitation anomalies were
generally opposite to those in the northern China. However, Southwest China represented an exception. While East and South
Central China experienced excessive rainfall and flooding, Southwest China underwent persistent drought due to weakened
southward moisture transport (Ma et al., 2018). This region suffered from prolonged drought conditions from summer 2015
through spring 2016, leading to vegetation water stress and reduced carbon uptake, with net carbon emissions of 0.011 and
0.023 PgC yr! during these two years. In contrast, the summer 2016 flood East China was particularly severe. The WMO
reported that flooding across the Yangtze River Basin in summer 2016 was the most serious since 1999 (WMO, 2017). This

extreme rainfall event coincided with a marked shift toward positive NEE (+0.092; carbon release) in 2016 (Figure 4). South
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Central China similarly exhibited enhanced precipitation and frequent flooding during 2015-2016 (Ma et al., 2018),
corresponding to nearly neutral and carbon-releasing conditions in those years (—0.001 and +0.011 PgC yr!).

While numerous studies have addressed the effects of ENSO on temperature, precipitation, and extreme weather
events, few have explored its direct influence on regional carbon fluxes. Our analysis provides new evidence that ENSO-
related climatic variability also affects vegetation carbon uptake across East Asia, thereby contributing to bridging this critical
research gap.

We also analyzed the correlations between EVI and carbon uptake (defined as the negative of NEE, so that positive
values indicate uptake). Overall, the correlations strengthened across most regions (Table 4), particularly in the northern part
of the domain, including Northwest China, Korean Peninsula, and Japan. For example, the correlation coefficients increased
from 0.60 — 0.75 in Korean Peninsula, 0.55 — 0.69 in Japan, and 0.09 — 0.78 in Northwest China, respectively. In North
and Northeast China and Mongolia, the correlations shifted from negative to positive, while East China showed a slight
increase.

However, it is unrealistic to expect consistent improvement in vegetation—carbon correlations across all regions. For
reference, Jiang et al. (2021) compared the relationships between carbon sinks and two vegetation-related indicators (SDA and
LATI; their Table 5) and reported correlation improvements in fewer than half of the regions examined. In our study, correlations
weakened in South Central and Southwest China, and in Taiwan the negative correlation persisted. These southern regions are
dominated by evergreen broad-leaved forests (Zhu and Tan, 2024). According to Buchmann and Schulze (1999), broad-leaved
forests differ from other ecosystems in that leaf area index (LAI) does not significantly correlate with carbon uptake, due to
self-shading and increased ecosystem respiration that offset photosynthetic gains. Although EVI differs from LAI, Potithep et
al. (2013) reported a high correlation between the two in broad-leaved forests (r? = 0.96), suggesting a close relationship. This
may explain why EVI—carbon uptake correlations did not improve in South and Southwest China and Taiwan, where broad-

leaved forest characteristics dominate.
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Table 4. Correlation coefficients between Enhanced Vegetation Index (EVI) and regional vegetation CO, uptake, represented as
negative NEE.

Correlation coefficient with EVI

Region
Prior Posterior

Korean peninsula 0.60 0.75
Japan 0.55 0.69
North China —0.13 0.07
Northeast China —0.01 0.32
East China 0.04 0.13
South Central China ~ —0.21 -0.39
Southwest China —-0.03 —-0.08
Northwest China 0.09 0.78
Mongolia —-0.13 0.06
Taiwan —-0.24 -0.22

5. Comparison with other top-down and bottom-up product

In this study, we evaluate the characteristics and discrepancies of our posterior carbon flux estimates by comparing
them with a suite of established products derived from diverse estimation frameworks. The comparison encompasses
FLUXCOM (NEE and ocean), GCAS2021 (NEE), TRENDY (NEE), CMS-Flux Ocean v3 (ocean), CMEMS-LSCE (ocean)
and the Global Carbon Project (ocean).

The FLUXCOM RS product estimates global terrestrial carbon fluxes by applying multiple machine learning
algorithms, including Multivariate Adaptive Regression Splines (MARS), to satellite-based remote sensing inputs. As the
FLUXCOM dataset is available only through 2018, while the other products extend to 2019, the comparison for FLUXCOM
is limited to that period. GCAS2021 (Jiang et al., 2022) provides a NEE product derived from GOSAT XCO:z retrievals using
the Global Carbon Assimilation System (GCAS), an inverse modeling framework that shares a satellite-based foundation with
this study. The TRENDY (Trends in net land—atmosphere carbon exchange) project is a multi-model ensemble (bottom-up
framework) designed to assess long-term trends in global terrestrial carbon fluxes. It integrates multiple Earth system and
dynamic global vegetation models driven by common input datasets, including atmospheric CO2 concentration, meteorological
forcing, and land-use changes (Friedlingstein, 2020; Sitch et al., 2008). In this study, we used an ensemble of eight models—
CABLE-POP, CARDAMOM, CLASSIC, DLEM, EDv3, IBIS, OCN, and YIBS—all of which simulate the full carbon cycle
processes encompassing photosynthesis, respiration, carbon storage, and land-use change. For the ocean domain, the CMS-

Flux Ocean v3 product (Bowman, 2024) represents a posterior estimate generated under NASA’s Carbon Monitoring System
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(CMS), combining GOSAT and OCO-2 observations with an atmospheric transport model to infer global air—sea CO:2
exchange. In contrast, the CMEMS-LSCE product (Chau et al., 2022, 2023) reconstructs monthly air—sea COz fluxes and
surface pCOz fields at 0.25° spatial resolution through an ensemble-based approach integrating satellite observations, in situ
measurements, and statistical models. The multi-model mean of ten ocean models participating in the Global Carbon Project—
ACCESS, CESM, CNRM, FESOM, IPSL, MOM, MPIOM, MRI, NEMO, and NORESM—was also used for comparison.
These models simulate large-scale ocean circulation and biogeochemical carbon processes that govern global air—sea CO»
exchange, serving as key components of the Global Carbon Budget ocean flux ensemble.

As shown in Figure 5a, our posterior estimates consistently indicate enhanced terrestrial carbon uptake relative to the
prior and are comparable to other top-down products (FLUXCOM and GCAS) as well as the bottom-up ensemble (TRENDY).
The posterior results show closer agreement with these datasets than the prior does. However, in 2016, although the posterior
estimates remain closer to the other products than the prior, a slight discrepancy persists, likely due to the nearly neutral prior
flux that year. Over the ocean, the posterior estimates show a comparable magnitude of carbon uptake to both the prior and
alternative products (Figure 5b). Although the posterior mean suggests a marginally stronger sink, the difference lies within
the uncertainty range and is therefore not statistically significant. This result remains consistent with the bottom-up ensemble
(Global Carbon Budget Ocean).

The ocean remains a region of limited observational coverage, where variability in data availability and input types
can lead to differences among products. The Northwest Pacific, our primary ocean focus region, is particularly characterized
by complex coastal geometries and sparse surface pCO:2 observations, thereby contributing to elevated uncertainties and
product-level discrepancies (Wu et al., 2025). Further contributing factors include differences in observational datasets and
model configurations. CMS utilizes GOSAT v7.3 and OCO-2 data, whereas CMEMS relies primarily on in situ measurements.
GCAS2021 also uses the GOSAT v9r retrievals employed in this study, but differs by adopting CT2019B as the prior flux and
MOZART-4 as the transport model instead of GEOS-Chem. These differences likely contribute to the discrepancies observed

in the posterior flux estimates.
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Figure 5. Comparison of prior and posterior flux estimates with other flux products from 2010 to 2019. (a) NEE and (b) Ocean
carbon flux over East Asia. Bars indicate annual mean fluxes from each dataset. Error bars represent the uncertainty ranges for the
prior and posterior estimates, while those for TRENDY and GCB Ocean denote the inter-model standard deviations.

6 East Asia Carbon Budget (2010-2019)

The carbon budget of East Asia for 2010-2019, incorporating the sink estimated in this study, is summarized as
follows (Figure 6). Fossil fuel and biomass burning emissions are derived from ODIAC and GFED4, respectively. Fossil fuel
emissions amount to 3.86 PgC yr~!. Compared with the global total fossil fuel emissions of 9.6 PgC yr~! (Friedlingstein, 2020),
East Asia accounts for about 40% of the global fossil carbon release.

Biomass burning contributes 0.11 PgC yr~!, while the regional NEE and ocean uptake are —0.31 PgC yr' and —0.21 PgC yr',
respectively. These yield a combined sink of —0.52 PgC yr™!, offsetting only 13.6% of fossil fuel emissions. Consequently, the
residual carbon that is not compensated by natural sinks accumulates in the atmosphere, leading to an increase in atmospheric

CO: concentrations. This imbalance between emissions and sinks explains the persistently high atmospheric CO: levels
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observed over East Asia (Yeh et al., 2023). The atmospheric carbon stock over East Asia is estimated at 38.97 PgC,
representing the amount of CO: currently retained within the regional atmosphere.

In our East Asia domain, the net surface flux (fossil fuel + biomass burning + NEE + ocean uptake, with NEE and
ocean uptake typically negative) is +3.45 PgC yr! for 2010-2019, indicating a strong net source to the atmosphere. Over the
same period, the vertically integrated atmospheric carbon mass within the domain increases at a mean rate of ~0.24 PgC yr !,
implying that only about 7% of the emitted carbon remains stored locally in the atmospheric column. The remaining ~3.21
PgC yr!, ~93% of the net source, is exported out of the domain by large-scale transport. Most of the carbon emitted from East
Asia is transported beyond the regional boundaries. Therefore, East Asian emissions are not confined to a local issue but are
linked to downstream transport influencing other regions.

Despite gradual increases in NEE and ocean uptake due to fertilization effects and enhanced solubility associated
with pCOz gradients, East Asia remains dominated by large fossil fuel emissions. Given this limited natural sink capacity,
achieving carbon neutrality will require substantial reductions in fossil fuel use and the enhancement of anthropogenic

removals, such as carbon capture and storage (CCS).

/" Transport out of East Asia = +3.21
East Asia Carbon Budget (2010-2019)

FF = +3.86

Atmospheric carbon stock NEE = -0.31+0.06
over East Asia = 38.97 PgC

BB = +0.11

/" East Asia atmosphere = +0.24

Ocean =-0.21+0.03

Unit : PgC per year

Figure 6. Schematic diagram of the East Asia carbon budget averaged for 2010-2019 (18.5° N-54° N, 73° E-146° E). The atmospheric
carbon stock over East Asia, estimated at 38.97 PgC, represents the amount of CO; retained within the regional atmosphere. All
other fluxes are expressed in PgC yr!' (FF = fossil fuel combustion; BB = biomass burning; NEE = net ecosystem exchange).
Downward blue arrows represent CO, uptake by the terrestrial and ocean, whereas upward black arrows indicate emissions from
biomass burning and fossil fuel combustion.
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7. Summary and conclusions

This study provides a top-down estimate of regional carbon fluxes across East Asia (18.5°N-54°N, 73°E-146°E) for
the period 2010-2019, using a Bayesian inversion framework constrained by GOSAT ACOS v9.0 XCO: retrievals. By
applying the GEOS-Chem chemical transport model and incorporating region-specific prior uncertainties based on the standard
deviation of terrestrial and ocean carbon fluxes, we optimized both terrestrial and oceanic fluxes. The posterior estimates
indicate enhanced carbon uptake compared to the prior, with mean terrestrial NEE ranging from —0.17 to —0.31 PgC yr~! while
oceanic uptake changed slightly from —0.20 to —0.21 PgC yr~!, showing no statistically significant difference.

Evaluation against independent surface-based CO:2 observations (WDCGG and TCCON) showed consistent
improvements across most stations in terms of correlation, RMSE, and bias, supporting the robustness of the inversion
framework. Uncertainty reduction (UR) was generally more substantial over continental regions such as China, whereas
smaller or oceanic regions showed limited improvements due to observational constraints.

At the regional scale, most regions acted as persistent carbon sinks throughout the decade, with interannual variability
influenced by climate events. Notably, the 2015-2016 Super El Nifio was associated with temporary flux reversals, primarily
over several regions in China. These reversals were largely driven by ENSO-induced floods and droughts, which suppressed
vegetation photosynthetic activity and, in some regions, led to near-neutral or even positive NEE values, indicating temporary
carbon release. This suggests that terrestrial carbon sinks can be substantially weakened not only by natural climatic variability
such as ENSO, but also by extreme weather events intensified under climate change. An increasing trend in the Enhanced
Vegetation Index (EVI), along with improved correlations between EVI and posterior carbon uptake, further supports the
credibility of the flux estimates. However, regions dominated by broadleaf forests exhibited persistent negative correlations,
likely due to self-shading effects of dense canopies.

Comparison with other top-down and bottom-up flux products showed general agreement in both trend and magnitude.
Nonetheless, discrepancies remain, largely due to differences in observational inputs, modeling frameworks, and prior flux
assumptions. In particular, oceanic uptake estimates tend to diverge more than terrestrial ones, as ocean regions are more
sparsely observed and often include complex coastal zones (Wu et al., 2025).

Although the optimized posterior fluxes indicate enhanced carbon uptake compared to the prior, the East Asian
domain remains highly fossil-fuel-dominant. Approximately 7% of the residual carbon accumulates within the regional
atmosphere, while the remaining 93% is transported out of the domain by large-scale circulation. Considering the limited
capacity of natural carbon sinks, new strategies will be required to mitigate both the persistently high atmospheric CO>
concentrations over East Asia and the downstream transport of these emissions to other regions.

Overall, this study estimates carbon sinks over East Asia by incorporating region-specific uncertainties and
demonstrate the effective use of satellite constraints and a chemical transport model in inverse modeling. The results were
evaluated against independent observations and compared with other flux products, while the interannual variability was

interpreted through ENSO and vegetation indices. However, the relatively limited observational coverage over ocean regions
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455 resulted in smaller uncertainty reductions, highlighting the need for denser and more continuous oceanic CO:2 observations to
further constrain regional flux estimates. Despite this limitation, this study provides valuable insights into the East Asian

carbon cycle, which is critical for carbon management, and can support policy strategies aimed at mitigating climate change.
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Data availability

The GOSAT ACOS v9.0 XCO:a retrievals are publicly available from the NASA GES DISC (https://disc.gsfc.nasa.gov; Taylor
et al., 2022). Ground-based CO2 observations are available from the World Data Centre for Greenhouse Gases (WDCGG;
https://gaw.kishou.go.jp/). The TCCON (Total Carbon Column Observing Network) data used in this study are publicly
available at https://tccondata.org/. The MODIS/Terra EVI data (MOD13C2 Version 6.1) were obtained from the NASA Land
Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science Center
(https://lpdaac.usgs.gov/). The TRENDY model simulation result and Ocean flux products from the Global Carbon Budget

2023 are available via the ICOS Carbon Portal as part of the Global Carbon Budget open data.
(https://mdosullivan.github.io/GCB/) The GCAS2021 data are available at https://doi.org/10.5281/zenodo.5829774 (Jiang,
2022). The FLUXCOM data are publicly available for download (CC BY 4.0 license) from the Max Planck Institute for

Biogeochemistry (MPI-BGC) data portal after registration (https://www.fluxcom.org). The CMS-Flux Ocean v3 posterior flux
product is available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; DOI:
10.5067/9H6GCQKP28ATI). The CMEMS-LSCE ocean carbon product is available from the Copernicus Marine Environment
Monitoring Service (DOI: 10.48670/moi-00047).
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