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Abstract. East Asia is a major source of fossil fuel emissions and strongly influences regional and global CO2 concentrations. 

Quantifying natural carbon sinks in this region is therefore essential for improving climate projections and informing mitigation 

strategies. We estimated the Net Ecosystem Exchange (NEE) and ocean carbon fluxes over East Asia (18.5°N–54°N, 73°E–

146°E) during 2010–2019 using a Bayesian inversion framework. The GEOS-Chem chemical transport model was combined 10 

with GOSAT ACOS v9.0 XCO2 retrievals, and region-specific prior uncertainties were assigned using standard deviations 

from land and ocean models. Posterior estimates show enhanced carbon uptake relative to the prior, with NEE increasing from 

−0.17 ± 0.08 to −0.31 ± 0.06 PgC yr⁻¹ and ocean uptake changing slightly from −0.20 ± 0.03 to −0.21 ± 0.03 PgC yr⁻¹. 

Simulated CO2 concentrations based on posterior fluxes agreed better with independent observations than those from prior 

fluxes. Most subregions in East Asia acted as net carbon sinks over the past decade. Enhanced Vegetation Index (EVI) trends 15 

also support strengthened carbon uptake. However, several regions showed temporary net carbon releases in 2015–2016, likely 

linked to the strong 2015/16 El Niño. East Asia released a net flux of +3.45 PgC yr⁻¹ to the atmosphere during 2010–2019. 

Natural sinks offset only ~13.6% of fossil fuel emissions, leaving a substantial residual source. Despite strengthened posterior 

sinks, they remain insufficient to counter regional emissions, sustaining elevated CO2 levels and continued outflow from East 

Asia. 20 

1 Introduction 

Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas (GHG), with atmospheric concentrations 

having risen from the pre-industrial level of 280 ppm to 426 ppm in 2025 (Joos and Spahni, 2008; Lan et al., 2025). To achieve 

the Paris Agreement’s goal of limiting global temperature rise to below 1.5 °C above pre-industrial levels (UNFCCC, 2015), 

effective carbon management is imperative. This entails not only controlling anthropogenic emissions but also improving our 25 

understanding of carbon sink mechanisms, as major natural sinks such as vegetation and oceans currently absorb roughly half 

of global emissions (Friedlingstein et al., 2023). However, significant uncertainties remain regarding the capacity and 

dynamics of these natural sinks (IPCC, 2023). This problem is particularly acute in East Asia, one of the world's fastest-

growing carbon-emitting regions (Gilfillan and Marland, 2021). Despite its critical role, previous studies have struggled to 
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accurately estimate regional carbon flux due to the limited number of in situ CO2 observation sites in Asia compared to Europe 30 

or North America (Park and Kim, 2020), which poses a limitation to the accuracy of inverse modeling and regional flux 

estimates. 

Carbon fluxes are commonly estimated using two main approaches: top-down and bottom-up. Top-down methods 

infer surface fluxes by applying inverse techniques to atmospheric CO2 concentration data, whereas bottom-up methods 

combine observations with statistical upscaling or process-based models (Jung et al., 2020; Kondo et al., 2020; Sitch et al., 35 

2008, 2015). Among top-down techniques, atmospheric inversions driven by a chemical transport model (CTM) are widely 

used (Basu et al., 2018; Nassar et al., 2011; Palmer et al., 2003; Peylin et al., 2013).  

Since in situ CO2 measurements are highly precise (typical observational errors <0.2 ppm), they have been extensively 

used in inversion frameworks (Baker et al., 2006; Deng and Chen, 2011; Gurney et al., 2003; Jiang et al., 2013; Monteil et al., 

2020; Peylin et al., 2013). Their major limitation is sparse spatial coverage, especially over data-poor regions such as the 40 

oceans and much of Africa. Satellite retrievals, by contrast, provide broad spatial coverage: for example, GOSAT  has a 

footprint approximately 10.5 km in diameter with an observation error of about 1 ppm (Kulawik et al., 2019). Whereas Wang 

et al. (2019) excluded oceanic soundings because of larger uncertainties associated with glint-mode retrievals(Wunch et al., 

2017), the present study adopts a different strategy. We use both land and ocean observations and explicitly account for the 

instrument error reported in the GOSAT product. By weighting each sounding by its stated uncertainty, we retain more 45 

measurements while limiting the influence of noisier data, thereby improving spatial coverage for flux estimation.  

Although many studies have targeted East Asia, most focus on China and provide limited quantitative assessment of 

flux uncertainties. For example, Wang et al. (2020) estimated Chinese carbon fluxes from in situ data, assigning prior 

uncertainties of 50% for land and 40% for ocean, which were prescribed as simple percentage values rather than derived from 

data variability. Thompson et al. (2016) used a seven-model inversion ensemble for Asia, but applied inconsistent prior fluxes 50 

and uncertainties across models. Jiang et al. (2013) estimated carbon uptake in China using ground observations. In their 

framework, land prior uncertainties were derived from net primary production, while a uniform prior uncertainty was assumed 

for the ocean. 

Here, we explicitly treat uncertainties in both terrestrial and oceanic fluxes. Terrestrial uncertainties are derived from 

the standard deviation of the TRENDY ensemble (Sitch et al., 2015), and ocean flux uncertainties are based on the standard 55 

deviation among ocean models contributing to the Global Carbon Project (Friedlingstein et al., 2023). Given the central role 

of error specification in inverse modeling, this data-informed approach yields a more consistent quantification of prior 

uncertainties and enhances the robustness of posterior flux estimates. Using this framework, we estimate East Asian carbon 

fluxes from GOSAT XCO2 retrievals and introduce an uncertainty structure that varies by region and domain (land/ocean). 

These refinements aim to provide a more accurate assessment of regional carbon fluxes than previous studies, supporting 60 

evidence-based policymaking and climate-mitigation strategies. 
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2 Data and methods 

2.1 Forward model 

We used GEOS-Chem v13.1.0 as a forward model to relate atmospheric CO2 concentrations to surface fluxes for 

optimization in the inverse modeling framework. GEOS-Chem is a global 3D chemical transport model driven by 65 

meteorological inputs from the Goddard Earth Observing System (GEOS) of NASA’s Global Modeling and Assimilation 

Office (GMAO). The CO2 simulation in GEOS-Chem was originally developed by Suntharalingam et al. (2004) and later 

updated by Nassar et al., (2010, 2013). For high-resolution CO2 simulations over East Asia, we used the nested-grid version 

of GEOS-Chem, which is driven by MERRA-2 meteorological data with a 0.5° × 0.625° horizontal resolution and 47 vertical 

levels from the surface to 0.01 hPa. The simulation domain covers East Asia (18.5°N–54°N, 73°E–146°E), with boundary 70 

conditions derived from the global 2° × 2.5° simulation.  

The model used monthly anthropogenic CO2 emissions from the Open-source Data Inventory for Anthropogenic CO2 

(ODIAC2020b; Oda and Maksyutov, 2011; Oda et al., 2018) and weekly biomass burning emissions derived from the Global 

Fire Emissions Database version 4.1 (GFEDv4; Randerson et al., 2018). The model also includes CO2 emissions from shipping 

and aviation, as well as chemical production from the oxidation of carbon monoxide (CO), methane (CH4), and non-methane 75 

volatile organic compounds (NMVOCs). The model simulates CO2 sinks as a first-order process using monthly NEE from the 

Dynamic Land Ecosystem Model (DLEM; Tian et al., 2010; You et al., 2022) and monthly ocean CO2 fluxes from the Finite-

Element Sea ice–Ocean Model coupled with the Regulated Ecosystem Model (FESOM-REcoM; Schourup-Kristensen et al., 

2018).  

Our study focused on optimizing NEE and ocean exchange fluxes. Following common practice in inverse modeling, 80 

we assumed no errors in fossil fuel and biomass burning fluxes (e.g., Chevallier et al., 2019; Gurney et al., 2002; Peters et al., 

2007). To optimize fluxes consistent with administrative boundaries, we performed tagged CO2 simulations that allowed us to 

independently track CO2 originating from each region (Figure 1). These defined regions comprise the Korean Peninsula, China, 

Mongolia, Taiwan, Japan, and parts of the Northwest Pacific. After a five-year spin-up starting from January 2005, the model 

simulations were conducted from January 2010 to December 2019 to incorporate GOSAT observations, which became 85 

available starting in 2009. 
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Figure 1. Spatial domains defined in this study for regional analysis over East Asia (18.5°N–54°N, 73°E–146°E), including Mongolia, 
China (six subregions), the Korean Peninsula, Japan, Taiwan, and the Northwest Pacific. Red triangles indicate surface CO2 90 
observation sites from the WDCGG network, and blue stars represent TCCON stations. 

 

2.1 Inverse model 

To infer surface fluxes from atmospheric CO2 concentrations, we employ an inverse modeling framework based on 

optimal estimation theory (Rodgers, 2000). Observed concentrations of CO2, assembled into an observation vector 𝑦, are 95 

related to the sources and sinks of CO2 (assembled in a state vector 𝑥) through the Jacobian matrix K, as described by the 

following equation: 

𝑦 = 𝐾𝑥 + 	𝜀            (1) 

The Jacobian matrix K represents the forward model introduced in the previous section. Under the linear 

approximation, it links variations in the state vector to corresponding changes in the modeled concentrations. The state vector 100 

𝑥 represents the annual sink/source originating from vegetation and the ocean, while the observation vector 𝑦 is defined by 

GOSAT XCO2 (Sect. 2.3). The error vector 𝜀 includes contributions from measurement accuracy, representation error, and 

errors in model parameters. The ensemble characteristics of these errors are described by the observation error covariance (𝑆!), 

which is represented as the sum of the covariance matrices from individual sources of error. 

 The fundamental principle of an optimal estimation inverse method is to minimize a cost function 𝐽(𝑥) : 105 

𝐽(𝑥) = 	 (𝑦 − 𝐾𝑥)"𝑆!#$(𝑦 − 𝐾𝑥) + (𝑥 − 𝑥%)"𝑆%#$(𝑥 − 𝑥%)      (2) 

where 𝑥% is the a priori state vector and 𝑆% is the error covariance matrix for the a priori state vector (𝑥%). The optimized a 

posteriori state vector (𝑥-) is given as follows: 
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𝑥- = 	𝑥% + (𝐾"𝑆!#$𝐾 + 𝑆%)#$𝐾"𝑆!#$(𝑦 − 𝐾𝑥%)        (3) 110 

 

The superscript T indicates the matrix transpose. The a posteriori error covariance matrix 𝑆., which describes the 

uncertainty of the optimized state estimate, is given by the following expression. 

𝑆. = (𝐾"𝑆!#$𝐾 + 𝑆%#$)#$          (4) 

2.3 Error specification 115 

2.3.1 A priori error covariance (Sa) 

The a priori error covariance matrix (Sₐ) is constructed with the squares of the a priori uncertainties (σₐ) as its diagonal 

elements. In this study, the σₐ values for terrestrial fluxes are derived from the standard deviation of NEE across eight land 

models (CABLE-POP, CARDAMOM, CLASSIC, DLEM, EDv3, IBIS, OCN, and YIBS) participating in the Trends in Net 

Land-Atmosphere Carbon Exchange (TRENDY) project (Sitch et al., 2008). TRENDY is an ensemble of terrestrial biosphere 120 

models forced by common meteorological inputs. Similarly, the σₐ values for ocean fluxes are defined using the standard 

deviation from a ten-model ocean ensemble (ACCESS, CESM, CNRM, FESOM, IPSL, MOM, MPIOM, MRI, NEMO, and 

NORESM) contributing to the Global Carbon Budget project (Friedlingstein et al., 2023). The resulting annual  𝜎%	values for 

each region are summarized in Table 1. 

Only a few previous inversion studies have implemented time-varying prior uncertainties at seasonal or monthly 125 

scales (e.g., Baker et al., 2006). However, allowing 𝜎%	to vary interannually provides a more consistent representation of how 

flux uncertainty evolves in response to climate variability. This configuration enables the inversion to account for year-to-year 

changes in terrestrial and oceanic fluxes, rather than relying on a stationary error structure. In our sensitivity test, time-invariant 

uncertainties produced regional flux differences that averaged about 12.4% relative to the time-varying case. While this 

sensitivity analysis does not by itself demonstrate that the time-varying configuration is more realistic, it indicates that allowing 130 

𝜎% to vary in time can have a non-negligible influence on the inferred regional fluxes. 

 
Table 1. Annual a priori uncertainty  (𝝈𝒂) for regional fluxes (TgC yr-1). The values are derived from the standard deviation across 
TRENDY biosphere models (Sitch et al., 2008), except for the Northwest Pacific region, which is estimated from the ocean model 
ensemble contributing to the Global Carbon Budget (Friedlingstein et al., 2023). 135 

Year Korean 

peninsula 

Japan North 

China 

North 

east 

China 

East 

China 

South 

Central 

China 

South 

west 

China 

North 

west  

China 

Mongolia Taiwan North 

west 

Pacific 

2010 8.7 13.0 22.8 30.1 43.7 38.6 52.1 16.5 12.4 1.3 33.0 

2011 6.8 10.2 23.7 17.2 36.3 51.2 34.7 15.0 13.9 1.1 30.8 

2012 10.3 10.3 35.7 23.5 35.8 33.4 46.3 14.3 32.1 1.3 31.9 

https://doi.org/10.5194/egusphere-2025-5971
Preprint. Discussion started: 19 January 2026
c© Author(s) 2026. CC BY 4.0 License.



6 
 

2013 8.7 7.9 32.2 18.1 34.8 28.9 46.8 22.4 36.7 1.1 31.5 

2014 9.2 8.3 28.1 21.0 38.0 31.8 28.3 12.6 26.9 1.0 31.6 

2015 8.6 12.4 28.2 23.7 37.1 35.4 30.2 23.4 29.1 1.2 27.4 

2016 6.0 9.2 31.1 26.7 45.3 36.4 29.6 31.6 15.5 0.9 26.0 

2017 9.1 6.5 36.2 31.8 34.5 23.0 23.1 19.0 18.5 1.0 30.4 

2018 5.8 14.9 29.7 24.1 40.4 36.9 33.9 18.0 29.6 1.3 30.9 

2019 5.4 8.7 31.3 19.4 55.4 48.2 45.7 16.0 25.8 1.3 27.4 

Mean 7.8 10.1 29.9 23.6 40.1 36.4 37.1 18.9 24.0 1.2 30.1 

 

2.3.2 Observational error covariance (So) 

The total observation error covariance, So includes contributions from forward model (CTM) error, representation 

error, and instrument error (So = SM + SR + SI). The forward model errors are estimated from the relative residual standard 

deviation (RRSD) of the difference between the model and observation, as represented by (𝐊x−y)/y (Palmer et al., 2003). It is 140 

assumed that the mean model bias arises from errors in the a priori sources, and that the variance reflects uncertainty associated 

with the model. Representation errors are assigned as 1% of the observed concentration (approximately 4 ppm), consistent 

with the magnitude reported in previous studies. Kaminski et al. (2010) used an ad hoc variability of 3 ppm, Gerbig et al. (2003) 

reported representation errors of similar magnitude (~3 ppm), and Tolk et al. (2008) recommended values of around 3 ppm 

depending on model resolution. 145 

2.4 Observations  

GOSAT is a greenhouse gas observation satellite launched in February 2009, operating in a sun-synchronous orbit. 

Compared to OCO-2, which was launched in 2015, GOSAT has a longer period of available data, making it commonly used 

in top-down emission estimation studies (Jiang et al., 2022; Byrne et al., 2019; Liu et al., 2021; Houweling et al., 2015). 

GOSAT provides column-averaged dry-air mole fractions of CO2, referred to as XCO2. 150 

We use the Atmospheric CO2 Observations from Space (ACOS) Version 9.0 Level 2 Lite product (Taylor et al., 2022), 

covering the period from January 2010 to December 2019. This dataset includes bias correction, with a global mean bias of 

less than 0.2 ppm (Taylor et al., 2022). It has a spatial resolution of 10.5 km × 10.5 km at nadir and is regridded to 2° × 2.5° 

(Global) or 0.5° × 0.625° (East Asia) to match GEOS-Chem resolution. To ensure data reliability, only retrievals with a quality 

flag of zero were used, where a value of 0 denotes "good" quality and a value of 1 denotes "bad" quality. The XCO2 uncertainty 155 

was used to construct the observational error covariance (Section 2.3.2). The averaging kernel, pressure weighting function, 

and a priori profile are used to construct the transformed model XCO2, incorporating observational sensitivity based on Eq. (5) 

(Connor et al., 2008). 
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𝑋𝐶𝑂&' = 𝑋𝐶𝑂&% +∑ ℎ(( 𝑎)*!,((𝑥' − 𝑥%)(        (5) 160 

 

Here, 𝑋𝐶𝑂&' is transformed model XCO2, and  𝑋𝐶𝑂&% is the a priori XCO2 from GOSAT/ACOS Version 9.0 Level 2 

Lite product. ℎ(  is the pressure weighting function and 𝑎)*!,(  is the column averaging kernel of GOSAT/ACOS v9r. 𝑥' 

represents the model-simulated vertical CO2 profile, and 𝑥%	is the a priori CO2 profile from GOSAT/ACOS v9r. 

We used independent ground-based observations to validate our estimates of CO2 fluxes in the model. They include 165 

World Data Centre for Greenhouse Gases (WDCGG), operated by the Japan Meteorological Agency (JMA) under the Global 

Atmosphere Watch (GAW) program of the World Meteorological Organization (WMO), provides high-precision CO2 

concentration data from ground-based stations worldwide. These observations undergo rigorous calibration and quality control 

procedures, making them highly suitable as an independent benchmark for evaluating model performance. Within the study 

domain (18.5°N–54°N, 73°E–146°E), a total of eight WDCGG stations with sufficient temporal coverage were identified after 170 

applying the RMSE-based filtering criterion described in Section 3. The locations of the WDCGG stations are shown in Figure 

1 (red triangles). 

Total Carbon Column Observing Network (TCCON; Wunch et al., 2011) provides ground-based measurements of 

column-averaged CO2 concentrations (XCO2) using Fourier transform spectrometers. In this study, we used the GGG2020 

product, which includes a priori CO2 vertical profiles necessary for generating modeled XCO2 from atmospheric transport 175 

models. Within the spatial domain of this study and over the relevant time period, three TCCON sites were available for 

evaluation. The locations of the TCCON stations are shown in Figure 1 (blue stars). 

 

3 Evaluation (a priori vs. a posteriori)  

To evaluate the reliability of the inversion results, we compared the simulated CO2 concentrations from both the prior 180 

and posterior flux with independent observational datasets, namely WDCGG and TCCON, which were not assimilated into 

the inversion system (Feng et al., 2020; Jiang et al., 2021; Jin et al., 2018; Wang et al., 2019). This approach allows for an 

objective assessment of the inversion performance. 

Three statistical metrics were employed for the evaluation: correlation coefficient (R), root mean square error (RMSE), and 

normalized mean bias (NMB), which quantify the linear relationship, overall error magnitude, and systematic bias between 185 

the modeled and observed CO2 concentrations, respectively. 

 To ensure that the evaluation reflects large-scale, well-mixed CO2 variability rather than local influences or large 

representation errors, sites with model–observation RMSE exceeding 7.0 ppm were excluded. This threshold approximately 

corresponds to the annual amplitude of the seasonal cycle at Mauna Loa, a globally representative background site. Errors 

exceeding this threshold suggest that the station is influenced by sub-grid variability that GEOS-Chem cannot resolve at its 190 

native resolution, making such sites unsuitable for model evaluation. Following the approach of Jiang et al. (2022), which 
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excluded sites with inadequate model performance, we removed three WDCGG stations (KIS, HKG, and HKO), representing 

Kisai (Japan), Hong Kong Hok Tsui (China), and Hong Kong King's Park (China). All TCCON stations met the performance 

criterion and were retained. 

We evaluated the inversion results using eight WDCGG and three TCCON observation sites (Sect. 2.4). Since 195 

WDCGG provides point-based ground-level measurements, we selected the nearest model grid cell based on the latitude, 

longitude, and altitude of each observation site for comparison. Among the WDCGG sites, all except YON showed 

improvements in all three statistical metrics, correlation coefficient (R), root mean square error (RMSE), and normalized mean 

bias (NMB), after the inversion (Table 2). The YON site, located at the southernmost edge of the domain, lies on a small island 

(~28.9 km2), which likely introduced substantial represent errors due to the mismatch with the coarser model resolution. 200 

For the TCCON observations, which represent column-averaged CO2 concentrations, we computed the modeled XCO2 using 

Eq. (5) to ensure a consistent comparison. All three TCCON sites showed improvements across all evaluation metrics. 

The posterior simulation improved the overall model performance, reducing the mean RMSE from 3.08 to 2.94 ppm 

and the mean NMB from 0.33 % to 0.28 %, while maintaining a high correlation (R = 0.95). Although the overall improvements 

were moderate, they represent consistent enhancements at 10 of the 11 sites and are statistically significant. A paired t-test 205 

across all WDCGG and TCCON sites confirmed significant improvements after the inversion: the correlation coefficient 

increased (ΔR = +0.005, p = 0.012), the normalized mean bias decreased (ΔNMB = −0.03 %, p = 0.037), and the RMSE 

decreased by 0.15 ppm on average (p = 0.006). Furthermore, both overestimations (positive NMB at most sites) and 

underestimations (negative NMB at LLN and TAP) were reduced after optimization, suggesting that the improvement was not 

coincidental but systematic. A moderate level of improvement, which is commonly reported in CO2 inversion studies, arises 210 

because CO2 fields are already well constrained by the background state, while the remaining discrepancies are primarily 

attributed to transport and representation errors. For instance, Kou et al. (2023) reported only marginal improvements (RMSE: 

2.65 → 2.63 ppm; R: 0.66 → 0.66; MAE: 2.03 → 2.02 ppm), emphasizing that such modest statistical changes are typical in 

atmospheric CO2 inversions. 

 215 
Table 2. Evaluation metrics for prior and posterior CO2 concentrations using ground-based observations 

Observation R NMB (%) RMSE (ppm) 

Prior Posterior Prior Posterior Prior Posterior 

WDCGG   

AMY 0.95 0.95 1.27 1.21 5.87 5.54 

DDR 0.95 0.96 0.57 0.51 0.57 0.51 

LLN 0.97 0.97 -0.34 -0.33 3.01 2.99 

RYO 0.95 0.96 0.49 0.43 3.31 3.03 

TAP 0.92 0.93 -0.85 -0.79 4.85 4.59 
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UUM 0.92 0.93 0.35 0.28 3.61 3.41 

WLG 0.95 0.96 0.26 0.18 2.6 2.29 

YON 0.99 0.99 0.11 0.13 1.1 1.22 

TCCON   

JS 0.97 0.97 0.44 0.43 2.34 2.26 

RJ 0.92 0.92 0.70 0.70 3.58 3.56 

TK 0.93 0.93 0.61 0.59 2.99 2.87 

 

Uncertainty Reduction (UR) is a key metric for evaluating the performance of inverse modeling, as it quantifies the 

reduction in prior uncertainty (Deng et al., 2007). It is defined as : 

 220 

𝑈𝑅 =	91 − ,"#$%&'(#'
,"'(#'

; × 100          (6) 

 

The UR in China is relatively high, likely due to its large spatial extent, which allows for the inclusion of a greater 

number of GOSAT XCO2 pixels, indicating that it is more effectively constrained. In contrast, Taiwan, being much smaller in 

size, includes relatively fewer GOSAT XCO2 pixels, resulting in a weaker constraint. UR of regional carbon flux estimates 225 

varies substantially across time and space (Deng et al., 2014; Takagi et al., 2011). Over ocean regions, the UR is lower than 

over land, primarily due to the limited spatial coverage of GOSAT over the ocean and the higher uncertainty associated with 

satellite observations in these areas (Wunch et al., 2017). This spatial pattern is consistent with the findings of Deng et al. 

(2014), who demonstrated that UR is closely related to the spatial coverage of GOSAT XCO2 observations. Similarly, Jiang 

et al. (2021) reported that UR over land ranged from 5.9% to 27.2%, whereas ocean UR remained relatively low, ranging from 230 

0.12% to 3.7%. Such large spatial variations in UR highlight its strong dependence on observational density. These results 

suggest that dense and spatially extensive observational coverage is essential for achieving a stronger constraint on regional 

carbon fluxes. 

 

Table 3. Mean uncertainty reduction rate (UR) for each region for the period 2010-2019 235 

Region UR 

(%) 

Korean peninsula 3.80 

Japan 8.91 

North China 41.14 

Northeast China 57.02 

East China 35.50 
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South Central China 36.36 

Southwest China 28.84 

Northwest China 20.74 

Mongolia 21.67 

Taiwan 0.00 

Northwest Pacific 0.66 

 

4 Regional a posteriori CO2 flux and its annual variability 

This section describes regional changes in prior and posterior estimates of carbon fluxes. The 10-year mean NEE 

increased from –0.17 ± 0.08 PgC yr⁻1 to –0.31 ± 0.06  PgC yr⁻1 (Figure 2a, b), while oceanic uptake showed a slight increase 

from –0.20 ± 0.03 PgC yr⁻1 to –0.21 ± 0.03 PgC yr⁻1, although this change lies within the range of prior uncertainty and is 240 

therefore not statistically significant (Figure 2a, b). Most regions exhibited a trend toward enhanced carbon uptake, as shown 

in the difference map (Figure 2c). 

 

 
Figure 2. Regional carbon fluxes over East Asia averaged for the period 2010–2019 from (a) the prior estimate, (b) the posterior 245 
estimate, and (c) their difference (posterior − prior). Negative values indicate net carbon uptake (sink), and positive values indicate 
net carbon emissions (source). 

 

 

In particular, Mongolia, characterized by its vast grasslands, initially showed very weak carbon uptake of –0.01 PgC 250 

yr⁻1 in the prior estimate, which increased to –0.05 PgC yr⁻1 in the posterior. Most regions in China experienced increases in 

carbon uptake, although the magnitude of enhancement varied across subregions. In contrast, carbon uptake weakened in 

Southwest China, while Northeast China remained nearly neutral with little change from the prior estimate. On the Korean 
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Peninsula, carbon uptake increased, and Japan exhibited a similar level of enhancement. Taiwan, however, showed little to no 

change. Oceanic regions showed no substantial change. 255 

Terrestrial carbon uptake responds non-linearly to complex environmental drivers such as drought and El Niño events 

(Yue et al., 2017). As a result, vegetation indices cannot perfectly represent variations in carbon fluxes. Despite these 

limitations, carbon uptake remains fundamentally linked to photosynthetic activity, and the Enhanced Vegetation Index (EVI) 

provides one of the most practical and widely used proxies for photosynthesis by reflecting vegetation greenness. (Noumonvi 

and Ferlan, 2020) also demonstrated that EVI serves as one of the best satellite-based indicators of NEE, even though it cannot 260 

fully capture respiration-related processes or short-term environmental stress. Previous studies (e.g., Wang et al., 2020; Jiang 

et al., 2021) have used satellite-derived vegetation indices such as EVI, NDVI, and LAI to estimate carbon fluxes. These 

analyses were generally conducted at coarse spatial scales, typically at continental or subcontinental levels, without resolving 

fine-scale regional heterogeneity. Following this approach, our comparison also focuses on the domain-averaged behavior. 

Figure 3 presents the time series of domain-averaged EVI with seasonal variations removed. This increasing trend in EVI 265 

suggests enhanced vegetation activity, supporting our finding of increased carbon uptake across most regions of East Asia. 

Similarly, Wang et al. (2020) attributed China’s substantial carbon uptake to the annual rise in vegetation indices. 

 

 
Figure 3. Time series of the domain-averaged Enhanced Vegetation Index (EVI) after removing seasonality. The red dashed line 270 
indicates the linear trend fitted to the deseasonalized EVI values. 

 

We examine regional interannual variability and associated supporting evidence, such as ENSO and EVI, that may 

help explain observed flux patterns. Notably, 2015–2016 coincided with one of the three strongest Super El Niño events on 

record (1982–83, 1997–98, and 2015–16; Ren et al., 2017; WMO, 2017). ENSO (El Niño–Southern Oscillation) is known to 275 

influence photosynthesis and carbon uptake by altering temperature and precipitation patterns (Cox et al., 2013; Fang et al., 

https://doi.org/10.5194/egusphere-2025-5971
Preprint. Discussion started: 19 January 2026
c© Author(s) 2026. CC BY 4.0 License.



12 
 

2017; Wang et al., 2013; Wang et al., 2014). Accordingly, we focus on ENSO-related impacts, and extend the analysis of EVI 

by conducting correlation analyses to assess its temporal relationship with fluxes. 

Figure 4 presents annual CO2 fluxes for all regions considered in this study over 2010–2019, allowing for direct 

comparison of prior and posterior estimates across East Asia. The Korean Peninsula acted as a weak carbon sink with low 280 

interannual variability. For all years, posterior estimates consistently showed stronger uptake than prior estimates. Japan 

exhibited a similar pattern, with posterior values exceeding prior ones, and overall low variability. In Mongolia, prior estimates 

indicated a weak sink, while posterior estimates showed markedly enhanced uptake. Except for 2017, which showed a shift 

toward a weak source, all years suggested a sink. In Taiwan, posterior fluxes were comparable to or slightly lower than the 

prior, and overall fluxes remained relatively stable. Notably, both prior and posterior estimates indicated decreased carbon 285 

uptake during 2015–2016, coinciding with the Super El Niño. Bastos et al. (2018) reported that this event substantially reduced 

terrestrial carbon uptake globally by suppressing ecosystem productivity, within our study domain the influence of El Niño 

was mainly concentrated over China, where several studies (Ma et al., 2018; Zhai et al., 2016) consistently reported a 

characteristic south-flood north-drought pattern (Zhai et al., 2016). 

In northern China (North, Northwest, and Northeast China), precipitation deficits prevailed during the 2015 El Niño 290 

peak, especially in North China, where severe summer droughts were reported (Zhai et al., 2016), followed by near-normal or 

slightly wetter conditions in 2016 (Ma et al., 2018). These anomalies are consistent with our results, which indicate a transition 

from carbon release in 2015 (0.008 PgC yr⁻1) to weak carbon uptake in 2016 (−0.005 PgC yr⁻1; Figure 4). In Northwest China, 

by contrast, the residual effects of the 2015–2016 El Niño brought unusually high rainfall during 2016 (Lu et al., 2019), 

particularly in spring and autumn, when precipitation exceeded 150% of the climatological mean (Ma et al., 2018). As noted 295 

by Liu et al. (2024), vegetation in arid regions tends to respond positively to increased moisture availability, and our posterior 

flux estimates indeed indicate sustained or even enhanced carbon uptake during this period. Specifically, the mean flux during 

2015–2016 (−0.078 PgC yr⁻1) was more negative than the decadal mean excluding those years (−0.054 PgC yr⁻1), suggesting 

strengthened carbon uptake under wetter conditions. In Northeast China, interannual flux variability was large, with strong 

uptake in 2016, but the statistical correlation with ENSO remained insignificant (p > 0.05; Ma et al., 2018). This region 300 

encompasses diverse vegetation types and spans arid to humid zones (see Jiang et al., 2022; Fig. 1b), potentially explaining its 

high interannual flux variability. 

In southern China (East, South Central, and Southwest China), the El Niño–induced precipitation anomalies were 

generally opposite to those in the northern China. However, Southwest China represented an exception. While East and South 

Central China experienced excessive rainfall and flooding, Southwest China underwent persistent drought due to weakened 305 

southward moisture transport (Ma et al., 2018). This region suffered from prolonged drought conditions from summer 2015 

through spring 2016, leading to vegetation water stress and reduced carbon uptake, with net carbon emissions of 0.011 and 

0.023 PgC yr⁻1 during these two years. In contrast, the summer 2016 flood East China was particularly severe. The WMO 

reported that flooding across the Yangtze River Basin in summer 2016 was the most serious since 1999 (WMO, 2017). This 

extreme rainfall event coincided with a marked shift toward positive NEE (+0.092; carbon release) in 2016 (Figure 4). South 310 
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Central China similarly exhibited enhanced precipitation and frequent flooding during 2015–2016 (Ma et al., 2018), 

corresponding to nearly neutral and carbon-releasing conditions in those years (−0.001 and +0.011 PgC yr⁻1).  

While numerous studies have addressed the effects of ENSO on temperature, precipitation, and extreme weather 

events, few have explored its direct influence on regional carbon fluxes. Our analysis provides new evidence that ENSO-

related climatic variability also affects vegetation carbon uptake across East Asia, thereby contributing to bridging this critical 315 

research gap. 

We also analyzed the correlations between EVI and carbon uptake (defined as the negative of NEE, so that positive 

values indicate uptake). Overall, the correlations strengthened across most regions (Table 4), particularly in the northern part 

of the domain, including Northwest China, Korean Peninsula, and Japan. For example, the correlation coefficients increased 

from 0.60 → 0.75 in Korean Peninsula, 0.55 → 0.69 in Japan, and 0.09 → 0.78 in Northwest China, respectively. In North 320 

and Northeast China and Mongolia, the correlations shifted from negative to positive, while East China showed a slight 

increase. 

However, it is unrealistic to expect consistent improvement in vegetation–carbon correlations across all regions. For 

reference, Jiang et al. (2021) compared the relationships between carbon sinks and two vegetation-related indicators (SDA and 

LAI; their Table 5) and reported correlation improvements in fewer than half of the regions examined. In our study, correlations 325 

weakened in South Central and Southwest China, and in Taiwan the negative correlation persisted. These southern regions are 

dominated by evergreen broad-leaved forests (Zhu and Tan, 2024). According to Buchmann and Schulze (1999), broad-leaved 

forests differ from other ecosystems in that leaf area index (LAI) does not significantly correlate with carbon uptake, due to 

self-shading and increased ecosystem respiration that offset photosynthetic gains. Although EVI differs from LAI, Potithep et 

al. (2013) reported a high correlation between the two in broad-leaved forests (r2 = 0.96), suggesting a close relationship. This 330 

may explain why EVI–carbon uptake correlations did not improve in South and Southwest China and Taiwan, where broad-

leaved forest characteristics dominate. 
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 335 

 
Figure 4. Annual regional CO2 fluxes over East Asia for the period 2010–2019, estimated from the prior (orange) and posterior (blue) 
fluxes. Each panel represents a different region, and negative values indicate net CO2 uptake (sink). Error bars represent the 
uncertainty of the flux estimates. 

 340 
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Table 4. Correlation coefficients between Enhanced Vegetation Index (EVI) and regional vegetation CO2 uptake, represented as 
negative NEE.  

Region 
Correlation coefficient with EVI 

Prior Posterior 

Korean peninsula 0.60 0.75 

Japan 0.55 0.69 

North China −0.13 0.07 

Northeast China −0.01 0.32 

East China 0.04 0.13 

South Central China −0.21 −0.39 

Southwest China −0.03 −0.08 

Northwest China 0.09 0.78 

Mongolia −0.13 0.06 

Taiwan −0.24 −0.22 

 345 

5. Comparison with other top-down and bottom-up product 

In this study, we evaluate the characteristics and discrepancies of our posterior carbon flux estimates by comparing 

them with a suite of established products derived from diverse estimation frameworks. The comparison encompasses 

FLUXCOM (NEE and ocean), GCAS2021 (NEE), TRENDY (NEE), CMS-Flux Ocean v3 (ocean), CMEMS-LSCE (ocean) 

and the Global Carbon Project (ocean).  350 

The FLUXCOM RS product estimates global terrestrial carbon fluxes by applying multiple machine learning 

algorithms, including Multivariate Adaptive Regression Splines (MARS), to satellite-based remote sensing inputs. As the 

FLUXCOM dataset is available only through 2018, while the other products extend to 2019, the comparison for FLUXCOM 

is limited to that period. GCAS2021 (Jiang et al., 2022) provides a NEE product derived from GOSAT XCO2 retrievals using 

the Global Carbon Assimilation System (GCAS), an inverse modeling framework that shares a satellite-based foundation with 355 

this study. The TRENDY (Trends in net land–atmosphere carbon exchange) project is a multi-model ensemble (bottom-up 

framework) designed to assess long-term trends in global terrestrial carbon fluxes. It integrates multiple Earth system and 

dynamic global vegetation models driven by common input datasets, including atmospheric CO2 concentration, meteorological 

forcing, and land-use changes (Friedlingstein, 2020; Sitch et al., 2008). In this study, we used an ensemble of eight models—

CABLE-POP, CARDAMOM, CLASSIC, DLEM, EDv3, IBIS, OCN, and YIBS—all of which simulate the full carbon cycle 360 

processes encompassing photosynthesis, respiration, carbon storage, and land-use change. For the ocean domain, the CMS-

Flux Ocean v3 product (Bowman, 2024) represents a posterior estimate generated under NASA’s Carbon Monitoring System 
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(CMS), combining GOSAT and OCO-2 observations with an atmospheric transport model to infer global air–sea CO2 

exchange. In contrast, the CMEMS-LSCE product (Chau et al., 2022, 2023) reconstructs monthly air–sea CO2 fluxes and 

surface pCO2 fields at 0.25° spatial resolution through an ensemble-based approach integrating satellite observations, in situ 365 

measurements, and statistical models. The multi-model mean of ten ocean models participating in the Global Carbon Project—

ACCESS, CESM, CNRM, FESOM, IPSL, MOM, MPIOM, MRI, NEMO, and NORESM—was also used for comparison. 

These models simulate large-scale ocean circulation and biogeochemical carbon processes that govern global air–sea CO2 

exchange, serving as key components of the Global Carbon Budget ocean flux ensemble. 

As shown in Figure 5a, our posterior estimates consistently indicate enhanced terrestrial carbon uptake relative to the 370 

prior and are comparable to other top-down products (FLUXCOM and GCAS) as well as the bottom-up ensemble (TRENDY). 

The posterior results show closer agreement with these datasets than the prior does. However, in 2016, although the posterior 

estimates remain closer to the other products than the prior, a slight discrepancy persists, likely due to the nearly neutral prior 

flux that year. Over the ocean, the posterior estimates show a comparable magnitude of carbon uptake to both the prior and 

alternative products (Figure 5b). Although the posterior mean suggests a marginally stronger sink, the difference lies within 375 

the uncertainty range and is therefore not statistically significant. This result remains consistent with the bottom-up ensemble 

(Global Carbon Budget Ocean). 

The ocean remains a region of limited observational coverage, where variability in data availability and input types 

can lead to differences among products. The Northwest Pacific, our primary ocean focus region, is particularly characterized 

by complex coastal geometries and sparse surface pCO2 observations, thereby contributing to elevated uncertainties and 380 

product-level discrepancies (Wu et al., 2025). Further contributing factors include differences in observational datasets and 

model configurations. CMS utilizes GOSAT v7.3 and OCO-2 data, whereas CMEMS relies primarily on in situ measurements. 

GCAS2021 also uses the GOSAT v9r retrievals employed in this study, but differs by adopting CT2019B as the prior flux and 

MOZART-4 as the transport model instead of GEOS-Chem. These differences likely contribute to the discrepancies observed 

in the posterior flux estimates. 385 
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Figure 5. Comparison of prior and posterior flux estimates with other flux products from 2010 to 2019. (a) NEE and (b) Ocean 
carbon flux over East Asia. Bars indicate annual mean fluxes from each dataset. Error bars represent the uncertainty ranges for the 390 
prior and posterior estimates, while those for TRENDY and GCB Ocean denote the inter-model standard deviations. 

 

6 East Asia Carbon Budget (2010–2019) 

The carbon budget of East Asia for 2010–2019, incorporating the sink estimated in this study, is summarized as 

follows (Figure 6). Fossil fuel and biomass burning emissions are derived from ODIAC and GFED4, respectively. Fossil fuel 395 

emissions amount to 3.86 PgC yr⁻1. Compared with the global total fossil fuel emissions of 9.6 PgC yr⁻1 (Friedlingstein, 2020), 

East Asia accounts for about 40% of the global fossil carbon release. 

Biomass burning contributes 0.11 PgC yr⁻1, while the regional NEE and ocean uptake are −0.31 PgC yr⁻1 and −0.21 PgC yr⁻1, 

respectively. These yield a combined sink of −0.52 PgC yr⁻1, offsetting only 13.6% of fossil fuel emissions. Consequently, the 

residual carbon that is not compensated by natural sinks accumulates in the atmosphere, leading to an increase in atmospheric 400 

CO2 concentrations. This imbalance between emissions and sinks explains the persistently high atmospheric CO2 levels 
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observed over East Asia (Yeh et al., 2023). The atmospheric carbon stock over East Asia is estimated at 38.97 PgC, 

representing the amount of CO2 currently retained within the regional atmosphere. 

In our East Asia domain, the net surface flux (fossil fuel + biomass burning + NEE + ocean uptake, with NEE and 

ocean uptake typically negative) is +3.45 PgC yr⁻1 for 2010–2019, indicating a strong net source to the atmosphere. Over the 405 

same period, the vertically integrated atmospheric carbon mass within the domain increases at a mean rate of ~0.24 PgC yr⁻1, 

implying that only about 7% of the emitted carbon remains stored locally in the atmospheric column. The remaining ~3.21 

PgC yr⁻1, ~93% of the net source, is exported out of the domain by large-scale transport. Most of the carbon emitted from East 

Asia is transported beyond the regional boundaries. Therefore, East Asian emissions are not confined to a local issue but are 

linked to downstream transport influencing other regions. 410 

Despite gradual increases in NEE and ocean uptake due to fertilization effects and enhanced solubility associated 

with pCO2 gradients, East Asia remains dominated by large fossil fuel emissions. Given this limited natural sink capacity, 

achieving carbon neutrality will require substantial reductions in fossil fuel use and the enhancement of anthropogenic 

removals, such as carbon capture and storage (CCS). 

 415 

 
Figure 6. Schematic diagram of the East Asia carbon budget averaged for 2010–2019 (18.5° N–54° N, 73° E–146° E). The atmospheric 
carbon stock over East Asia, estimated at 38.97 PgC, represents the amount of CO2 retained within the regional atmosphere. All 
other fluxes are expressed in PgC yr⁻1 (FF = fossil fuel combustion; BB = biomass burning; NEE = net ecosystem exchange). 
Downward blue arrows represent CO2 uptake by the terrestrial and ocean, whereas upward black arrows indicate emissions from 420 
biomass burning and fossil fuel combustion.  
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7. Summary and conclusions 

This study provides a top-down estimate of regional carbon fluxes across East Asia (18.5°N–54°N, 73°E–146°E) for 

the period 2010–2019, using a Bayesian inversion framework constrained by GOSAT ACOS v9.0 XCO2 retrievals. By 

applying the GEOS-Chem chemical transport model and incorporating region-specific prior uncertainties based on the standard 425 

deviation of terrestrial and ocean carbon fluxes, we optimized both terrestrial and oceanic fluxes. The posterior estimates 

indicate enhanced carbon uptake compared to the prior, with mean terrestrial NEE ranging from –0.17 to –0.31 PgC yr⁻1 while 

oceanic uptake changed slightly from –0.20 to –0.21 PgC yr⁻1, showing no statistically significant difference. 

Evaluation against independent surface-based CO2 observations (WDCGG and TCCON) showed consistent 

improvements across most stations in terms of correlation, RMSE, and bias, supporting the robustness of the inversion 430 

framework. Uncertainty reduction (UR) was generally more substantial over continental regions such as China, whereas 

smaller or oceanic regions showed limited improvements due to observational constraints. 

At the regional scale, most regions acted as persistent carbon sinks throughout the decade, with interannual variability 

influenced by climate events. Notably, the 2015–2016 Super El Niño was associated with temporary flux reversals, primarily 

over several regions in China. These reversals were largely driven by ENSO-induced floods and droughts, which suppressed 435 

vegetation photosynthetic activity and, in some regions, led to near-neutral or even positive NEE values, indicating temporary 

carbon release. This suggests that terrestrial carbon sinks can be substantially weakened not only by natural climatic variability 

such as ENSO, but also by extreme weather events intensified under climate change. An increasing trend in the Enhanced 

Vegetation Index (EVI), along with improved correlations between EVI and posterior carbon uptake, further supports the 

credibility of the flux estimates. However, regions dominated by broadleaf forests exhibited persistent negative correlations, 440 

likely due to self-shading effects of dense canopies. 

Comparison with other top-down and bottom-up flux products showed general agreement in both trend and magnitude. 

Nonetheless, discrepancies remain, largely due to differences in observational inputs, modeling frameworks, and prior flux 

assumptions. In particular, oceanic uptake estimates tend to diverge more than terrestrial ones, as ocean regions are more 

sparsely observed and often include complex coastal zones (Wu et al., 2025).  445 

Although the optimized posterior fluxes indicate enhanced carbon uptake compared to the prior, the East Asian 

domain remains highly fossil-fuel-dominant. Approximately 7% of the residual carbon accumulates within the regional 

atmosphere, while the remaining 93% is transported out of the domain by large-scale circulation. Considering the limited 

capacity of natural carbon sinks, new strategies will be required to mitigate both the persistently high atmospheric CO2 

concentrations over East Asia and the downstream transport of these emissions to other regions. 450 

Overall, this study estimates carbon sinks over East Asia by incorporating region-specific uncertainties and 

demonstrate the effective use of satellite constraints and a chemical transport model in inverse modeling. The results were 

evaluated against independent observations and compared with other flux products, while the interannual variability was 

interpreted through ENSO and vegetation indices. However, the relatively limited observational coverage over ocean regions 
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resulted in smaller uncertainty reductions, highlighting the need for denser and more continuous oceanic CO2 observations to 455 

further constrain regional flux estimates. Despite this limitation, this study provides valuable insights into the East Asian 

carbon cycle, which is critical for carbon management, and can support policy strategies aimed at mitigating climate change. 
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Data availability 460 

The GOSAT ACOS v9.0 XCO2 retrievals are publicly available from the NASA GES DISC (https://disc.gsfc.nasa.gov; Taylor 

et al., 2022). Ground-based CO2 observations are available from the World Data Centre for Greenhouse Gases (WDCGG; 

https://gaw.kishou.go.jp/). The TCCON (Total Carbon Column Observing Network) data used in this study are publicly 

available at https://tccondata.org/. The MODIS/Terra EVI data (MOD13C2 Version 6.1) were obtained from the NASA Land 

Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science Center 465 

(https://lpdaac.usgs.gov/). The TRENDY model simulation result and Ocean flux products from the Global Carbon Budget 

2023 are available via the ICOS Carbon Portal as part of the Global Carbon Budget open data. 

(https://mdosullivan.github.io/GCB/) The GCAS2021 data are available at https://doi.org/10.5281/zenodo.5829774 (Jiang, 

2022). The FLUXCOM data are publicly available for download (CC BY 4.0 license) from the Max Planck Institute for 

Biogeochemistry (MPI-BGC) data portal after registration (https://www.fluxcom.org). The CMS-Flux Ocean v3 posterior flux 470 

product is available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; DOI: 

10.5067/9H6GCQKP28AI). The CMEMS-LSCE ocean carbon product is available from the Copernicus Marine Environment 

Monitoring Service (DOI: 10.48670/moi-00047). 
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