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Abstract. Sulphur dioxide (SO2) is a major atmospheric pollutant from fossil fuel combustion, metal smelting, and volcanic

degassing, impacting human health, acid deposition, and climate forcing. Existing emission inventories are often temporally

lagged and spatially coarse, failing to capture high-intensity, sporadic events. To address this, we present a novel, near real-time

approach using a U-Net image segmentation model to automatically isolate SO2 plumes from over 31,000 TROPOMI satellite

swaths (Jan 2019-–Dec 2024). The model successfully identified 53,993 individual plumes. The highest annual detection rate5

in 2019 was attributed to massive stratospheric SO2 injections from the Raikoke and Ulawun volcanic eruptions. Clustering

analysis confirmed plume origins around expected volcanic and industrial hotspots (e.g., Iztaccíhuatl, Norilsk), with volcanic

sources dominating the top ten clusters. We derived rapid, physics-informed emission rate estimates for each plume, finding a

median rate of 14,629 kg hr−1. This detection threshold for this approach, which we estimate to be∼524 kg hr−1, is four orders

of magnitude larger than typical fluxes in the EDGAR inventory, demonstrating the utility of the plume database for detecting10

extreme, high-intensity events. However, the algorithm struggles to detect sources in high-background regions like China,

where high SO2 saturation likely prevents individual plume isolation. This study demonstrates machine learning as a powerful

tool for transforming atmospheric monitoring, providing the high-cadence, fine-grained quantification of SO2 emissions crucial

for validating global inventories and ensuring effective environmental management.

1 Introduction15

Sulphur dioxide (SO2) is an atmospheric pollutant predominately produced from fossil fuel combustion for power generation,

residential heating, industrial processes (e.g. metal smelting), refineries, shipping, and volcanoes. Within the clean troposphere,

the dominant loss of atmospheric SO2 is oxidation by the hydroxyl radical, resulting in a lifetime of approximately a week.

SO2 contributes to the formation of fine particulate matter that is directly linked with negative health outcomes, particularly

cardiovascular diseases (Khalaf et al., 2024). SO2 also has broader environmental impacts, primarily by forming sulphuric acid20

via heterogeous chemistry, which leads to ecosystem damage and building corrosion. The formation of sulfate aerosols affects

climate forcing both directly, by scattering incoming sunlight and causing a net cooling of the atmosphere, and indirectly,

by perturbing cloud microphysics. In this study, we use machine learning to identify automatically permanent and ephemeral

hotspots of SO2 observed by the TROPOMI satellite instrument and quantify the corresponding emission estimates, carefully
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curating sources of error. We will focus on large point sources from fossil fuel combustion, copper smelting, and volcanic25

emissions.

Emissions of SO2 from fossil fuel combustion hinges on three factors: the sulfur content of the fuel, combustion efficiency,

and the deployment of SO2 scrubber technology. More energy is released during the combustion of coal with a higher number

of hydrogen:carbon bonds, which is inversely proportional to the sulfur content. Scrubber technology, widely adopted by

coal-fired power plants in developed nations starting in the 1990s (Srivastava et al., 2001), was introduced to meet regulatory30

requirements to mitigate acid deposition that caused widespread destruction of downwind forest and aquatic ecosystems (Smith,

1872; Driscoll et al., 2001). Global anthropogenic SO2 emission estimates varied from 93 to 108 Tg yr−1 between 2010

and 2018 (Soulie et al., 2023), with recent years showing lower values. While different inventories, such as the Copernicus

Atmosphere Monitoring Service (CAMS) and EDGAR, generally agree within ≃4 Tg SO2 yr−1 estimates diverge in later

years, primarily due to differing estimates for power generation (≃44% of CAMS anthropogenic emissions during 2010—35

2018) and shipping (≃10%). International shipping is a significant source due to the high sulfur content of marine fuel, but

low-sulfur fuel regulations introduced in 2020 are expected to have significantly reduced this annual emission, consistent with

a large reduction in observed ship tracks in cloud perturbations (Watson-Parris et al., 2022).

Extracting copper from mineral ores – predominately chalcopyrite (CuFeS2) – releases SO2 to the atmosphere. The smelting

process involves injecting mineral particles and oxygen-enriched air into a furnace that is heated ≃1500 K, resulting in the40

sulphide minerals reacting with the injected oxygen that eventually produces SO2. Currently, most copper refineries are in

China, India, Japan, Russia, and Chile, with only a few smaller-capacity plants in the United States and Germany. Developed

countries capture the SO2 waste product but for refineries in developing countries the capture technology may be unaffordable

or unavailable.

Volcanoes represent a natural source of SO2 to the atmosphere. They emit SO2 in vast quantities during eruptive and during45

passive degassing periods. Sulphur species is a minor constituent in volcanic magma, compared with water and carbon dioxide.

The production and subsequent emission of SO2 from volcanoes depends on various factors, including the composition and

depth of the magma reservoir and the nature of the eruption. Generally, large, explosive (high pressure) volcanic eruptions

release more SO2 to the atmosphere than passive degassing periods, which occur due to the movement of sub-surface magma.

Annual volcanic SO2 emission estimates vary. Estimates inferred from satellite data collected between 2005 and 2015 report50

an annual mean of 23±2 Tg yr−1 for volcanic degassing, with 30% of those sources exhibiting a positive decadal trend (Carn

et al., 2017). However, ground-based data collected at 32 volcanoes over the same period report a mean (median) emission rate

of ∼9.0 (6.8) Tg SO2 yr−1 (Carn et al., 2017), and a subset of these ground-based estimates show that some volcanoes degas

at a rate too low to be detected by instruments like the Ozone Monitoring Instrument (Arellano et al., 2021). Only within the

past decade has space-borne sensor technology achieved sufficient sensitivity to accurately detect degassing SO2 emissions,55

providing crucial data that complements information gathered by ground-based networks, such as the Network for Observation

of Volcanic and Atmospheric Change.

Traditional botton-up emission inventories for SO2 (e.g., EDGAR (EDGARv8.1), CEDS (Hoesly et al., 2018)) suffer from

critical limitations for modern monitoring, including significant time lags (often years behind real-time) and poor resolu-
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tion, providing only mean values over large areas (e.g., 100s of kilometres) and long durations (e.g., monthly). Capturing60

sporadic emission events or tracking rapid changes in current sources requires the high temporal resolution offered by near

real-time satellite observations, especially emerging data from geostationary instruments (e.g. Global Environmental Moni-

toring Systems (GEMS, Kim et al. (2020)), Tropospheric Emissions: Monitoring of Pollution (TEMPO Chance et al. (2019))

and Sentinel-4 (Bazalgette Courrèges-Lacoste et al. (2017))) that offer continuous monitoring throughout the sunlit day. To

efficiently exploit these massive stream of data, we employ a machine learning model that rapidly highlights SO2 plumes orig-65

inating from point sources and quickly estimates their emission rates. This capacity for rapid, fine-grained quantification of

emission changes is essential for timely intervention and effective atmospheric management. We showcase our approach using

data collected by the Tropospheric Monitoring Instrument (TROPOMI) satellite instrument aboard Sentinel-5P.

In the following section, we describe the data used and the development of the model. In section 3 we report our result. We

conclude the study in section 4.70

2 Data and Methods

2.1 TROPOMI SO2

We use Level 2 total column SO2 data retrieved from TROPOMI, a high-resolution UV–Vis–NIR–SWIR spectrometer, onboard

the Sentinel-5P satellite, January 2019–December 2024, inclusively. TROPOMI measures the solar radiation backscatter in the

UV range (around 310-330 nm) where SO2 has a distinct absorption feature. Sentinel-5P was launched in October 2017 into a75

sun-synchronous orbit with a local equatorial overpass time of 13:30. TROPOMI has a swath width of 2600 km divided into

450 across-track pixels, with a pixel resolution of 3.5×5.5 km (across× along track) at nadir for SO2. This sampling strategy

results in near-daily global coverage (Veefkind et al., 2012), subject to cloud-free scenes. In this study, we only use pixels with

a quality flag > 0.5, as recommended by the TROPOMI Level 2 Product User Manuals (Veefkind et al., 2012).

2.2 U-Net Image Detection Model80

To automatically detect plumes of SO2 from TROPOMI data, we use a U-Net style fully convolutional network model to

perform image segmentation (Ronneberger et al., 2015; Mukhopadhyay et al., 2015). A U-Net model is designed to produce

a pixel-by-pixel classification of an image and has been widely used in medical sciences (e.g. tumour detection) as well as in

land cover classification in satellite imagery (e.g. Pan et al., 2020; Ulmas and Liiv, 2020; Bokstaller et al., 2021; Filatov and

Yar, 2022). It follows the basic principle of convolving an image over successive layers to reduce the spatial dimensions and85

extract feature information and then using transposed convolutions to rebuild the image to the original shape, the schematic of

the model architecture creates a “U” shape, as shown in Figure 1. This figure shows a schematic of the model architecture used

for the plume detection algorithm. We add Gaussian noise to the training images to improve the robustness of the model before

passing the image through four downsampling blocks. Each block consists of a double convolutional layer, a max-pooling layer

and a dropout layer set at 20%. These blocks then feed to one more double convolutional layer to extract patterns in the image90
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Figure 1. Schematic of the architecture of the U-Net model.

before four upsampling blocks create a mask of the plume. Each upsampling block contains a double transpose convolutional

layer, a concatenation layer, another dropout layer set at 20% and a double convolutional layer.

Image segmentation models offer significant advantages over traditional image classification (e.g. Finch et al., 2022) because

they parse essential information from the background rather than simply assigning a single label to an entire image. For

detecting SO2 plumes, this capability is crucial: it allows for more precise geolocating of the plume and the ability to handle95

multiple distinct plumes within a single satellite scene. Furthermore, segmentation excels over other feature-parsing methods,

such as activation maps (Zhou et al., 2015), because it is trained directly on ground-truth image masks. This direct comparison

during training provides a clear, quantifiable performance metric, ensuring reliable results.

Our segmentation model was trained using a custom database of over 1,000 TROPOMI images showing SO2 plumes, each

paired with a precise plume mask manually created by the lead author. To maximize training effectiveness, we augmented this100

dataset through rotation and flipping, yielding a final training pool of over 4,000 images and corresponding masks. We chose

an image size of 32×32 pixels (roughly 112×176 km2 at nadir) as it successfully captures most SO2 plumes. For validation,

we trained the model on 80% of the data and tested it on the remaining 20%. The model’s performance was measured using

precision (correctness of positive predictions) and recall (completeness of positive detection), yielding scores of 65.7% and

74%, respectively. Crucially, the small 32×32 image size disproportionately penalizes minor errors, meaning an offset of just105
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a few pixels drastically lowers the score. Given this context, we find the model performs adequately to successfully initiate the

construction of a comprehensive plume emission database.

To ensure we capture SO2 plumes that may be straddling multiple image boundaries, we employ a 32×32 pixel rolling win-

dow that moves four pixels at a time across and along the satellite swath. This systematic sampling generates approximately

100,000 images per swath for input into the segmentation model. The model returns each image with a pixel-by-pixel proba-110

bility of plume presence. We then reconstruct the original swath into an amalgamated mask by taking the median probability

of all overlapping pixels. Using the median not only combines the individual predictions but also boosts detection confidence,

as an accurately identified plume will appear consistently across multiple overlapping images. We found that a four-pixel step

provides adequate coverage to resolve straddling issues while maintaining reasonable computing speed and costs. Crucially,

this overlaying method means the final predicted plume shape is not limited by the 32×32 pixel input size, allowing plumes115

and their corresponding masks to be accurately mapped across the full scale of the swath (which is typically 4172×450 pixels,

spanning 2,600 km from pole to pole).

To extract the details of individual plumes from the reconstructed satellite swath, we apply connected component analysis

(using Open-CV (Bradski, 2000)) to the pixel probability array. This analysis effectively identifies the unique plume masks

within the swath and provides the bounding boxes for each one, allowing us to precisely delineate the plume outline. Figure120

2 illustrates this capability, showing twenty randomly selected TROPOMI-observed plumes alongside their corresponding

predicted plume outlines.

Figure 2 demonstrates that the model generally performs well, although some inaccuracies are present. Detecting atmo-

spheric features like SO2 plumes inherently involves subjectivity, as there is no clear, objective physical boundary for the

feature of interest. This human subjectivity is inevitably encoded in the model’s training dataset and subsequently reflected in125

the trained model itself. Continuously refining the model or updating the training dataset is an endless task, so for the practi-

cal scope of this paper we have chosen to present results based on a rigorous process involving three training iterations (i.e.,

checking model output, expanding the dataset with new examples, and retraining).

We have created a comprehensive database documenting each detected plume, which includes its location, date of detection,

plume outline, and an estimate of the emission rate. A bounding box (with a three-pixel buffer) is also recorded, with its limits130

specifically used to determine the background SO2 concentration outside the plume. Computationally, processing a single

swath is highly efficient, taking only about 15 seconds using a GPU or 60 seconds using CPUs.

2.3 Source Emission Rates Estimate

By using the predicted plume outline and modelled wind fields, it is possible to calculate an emission estimate associated with

a detected plume. To estimate the the emission rate of the source of the plume E, we use the following formula:135

E =
∆M ×ws

L
× 3600, (1)

where ∆M is the mass enhancement of the plume relative to the background in kg, ws is median wind speed in ms−1 and L

is the length of the plume in metres. The results is then multiplied by 3600 to convert from kg s−1 to kg hr−1.
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Figure 2. Examples of SO2 plumes in the TROPOMI data and the predicted plume outline, shown as a red line. Warmer colours denote

higher values.

We calculate the area of each pixel within the given scene based on the coordinates of the pixel vertices given in the

TROPOMI file which is then used to convert the SO2 observations from mol m−2 to grams of SO2 per pixel. The mass140

enhancement of the plume is calculated by subtracting the median values of the background, defined as all the pixels within

the bounding box but outside the plume boundary.

To estimate the plume length, we fit an ellipse to the plume outline and use the length of its primary axis, trimming it precisely

to the plume boundary. Figure 3 visually demonstrates this process, showing the mass enhancement relative to the background

median, along with the fitted ellipse and its primary axis. This entire image represents the plume’s defined bounding box. As a145

specific example, a plume detected over the Cerro Bravo volcano in Colombia (5.13◦N, 75.31◦W) on December 4, 2018, was

estimated to have a length of 117.4 km and an emission rate of 7071.5 kg hr−1.
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Figure 3. Mass Enhancement (kg) for each plume pixel, shown relative to the background’s median value which is defined by the bounding

box area outside the plume boundary. The fitted ellipse is displayed in light blue, with its primary axis shown in white. The dashed line

indicates where the primary axis was truncated to estimate the plume length. This specific example features an ellipse fit ratio of 0.61.
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We use the 10-metre U and V wind fields from ERA5 reanalysis data, included in most TROPOMI Level 2 files, as a founda-

tional estimate for the wind experienced by the emissions. While these near-surface fields may not perfectly represent transport

winds - especially for volcanic SO2 injected high into the atmosphere - they provide a reasonable starting point. Although150

the TROPOMI data includes SO2 layer height, using this to find modelled winds at the precise altitude is computationally

expensive and falls outside the scope of this paper.

We quantify how well the ellipse fits the plume shape using the ratio of the plume area to the fitted ellipse area. A ratio closer

to 1.0 indicates a better fit, suggesting a more robust emission estimate. This metric highlights plumes with unusual shapes

where the primary axis may poorly represent the length. Given the square-pixel nature of the plume shapes, a perfect fit ratio155

of 1.0 is unrealistic. Based on visual inspection, we consider a good fit ratio to be above 0.4. The example in Figure 3 achieved

a ratio of 0.61.

We acknowledge that assumptions inherent in this calculation limit the precision of the emission estimates. However, we

believe these estimates serve as a highly useful “first guess” to provide rapid emissions data (sub-one second per plume) from

hotspots. The largest source of variability in this calculation is the wind speed variation within the plume. To address this, our160

plume dataset provides the minimum, maximum, and standard deviation of the wind fields used, allowing users to calculate

an approximate range of possible emission fluxes. Furthermore, we include data on the fitted ellipse, plume length, and mass

enhancement for users who wish to conduct more thorough investigations.

3 Results

3.1 Global SO2 Data165

We processed approximately 31,000 Level 2 files from TROPOMI observations spanning January 2019 to December 2024. To

ensure the reliability of our output, we implemented a filter requiring each detected plume to contain a minimum of six pixels,

as the accuracy of smaller predicted plumes is difficult to validate.

In total, 53,993 plumes were identified over the study period. The year 2019 saw the highest number of detections, exceeding

16,000, while the period from 2020 through 2024 showed more consistent annual counts, ranging from ∼6,800 to ∼8,000170

plumes. To locate the emission source, we employ the coordinates of the maximum SO2 concentration within the plume

boundary as a practical proxy for the origin, noting that this might not perfectly match the true source location. Figure 4 shows

the annual global distribution of these estimated plume origins, 2019–2024.

Initial inspection confirms plumes cluster predictably around known volcanoes and industrial hotspots. However, all years

also show regions with a wide, “noisy” spread of detections (e.g., Alaska, Canada, and Eastern Russia annually, plus specific175

areas like the mid-Atlantic in 2021 or Central Africa in 2024). Figure 5 illustrates the daily plume counts, where each spike

corresponds to these noisy geographical spreads (Figure 4). Critically, all but one spike (Peak I in 2023) align with major

volcanic eruptions in the region. Table 1 details the specific volcanic emissions believed responsible for this widespread geo-

graphical dispersal. Plume transport away from the source is evident, as detections further from the origin often occur in the

days immediately following an eruption event (see Appendix A, Figure A1).180
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Figure 4. Global, annual locations of the maximum concentration of TROPOMI SO2 within the predicted plume masks, 2019–2024.

We attribute the major spike in 2019 plume detections mostly to the coinciding eruptions of Raikoke, Russia, and Ulawun,

Papua New Guinea. The Raikoke eruption on June 21st is particularly notable, injecting one of the largest amounts of sulfur

dioxide (SO2) into the stratosphere since the 1991 Mount Pinatubo eruption (Vernier et al., 2024; ?).

While Peak I in Figure 5 does not correspond to a volcanic eruption, the surge in detections is concentrated over Norilsk in

Northern Russia (88.1◦W, 69.3◦N), as shown in Figure 6. This region is a known major source of SO2 emissions due to its185

large metal smelting operations. The precise cause of this specific increase in plume detections, however, remains unknown.

Using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm Ester et al., we grouped the

detected plumes based on the coordinates of their maximum SO2 observation (our proxy for origin). We set the clustering pa-

rameters to a maximum distance of 50 km between points and a minimum of 20 samples per cluster. This technique effectively

identifies global areas with a high concentration of plumes. Figure 7 shows the centers of the 90 detected clusters, coloured190
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Figure 5. Number of plume detections per day for each year of the study. Highlighted regions show time periods of a higher than usual

number of detections. Labels correspond to Table 1.
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Label Vocano Name Country Coordinates First Detection Date

A Raikoke Russia 153.25◦E, 48.29◦N 22nd June 2019

B Ulawun Papua New Guinea 151.33◦E, 5.05◦S 26th June 2019

C Ulawun Papua New Guinea 151.33◦E, 5.05◦N 3rd August 2019

D Taal Philippines 120.99◦E, 14.01◦N 12th January 2020

E Mount Cleveland United States of America 169.94◦W, 52.82◦N 18th June 2020

F La Soufrière Saint Vincent and the Grenadines 61.18◦W,13.33◦N 11th April 2021

G Hunga Tonga-Hunga Ha’apai Tonga 175.38◦W, 20.55◦S 14th January 2022

H Mauna Loa United States of America 155.60◦W, 19.475◦N 26th November 2022

I - - - -

J Taal Philippines 120.99◦E, 14.01◦N 14th April 2024
Table 1. Major volcanic eruptions thought to be responsible for the periods of higher than usual plume detections highlighted and labelled

in Figure 5.

Figure 6. Number of plume detections per day for during 2023 within the red box on the inset map (centred over Norilsk, Russia).
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Figure 7. Locations of the centre of a cluster of plumes coloured by number of plumes in that cluster.

by the number of plumes they contain, which further validates that our model successfully identifies the major SO2 sources

worldwide.

We observed regions on the global maps, most notably China (a location with numerous known SO2 sources), where the

model failed to detect expected plumes. Assuming the quality and volume of TROPOMI data are consistent globally, this

deficiency likely stems from the plume detection model itself. We hypothesize that high background SO2 concentrations in195

such regions may “hide” point sources, making plumes difficult to isolate. Since the model was trained on global data, it may

struggle with these outlier scenarios. Future iterations should address this by specifically training on data that includes plumes

from high-background regions like China.

Table 2 details the ten largest clusters of SO2 plumes detected over the six-year study, alongside their probable sources.

Volcanic activity dominates this list, accounting for seven out of the ten largest clusters. The remaining three clusters are200

associated with industrial activities: metal smelting, coal mining, and oil and gas operations. It is crucial to note that these

clusters are often complex; some may contain multiple source types. For example, the Iztaccíhuatl volcano cluster is located

just south of Mexico City, meaning the cluster likely includes industrial SO2 sources alongside the volcanic emissions.

3.2 Coincidence with Volcanic Activity

Using the Smithsonian Institution’s Global Volcanism Program (GVP) database of known eruptions since 1960 (GVP), we205

identified 227 active global eruptions during our study period. Comparing this list with our plume database revealed that 7,943
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Rank
Cluster Centre

Coordinates
Nearest Likely Source Source Type # of Plumes

Median Emission

Rate (kg hr−1)

Daily Persistence

(%)

1 19.45◦N, 98.54◦W Iztaccíhuatl, Mexico Volcano 1830 15,277 55.4

2 16.27◦S, 72.17◦W Ampato, Peru Volcano 1628 25,859 49.9

3 1.50◦S, 80.01◦W Chimborazo, Equador Volcano 1604 8582 42.7

4 5.26◦N, 76.08◦W Nevado del Ruiz, Columbia Volcano 1035 9716 37.2

5 69.65◦N, 88.74◦E Norlisk, Russia Metal Smelting 875 12,252 25.0

6 1.75◦N, 127.71◦E Dukono, Indonesia Volcano 782 9268 30.2

7 1.55◦S, 28.17◦E Mount Nyiragongo, DRC Volcano 668 7439 24.5

8 23.74◦S, 27.43◦E Grootegeluk Mine, S. Africa Coal Mine & Power 612 12,769 26.0

9 37.24◦N, 15.25◦E Mount Etna, Italy Volcano 490 23,447 20.1

10 21.99◦N, 39.51◦E Rabigh, Saudi Arabia Oil and Gas 520 15,005 19.4
Table 2. Top ten largest clusters of plumes detected and their probable source, the total number of plumes over the six year study period, the

median emission rate for all plumes in the cluster and the percentage of days a plume is detected in this region.

Figure 8. All eruptions reported between January 2019 and December 2024. Red triangles indicate plumes were detected within 50 km

radius of the eruption during the eruptions dates. Green indicate no plume was detected.

plumes were detected within a 50 km radius of an eruption during its active date. This confirms plume detection for 110 (49%)

of these eruptions. The 117 missing detections are likely due to poor TROPOMI retrievals caused by high cloud cover or heavy

aerosol loading. Figure 8 maps these GVP-reported eruptions, coloured by whether plumes were detected nearby (red) or not

(green).210
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Figure 9. TROPOMI SO2 total vertical column over the United Kingdom on 8th August 2024 showing a plume from the Sundhnúkur volcano

in Iceland.

The plume detection algorithm struggles with very large plumes (> 1000 km) that often occur far downwind of major

eruptions. Figure 9 illustrates this, showing a large SO2 plume over the United Kingdom on August 8, 2024, originating from

the Sundhnúkur volcano in Iceland (63.8◦N, 22.38◦W) six days earlier. The red outlines show the model splits this large plume

into multiple smaller segments. This error likely results from the method used to break the TROPOMI swath into smaller

images, which prevents the model from seeing the larger context of a plume that can span the entire swath.215

3.3 TROPOMI SO2 Activity Detection Flag

The TROPOMI Level 2 data assigns a flag to SO2 pixels based on five categories: (0) no enhancement, (1) general SO2

detection, (2) near a known volcano, (3) near a known anthropogenic source, and (4) a potential false positive due to a high

solar zenith angle. Since a single plume often covers many pixels, we assign the final plume label only if over 80% of its

pixels share the same TROPOMI flag (likely determined by spatial proximity to known sources); otherwise, the plume is220
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Figure 10. Global distribution of plume labels, 2019 - 2024, linked with the TROPOMI flag assigned to Level 2 SO2 data.

labeled as a combined source. We found that the dominant category is a general SO2 detection with no source attribution

(43.5% of plumes), followed by volcanic plumes (30.8%) and known anthropogenic sources (14.7%). Figure 10 illustrates the

geographical distribution of these categorized plumes.

The high number of unlabelled SO2 detections is likely caused by plumes that have traveled downwind from their origin

and are thus no longer close to the known volcanic or anthropogenic sources used for TROPOMI flagging. This explanation225

is strongly supported by the evidence of extensive volcanic outflow visible in both the geographical distribution of plumes

(Figure 4) and the daily detection spikes (Figure 5).

The TROPOMI “No enhanced SO2 detected” category accounts for 10.0% of all detections, but we believe many of these

should be attributed to an actual source rather than being false positives. We demonstrate this by applying the clustering

algorithm (as described in Section 3.1) to these “no enhanced detection” plumes. This allows us to extract meaningful groupings230

and calculate their proximity to clusters with known sources. Figure 11 displays all plumes in this category, highlighting 34
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Figure 11. Location of all plumes labelled as “no enhanced detection” (blue), along with 34 clusters of more than 20 plumes within 150 km

of each other (red) circles.

dense clusters (minimum 20 plumes within 150 km). Crucially, 27 of these 34 clusters overlap with clusters that have a known

emission source, and the remaining seven are within 300 km. While these clusters account for 24% of the “no enhanced

detection” plumes, many of the remaining plumes form a large, dispersed swath extending from 100◦E to 180 ◦W around

10◦S. This pattern aligns strongly with the downwind transport of SO2 from the Taal Volcano eruption in the Philippines235

(120.99◦E, 14.01◦N) in April 2024 (detailed in Section 3.1).

This analysis demonstrates that while the source labelling provided in the TROPOMI files is informative, it fails to capture

the complete picture of emission attribution. Although our plume detection algorithm does not attribute sources itself, it suc-

cessfully highlights geographical and temporal patterns that are crucial for identifying important, and potentially unlabelled,

SO2 emission locations.240

3.4 Source Emission Rate Estimates

Using the methodology detailed in Section 2.3, we calculated the emission rate for every detected plume. Figure 12 provides

histograms illustrating the distribution of these emission rates, plume lengths, the ellipse fit metric, and the coefficient of

variation (CoV) of the wind fields across the entire study period. The overall median emission rate for all plumes is 14,629

kg hr−1 (Figure 12A). These rates assume the source originates within a single TROPOMI pixel. By examining the lower245
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percentiles to account for data noise, we estimate a practical detection limit for our plume detection algorithm to be the 1st

percentile of emission estimates, which corresponds to 524 kg hr−1.

Figure 12B shows that the distribution of plume lengths is strongly skewed toward shorter plumes, with a median length

of 37.3 km. This confirms that most plumes are relatively small compared to the 2600 km TROPOMI swath, often spanning

only about 10 pixels at nadir. The histogram for the ellipse fit metric (Figure 12C) has a median value of 0.6, which validates250

the assumption (discussed in Section 2.3) that fitting an ellipse to determine plume length holds true in the majority of cases.

Finally, the wind field’s CoV (Figure 12D), calculated as w̄s/σws×100, quantifies wind speed variability within each plume.

CoV values close to 0% support the use of the median wind speed as representative. The plume dataset shows a median CoV

of 12.5%, indicating that most plumes experience only minor variations in wind speed.

All these metrics are available for individual plumes, and therefore can be used to help filter results for specific use cases.255

3.5 Comparison with EDGAR Emission Dataset

Comparing our plume emission database to existing SO2 emission datasets like EDGAR is non-trivial and must be interpreted

cautiously, as the datasets serve fundamentally different purposes. A direct grid-to-grid comparison is uninformative because

our algorithm only captures emissions above a certain threshold and requires clean TROPOMI observations, resulting in an in-

complete picture of global emissions. Conversely, gridded inventories often fail to capture extreme or sporadic emission events.260

Furthermore, our detection algorithm does not distinguish between anthropogenic and volcanic sources, which complicates di-

rect comparisons. Figure 13 shows the cumulative emission profile from EDGARv8.1 for 2022 and highlights the issue: global

SO2 emissions are heavily skewed toward a few large point sources. For instance, the largest 1% of sources contribute 85% of

total global emissions, and the top 0.1% account for 50%. This inherent heterogeneity means the majority of grid squares in

the EDGAR data contain fluxes below the detection threshold of our algorithm.265

We aggregate the detected plumes onto a monthly 0.1◦×0.1◦ regular grid to align with the EDGAR emission database and

compare flux estimates where plumes were found. Figure 14 shows that the SO2 flux estimated from our plume detections is

roughly four orders of magnitude larger than the typical fluxes reported in the EDGAR database for the same grid squares. As

detailed in Section 3.4, our assumed detection limit of 524 kg hr−1 (which equates to 3.81×10−9 kg m−2s−1 on the EDGAR

grid) surpasses 99.8% of EDGAR’s reported emissions. This stark difference underscores the value of the plume database270

as a specialized tool for detecting irregular, high-intensity emission events rather than serving as a complete, comprehensive

emission inventory.

To assess how well our plume database represents persistent, high-emission areas, we compare the location of detected

plumes against the largest 0.1% of EDGAR emission sources. The results show poor agreement: our algorithm detects a plume

within 200 km of these major sources only 9.4% of the time. Figure 15 highlights the locations of EDGAR emissions above this275

0.1% threshold where no plume was detected. The map clearly indicates a significant number of these undetected high-emission

regions clustered over China and India. As noted previously (Section 3.1), the high density of EDGAR’s large emission fluxes

in eastern China strongly suggests that our plume detection algorithm is unable to isolate individual plumes in regions where

the background SO2 concentration is excessively high.
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Figure 12. Histograms of the (A) estimated emission rates, (B) plume length, (C) ellipse fit metric, and (D) coefficient of variation for wind

speed for all plumes detected during the study period.
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Figure 13. The cumulative percentage of total emissions (black) and the corresponding emission rate (red) as a function of percentage of

sources, from large to small

4 Concluding Remarks280

The segmentation model successfully processed approximately 31,000 TROPOMI Level 2 files from 2019 to 2024, demon-

strating scalability and efficiency, with a rapid processing time of about 15 seconds per swath on a GPU. The methodology,

which employed a 32×32 pixel rolling window and median probability overlap, effectively addressed issues related to plumes

straddling image boundaries while ensuring the final plume shape was not constrained by the input image size. Although the

raw performance metrics (Precision: 65.7%, Recall: 74%) may appear modest, they are negatively skewed by the high sensi-285

tivity of using small 32×32 pixel images for validation. The model was deemed sufficient to establish a viable “first guess”

emission database.

Our assumptions inherent to the emission rate calculation method (Section 2.3) were statistically validated by the resulting

dataset. The median ellipse fit metric of 0.6 confirms that fitting an ellipse to determine plume length holds true in the majority

of cases. Furthermore, the wind field analysis yielded a low median Coefficient of Variation (CoV) of just 12.5%, supporting290

the assumption that the median wind speed accurately represents transport conditions within most plumes. Based on the lowest

detected emissions, we conservatively inferred a practical detection limit for the algorithm of 266 kg hr−1.

The global analysis confirmed that plumes cluster predictably around known volcanic and industrial hotspots. The detection

of 53,993 plumes highlighted the critical role of episodic volcanic activity in SO2 budgets, with significant annual spikes
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Figure 14. Histogram of the emission rates from EDGAR where plumes are detected (green) and the gridded plume emission estimates (red)
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Figure 15. Locations of 2022 EDGAR emissions above 4.8×10−9 kg m−2 s−1 where no plume was detected within 200 km.

attributed to major events like the Raikoke and Ulawun eruptions in 2019. We also found that the TROPOMI Level 2 source295

flagging is incomplete; 43.5% of detections were unlabelled, a finding we attribute to plumes being transported far downwind

from their designated source areas. Clustering analysis of the “No enhanced SO2 detected” plumes (10.0% of detections)

showed that many are, in fact, real sources, often corresponding to large, diluted outflow features like the plume from the 2024

Taal eruption.

However, two primary limitations must be addressed in future work. First, the algorithm struggles with very large plumes300

(>∼ 1000 km), often incorrectly segmenting them into multiple smaller plumes due to the inherent context limitation of the

small image input method. Second, and more critically, there is a pronounced lack of plume detection over expected high-

emission industrial regions like China and India. The poor spatial agreement with EDGAR’s largest 0.1% sources (detecting a

plume only 9.4% of the time) strongly suggests that the algorithm fails to isolate individual plumes against an excessively high

SO2 background concentration prevalent in these regions.305

Finally, the comparison with the gridded EDGAR emission database highlighted the distinct utility of our dataset. Our

detected fluxes were found to be approximately four orders of magnitude larger than typical EDGAR fluxes in the same grid

cells. This disparity confirms that our database is not intended as a complete emission inventory; rather, it is a specialized

tool designed to efficiently and rapidly capture and quantify high-magnitude, transient, and irregular emission events—such as

major volcanic eruptions and large sporadic industrial spikes—that are typically smoothed out or omitted by standard annual310

inventories.
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A crucial area for future advancement lies in integrating data from recently launched geostationary satellites. While the

TROPOMI analysis relies on a single daily snapshot, instruments like the Geostationary Environment Monitoring Spectrometer

(GEMS, covering Asia), the Tropospheric Emissions: Monitoring of Pollution (TEMPO, covering North America), and the

future Sentinel-4 (covering Europe) offer sub-hourly or hourly measurements. This significantly higher temporal resolution315

would be transformative for this work, allowing for more robust plume tracking and improved wind field context for emission

estimation. Furthermore, the hourly data would greatly enhance our ability to differentiate transient, high-flux plume events

from persistent, high background SO2 concentrations, thereby providing a pathway to potentially overcome the detection issues

currently observed in heavily polluted industrial regions like China.

The application of machine learning is essential for achieving near real-time SO2 source analysis, particularly for rapidly320

evolving natural hazards like volcanic eruptions . The immense processing speed of the segmentation model (sub-second per

plume) is crucial for aviation safety, as SO2 serves as a key proxy for hazardous volcanic ash. Machine learning automates the

complex, time-consuming steps of plume boundary definition, geometric fitting (e.g., length), and emission rate calculation,

transforming raw TROPOMI data into quantitative, actionable intelligence instantaneously. This rapid, objective assessment

informs Volcanic Ash Advisory Centers and provides timely input for atmospheric transport models, greatly enhancing warning325

systems and safety protocols.

Code availability. The plume detection code can be requested from the authors.

Data availability. The SO2 plume detection dataset can be requested from the authors. TROPOMI SO2 data are available from https://

dataspace.copernicus.eu/

Appendix A: Major Volcanic Outflow330

Figure A1 shows the plumes detected near likely volcanic eruptions, coloured by the days elapsed since the first eruption

was detected. These show how these plumes are likely outflow from these large eruptions which are likely being detected on

subsequent days as they are transported downwind.

Appendix B: Plume Dataset Description

The resulting plume dataset described in this paper is available for use and contains the following information:335

– Date and time of the TROPOMI swath

– Latitude and longitude of the maximum SO2 value within the plume (degrees north and west)

– X and Y Index on the TROPOMI swath of location of the maximum SO2 value within the plume
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Figure A1. Plumes likely associated with major volcanic eruptions through the study period. The colouring represents days elapsed since

first eruption detected.
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– Value of the maximum SO2 concentration within the plume (mol m−2)

– Indices on the TROPOMI swath of the bounding box surrounding the plume340

– Plume mass enhancement from the background (kg)

– Latitude and longitudes of the plume border (degree north and west)

– Indices on the TROPOMI swath of the plume border

– Data on the fitted ellipse (x and y of ellipse centre, width, height and angle)

– Median, minimum, maximum, standard deviation and standard error of wind speed (ms−1)345

– Wind direction (degrees)

– Plume length (m)

– Plume emission estimate (kg hr−1)

– Array of pixel areas within the bounding box (m2)

– U and V wind fields within the bounding box350

– Name of the original TROPOMI file used
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