

Contrasting isotopic responses of dryland and wetland plants to a century of global anthropogenic changes in nutrient cycling

Iwona Dembicz¹, Natalia Chojnowska¹, Piotr Chibowski¹, Łukasz Kozub¹

¹University of Warsaw, Faculty of Biology, Institute of Environmental Biology, Biological and Chemical Science Centre, Warsaw, 02-089, Poland

Correspondence to: Łukasz Kozub (lkozub@uw.edu.pl)

Abstract. Anthropogenic emissions of carbon dioxide and reactive nitrogen in various forms disrupt the functioning of ecosystems around the world. In Europe, many valuable habitats, particularly wetlands and semi-natural dry grasslands, are under threat from ongoing eutrophication. However, due to contrasting water regimes, the uptake of anthropogenic nitrogen by plants in these ecosystems is different and is also interrelated with an increase in trophic level in both habitats.

In our study, we measured the $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ values, as well as the total nitrogen content (TN), of 99 pairs of foliar samples collected from seven species of vascular plants in both dry grasslands and wetlands in Poland. Each pair consisted of a historical sample collected from a herbarium voucher dating from before 1939 (i.e. before artificial fertilisers were widely used in agriculture) and a contemporary sample collected in 2024 from the same species in a similar location.

We performed t-tests to determine whether there were significant differences in the means of $\delta^{15}\text{N}$, TN and $\delta^{13}\text{C}$ between samples from the two different habitats. Next, we calculated the differences in $\delta^{15}\text{N}$, TN and $\delta^{13}\text{C}$ between the contemporary and historical samples for each pair. We then tested whether the difference for each species and habitat type was significantly different from zero using 90% confidence intervals. Using multiple linear regression, we analysed the relationships between differences in $\delta^{15}\text{N}$ and TN over time and the following factors: habitat type, the proportion of farmland in the surrounding landscape, the consumption of synthetic nitrogen fertiliser, and NOx deposition.

$\delta^{15}\text{N}$ and TN values were lower in dry grassland species than in wetland species, in both the contemporary and historical subsets. For dry grassland species, the mean $\delta^{15}\text{N}$ value was lower in contemporary samples than in historical ones. For wetland species, the opposite was true. The difference in $\delta^{15}\text{N}$ values between pairs of samples was positively related to the amount of farmland in the surrounding landscape. The mean TN was higher in contemporary than in historical wetland samples, but not in dry grassland plants. The mean $\delta^{13}\text{C}$ value, corrected for the Suess effect, was lower in contemporary samples than in historical ones. The mean difference was -0.51‰ for dry grassland and -3.85‰ for wetland species.

Our study revealed that the century of fossil fuel-derived carbon emissions, increased nitrogen input into the environment, and dominance of artificial fertilisers and combustion-derived nitrogen over biological nitrogen sources have not led to consistent responses across habitats and species. While the isotopic composition of nitrogen and carbon in plant tissues in Central Europe has undoubtedly changed, this change is highly context-dependent. Its magnitude and direction are impacted by the type of habitat and the identity and/or ecology of the species. As expected, man-made alterations appear to be more pronounced in

wetland environments than in dryland habitats. Furthermore, the source of disruption may differ between the two habitat types. Specifically, wetlands are exposed to a multitude of anthropogenic nitrogen and carbon sources, whereas dry grasslands seem to be predominantly affected by changes in the composition of the atmosphere.

35

1 Introduction

40

Disruption to the global nitrogen and carbon cycles caused by human activities is one of the major threats to the functioning of the biosphere (Hessen et al., 1997; Richardson et al., 2023). The main source of anthropogenic carbon is the combustion of fossil fuels, which produces carbon dioxide (CO₂), one of the main greenhouse gases. However, the high-temperature combustion of fossil fuels in the atmosphere (e.g. in engines of cars and trucks and in electrical power generation plants) produces also nitrogen oxides (NO and NO₂), which play role in the formation of both smog and acid rain, and contribute to the atmospheric nitrogen deposition to the ecosystems (mostly after conversion to nitric acid HNO₃, Seinfeld and Pandis, 2006; Hertel et al., 2012). Fossil fuel combustion began on a massive scale in the Industrial Era (Pirani, 2018). Later, during the 20th century and continuing to the present day, anthropogenic nitrogen input has increased, particularly due to the invention of an efficient method of synthesising ammonium through fixation of atmospheric nitrogen N₂ (Bateman and Kelly, 2007; Bodirsky et al., 2012). This process enabled the large-scale production and use of artificial fertilisers in agriculture, which was one of the foundations of the so-called Green Revolution of the 1960s. (Bodirsky et al., 2012). However, excess of anthropogenic, bioavailable nitrogen input into natural ecosystems usually leads to profound changes in their productivity, biodiversity and functioning, and often cannot be easily reversed (Stevens et al., 2004; Dise et al., 2011; Van der Plas et al., 2024). Furthermore, the combined effect of increased CO₂ and reactive nitrogen may have a more negative impact on biodiversity and ecosystem functioning than the effects of each factor acting alone (Bakker et al., 2024; Reich et al., 2024).

50

55

An excess of nitrogen input is a well-recognised threat to a wide range of ecosystems that are more susceptible to eutrophication, particularly aquatic habitats (Schindler, 2006), but also species-rich semi-natural grasslands in Europe (Stevens et al., 2004; Bobbink et al., 2010; Dise et al., 2011). Eutrophication in aquatic ecosystems, mainly caused by nitrogen and phosphorus, leads to uncontrolled algal or cyanobacterial blooms. These blooms can result in episodes of hypoxia (low oxygen levels), reduced light penetration, the release of toxic compounds and unpleasant odours, increased water turbidity, and alterations to biocoenoses. (Schindler, 2006; Erisman et al., 2013). These changes can include the extinction of underwater plants (Qin et al., 2013) and increased fish mortality (Schindler, 2006). In grassland ecosystems, high nitrogen input may lead to changes in nutrient and water cycling, soil acidification and increased biomass production (Bobbink et al., 2010; Meier et al., 2022). Higher productivity can lead to the dominance of fast-growing, expansive species, while the production of large amounts of litter can inhibit the growth of smaller, less competitive, and often rare species (Meier et al., 2022; Chen et al., 2023). Larger biomass production and litter accumulation also reduce the amount of light reaching ground level, which usually harms germination and seedling survival (Ruprecht et al., 2010; Meier et al., 2022).

65

70

75

80

85

90

95

It is estimated that in 2020, the total amount of nitrogen produced globally by humans was 226 Tg N/year, while natural nitrogen fixation ranged from 58 to 128 Tg N/year (Galloway et al., 2021). It is estimated that global consumption of artificial nitrogen fertilisers increased nearly tenfold from 11.3 Tg N/year in 1961 to 108 Tg N/year in 2022 (Lu and Tian, 2016; FAO, 2024). The highest use of nitrogen-based fertilisers in agriculture was among the European Union's main agricultural producers, particularly in France (1.7 million tonnes), Poland and Germany (1.0 million tonnes each) (Eurostat, 2025). In Poland in 2020, the average use of artificial nitrogen fertilisers was 70.4 kg per hectare of agricultural land (GUS, 2020). As a result, Poland can be classified as one of the countries with the highest artificial fertiliser consumption per hectare of agricultural land, with fertilisation levels exceeding the EU average by about one third (Piwowar, 2022). It is estimated that only about 30-50 % of the nitrogen from the fertilisers applied is taken up or assimilated by crops, with the remainder being lost through leaching, surface runoff and gaseous emissions (Lehnert, 2015; Choi et al., 2017).

The physiology and evolutionary strategy of nitrogen uptake by plants, such as through mycorrhizae or the presence of nitrogen-fixing bacteria, influences the ratio of stable nitrogen isotopes, i.e. $^{15}\text{N}/^{14}\text{N}$ ($\delta^{15}\text{N}$). Usually, plants discriminate against ^{15}N , resulting in lower $\delta^{15}\text{N}$ values in plant tissue than in their N source (Dawson et al., 2002). But the main driver of variation in $\delta^{15}\text{N}$ is the type and availability of nitrogen sources and their isotopic composition (Evans, 2001). Changes in the $\delta^{15}\text{N}$ of plant-available nitrogen are typically mirrored in plant tissue values. Therefore, stable isotopes are a useful tool to trace anthropogenic nitrogen input (Kendall et al., 2007; Hastings et al., 2013). There are three major sources of human-derived nitrogen with distinct $\delta^{15}\text{N}$ signatures: 1) Synthetic fertiliser: widely used since the 1950s, produced via the Haber–Bosch process, has $\delta^{15}\text{N}$ values close to air N_2 or slightly negative ($\delta^{15}\text{N}$ between -4 ‰ – 0 ‰) (Bateman and Kelly, 2007). 2) Organic nitrogen from untreated wastewater and manure (also in the form of atmospheric deposition of agricultural NH_3). Volatilisation and microbial transformations of this type of nitrogen come with strong ^{14}N loss, giving the remaining nitrogen high $\delta^{15}\text{N}$ values (approx. 5 ‰ – 20 ‰) (Bateman and Kelly, 2007). This isotopic enrichment has been used, e.g. to authenticate products of certified organic farming (Muñoz-Redondo et al., 2023) or to trace the historical use of manure in farming (Halvorsen et al., 2023). 3) Atmospheric deposition from fossil fuel combustion in power plants and engines. The $\delta^{15}\text{N}$ of reactive nitrogen from fossil fuel combustion is generally negative but can be variable due to atmospheric transformations (Elliott et al., 2019), soil microbial processing and evolutionary strategies of plants (Yao et al., 2011).

Nitrogen content (relative to other elements) in plant tissues is a species-specific trait, with species with competitive and ruderal strategies often being more N-rich and species which are stress-tolerant and have strongly lignified tissues being N-poor (Tilman and Wedin, 1991; Tian et al., 2019). However, it has been proven that the relative content of nitrogen in relation to other macronutrients, but also the nitrogen concentrations in the tissues, could be dependent on nitrogen availability in the environment (Palpurina et al., 2019). Moreover, under elevated CO_2 , the nitrogen concentration in plant tissues tends to decrease (Cotrufo et al., 1998), which can be a result of multiple mechanisms, including the simple dilution effect but also changes in root architecture (Taub and Wang, 2008).

Stable carbon isotopes ($\delta^{13}\text{C}$) in plant biomass can be used to assess long-term changes in carbon cycling, photosynthetic conditions, and environmental stressors affecting plant life (Cernusak et al., 2013). Carbon isotopic signatures in terrestrial

plants reflect the values of CO₂, so studying historical samples, including plant biomass, provides evidence for the Suess effect: the progressive depletion of atmospheric ¹³C due to fossil fuel emissions (Keeling, 1979). On a much smaller level, changes in CO₂ concentration also affect ¹³C discrimination (Keeling et al., 2017). Photosynthesis in general is a process strongly discriminating against ¹³C, but the magnitude of this discrimination depends on plant physiology, especially the type of photosynthesis (C3/C4) (Farquhar et al., 1989). Within one type of photosynthesis, $\delta^{13}\text{C}$ is altered by stomatal activity: long periods of closed stomata (higher water-use efficiency) mean that the plant is using a limited CO₂ pool, resulting in lesser discrimination and higher $\delta^{13}\text{C}$ values (Seibt et al., 2008). Aquatic plants can use dissolved organic carbon (DIC) for photosynthesis; in fully submerged plants, it is the only carbon source. As opposed to atmospheric CO₂, $\delta^{13}\text{C}$ of DIC (and aquatic plants) undergo various site-dependent changes in both directions, depending on the source of carbon, type of water body (Pronin et al., 2024), water chemistry - mainly pH (Thompson et al., 2001) and abundance of DIC (Schulte et al., 2011; Chappius et al., 2017). This variety of factors determines the final value of $\delta^{13}\text{C}$, making the practical use of carbon isotopes as a marker of eutrophication in wetland ecosystems comparable to the use of nitrogen isotopes (Wang et al., 2015; Hereida et al., 2022).

110 A couple of studies have already used historical plant material stored in herbaria to track changes in the isotopic and chemical composition of plant biomass since the 19th century (Peñuelas and Filella, 2001; McLauchlan et al., 2010; Alldred et al., 2024; Kühn et al., 2025) or even the 18th century (Peñuelas and Matamala, 1990). Some of these studies have identified similar trends; for example, a decrease in $\delta^{15}\text{N}$ was observed in foliar samples during the 20th century, as demonstrated for prairie plants in Kansas (McLauchlan et al., 2010) and Mediterranean terrestrial plants in north and east Spain (Peñuelas and Filella, 2001). However, McLauchlan et al. (2010) indicated that the main reason for this trend was an increase in atmospheric CO₂ levels (and thus stronger N-limitation) thought, Peñuelas and Filella (2001) attributed it to higher anthropogenic nitrogen input into ecosystems. Furthermore, McLauchlan et al. (2010) found that leaf nitrogen content decreased over the 20th century, while Kühn et al. (2025) observed an opposite trend in vascular plants from mesic grasslands and crop fields in Germany, a country with a similar, to our study area, intensive and crop-based agricultural sector (Eurostat, 2025) described below. It is also worth noting that most of the aforementioned studies focused on terrestrial habitats, while recent study by Alldred et al. (2024) also found herbarium vouchers of macroalgae to be a very promising source of information in studying past biogeochemical trends in water environments.

120 To date, no studies have attempted to compare at the same time different habitat types that may be exposed to varying levels of anthropogenic nitrogen. Similarly, no studies have analysed the correlation between the magnitude of change and local land use factors. Considering the above discrepancies and gaps in knowledge, we formulated the following hypotheses to verify in our study:

- 130 1) Wetland plants and dry grassland plants exhibit different patterns of shifts in stable isotope composition.
- 2) Effects of eutrophication are more visible in wetlands, especially in submerged species, which show a drop in $\delta^{13}\text{C}$ and an increase in $\delta^{15}\text{N}$.
- 3) TN in plant tissues increased over the last century.

- 4) The change in TN and $\delta^{15}\text{N}$ is correlated with the proportion of agricultural areas' consumption of artificial nitrogen fertilisers in agriculture, and the atmospheric nitrogen deposition in the modern landscape.
- 5) $\delta^{13}\text{C}$ of dry grassland plants decreased by about 1.5 ‰ over the last century due to the Suess effect.

2 Methods

135 2.1 Selection of species and specimens for analyses

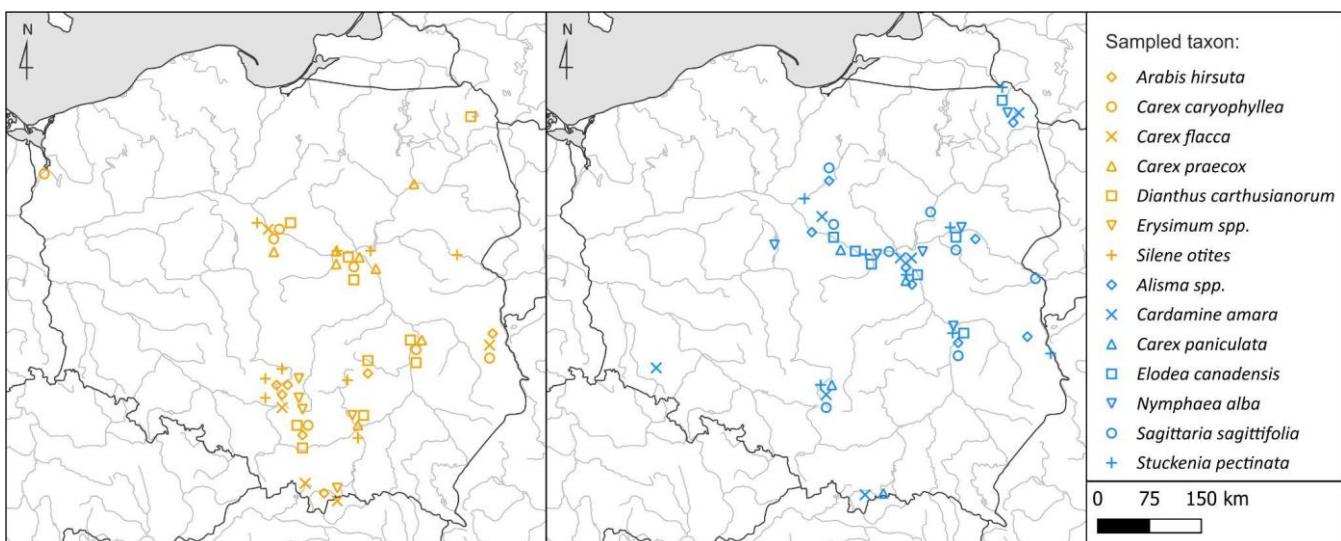
For our study, we selected species that had to be represented by well-preserved and well-developed herbarium vouchers in the Herbarium of the Faculty of Biology, University of Warsaw (WA). Those herbarium vouchers should be collected before 1939, so before the artificial fertilisers became widespread in Central Europe (Merta-Staszczak and Zwirzykowska-Wodzińska, 2017; Tian et al., 2022), from at least six locations that could be linked to contemporary occurrences of the species. We 140 considered a species to be currently present at a given location (i.e. appropriate to the location of the herbarium specimen): i) if we had personally observed the species there in the last decade, ii) if we could identify patches of potential habitat of the species on ortophotographs (available at <https://www.geoportal.gov.pl/>), or iii) if we found observations of the species reported in recent botanical literature or in iNaturalist (<https://www.inaturalist.org/>).

To reduce the impact of various potential nitrogen sources on the chemical composition of plant biomass, we excluded species 145 that fix nitrogen via symbiotic bacteria. We chose plant species from taxa which are known to be non-mycorrhizal (*Caryophyllaceae*, *Brassicaceae*, *Hydrocharitaceae*, *Potamogetonaceae*, *Nymphaea alba*) or weakly associated with fungi (especially in wetland habitats) and if so, mostly of AM mycorrhizal type through which they obtain rather phosphorus than nitrogen (*Alismataceae*, genus *Carex*) (George et al., 1995; Miller et al., 1999; Cornwell et al., 2001; Unger et al., 2016). Our selection included relatively common species in two habitat types: dry grasslands and wetlands (springs, lakes and rivers) (see 150 Table 1). The stability of moisture conditions in these habitats (often deficient in grasslands and always abundant in wetlands) helped to reduce the impact of variation in water availability at the time of material collection on the results. Finally, we selected 14 vascular plant taxa, two of which were aggregations of two closely related species (Table 1).

Table 1: Taxon characteristics and number of paired samples collected from historical and appropriate contemporary specimens.
Species nomenclature follows World Flora Online (2025).

Species/genus name	Family	Habitat type	Number of sample pairs	Remarks
<i>Alisma</i> spp.	<i>Alismataceae</i>	wetlands	8	<i>Alisma plantago-aquatica</i> L. (7 pairs of samples) and <i>Alisma lanceolatum</i> With. (1 pair of samples)
<i>Arabis hirsuta</i> (L.) Scop.	<i>Brassicaceae</i>	dry grasslands	7	-
<i>Cardamine amara</i> L.	<i>Brassicaceae</i>	wetlands	7	-
<i>Carex caryophyllea</i> Latourr.	<i>Cyperaceae</i>	dry grasslands	7	-
<i>Carex flacca</i> Schreb.	<i>Cyperaceae</i>	dry grasslands	5	-
<i>Carex paniculata</i> L.	<i>Cyperaceae</i>	wetlands	4	-
<i>Carex praecox</i> Schreb.	<i>Cyperaceae</i>	dry grasslands	8	-
<i>Dianthus carthusianorum</i> L.	<i>Caryophyllaceae</i>	dry grasslands	10	-
<i>Elodea canadensis</i> Michx.	<i>Hydrocharitaceae</i>	wetlands	7	-
<i>Erysimum</i> spp.	<i>Brassicaceae</i>	dry grasslands	5	<i>Erysimum odoratum</i> Ehrh. (4 pairs of samples) and <i>Erysimum hungaricum</i> Zapał. (1 pair of samples)
<i>Nymphaea alba</i> L.	<i>Nymphaeaceae</i>	wetlands	7	-
<i>Sagittaria sagittifolia</i> L.	<i>Alismataceae</i>	wetlands	8	-
<i>Silene otites</i> (L.) Wibel	<i>Caryophyllaceae</i>	dry grasslands	9	-
<i>Stuckenia pectinata</i> (L.) Börner	<i>Potamogetonaceae</i>	wetlands	8	-

2.2 Study area


The spatial arrangement of our study was predominantly driven by the origin of the herbarium specimens of the selected species. As Warsaw was part of the Russian Empire until the First World War, most of the materials stored in the herbarium from before that period were collected within its former borders, except in the vicinity of the Tatra Mountains, which was a popular destination among botanists at that time. We excluded vouchers collected outside the current Polish borders. To avoid oversampling certain popular areas, we did not include in our study samples of the same species collected less than a few kilometres apart. Finally majority of the selected pairs originate from the eastern half of Poland. According to the Köppen-Geiger climate classification, the region predominantly has a warm temperate, fully humid climate with a warm summer (Cfb) (Kottek et al., 2006). The mean annual temperature of the sampled locations varied from 6.35 °C to 9.05 °C (mean 8.26 °C),

165 while annual precipitation ranged from 496 mm to 1187 mm (mean 632 mm). The mean temperature of the coldest month (January) ranged from -3.75°C to -0.15°C (mean -2.01°C), while the mean temperature of the warmest month (July) ranged from 16.15°C to 19.45°C (mean 18.67°C) in the period 1981–2010 (Karger et al., 2017).

2.3 Sampling of plant material

170 Each herbarium voucher sample consisted of two to five leaf fragments collected from one or several individuals, depending on the availability of material and the state of preservation of the specimens. According to information obtained from the head of the WA Herbarium, the specimens stored there were not prepared or preserved using nitrogen-containing substances. We attempted to obtain contemporary samples in the same locality as the historical one. The accuracy of relocation was related mostly to the level of detail provided in the herbarium voucher description. If the original location description was precise (it allowed for site relocation with uncertainty less than one kilometre), we searched for the species in the same location, and if 175 we were unable to find it there, then we searched in a radius of a maximum of 10 km from the original site. However, if the description was very general (e.g. pointing to a large town), we looked for the focal species in the broader vicinity of that town in suitable habitats. The total number of samples collected was 198, comprising 99 historical samples collected between 1855 180 and 1938 (median 1905) and 99 contemporary samples that were paired with their respective locations. All contemporary samples were collected between April (for the early-flowering species as *Arabis hirsuta* and *Erysimum* spp.) and September (for some of the aquatic plants) of 2024. Each contemporary sample, similarly to the historical ones, consisted of two to five leaf fragments collected from several individuals per locality (Fig. 1). We selected fully developed, green and healthy plants that were mostly in the flowering or early fruiting phase. Additionally, two to three specimens from most of the currently sampled populations we collected and deposited as herbarium vouchers in the Herbarium WA for future reference.

185 **Figure 1: Localities of the sampled populations of dry grassland species (on the left) and wetland species (on the right). Overlapping locations were randomly dispersed to increase visibility (spatial data source: Bohn et al., 2001-2003).**

2.4 Laboratory analyses

Fresh samples were dried in 40 °C for 24 h within one day after collecting. Each sample was homogenized by crushing in a pestle and mortar or cut into small pieces using scissors. Two subsamples were weighted into tin capsules – approx. 5 mg for 190 quantitative analysis and 3 mg for stable isotope analysis. Total carbon and nitrogen were measured using Thermo Flash 2000 Elemental Analyzer with TCD detector. Stable carbon and nitrogen were measured in a Thermo Delta V Plus Isotope Ratio Mass Spectrometer coupled with a Flash 2000 Elemental Analyser. Stable isotope ratios are reported as δ (‰) in line with the equation: $\delta_{sample} = \frac{R_{sample}}{(R_{standard})-1} \times 1000$, where R is the isotopic ratio ($^{13}\text{C}/^{12}\text{C}$ or $^{15}\text{N}/^{14}\text{N}$), and standard is an international reference value: atmospheric air for $\delta^{15}\text{N}$ and Pee Dee Belemnite (PDB) for $\delta^{13}\text{C}$. International standards were measured for 195 calibration and measurement precision, which were < 0.1 ‰ for $\delta^{13}\text{C}$ and < 0.2 ‰ for $\delta^{15}\text{N}$. In order to facilitate comparison of the samples, we corrected the values of the historical specimens for the Suess effect (Dombrosky, 2020). The obtained values of all measurements, including the uncorrected $\delta^{13}\text{C}$ values, are available in the Supplementary Materials Table S1. We performed the analyses in the Laboratory of Biogeochemistry and Environmental Conservation at the University of Warsaw Biological and Chemical Research Centre (CNBCh UW).

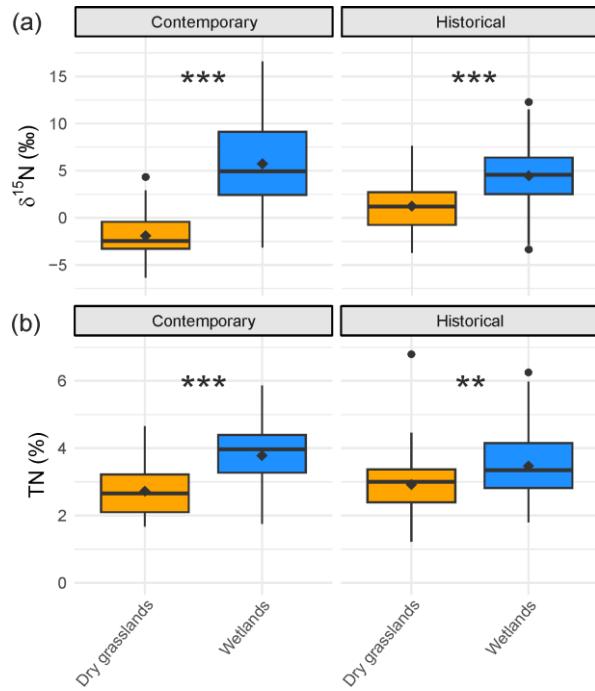
2.5 Anthropogenic nitrogen input and land use characteristics

To assess the current levels of anthropogenic nitrogen input at the sample collection sites, we obtained data on the consumption of mineral nitrogen fertilisers per hectare of agricultural land within given municipalities in Poland from the 2020 General Agricultural Census (GUS, 2024). Moreover, we used European air quality data for the 2023 dataset (Anon., 2025) as a source of data on the NOx atmospheric deposition in the sampling locations. The dataset provides NOx concentrations for vegetation-related indicators (annual averages) at a 2 km² grid. It combines air quality monitoring data, chemical transport model results, and other supplementary data using a regression-interpolation-merging mapping methodology (Anon., 2025).

Using GIS tools (QGIS Development Team, 2024), we calculated the proportion of agricultural land within 10 km buffers around the contemporary specimens collection sites. We used CORINE Land Cover (CLC, 2018) as a source of land-use cover data, which has a resolution of 100 m. Within each buffer size, we calculated the sum of all subcategories of Level 1 “2. Agricultural area” occurring in our study area: 2.1.1 Non-irrigated arable land, 2.2.2 Fruit trees and berry plantations, 2.3.1 Pastures, 2.4.2 Complex cultivation patterns, and 2.4.3 Land principally occupied by agriculture, with significant areas of natural vegetation. We then divided the sum by the total area of the respective buffer.

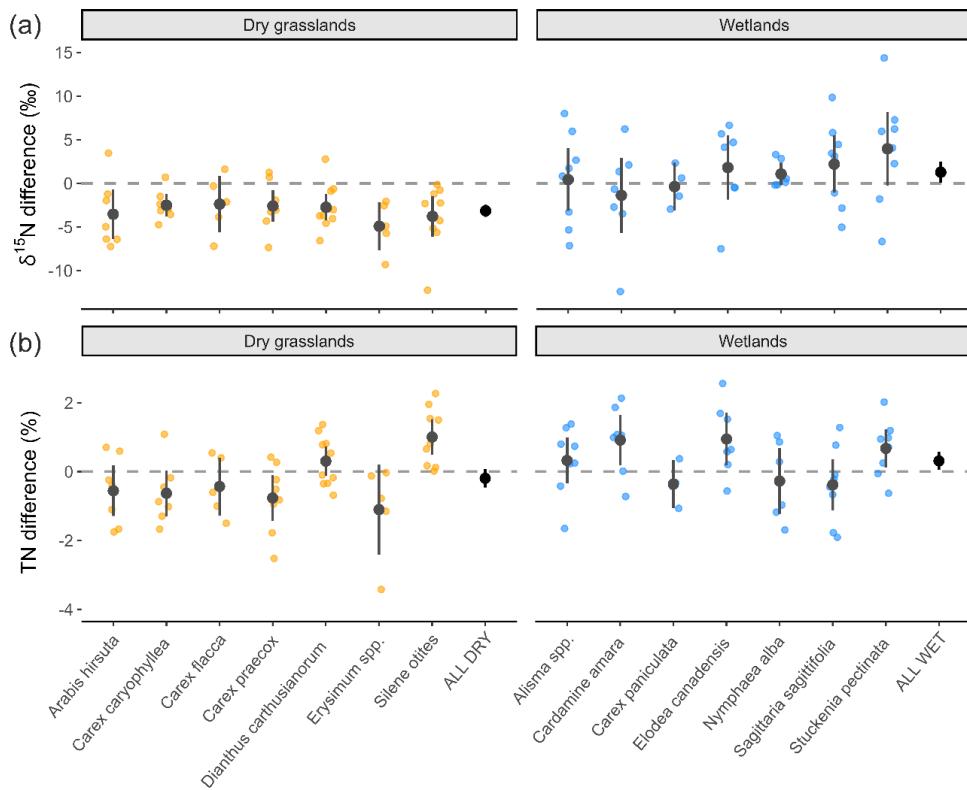
2.6 Data analysis

We performed all the statistical analyses in R ver. 4.4.2 (R Core Team, 2024), and visualisation of the results using the 'ggplot2' R-package (Wickham, 2016). We used a two-sample, two-sided t-test with unequal variances to see whether there were differences in the mean $\delta^{15}\text{N}$ between samples of dry grassland and wetland plants in both the historical and contemporary specimen groups. Prior to other statistical tests, we calculated the differences in $\delta^{15}\text{N}$, total nitrogen content (TN) and $\delta^{13}\text{C}$ by



subtracting the measurements obtained from historical samples from those obtained from contemporary samples belonging to the same pair. We then used 90 % confidence intervals (CIs), which equals to one sided 95 % confidence of lower or higher mean, to test whether the differences were statistically significant from zero within each of the species studied, as well as within groups of species representing the two studied habitat types (dry grassland species vs. wetland species). The calculation of the CIs was done using one sample t-test implemented in the 'ci' function from the R-package 'gmodels' (Warnes et al., 2024). To test whether differences in $\delta^{15}\text{N}$ and TN over time were influenced by the habitat type, proportion of farmland in the surrounding area, the quantity of synthetic nitrogen fertilisers used, and the amount of NOx deposited, we employed 220 multiple linear regression. Additionally, we performed a linear regression model of $\delta^{13}\text{C}$ against $\delta^{15}\text{N}$, incorporating all the 225 wetland plant samples studied.

3 Results


3.1 Nitrogen isotopes and content across habitats and species

The $\delta^{15}\text{N}$ value was significantly lower in the foliar samples of dry grassland species than in wetland plant species, in both 230 groups of contemporary and historical samples (see Fig. 2a). In contemporary samples, the difference between the means of plants representing the two habitat types was 3.83 ‰ (dry grassland species: mean $\delta^{15}\text{N} = -1.91\text{ ‰}$; wetland species: mean $\delta^{15}\text{N} = 5.73\text{ ‰}$), whereas in historical samples, the difference was 3.22 ‰ (dry grassland species: mean $\delta^{15}\text{N} = 1.24\text{ ‰}$; wetland species: mean $\delta^{15}\text{N} = 4.45\text{ ‰}$) (Fig. 2a, for more details see Appendix A Table A1 and Table A4). The value of TN was also significantly lower in the foliar samples of dry grassland species than in wetland plant species, in both contemporary and 235 historical groups of samples (Fig. 2b). In contemporary samples, the difference between the means of TN in plants representing the two habitats was 1.06 % (dry grassland species: mean TN = 2.72 %; wetland species: mean TN = 3.78 %), whereas in historical samples the difference was 0.55 % (dry grassland species: mean TN = 2.92 %; wetland species: mean TN = 3.47 %) (Fig. 2b, Appendix A Table A2 and Table A4).

240 **Figure 2: $\delta^{15}\text{N}$ (a) and TN (b) in historical and contemporary foliar samples from dry grassland ($n = 51$) and wetland ($n = 49$) plants. The asterisks represent the significance level based on a two-sample t-test assuming unequal variances ($** = p < 0.01$, $*** = p < 0.001$). The boxes indicate the upper and lower quartiles, the black rhombus indicates the mean, and the line within a box indicates the median.**

245 In the dry grassland species, the mean $\delta^{15}\text{N}$ value was significantly lower in the contemporary samples than in the historical ones, with a mean difference of -3.14 ‰ (Fig. 3a). The mean difference in $\delta^{15}\text{N}$ values was lower for all species representing this habitat type, but was significant for all except one (*Carex flacca*) (Fig. 3a, Appendix A Tables A1 and A4). In the wetland species, the mean $\delta^{15}\text{N}$ value was significantly higher in the contemporary samples than in the historical ones, with a mean difference of 1.28 ‰. However, the difference was not significant in any of the single species representing this habitat (Fig. 3a, Appendix A Table A4). We did not confirm a difference in the mean TN between contemporary and historical samples of all dry grassland species pooled together (Fig. 3b). While most species in this habitat type had a lower mean TN in contemporary samples than historical ones, this difference was only significant in *Carex praecox*. Two other species showed an opposite trend, but only one of these (*Silene otites*) had a significantly higher mean TN in contemporary samples than in historical ones (Fig. 3b, Appendix A Tables A2 and A4). The mean TN was significantly higher in contemporary than in historical samples of wetland species, with a mean difference of 0.31 % (Fig. 3b, Appendix A Table A4). Significantly higher mean TN was also confirmed in three species that represent this habitat type: *Cardamine amara*, *Elodea canadensis*, and *Stuckenia pectinata* (see Fig. 3b and Appendix A Table A4). The relative mean difference of TN followed similar patterns to absolute values as shown in Appendix B Figure B1.

Figure 3: Mean differences between the $\delta^{15}\text{N}$ value and TN of contemporary samples and historical samples across the species and habitat types. Each observation is the difference between a contemporary and a historical sample paired with a location. The thick lines represent the 90 % confidence interval (CI) for the population mean: grey for the given species and black for all species, which represent the given habitat type.

3.2 Change of differences against nitrogen input and land cover

The difference in $\delta^{15}\text{N}$ between contemporary and historical samples paired by location was significantly higher in wetland plants than in dry grasslands and positively related to the share of farmland in a 10 km radius around the location (Table 2, for visualisation see Appendix B Figure B2). NOx deposition was also positively related with the difference in $\delta^{15}\text{N}$, although at a lower significance level (Table 2). Among the predictors of the difference in TN between contemporary and historical samples paired by location only the habitat type was significant, indicating higher increase in TN in case of wetland plants than in dry grassland plants (Table 2).

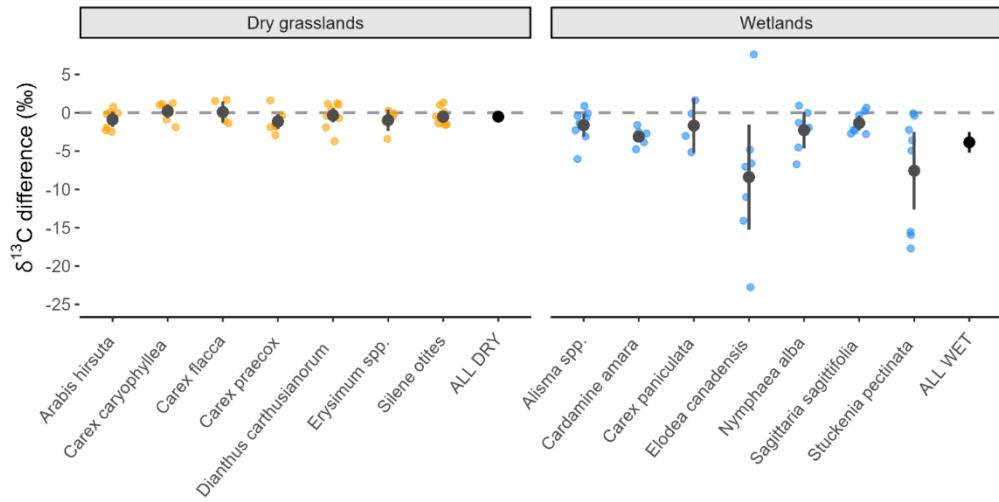
260

265

270

Table 2: The results of the multiple linear regression models where the habitat type, the share of farmland within a 10 km radius, consumption of synthetic N fertilisers (average use in kg/ha per municipality), and NOx deposition were used as predictors of the difference in both $\delta^{15}\text{N}$ and TN between contemporary and historical foliar samples paired by location. Significant p -values ($p < 0.05$) are marked in bold.

Dependent variable	Predictors included in the model	Coeff. estimate	p -value	Adj.- R^2
$\delta^{15}\text{N}$ difference ~	habitat type (wetlands vs dry grasslands)	4.563	< 0.001	0.265
	share of farmland	7.105	0.008	
	synthetic N fertilisers	-0.015	0.402	
	NOx deposition	0.389	0.052	
TN difference ~	habitat type (wetlands vs dry grasslands)	0.501	0.029	0.016
	share of farmland	0.264	0.725	
	synthetic N fertilisers	0.003	0.623	
	NOx deposition	0.008	0.885	


275

3.4. Carbon isotopes across habitats and species

When samples from each habitat type were pooled, the mean $\delta^{13}\text{C}$ value, corrected for the Suess effect, was significantly lower in contemporary samples than in historical ones. The mean difference was -0.51‰ for dry grassland and -3.85‰ for wetland species (Fig. 4). A significantly lower mean difference in $\delta^{13}\text{C}$, corrected for the Suess effect, was confirmed for *Carex praecox* among the dry grassland species and for the following five wetland species: *Alisma* spp., *Cardamine amara*, *Elodea canadensis*, *Sagittaria sagittifolia* and *Stuckenia pectinata*. The largest differences in the corrected $\delta^{13}\text{C}$ values were found between contemporary and historical samples of *E. canadensis* and *S. pectinata*, with means of -8.38‰ and -7.55‰ , respectively (Fig. 4, Appendix A Table A4). We also found a negative correlation between the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ values in these two species, but this was only significant for *S. pectinata* ($R^2 = 0.41$, $p < 0.01$; see Appendix B Figure B3).

280

285

Figure 4: Mean differences between the $\delta^{13}\text{C}$ of contemporary samples and historical samples across the species and habitat types. Each observation represents the difference between contemporary and historical sample values ($\delta^{13}\text{C}$ of contemporary sample - $\delta^{13}\text{C}$ of historical sample) paired with a location. The thick lines are 90 % CI for the population mean: grey for species and black for all plants representing the given habitat type. Please note that prior to the statistical analyses the historical values were corrected for the Suess effect.

290

4 Discussion

The first hypothesis was confirmed for $\delta^{13}\text{C}$, as well as $\delta^{15}\text{N}$. In dry grassland species, we found a significant decrease in $\delta^{15}\text{N}$ values by 3.14 ‰ on average in contemporary plant leaf tissues compared to those from the pre-Green Revolution period. This

295

is consistent with the results obtained by other authors: McLauchlan et al. (2010) detected a long-term decrease in $\delta^{15}\text{N}$ in leaves beginning in 1940 – in their study, $\delta^{15}\text{N}$ values in leaves decreased on average by 4.2‰ (change of mean value from 3.4‰ to -0.8‰) between 1940 and 2008. Similarly, Peñuelas and Filella (2001) detected a systematic decrease in mean $\delta^{15}\text{N}$ values between 1920–1930 and 1985–1995 by 3.32‰ (from 2.26‰ to -1.06‰). Peñuelas and Matamala (1990) also found a downward trend in $\delta^{15}\text{N}$ in herbarium material. These declining trends in $\delta^{15}\text{N}$ values over time have also been detected in

300

other environmental records such as lake sediments (Holtgrieve et al., 2011), tree rings (Poulson et al., 1995; Bukata and Kyser, 2007) and ice cores (Freyer et al., 1996; Hastings et al., 2009). McLauchlan et al. (2010) related the decreasing trend in foliar $\delta^{15}\text{N}$ of plants from the North American prairie with increasing concentration of CO_2 in the atmosphere, leading to stronger N-limitation of primary productivity. The decrease in nitrogen availability is usually associated with a stronger

305

decrease in $\delta^{15}\text{N}$ values in leaves (Caldararu et al., 2022). However, when we compared changes in the total concentration of nitrogen in leaf tissues, our study did not confirm the trend of increasing nitrogen limitation resulting from the carbon fertilisation of ecosystems observed by McLauchlan et al. (2010). The decrease in the $\delta^{15}\text{N}$ values of dry grassland plants observed in our study can be explained by several mechanisms, which are not mutually exclusive. Firstly, the cessation of free-range grazing and area of pastures in Poland over the last few decades (Radkowska and Radkowski, 2023; Sucholás et al., 2025) has caused livestock and their ^{15}N -enriched faeces (Bateman and Kelly, 2007) to disappear from dry grasslands. In fact,

310 the vast majority of our samples were collected from dry grasslands that, in recent years, were only mown or were undergoing
secondary succession after abandonment of grazing. Secondly, and probably the most important driver, is the atmospheric
deposition that has become an important source of nitrogen depleted in $\delta^{15}\text{N}$ (Hastings et al., 2009). Such reasoning was also
proposed by Peñuelas and Filella (2001) to explain the declining trend in foliar $\delta^{15}\text{N}$ of plants from dry habitats in Spain. They
suggested that in dry conditions, the nitrogen pool is more dependent on atmospheric deposition than in the case of more humid
315 and cold conditions, which promote microbial activity and organic nitrogen mineralisation. Our results may indicate that these
vulnerable habitats may be receiving a particularly high input of anthropogenic nitrogen via atmospheric deposition, which
can reach areas that are remote from towns and farms (Holtgrieve et al., 2011).

320 In contrast, the $\delta^{15}\text{N}$ values of wetland species had increased slightly compared to the pre-Green Revolution period. While
confirming the first hypothesis, this also supports our second hypothesis. Such results could be explained by the dominance of
nitrogen pollution derived from organic matter (with higher $\delta^{15}\text{N}$ values) in aquatic habitats. This is due to human sewage
325 entering surface water and groundwater (Bateman and Kelly, 2007), which can sometimes result in extremely high $\delta^{15}\text{N}$ levels
(Alldred et al., 2024). Despite significant progress in wastewater treatment in Poland in recent decades, environmental
monitoring of rivers and lakes shows high levels of organic waste contamination (Szołdrowska and Smol, 2025). Our $\delta^{13}\text{C}$
results for wetland plants (discussed below) support this explanation, as they also suggest that increased water pollution by
330 allochthonous organic matter is probably the main driving force behind the observed changes in wetlands. In comparison with
the pre-Green Revolution era, there is a possibility that the level of organic (nitrogen and carbon) pollution may be rising due
to factors other than the quantity of organic fertilisers. Such factors may include the method and distribution of manure
fertilisation (which was less intensive and more scattered in the past than in modern agriculture), uncontrolled sewage inputs
from intensively developing settlements and tourist infrastructure close to rivers and lakes, and the runoff of peat from
335 ploughed organic soils or drained peatlands (a fairly common phenomenon in Poland) (Krüger et al., 2015; Heredia et al.,
2022). Alternatively, the observed pattern in wetland species could be attributed to increased runoff of artificial nitrogen
fertilisers into water systems, leading to elevated nitrogen concentrations and resulting in higher rates of organic nitrogen
mineralisation in water, followed by increased rates of nitrification, leading to elevated $\delta^{15}\text{N}$ values (Diebel and Zanden, 2009).
This is particularly relevant given that the use of organic fertilisers in European agriculture has remained at similar levels to
340 those observed before the Green Revolution (Tian et al., 2022). In dry habitats, the complex microbial processes leading to
 $\delta^{15}\text{N}$ enrichment, as previously described for wetlands, are hampered due to water deficits; thus, the inorganic nitrogen resulting
from atmospheric deposition ($\delta^{15}\text{N}$ -depleted) may serve more directly as a source of that macroelement for plants.

It is worth noting that there was variation in the $\delta^{15}\text{N}$ difference among the wetland species studied. The increase in $\delta^{15}\text{N}$ was
particularly high in the submerged species *Stuckenia pectinata*, which would agree with our second hypothesis, but the
345 temporal change for this species was not statistically significant. Generally, the variation in $\delta^{15}\text{N}$ difference within this group
was greater than in dry grassland species, making statistical inference more challenging (given the relatively small number of
observations). Overall, changes to wetland habitats in Poland over the last century seem to be relatively significant not only
due to ongoing pollution, but also due to widespread drainage of wetlands for agricultural purposes (Janssen et al., 2016),

increasingly frequent droughts leading to increased concentrations of pollutants (Szołdrowska and Smol, 2025) and rise of
345 average water temperature following the climate change and other anthropogenic impacts (Tomalski et al., 2025). Thus, in many cases, finding current specimens of wetland species in the locations indicated in the herbaria was challenging or even impossible due to the disappearance of wetlands, profound changes in their trophic state, or changes to the surrounding landscape. Consequently, the sources of nitrogen and their isotopic signature may evolve in wetlands more complexly over time than in dry grasslands, making it difficult to observe general trends in this group.

350 We found that the change in the total nitrogen content of the foliar samples varied greatly depending on the species and habitat. The increase predicted by our third hypothesis was confirmed only for wetland species. In the case of dry grassland species we observed no general trend of TN changes over time. At the species level one species, *Carex praecox*, showed statistically significant decline as observed by McLauchlan et al. (2010) who attributed TN decrease observed in prairie plants in Kansas to CO₂ fertilisation effects and increase of water use-efficiency under elevated CO₂ (especially important in dry habitats where
355 primary productivity could be limited by drought) which could lead to increase in primary productivity and finally to productivity limitation by nitrogen. On the other hand, in our study, *Silene otites* showed the significantly opposite pattern, with an increase in TN, despite usually occupying habitats with extreme water deficits. *Dianthus carthusianorum* also had a slightly increased TN (although not significant), which may suggest a family-specific evolutionary strategy, as both species belong to the *Caryophyllaceae* family. On the other hand we also did not observe a general increase in foliar nitrogen content
360 as Kühn et al. (2025). This may mean that for most of the species additional input of anthropogenic nitrogen have compensated for the increased demand for this nutrient related to the rising carbon dioxide levels but has not exceeded it as happened in probably even more overfertilised habitats studied by Kühn et al. (2025).

In the case of wetland plants there was an overall visible increase of total nitrogen content in plant tissues when contemporary plants were compared with herbaria vouchers from the pre-Green Revolution period. This trend was driven by strong and
365 statistically significant responses in *Cardamine amara*, *Elodea canadensis*, and *Stuckenia pectinata* where we observed relative increases in tissue total nitrogen concentrations of more than 20 % (see Appendix B Figure B1). Those species were not standing out in the case of δ¹⁵N difference, but their δ¹³C difference was significantly bigger than expected from the global ambient δ¹³C trends. Both could point to water bodies being polluted by sewage and organic fertilisers, bringing both ¹⁵N-enriched nitrogen and ¹³C-enriched organic carbon, which, after mineralisation, is turned into DIC, which is utilised by those,
370 mostly submerged, plants.

We confirmed our fourth hypothesis only for the trends in δ¹⁵N. The decline of δ¹⁵N in foliar samples was larger in areas with a lower share of farmland in the surrounding landscape. There are a number of studies that found positive correlations between the anthropogenic nitrogen load and δ¹⁵N values in diverse elements of the environment. For example, Xue et al. (2009) showed a significant positive relationship between river NO₃- δ¹⁵N values and the proportion of agricultural and urban land use. Dailer et al. (2010) obtained low δ¹⁵N values in algae collected from areas with low anthropogenic influence. An increase in δ¹⁵N related to agricultural and urban areas was found in macrophytes from coastal (Kohzu et al. 2008) and river ecosystems (Pronin et al., 2025). Alternatively, our results can be attributed to the increased use of fertiliser in agriculture today compared to the

past (Tian et al., 2022), regardless of whether they are organic or artificial. Intensively used agricultural land, as a result of the use of nitrogen fertilisers, manure and other agricultural practices, is characterised by increased nitrogen availability and a higher rate of nitrogen circulation, resulting in greater losses of this element through processes such as denitrification, ammonia volatilisation and nitrate leaching (Craine et al., 2009; Hall et al., 2015; Gerschlauer et al., 2019). As a result, the remaining nitrogen pool is gradually enriched with ^{15}N , which may be reflected in high $\delta^{15}\text{N}$ values in leaves (Gubsch et al., 2011). We did not fully confirm our fifth hypothesis. After applying the correction for the Suess effect, we were left with a small (0.51 ‰) but significant decrease in $\delta^{13}\text{C}$ since historical times in dry grassland plant tissues. This is contrary to the expected increase in water-use efficiency (Seibt et al. 2008) caused by water shortage, and is hard to explain. The significant decrease in $\delta^{13}\text{C}$ in wetland plants agrees with our second hypothesis. Wetland plants can show such a response to eutrophication due to two mechanisms: 1) increased nutrient availability causes higher productivity that causes plants to increase stomatal conductance (in not fully submerged plants), which leads to higher fractionation (Wang et al. 2015). The parameter strongly correlated with $\delta^{13}\text{C}$ in most studies with such results (Chappuis et al. 2017, Wrosz et al. 2025) is total phosphorus in water. We do not have such values for our study, but we can safely assume that P has increased due to anthropogenic input. 2) An oversupply of organic matter (with “terrestrial” $\delta^{13}\text{C}$ values) from sewage and organic fertiliser into wetlands causes intensive bacterial mineralisation. At some point, most DIC can originate from this process, thus has very low $\delta^{13}\text{C}$ values (Hellings et al. 1999). Heredia et al. (2022) attributed the decrease in $\delta^{13}\text{C}$ of submerged plants in an eutrophication gradient to allochthonous organic matter decomposition. Similar findings - surprisingly low $\delta^{13}\text{C}$ values - came from the study on urban rivers in NW Poland (Pronin et al. 2025). The simultaneous response on $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ (Appendix B Figure B2) confirms that eutrophication is the main driver for these changes and an important factor affecting wetland ecosystems at a large scale.

5 Conclusions

The present study revealed that, whilst the isotopic composition of nitrogen and carbon in plant tissues in Central Europe has changed over the last century, this change is very context-dependent. The magnitude and direction of the observed change are impacted by both the habitat type and the species identity and/or ecology. This may be regarded as a caveat for future researchers, suggesting that both the taxonomy and ecology of stable isotopes in plant tissues should be considered in studies. Nevertheless, the anthropogenic global change has left an imprint on the isotopic composition of the flora from the habitats under study. As would be expected, the alterations appear to be more pronounced in wetland environments than in dryland habitats. It is evident that both habitat types are among the most threatened in Poland (Perzanowska and Korzeniak, 2022) and the entire European Union (Janssen et al., 2016). However, it appears that human activity has resulted in more significant alterations to biogeochemical processes in wetlands compared to dry grasslands. While the latter have also diminished in size, the functionality of the remnants appears to be less affected. Moreover, the source of this disruption may vary between the two habitat types. Specifically, wetlands are exposed to a multitude of anthropogenic nitrogen and carbon sources, while dry grasslands are predominantly affected by alterations in atmospheric composition.

Data availability

All the data used in the study are available in the supplementary files.

Appendix A

Table A1: Summary statistics of $\delta^{15}\text{N}$ (values given in ‰) of the foliar samples of 14 species selected for the study, from both contemporary specimens collected in 2024 and historical specimens in the form of herbarium vouchers collected before 1939.

Taxon/group	Type of specimen	n	Min	Max	Media n	Mean	SD	SE
<i>Alisma</i> spp.	contemporary	8	-3.13	12.77	5.45	5.06	5.20	1.84
	historical	8	2.48	7.77	4.17	4.62	1.74	0.62
<i>Arabis hirsuta</i>	contemporary	7	-3.31	4.33	-2.47	-1.48	2.72	1.03
	historical	7	-2.01	5.39	1.72	2.04	2.53	0.96
<i>Cardamine amara</i>	contemporary	7	-0.10	10.50	3.60	4.32	3.36	1.27
	historical	7	0.63	12.28	4.27	5.68	3.88	1.47
<i>Carex caryophyllea</i>	contemporary	7	-6.35	-2.41	-3.06	-3.67	1.46	0.55
	historical	7	-3.19	1.15	-1.36	-1.18	1.36	0.51
<i>Carex flacca</i>	contemporary	5	-3.95	2.90	0.99	-0.20	3.12	1.39
	historical	5	-0.11	4.10	2.43	2.16	1.63	0.73
<i>Carex paniculata</i>	contemporary	4	0.74	8.54	3.11	3.87	3.31	1.66
	historical	4	0.12	11.48	2.66	4.23	5.17	2.59
<i>Carex praecox</i>	contemporary	8	-3.26	1.61	-2.21	-1.26	1.93	0.68
	historical	8	-0.80	5.36	0.78	1.32	1.94	0.69
<i>Dianthus carthusianorum</i>	contemporary	10	-5.92	-0.59	-2.91	-3.03	1.64	0.52
	historical	10	-3.72	3.10	-1.24	-0.31	2.23	0.71
<i>Elodea canadensis</i>	contemporary	7	-2.40	11.17	4.39	4.89	4.52	1.71
	historical	7	-3.36	6.47	4.85	3.07	3.71	1.40
<i>Erysimum</i> spp.	contemporary	5	-4.09	0.41	-1.21	-1.53	2.05	0.92
	historical	5	0.80	6.16	2.94	3.37	2.04	0.91
<i>Nymphaea alba</i>	contemporary	6	-0.22	8.50	2.31	3.24	3.57	1.46
	historical	6	-2.90	6.49	2.47	2.16	3.53	1.44

<i>Sagittaria sagittifolia</i>	contemporary	8	1.49	16.2 8	8.52	8.01	4.8 3	1.7 1
	historical	8	4.31	9.43	5.35	5.79	1.7 2	0.6 1
<i>Silene otites</i>	contemporary	9	- 4.61	1.37	-1.32	-1.34	2.1 5	0.7 2
	historical	9	- 1.32	7.64	2.13	2.43	2.4 9	0.8 3
<i>Stuckenia pectinata</i>	contemporary	8	- 0.29	16.5 6	8.93	8.89	5.7 9	2.0 5
	historical	8	- 1.09	9.58	5.60	4.92	3.5 6	1.2 6
All dry grassland species	contemporary	5 1	- 6.35	4.33	-2.47	-1.91	2.2 7	0.3 2
	historical	5 1	- 3.72	7.64	1.20	1.24	2.4 8	0.3 5
All wetland species	contemporary	4 8	- 3.13	16.5 6	4.93	5.73	4.7 7	0.6 9
	historical	4 8	- 3.36	12.2 8	4.55	4.45	3.3 2	0.4 8

415

Table A2: Summary statistics of total nitrogen content (TN, values given in %) in the foliar samples of 14 species selected for the study from both contemporary specimens collected in 2024 and historical specimens in the form of herbarium vouchers collected before 1939.

Taxon/group	Type of specimen	n	Min .	Max .	Media n	Mea n	SD	SE
<i>Alisma spp.</i>	contemporary	8	3.06	4.49	3.98	3.77	0.5 2	0.1 8
	historical	8	1.88	4.96	3.45	3.44	1.0 0	0.3 5
<i>Arabis hirsuta</i>	contemporary	7	1.93	3.33	2.73	2.70	0.5 6	0.2 1
	historical	7	2.34	4.41	3.44	3.25	0.8 0	0.3 0
<i>Cardamine amara</i>	contemporary	7	3.44	5.86	4.51	4.51	0.8 6	0.3 2
	historical	7	2.39	4.51	3.73	3.59	0.8 6	0.3 3
<i>Carex caryophyllea</i>	contemporary	7	1.91	2.69	2.21	2.19	0.2 8	0.1 1
	historical	7	1.26	3.59	3.08	2.81	0.7 7	0.2 9
<i>Carex flacca</i>	contemporary	5	1.87	2.23	2.01	2.01	0.1 5	0.0 7
	historical	5	1.47	3.51	2.47	2.44	0.9 4	0.4 2
<i>Carex paniculata</i>	contemporary	4	1.75	2.77	2.36	2.31	0.4 2	0.2 1
	historical	4	2.06	3.20	2.71	2.67	0.4 8	0.2 4
<i>Carex praecox</i>	contemporary	8	1.67	3.27	2.16	2.37	0.5 8	0.2 1

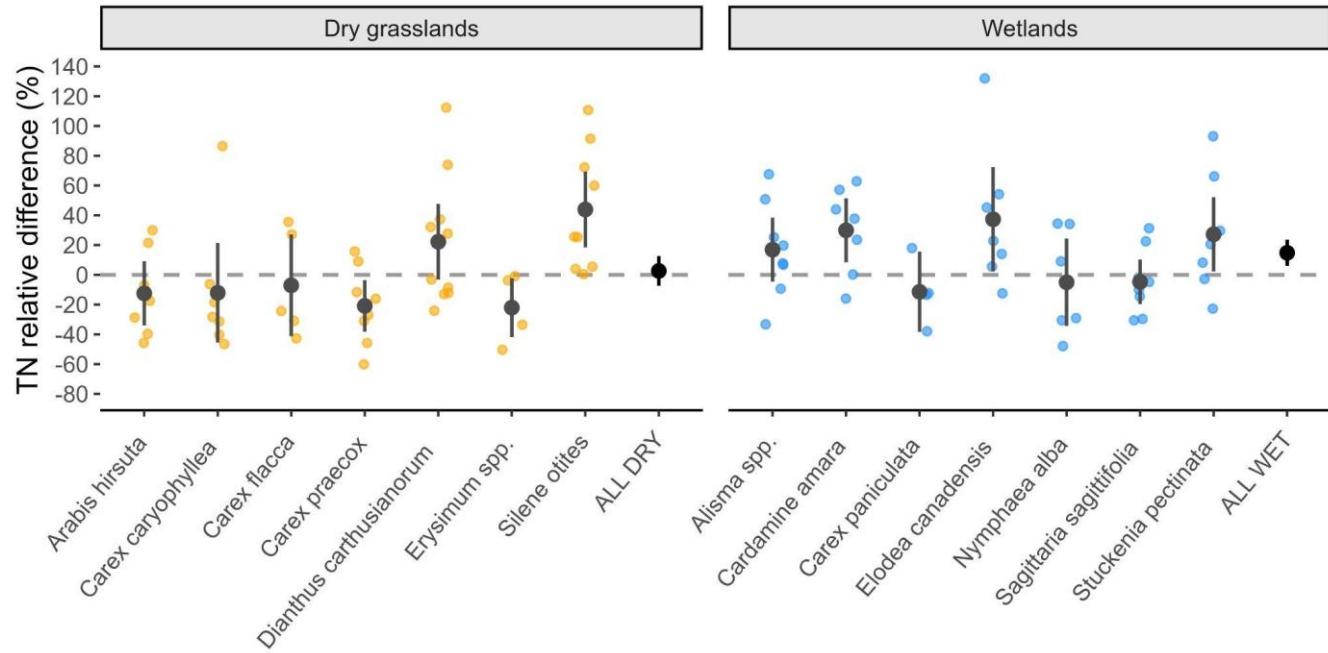
	historical	8	2.07	4.19	3.03	3.13	0.6	0.2
<i>Dianthus carthusianorum</i>	contemporary	1	1.92	3.73	2.52	2.61	0.5	0.1
		0					3	7
	historical	1	1.22	3.15	2.40	2.31	0.6	0.2
<i>Elodea canadensis</i>	contemporary	7	3.45	4.88	4.50	4.30	0.5	0.2
		7					7	1
	historical	7	1.94	4.49	3.36	3.35	0.8	0.3
<i>Erysimum</i> spp.	contemporary	5	2.28	3.37	3.28	3.02	0.4	0.2
		5					7	1
	historical	5	3.31	6.79	3.50	4.13	1.4	0.6
<i>Nymphaea alba</i>	contemporary	6	1.84	4.10	3.03	2.98	0.8	0.3
		6					3	4
	historical	6	2.52	3.86	3.27	3.25	0.4	0.1
<i>Sagittaria sagittifolia</i>	contemporary	8	3.94	5.37	4.27	4.35	0.4	0.1
		8					5	6
	historical	8	3.42	6.25	4.55	4.73	0.9	0.3
<i>Silene otites</i>	contemporary	9	3.14	4.65	4.01	3.82	0.6	0.2
		9					1	0
	historical	9	1.64	4.45	2.70	2.82	0.8	0.2
<i>Stuckenia pectinata</i>	contemporary	8	2.10	4.59	3.74	3.47	0.9	0.3
		8					9	5
	historical	8	1.80	3.65	2.92	2.80	0.6	0.2
All dry grassland species	contemporary	5	1.67	4.65	2.66	2.72	0.7	0.1
		5					5	1
	historical	5	1.22	6.79	3.00	2.92	0.9	0.1
All wetland species	contemporary	4	1.75	5.86	3.97	3.78	0.9	0.1
		8					4	4
	historical	4	1.80	6.25	3.35	3.47	0.9	0.1
		8					9	4

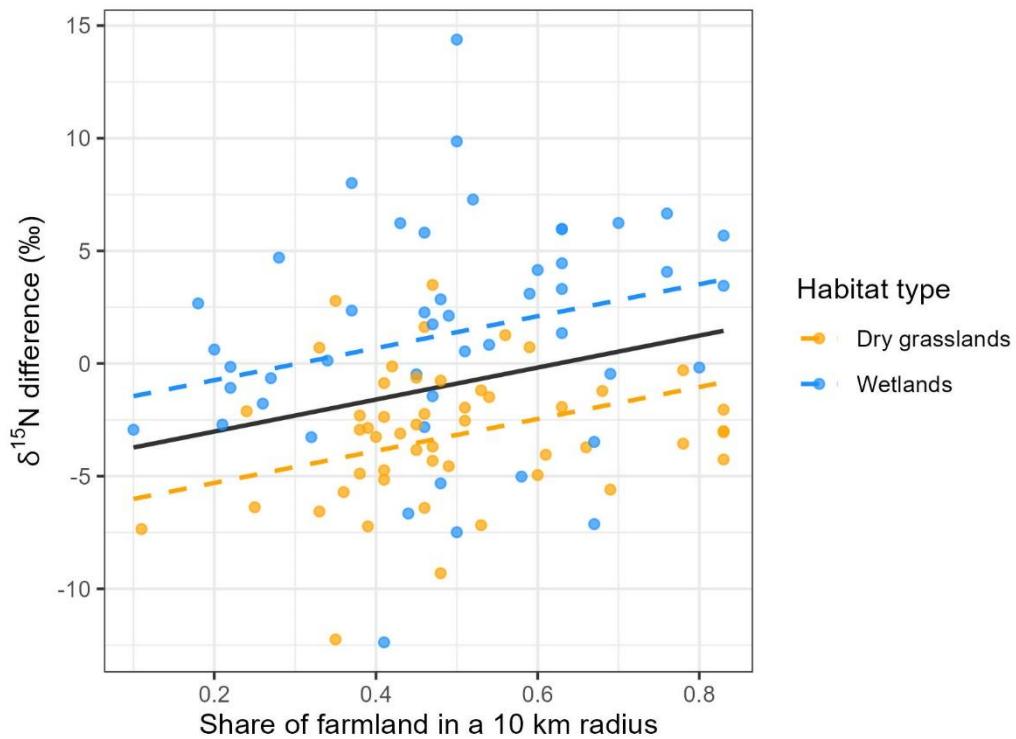
420

Table A3: Summary statistics of $\delta^{13}\text{C}$ (values given in ‰) of the foliar samples of 14 species selected for the study, from both contemporary specimens collected in 2024 and historical specimens in the form of herbarium vouchers collected before 1939. Please note that the historical values were corrected for the Suess effect.

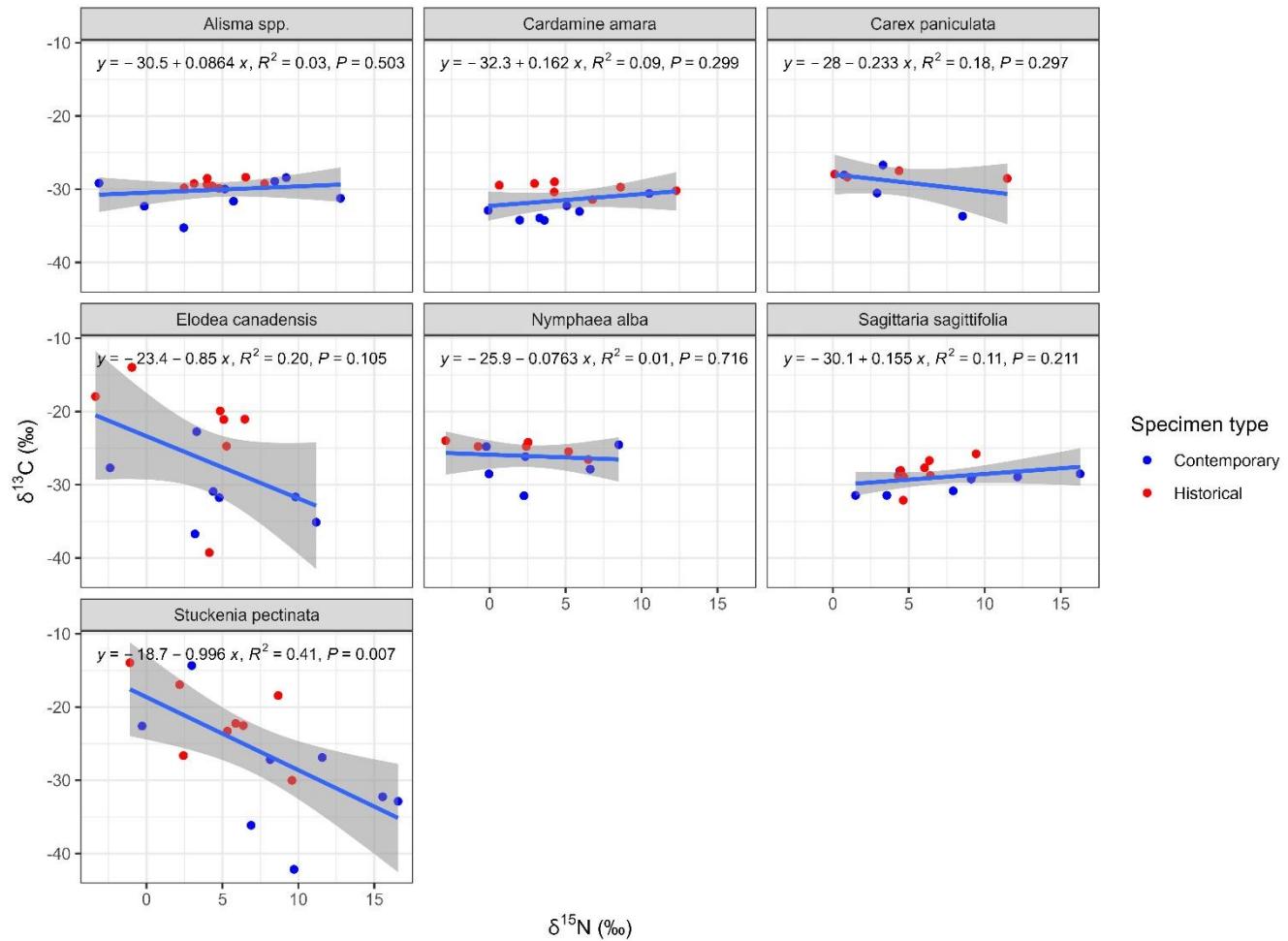
Taxon/group	Type of specimen	n	Min.	Max.	Media n	Mean	SD	SE
<i>Alisma</i> spp.	contemporary	8	-	-	-30.60	-	2.2	0.8
	historical	8	35.26	28.42		30.86	6	0
<i>Arabis hirsuta</i>	contemporary	7	-	-	-29.29	-	0.5	0.2
	historical	7	29.88	28.36		29.24	6	0
	contemporary	7	33.00	29.81	-30.98	31.26	6	0
	historical	7	31.37	28.19	-30.81	-	1.1	0.4
						30.39	0	2

<i>Cardamine amara</i>	contemporary	7	-	34.24	-	30.59	-	-33.04	-	33.02	1.3	0.4
	historical	7	-	31.41	-	28.99	-	-29.72	-	29.91	0.8	0.3
<i>Carex caryophyllea</i>	contemporary	7	-	30.58	-	28.68	-	-29.51	-	29.50	1	0.2
	historical	7	-	31.28	-	27.98	-	-30.18	-	29.71	1.2	0.4
<i>Carex flacca</i>	contemporary	5	-	31.55	-	28.06	-	-28.99	-	29.58	1.4	0.6
	historical	5	-	30.34	-	27.95	-	-30.18	-	29.68	1.0	0.4
<i>Carex paniculata</i>	contemporary	4	-	33.67	-	26.70	-	-29.29	-	29.74	3.0	1.5
	historical	4	-	28.53	-	27.49	-	-28.14	-	28.08	6	0.2
<i>Carex praecox</i>	contemporary	8	-	30.84	-	28.52	-	-29.74	-	29.65	3	0.2
	historical	8	-	30.13	-	26.84	-	-28.55	-	28.52	1	0.3
<i>Dianthus carthusianorum</i>	contemporary	1	-	-	-	-	-	-29.50	-	29.49	0.7	0.2
	historical	0	-	30.65	-	28.47	-	-29.10	-	29.15	0	2
	contemporary	1	-	-	-	-	-	-29.10	-	29.15	1.2	0.4
	historical	0	-	31.21	-	26.50	-	-29.50	-	29.49	9	1
<i>Elodea canadensis</i>	contemporary	7	-	36.72	-	22.75	-	-31.66	-	30.95	4.6	1.7
	historical	7	-	39.27	-	13.97	-	-21.04	-	22.56	5	3.0
<i>Erysimum</i> spp.	contemporary	5	-	29.82	-	27.81	-	-29.29	-	29.05	0.7	0.3
	historical	5	-	29.73	-	25.94	-	-28.16	-	28.08	1.3	0.6
<i>Nymphaea alba</i>	contemporary	6	-	31.51	-	24.53	-	-27.01	-	27.23	2.6	1.0
	historical	6	-	26.56	-	23.99	-	-24.78	-	24.96	4	0.3
<i>Sagittaria sagittifolia</i>	contemporary	8	-	31.45	-	28.11	-	-29.08	-	29.68	5	0.4
	historical	8	-	32.12	-	25.78	-	-28.39	-	28.34	8	0.6
<i>Silene otites</i>	contemporary	9	-	30.36	-	27.27	-	-29.01	-	28.84	1.3	0.4
	historical	9	-	29.24	-	27.49	-	-28.62	-	28.34	0	0.2
<i>Stuckenia pectinata</i>	contemporary	8	-	42.17	-	14.33	-	-29.72	-	29.31	8.5	3.0
	historical	8	-	30.02	-	13.95	-	-22.39	-	21.76	6	1.8
All dry grassland species	contemporary	5	-	-	-	-	-	-29.54	-	29.61	1.1	0.1
	historical	1	-	33.00	-	27.27	-	-28.80	-	29.10	2	6
All wetland species	contemporary	5	-	-	-	-	-	-28.80	-	29.10	1.2	0.1
	historical	1	-	31.37	-	25.94	-	-30.72	-	30.19	8	8


historical	4	-	-	-28.00	-	4.8	0.7
	8	39.27	13.95	26.34	3	0	


425 **Table A4: Mean differences between the $\delta^{15}\text{N}$, TN, and $\delta^{13}\text{C}$ of contemporary samples and historical samples across the species and habitat types. The lower and upper 90 % confidence intervals for means were calculated using a one-sample t-test.**

Taxon/group	n	$\delta^{15}\text{N}$ difference (‰)			TN difference (%)			$\delta^{13}\text{C}$ difference (‰)		
		mean	lower CI	upper CI	mean	lower CI	upper CI	mean	lower CI	upper CI
<i>Alisma</i> spp.	8	0.44	-3.13	4.01	0.32	-0.34	0.99	-1.62	-3.08	-0.16
<i>Arabis hirsuta</i>	7	-3.52	-6.35	-0.69	-0.55	-1.29	0.18	-0.87	-1.85	0.10
<i>Cardamine amara</i>	7	-1.36	-5.66	2.94	0.91	0.19	1.64	-3.11	-3.86	-2.37
<i>Carex caryophyllea</i>	7	-2.49	-3.76	-1.22	-0.63	-1.29	0.04	0.20	-0.67	1.08
<i>Carex flacca</i>	5	-2.36	-5.58	0.85	-0.43	-1.28	0.41	0.10	-1.26	1.46
<i>Carex paniculata</i>	4	-0.36	-3.09	2.38	-0.36	-1.06	0.33	-1.66	-5.21	1.89
<i>Carex praecox</i>	8	-2.58	-4.42	-0.74	-0.77	-1.43	-0.10	-1.13	-2.04	-0.22
<i>Dianthus carthusianorum</i>	10	-2.73	-4.22	-1.23	0.30	-0.11	0.72	-0.33	-1.23	0.56
<i>Elodea canadensis</i>	7	1.82	-1.84	5.49	0.95	0.18	1.71	-8.38	-15.22	-1.55
<i>Erysimum</i> spp.	5	-4.90	-7.67	-2.13	-1.10	-2.41	0.21	-0.96	-2.36	0.43
<i>Nymphaea alba</i>	6	1.08	-0.21	2.38	-0.27	-1.22	0.68	-2.27	-4.63	0.10
<i>Sagittaria sagittifolia</i>	8	2.22	-1.06	5.49	-0.38	-1.12	0.36	-1.34	-2.26	-0.41
<i>Silene otites</i>	9	-3.77	-6.07	-1.46	1.00	0.48	1.52	-0.51	-1.20	0.18
<i>Stuckenia pectinata</i>	8	3.97	-0.25	8.19	0.68	0.13	1.22	-7.55	-12.59	-2.52
All dry grassland species	51	-3.14	-3.84	-2.44	-0.20	-0.46	0.07	-0.51	-0.83	-0.19
All wetland species	48	1.28	0.08	2.48	0.31	0.05	0.57	-3.85	-5.18	-2.52


Appendix B

430 **Figure B1: Relative mean differences between the TN of contemporary samples and historical samples across the species and habitat types. Each observation is the difference between a contemporary and a historical sample paired with a location. The relative difference was calculated according to a formula: $(\text{TN contemporary sample} - \text{TN historical sample})/\text{TN historical sample} * 100$. The thick lines represent the 90 % confidence interval (CI) for the population mean: grey for the given species and black for all species, which represent the given habitat type.**

Figure B2: The relationship between the proportion of farmland within a 10 km radius and the difference in $\delta^{15}\text{N}$ between contemporary and historical foliar samples, which were paired by location. The black line represents the predicted value of the dependent variable for each value of the main independent variable, while accounting for the influence of the other independent variables. The dashed lines represent the regression lines for the given habitat type.

Figure B3: The relationships between $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ in all the foliar samples studied (i.e. historical and contemporary samples combined) from seven wetland species. The blue line shows the fitted linear regression model, and the grey area shows the 95 % confidence interval.

445

Supplementary Materials

Table S1: List of all foliar samples and the raw data used in the analyses.

Author contributions

ID and ŁK conceived the idea, designed, and supervised the project. ID, ŁK and NC conducted field sampling. NC and ID selected and sampled the herbarium material. PC performed the laboratory analyses. NC obtained the GIS data and prepared

450

the final dataset. ID analysed the data and prepared the figures, besides the map, which was prepared by ŁK. Writing was led by ID, with support from all other authors.

Competing interests

The authors declare that they have no conflict of interest.

455

Acknowledgements

We would like to gratefully acknowledge the Herbarium of the Faculty of Biology, University of Warsaw, for permission and assistance in collecting herbarium specimens for the study. We would also like to thank the Minister of Climate and Environment, the General and Regional Directorates of Environmental Protection and the authorities of the National Parks (Kampinos NP, Ojców NP, Świętokrzyski NP, and Wigry NP) for their permission to collect plant material from protected areas and to collect material from protected species. We are grateful to Prof. Dr hab. Jürgen Dengler, Jerzy Dembicz, Krzysztof Dembicz, Dr Grzegorz Grzejszczak, Jan Kucharzyk, and Dr Paweł Pawlikowski, for their help with field sampling.

460

Financial support

The project was funded by the University of Warsaw within the framework of the "Excellence Initiative - Research University" programme (grant no. BOB-IDUB-622-577/2023 to I.D.).

465

References

Alldred, F. C., Gröcke, D. R., Jackson, S. E., and Reid, G.: Nitrogen isotopes in herbaria document historical nitrogen sewage pollution in the Mersey Estuary, England. *Environ. Sci.: Adv.*, 3, 676–685, doi: 10.1039/D4VA00015C, 2024.

Anon.: NOx, European air quality data for 2023, (interpolated data), June 2025: <http://data.europa.eu/88u/dataset/a2c980b7-5632-4ff3-bf0c-b75e627339cd>, last access: 10 November 2025.

Bakker, W., Morel, T., Ozinga, W., Schepers, J., and Vergeer, P.: The relative importance of nitrogen deposition and climate change in driving plant diversity decline in roadside grasslands. *Sci. Total Environ.*, 955, 176962, doi: 10.1016/j.scitotenv.2024.176962, 2024.

Bateman, A. S. and Kelly, S. D.: Fertilizer nitrogen isotope signatures. *Isot. Environ. Health Stud.*, 43, 237–247, doi: 10.1080/10256010701550732, 2007.

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., and De Vries, W.: Global

assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. *Ecol. Appl.*, 20, 30–59, doi:10.1890/08-1140.1, 2010.

480 Bodirsky, B. L., Popp, A., Weindl, I., Dietrich, J. P., Rolinski, S., Scheiffele, L., Schmitz, C., and Lotze-Campen, H.: N₂O emissions from the global agricultural nitrogen cycle – current state and future scenarios. *Biogeosciences*, 9, 4169–4197, doi: 10.5194/bg-9-4169-2012, 2012.

Bohn, U., Neuhäusl, R., Gollub, G., Hettwer, C., Neuhäuslová, Z., and Schlüter, H. (Eds.): *Map of the natural vegetation of Europe*. Scale 1:2,500,000, Landwirtschaftsverlag, Münster, Germany, 2000–2003.

485 Bukata, A. R., and Kyser, T. K.: Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. *Environ. Sci. Technol.*, 41, 1331–1338, doi:10.1021/es061414g, 2007.

Caldararu, S., Thum, T., Yu, L., Kern, M., Nair, R., and Zaehle, S.: Long-term ecosystem nitrogen limitation from foliar $\delta^{15}\text{N}$ data and a land surface model. *Glob. Chang. Biol.*, 28, 493–508, doi:10.1111/gcb.15933, 2022.

Chappuis, E., Seriñá, V., Martí, E., Ballesteros, E., and Gacia E.: Decrypting stable-isotope ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$) variability in aquatic plants. *Freshwater Biol.*, 62, 1807–1818, doi: 10.1111/fwb.12996, 2017.

490 Chen, Q., Wang, S., Borer, E. T., Bakker, J. D., Seabloom, E. W., Harpole, W. S., Eisenhauer, N., Lekberg, Y., Buckley, Y. M., Catford, J. A., Roscher, C., Donohue, I., Power, S. A., Daleo, P., Ebeling, A., Knops, J. M. H., Martina, J. P., Eskelinen, A., Morgan, J. W., Risch, A. C., Caldeira, M. C., Bugalho, M. N., Virtanen, R., Barrio, I. C., Niu, Y., Jentsch, A., Stevens, C. J., Gruner, D. S., MacDougall, A. S., Alberti, J., and Hautier, Y.: Multidimensional responses of grassland stability to eutrophication. *Nat. Commun.*, 14, 6375, doi:10.1038/s41467-023-42081-0, 2023.

495 Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., and Farquhar, G. D.: Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. *New Phytol.*, 200, 950–965, doi: 10.1111/nph.12423, 2013.

CLC, 2018: CORINE Land Cover – CLC 2018. <https://clc.gios.gov.pl/index.php/clc-2018/udostepnianie>, date accessed: 18.12.2024, 2018.

500 Cornwell, W. K., Bedford, B. L., and Chapin, C.T.: Occurrence of arbuscular mycorrhizal fungi in a phosphorus-poor wetland and mycorrhizal response to phosphorus fertilization†. *Am. J. Bot.*, 88, 1824–1829, doi: 10.2307/3558359, 2001.

Cotrufo, M. F., Ineson, P., and Scott, A.: Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Glob. Chang. Biol.*, 4, 43–54. doi:10.1046/j.1365-2486.1998.00101.x, 1998.

505 Craine, J. M., Tilman, D., Wedin, D., Reich, P., Tjoelker, M., and Knops, J.: Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. *Funct. Ecol.*, 16, 563–574, doi: 10.1046/j.1365-2435.2002.00660.x, 2002.

Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., Peñuelas, J., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., Welker, J. M., and Wright, I. J.: Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. *New Phytol.*, 183, 980–992, doi:10.1111/j.1469-8137.2009.02917.x, 2019.

Dailer, M. L., Knox, R. S., Smith, J. E., Napier, M., and Smith, C. M.: Using $\delta^{15}\text{N}$ values in algal tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of Maui, Hawai‘i, USA. *Mar. Pollut. Bull.*, 60, 655–671, doi:10.1016/j.marpolbul.2009.12.021, 2010.

515 Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., and Kevin, P. T.: Stable isotopes in plant ecology. *Annu. Rev. Ecol. Evol. Syst.*, 33, 507–559, doi: 0.1146/annurev.ecolsys.33.020602.095451, 2002.

Diebel, M. W., and Zanden, M. J. V.: Nitrogen stable isotopes in streams: Effects of agricultural sources and transformations. *Ecol. Appl.*, 19, 1127–1134, doi: 10.1890/08-0327.1, 2009.

520 Dise, N. B., Ashmore, M., Belyazid, S., Bleeker, A., Bobbink, R., De Vries, W., Erisman, J. W., Spranger, T., Stevens, C. J., and Van Den Berg, L.: Nitrogen as a threat to European terrestrial biodiversity, in: *The European Nitrogen Assessment* (1st ed.), edited by: Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., Van Grinsven, H., and Grizzetti, B., Cambridge University Press, Cambridge, UK, 463–494, doi: 10.1017/CBO9780511976988.023, 2011.

Dombrosky, J.: A ~1000-year ^{13}C Suess correction model for the study of past ecosystems. *The Holocene*, 30, 474–478, doi: 10.1177/0959683619887416, 2020.

525 Elliott, E. M., Yu, Z., Cole, A. S., and Coughlin, J. G.: Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing, *Sci. Total Environ.*, 662, 393–403, doi: 10.1016/j.scitotenv.2018.12.177, 2019.

Erisman, J., Sutton, M., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia synthesis changed the world. *Nat. Geosci.*, 1, 636–639, doi:10.1038/ngeo325, 2008.

Eurostat: <https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250704-3>, date accessed: 20.09.2025, 2025.

530 Evans, R. D.: Physiological mechanisms influencing plant nitrogen isotope composition. *Trends Plant Sci.*, 6, 121–126, doi: 10.1016/S1360-1385(01)01889-1, 2001.

FAO: Inorganic fertilizers 2002–2022. FAOSTAT Analytical Briefs, 90, Rome, 13 pp., doi:10.4060/cd1485en, 2024.

Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T.: Carbon isotope discrimination and photosynthesis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.*, 40, 503–537, doi: 10.1146/annurev.pp.40.060189.002443, 1989.

535 Freyer, H. D., Kobel, K., Delmas, R. J., Kley, D., and Legrand, M. R.: First results of $^{15}\text{N}/^{14}\text{N}$ ratios in nitrate from alpine and polar ice cores. *Tellus*, 48B, 93–105. doi:10.1034/j.1600-0889.1996.00009.x, 1996.

Galloway, J. N., Bleeker, A., and Erisman, J. W.: The human creation and use of reactive nitrogen: A global and regional perspective. *Annu. Rev. Environ. Resourc.*, 46, 255–288, doi:10.1146/annurev-environ-012420-045120, 2021.

George, E., Marschner, H., and Jakobsen, I.: Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. *Crit. Rev. Biotechnol.*, 15, 257–270, doi: 10.3109/07388559509147412, 1995.

540 Gerschlauer, F., Saiz, G., Schellenberger Costa, D., Kleyer, M., Dannenmann, M., and Kiese, R.: Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania. *Biogeosciences*, 16, 409–424, doi:10.5194/bg-16-409-2019, 2019.

545 Gubsch, M., Roscher, C., Gleixner, G., Habekost, M., Lipowsky, A., Schmid, B., Schulze, E-D., Steinbeiss, S., and Buchmann, N.: Foliar and soil $\delta^{15}\text{N}$ values reveal increased nitrogen partitioning among species in diverse grassland communities. *Plant Cell Environ.*, 34, 895–908, doi:10.1111/j.1365-3040.2011.02287.x, 2011.

GUS: Powszechny Spis Rolny 2020. Raport z wyników [General Agricultural Census 2020. Report on the result]. Central Statistical Office, Department of Agriculture, Warszawa, PL, 96 pp., 2020. [in Polish]

550 GUS: Central Statistical Office, Department of Agriculture, Local data bank: <https://bdl.stat.gov.pl/bdl/dane/podgrup/temat>, last accessed: 18 December 2024.

Hall, S. J., Hale, R. L., Baker, M. A., Bowling, D. R., and Ehleringer, J. R.: Riparian plant isotopes reflect anthropogenic nitrogen perturbations: robust patterns across land use gradients. *Ecosphere*, 6, 200, doi:10.1890/ES15-00319.1, 2015.

Halvorsen, L. S., Mørkved, P. T., and Hjelle, K. L.: Were prehistoric cereal fields in western Norway manured? Evidence from stable isotope values ($\delta^{15}\text{N}$) of charred modern and fossil cereals. *Veg Hist Archaeobot.*, 32, 583–596, doi: 555 10.1007/s00334-023-00923-3, 2023.

Hastings, M. G., Jarvis, J. C., and Steig, E. J.: Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. *Science*, 324, 1288–1288, doi:10.1126/science.1170510, 2009.

Hastings, M. G., Casciotti, K. L., and Elliott, E. M.: Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. *Elements*, 9, 339–344. doi: 10.2113/gselements.9.5.339, 2013.

560 Hellings, L., Dehairs, F., Tackx, M., Keppens, E., and Baeyens, W.: Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition. *Biogeochemistry*, 47, 167–186, doi: 10.1023/A:1006143827118, 1999.

Heredia, C., Guédron, S., Point, D., Perrot, V., Campillo, S., Verin, C., Espinoza, M. E., Fernandez, P., Duwig, C., and Achá D: Anthropogenic eutrophication of Lake Titicaca (Bolivia) revealed by carbon and nitrogen stable isotopes fingerprinting. *Sci. Total Environ.*, 845, 157286, 10.1016/j.scitotenv.2022.157286, 2022.

565 Hertel, O., Skjøth, C. A., Reis, S., Bleeker, A., Harrison, R. M., Cape, J. N., Fowler, D., Skiba, U., Simpson, D., Jickells, T., Kulmala, M., Gyldenkærne, S., Sørensen, L. L., Erisman, J. W., and Sutton, M. A.: Governing processes for reactive nitrogen compounds in the European atmosphere. *Biogeosciences*, 9, 4921–4954, doi:10.5194/bg-9-4921-2012, 2012.

Hessen, D. O., Henriksen, A., Hindar, A., Mulder, J., Tørseth, K., and Vagstad, N.: Human impacts on the nitrogen cycle: A 570 global problem judged from a local perspective. *Ambio*, 26, 321–325. <http://www.jstor.org/stable/4314610>, 1997.

Holtgrieve, G. W., Schindler, D. E., Hobbs, W. O., Leavitt, P. R., Ward, E. J., Bunting, L., Chen, G., Finney, B. P., Gregory-Eaves, I., Holmgren, S., Lisac, M. J., Lisi, P. J., Nydick, K., Rogers, L. A., Saros, J. E., Selbie, D. T., Shapley, M. D., Walsh, P. B., and Wolfe, A. P.: A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. *Science*, 334, 1545–1548, doi: 10.1126/science.1212267, 2011.

575 Janssen, J. A. M., Rodwell, J. S., García Criado, M., Gubbay, S., Haynes, T., Nieto, A., Sanders, N., Landucci, F., Loidi, J., Ssymank, A., Tahvanainen, T., Valderrabano, M., Acosta, A., Aronsson, M., Arts, G., Attorre, F., Bergmeier, E., Bijsma, R.-J., Bioret, F., Bită-Nicolae, C., Biurrun, I., Calix, M., Capelo, J., Čarn, A., Chytrý, M., Dengler, J.,

580 Dimopoulos, P., Essl, F., Gardfjell, H., Gigante, D., Giusso del Galdo, G. P., Hájek, M., Jansen, F., Jansen, J., Kapfer, J., Mikolajczak, A., Molina, J.A., Molnár, Z., Paternoster, D., Piernik, A., Poulin, B., Renaux, B., Schaminée, J. H. J., Šumberová, K., Toivonen, H., Tonteri, T., Tsiripidis, I., Tzanev, R., and Valachovič, M.: European red list of habitats. Part 2, Terrestrial and freshwater habitats. Publications Office of the European Union, Luxembourg, 44 pp., 2016.

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P. and Kessler, M.: Climatologies at high resolution for the earth's land surface areas. *Sci. Data*, 4, 170122, 2017.

585 Keeling, C. D.: The Suess effect: $^{13}\text{Carbon}$ - $^{14}\text{Carbon}$ interrelations. *Environ. Int.*, 2, 229–300, doi: 10.1016/0160-4120(79)90005-9, 1979.

Keeling, R. F., Graven, H. D., Welp, L. R., Resplandy, L., Bi, J., Piper, S. C., Sun, Y., Bollenbacher, A., and Meijer, H. A. J.: Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. *Proc. Natl. Acad. Sci. U. S. A.*, 114, 10361–10366, doi:10.1073/pnas.1619240114, 2017.

590 Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs of nitrogen to ecosystems, in: *Stable isotopes in ecology and environmental science*, edited by: Michener, R. and Lajtha, K., Wiley, Hoboken, New Jersey, U.S., 375–449, doi: 10.1002/9780470691854.ch12, 2007.

Kohzu, A., Miyajima, T., Tayasu, I., Yoshimizu, C., Hyodo, F., Matsui, K., Takanori, N., Wada, E., Fujita, N., and Nagata, T.: Use of stable nitrogen isotope signatures of riparian macrophytes as an indicator of anthropogenic N inputs to river ecosystems. *Environ. Sci. Technol.*, 42, 7837–7841, doi:10.1021/es801113k, 2008.

595 Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F.: World map of the Köppen-Geiger climate classification updated. *Meteorol. Z.*, 15, 259–263, doi: 10.1127/0941-2948/2006/0130, 2006.

Krüger, J. P., Leifeld, J., Glatzel, S., Szidat, S., and Alewell, C.: Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany, *Biogeosciences*, 12, 2861–2871, doi:10.5194/bg-12-2861-2015, 2015.

600 Kühn, P., Umazekabiri, R., Römermann, C., Brügelheide, H., and Wesche, K.: Nitrogen content of herbarium specimens from arable fields and mesic meadows reflect the intensifying agricultural management during the 20th century. *J. Ecol.*, 11, 555–569, doi: 10.1111/1365-2745.14474, 2025.

Lu, C., Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. *Earth Syst. Sci. Data Discuss.*, 1–33, doi:10.5194/essd-2016-35, 2016.

605 McLauchlan, K. K., Ferguson, C. J., Wilson, I. E., Ocheltree, T. W., and Craine, J. M.: Thirteen decades of foliar isotopes indicate declining nitrogen availability in central North American grasslands. *New Phytol.*, 187, 1135–1145, doi: 10.1111/j.1469-8137.2010.03322.x, 2010.

Meier, T., Hensen, I., Partzsch, M.: Effects of nitrogen addition and above-ground biomass removal on the growth and interactions between species of xerothermic grasses. *Preslia*, 94, 607–629. doi:10.23855/preslia.2022.607, 2022.

610 Merta-Staszczak, A., and Zwirzykowska-Wodzińska, A.: Agrochemikalia w polskim rolnictwie w latach 1945-2010
[Agrochemicals in Polish agriculture from 1945 to 2010]. *Przem. Chem.*, 96, 20–24, doi: 10.15199/62.2017.2.2, 2017.
[in Polish]

Miller, R. M., Smith, C. I., Jastrow, J. D., and Bever, J. D.: Mycorrhizal status of the genus *Carex* (Cyperaceae). *Am. J. Bot.*, 86, 547–553, doi: 10.2307/2656816, 1999.

615 Muñoz-Redondo, J. M., Montenegro, J. C., and Moreno-Rojas, J. M.: Using nitrogen stable isotopes to authenticate organically and conventionally grown vegetables: a new tracking framework. *Agronomy*, 13, 131, doi: 10.3390/agronomy13010131, 2023.

Palpurina, S., Chytrý, M., Hölzel, N., Tichý, L., Wagner, V., Horská, M., Axmanová, I., Hájek, M., Hájková, P., Freitag, M., Lososová, Z., Mathar, W., Tzanev, R., Danihelka, J., and Dřevojan, P.: The type of nutrient limitation affects the 620 plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. *J. Ecol.*, 107, 1038–1050, doi: 10.1111/1365-2745.13084, 2019.

Peñuelas, J., and Filella, I.: Herbaria century record of increasing eutrophication in Spanish terrestrial ecosystems. *Glob. Chang. Biol.*, 7, 427–433, doi: 10.1046/j.1365-2486.2001.00421.x, 2001.

625 Peñuelas, J., and Matamala, R.: Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO₂ increase. *J. Exp. Bot.*, 41, 1119–1124, doi: 10.1093/jxb/41.9.1119, 1990.

Perzanowska, J., Korzeniak, J.: Red list of Natura 2000 habitat types of Poland. *J. Nat. Conserv.*, 56, 125834, <https://doi.org/10.1016/j.jnc.2020.125834>, 2022.

Pirani, S.: Fossil fuels before 1950. In: *Burning up: A global history of fossil fuel consumption*. Pluto Press. pp. 9–24, doi: 10.2307/j.ctv4ncp7q.9, 2018.

630 Piwowar, A.: Consumption of mineral fertilizers in the Polish agriculture – trends and directions of changes. *Agric. Res.* 11, 477–487, doi: 10.1007/s40003-021-00591-7, 2022.

Poulson, S. R., Chamberlain, C. P., and Friedland, A. J.: Nitrogen isotope variation of tree rings as a potential indicator of environmental change. *Chem. Geol.*, 125, 307–315, doi: 10.1016/0009-2541(95)00097-6, 1995.

635 QGIS Development Team: QGIS Geographic Information System. Open Source Geospatial Foundation Project. <http://qgis.osgeo.org>, 2024.

Qin, B.-Q., Gao, G., Zhu, G.-W., Zhang, Y.-L., Song, Y.-Z., Tang, Z.-M., Xu, H., and Deng, J.-M.: Lake eutrophication and its ecosystem response. *Chin. Sci. Bull.*, 58, 961–970, doi: 10.1007/s11434-012-5560-x, 2013.

Pronin, E.: The possible use of stable carbon and nitrogen isotope signal and spectral analysis to identify habitat condition of aquatic plants. *Limnol. Rev.*, 24, 17–29, doi: 10.3390/limnolrev24010002, 2024.

640 Pronin, E., Wrosz, Z., Banaś, K., and Merdalski, M.: Following the Footsteps of macrophytes: Potential application of isotope signals in pollution monitoring: A case study of northern Polish rivers. *Ecohydrol. Hydrobiol.*, 100650, doi: 10.1016/j.ecohyd.2025.100650, 2025.

R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org>, 2024.

645 Radkowska, I., and Radkowski, A.: Regenerative grazing as an element that shapes grassland ecosystem services. *Roczn. Nauk. Zoot.*, 50, 167-178, doi: 10.58146/008H-QP61, 2023.

Reich, P. B., Mohanbabu, N., Isbell, F., Hobbie, S. E., and Butler, E. E.: High CO₂ dampens then amplifies N-induced diversity loss over 24 years. *Nature*, 635, 370–375, doi: 10.1038/s41586-024-08066-9, 2024.

650 Richardson, K., Steffen, W., Lucht, W., Bendtsen, J., Cornell, S. E., Donges, J. F., Drücke, M., Fetzer, I., Bala, G., von Bloh, W., Feulner, G., Fiedler, S., Gerten, D., Gleeson, T., Hofmann, M., Huiskamp, W., Kummu, M., Mohan, C., Nogués-Bravo, D., Petri, S., Porkka, M., Rahmstorf, S., Schaphoff, S., Thonicke, K., Tobian, A., Virkki, V., Wang-Erlandsson, L., Weber, L., and Rockström, J.: Earth beyond six of nine planetary boundaries. *Sci Adv.*, 9, eadh2458, doi: 10.1126/sciadv.adh2458, 2023.

655 Ruprecht, E., Enyedi, M. Z., Eckstein, R. L., and Donath, T. W.: Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation. *Biol. Conserv.*, 143, 449-456, doi: 10.1016/j.biocon.2009.11.012, 2010.

Schindler, D. W.: Recent advances in the understanding and management of eutrophication. *Limnol. Oceanogr.*, 51, 356–363, doi: 10.4319/lo.2006.51.1_part_2.0356, 2006.

660 Schulte, P., Van Geldern, R., Freitag, H., Karim, A., Négrel, P., Petelet-Giraud, E., Probst, A., Probst, J.-L., Telmer, K., Veizer, J., and Barth, J. A. C.: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances. *Earth Sci. Rev.*, 109, 20–31, doi: 10.1016/j.earscirev.2011.07.003, 2011.

Seibt, U., Rajabi, A., Griffiths, H., and Berry, J. A.: Carbon isotopes and water use efficiency: Sense and sensitivity. *Oecologia*, 155, 441–454, doi: 10.1007/s00442-007-0932-7, 2008.

Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change (2nd rev. ed.). Wiley. ISBN 978-0-471-72018-8, 2006.

665 Stevens, C. J., Dise, N. B., Mountford, J.O., and Gowing, D. J.: Impact of nitrogen deposition on the species richness of grasslands. *Science* 303, 1876–1879, doi: 10.1126/science.1094678, 2004.

Sucholas, J., Molnár, Z., Łuczaj, Ł., Luick, R., and Poschlod, P.: Are agri-environmental schemes doing their job? Evidence from Biebrza National Park, Poland. *Land Use Pol.*, 148, 107390, doi: 10.1016/j.landusepol.2024.107390, 2025.

670 Szołdrowska, D., and Smol, M.: The current state of water resources in Poland - possibilities of water reuse and management by the circular economy. *Desalin. Water Treat.*, 323, 101287, doi: 10.1016/j.dwt.2025.101287, 2025.

Taub, D. R., and Wang, X.: Why are nitrogen concentrations in plant tissues lower under elevated CO₂? A critical examination of the hypotheses. *J. Integr. Plant Biol.*, 50, 1365-1374, doi: 10.1111/j.1744-7909.2008.00754.x, 2008.

Thomson, S. J. J., Table, P., and Urey, H. C.: Chapter 3 stable isotope fractionation. *Elsevier Oceanogr. Ser.* 65, 141–250, doi: 10.1016/S0422-9894(01)80004-0, 2001.

Tian, D., Kattge, J., Chen, Y., Han, W., Luo, Y., He, J., Hu, H., Tang, Z., Ma, S., Yan, Z., Lin, Q., Schmid, B., and Fang, J.: A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. *Ecology*, 100, e02812, doi: 10.1002/ecy.2812, 2019.

Tian, H., Bian, Z., Shi, H., Qin, X., Pan, N., Lu, C., Pan, S., Tubiello, F. N., Chang, J., Conchedda, G., Liu, J., Mueller, N., Nishina, K., Xu, R., Yang, J., You, L., and Zhang, B.: History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: A 5 arcmin resolution annual dataset from 1860 to 2019. *Earth Syst. Sci. Data*, 14, 4551–4568, doi: 10.5194/essd-14-4551-2022, 2022.

Tilman, D., and Wedin, D.: Plant traits and resource reduction for five grasses growing on a nitrogen gradient. *Ecology*, 72, 685–700, doi: 10.2307/2937208, 1991.

685 Tomalski, P., Pius, B., Jokiel, P., and Marszelewski, W.: Changes in the thermal regime of rivers in Poland with different sizes and levels of human impact based on daily data (1961–2020). *Geogr. Pol.*, 98, 29–52, doi: 10.7163/GPol.0291, 2025.

Unger, S., Friede, M., Hundacker, J., Volkmar, K., and Beyschlaget, W.: Allocation trade-off between root and mycorrhizal surface defines nitrogen and phosphorus relations in 13 grassland species. *Plant Soil*, 407, 279–292, doi: 10.1007/s11104-016-2994-y, 2016.

690 Van Der Plas, F., Hautier, Y., Ceulemans, T., Alard, D., Bobbink, R., Diekmann, M., Díse, N.B., Dorland, E., Dupré, C., Gowing, D., and Stevens, C.: Atmospheric nitrogen deposition is related to plant biodiversity loss at multiple spatial scales. *Glob. Chang. Biol.*, 30, e17445, doi: 10.1111/gcb.174452024, 2024.

Wang, J., Gu, B., Ewe, S., and Wang, Y.: Stable isotope compositions of aquatic flora as indicators of wetland eutrophication. *Ecol. Eng.*, 83, 13–18, doi: 10.1016/j.ecoleng.2015.06.007, 2015.

695 Warnes, G. R., Bolker, B., Lumley, T., Johnson, R. C., Jain, N., Schwartz, M., and Rogers, J.: gmodels: Various R programming tools for model fitting. R package version 2.19.1. <https://CRAN.R-project.org/package=gmodels>, 2024.

Wickham, H.: *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York, 2016.

World Flora Online: <http://www.worldfloraonline.org>, date accessed: 18.04.2025, 2025.

700 Wrosz, Z., Banaś, K., Merdalski, M., and Pronin, E.: Stable carbon and nitrogen isotope signatures in three pondweed species - A case study of rivers and lakes in Northern Poland. *Plants*, 14, 2261, doi: 10.3390/plants14152261, 2025.

Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., and Boeckx, P.: Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. *Water Res.*, 43, 1159–1170, doi: 10.1016/j.watres.2008.12.048, 2009.

705 Yao, F. Y., Wang, G. A., Liu, X. J., and Song, L.: Assessment of effects of the rising atmospheric nitrogen deposition on nitrogen uptake and long-term water-use efficiency of plants using nitrogen and carbon stable isotopes. *Rapid Commun. Mass Spectrom.*, 25, 1827–1836, doi: 10.1002/rcm.5048, 2011.