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Abstract: Carbon monoxide (CO) is a crucial atmospheric constituent influencing both air quality and climate. Using 

TROPOMI CO and HCHO column retrievals within the Model-Free Inversion Estimation Framework (MFIEF), this study 10 

quantified daily, gridded CO emissions in Central Asia (Xinjiang-China, Kazakhstan, Kyrgyzstan, and Uzbekistan) for 2019–

2024. Results reveal a marked interannual decline of ~38% in mean emissions, accompanied by a weakening of emission 

hotspots. Seasonal peaks in winter and early spring highlight the roles of heating and industrial demand. Importantly, explicit 

perturbation-based uncertainty analysis showed that ~69% of grid-level estimates are unreliable if observational uncertainties 

are ignored or using an overly simplified emissions estimation approach, underscoring the nonlinear propagation of retrieval 15 

errors. By integrating coal consumption data, we confirm the consistency between satellite-inferred emissions and bottom-up 

activity estimates, while also identifying missing sources such as underground coal fires. This study demonstrates the 

effectiveness of MFIEF in data-scarce regions, provides actionable insights for inventory improvement and mitigation 

strategies, and highlights the framework’s potential extension to CH4 and CO2 retrieval-based emission estimation. 
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1. Introduction 

Air pollution and climate change are significant environmental problems resulting from economic development, 

urbanization, energy consumption, and transportation (Adams et al., 2020; Bel and Holst, 2018; Liang et al., 2019). CO is one 

of the lesser considered short-lived climate pollutants (Hanaoka and Masui, 2020; Khalil and Rasmussen, 1988, 1984; Szopa 

et al., 2021). It is a major sink of the hydroxyl radical (OH) affecting the concentrations of methane (CH4) and ozone (O3) (Dai 25 

et al., 2024; Patra et al., 2014; Shepherd et al., 2024; Yin et al., 2015; Zhang et al., 2006) 

CO is formed due to the incomplete combustion of fossil fuels, chemical reactions when reducing iron and other minerals 

during extraction and processing, brick and cement production, and biomass burning (Holloway et al., 2000; Khalil and 

Rasmussen, 1990; Koppmann et al., 2005). Once emitted into the atmosphere, CO undergoes chemistry in-situ including 

oxidation into carbon dioxide (CO2) and production from the oxidation of volatile organic compounds (VOCs) (Joshi et al., 30 
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2023; Koppmann et al., 2005; World Health Organization, 2021). In unpolluted atmosphere, CO has been observed to have a 

higher value during local winter as the OH column is lower in winter and the mixing process is slower (Lelieveld et al., 2016; 

Spivakovsky et al., 2000). In industrial areas, CO has been observed to have higher values during times controlled mostly by 

when production is increased or efficiency of combustion is decreased (Munsif et al., 2021; Tian et al., 2022; Zhao et al., 2012). 

This includes during the winter when additional combustion is often found for residential heating and extra production occurs 35 

to meet end-of-year industrial deadlines (Batey, 1997; Li et al., 2025). Similarly, CO is observed to be higher locally due to 

when and where biomass burning occurs (Lin et al., 2020; Wang et al., 2021, 2024). 

Contemporary approaches to estimating CO emissions encompass several primary technical pathways, each with distinct 

advantages and region-specific limitations. Bottom-up inventories combine activity data (e.g., fuel consumption, industrial 

production, vehicle kilometers traveled) with sector-specific emission factors, as implemented in databases such as EDGAR 40 

(Crippa et al., 2020; Olivier et al., 1999) and China's MEIC system (Zheng et al., 2018a). These inventories provide detailed 

sectoral and temporal information but often suffer from outdated activity data, uncertain emission factors, and incomplete 

representation of unregulated or diffuse sources, particularly in developing regions. Direct atmospheric observations, obtained 

from ground-based networks (e.g., WMO GAW stations) and satellite instruments (e.g., MOPITT, TROPOMI), offer spatially 

consistent and temporally continuous coverage, enabling detection of large-scale pollution events such as biomass burning 45 

(Buchholz et al., 2022; Worden et al., 2013). However, retrieval uncertainties, cloud contamination, and limited sensitivity 

near the surface restrict their capacity for precise emission quantification. Chemical transport model (CTM) inversions (e.g., 

GEOS-Chem, WRF-Chem) integrate atmospheric chemistry and dynamics to optimize emissions(Jiang et al., 2015; Kopacz 

et al., 2010), integrate atmospheric transport and chemistry to infer emissions from concentration fields, providing physically 

consistent estimates but requiring substantial computational resources and reliable prior inventories that are often unavailable 50 

in data-sparse regions. Isotopic analyses (Brenninkmeijer et al., 1999; Röckmann et al., 2002) can effectively distinguish 

anthropogenic and biogenic CO sources, yet their application is constrained by the need for high-precision laboratory 

measurements and limited spatial representativeness. Despite these methodological advances, CO emissions remain more 

uncertain than other well-monitored species such as CH4, NO2, and SO2 (Lorente et al., 2021; Schneising et al., 2019; Wang 

et al., 2022; Wei et al., 2020). These challenges are particularly acute in Central Asia, where sparse monitoring, limited 55 

inventories, and heterogeneous sources— ranging from industrial activities to underground coal fires—have hindered 

comprehensive assessments and model validation.  

Central Asia, as a core area of the Belt and Road Initiative, the emission control of its coal - intensive industries is crucial 

for regional air quality and trans - boundary pollution transport. Due to the rapid increase in coal use, industrial development, 

and economic growth, the emissions of CO is both presently not well characterized, there are few observational networks, and 60 

though to be rapidly increasing and changing (Akhmedzhanov and Karadanov, 2020; Rupakheti et al., 2021; Zeng and Shen, 

2022; Zhang et al., 2011; Zhao et al., 2022). This region of the world has diverse and unique geographical and climatic 

conditions, environmental conditions, and development patterns, based heavily on coal and minerals (Pirajno et al., 2011; Zeng 

and Shen, 2022). Understanding CO emissions here is of growing importance for assessing the efficiency of coal use, especially 

https://doi.org/10.5194/egusphere-2025-5890
Preprint. Discussion started: 6 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

3 

as related to non-power generating industries, as well as for industry and power production, in part due to the continued future 65 

growth expected in this area, and potential for addressing and formulating environmental and climate mitigation strategies 

(Action Plan for Clean and Efficient Utilization of Coal (2015-2020), 2025; Circular of the State Council on the Issuance of 

the Action Plan for Continuous Improvement of Air Quality). 

To address these gaps, this study applies the Model-Free Inversion Estimation Framework (MFIEF)—a lightweight, mass-

conserving, and observation-driven modeling system designed to infer surface CO emissions from satellite retrievals of CO 70 

and HCHO without requiring complex prior inventories or computationally intensive adjoint simulations (Li et al., 2025; Lin 

et al., 2020; Wang and Cohen, 2023). By explicitly accounting for satellite observational uncertainties, MFIEF provides a rapid 

and flexible means of estimating emissions at high spatial and temporal resolution, well suited for data-sparse and dynamically 

evolving regions such as Central Asia (Inness et al., 2022; Savenets et al., 2022). The framework not only enables consistent, 

data-driven quantification of CO emissions but also facilitates the identification of previously underrepresented or missing 75 

sources. Ultimately, the results contribute to improving emission inventories, informing mitigation policies, and advancing 

understanding of CO’s role in regional air quality and climate interactions, with broader implications for carbon neutrality and 

sustainable development goals (Abduh et al., 2021; World Health Organization, 2021).  

2. Data and Methods  

2.1 Study Area 80 

The study area spans from 35° N to 50° N latitude and 70° E to 100° E longitude, including parts of Xinjiang, China, 

Kazakhstan, Kyrgyzstan, and Uzbekistan. The climate in this region is predominantly temperate continental, including cold 

and dry winters and hot and arid summers, with large diurnal and annual temperature variations. The Xinjiang area has 

extensive coal mining as well as many industries which use the coal and are powered by the coal. In addition, coal is widely 

used to generate power which is then exported to areas in eastern China. This leads to significant emissions of CO and other 85 

combustion byproducts. Similarly, Kazakhstan, Kyrgyzstan, and Uzbekistan also have many industries related to energy and 

minerals, and also plays a crucial role in the regional CO emissions landscape. Fig. 1 illustrates the extent of the study area 

and the location of coal bases, power plants and steel plants within the Xinjiang region and there are eight steel plants and 105 

power plants in the study area. 
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 90 

Figure 1: study area (latitude: 35° N-50° N and longitude: 70° E-100° E) and Xinjiang's major coal bases, plants. 

2.2 Data 

TROPOMI: The S5P (Sentinel-5 Precursor) satellite was launched in October 2017, with its sole payload being 

TROPOMI, a push-broom imaging spectrometer with a swath width of 2600 km (5.5 km×7 km resolution at nadir), and a local 

equator crossing time around 13:30, providing global coverage once daily. CO column loading is retrieved daily under both 95 

clear-sky and partially cloudy-sky conditions using the 2.3 µm spectral range of the shortwave infrared (SWIR). Clear-sky 

observations are sensitive to tropospheric boundary layer CO, CH4, and aerosols, while cloudy atmospheres modify column 

sensitivity based on variations in the light path. Total-column averaging kernels for clear-sky and cloudy conditions provide 

insights into vertical sensitivity (Borsdorff et al., 2023; Landgraf et al., 2016). In this work, the Level 3 OFFL data product 

from Google Earth Engine (GEE) is filtered to ensure the quality assurance flag is above 0.5, and then resampled and then 100 

resampled using the Weighted Polygonal Remote Sensing Toolkit HARP (http://stcorp.github.io/harp/doc/). The data were then 

resampled with a resolution of 0.05°×0.05°. 

HCHO is one of VOCs, and is important due to its being both directly emitted into the atmosphere by combustion, 

industrial activities, traffic, and fires; as well as being produced due to the chemical decay of heavier VOCs. Since the lifetime 

of HCHO columns is far shorter than those of CO columns, the loading of HCHO scales linearly with the rate of in-situ 105 

production of CO (Cohen and Prinn, 2011), with the decay mostly due to OH and photolysis, and as such is sensitive to the 

weather, climate, water availability, aerosols, and other complex atmospheric factors (Anderson et al., 2021; Dienhart et al., 

2021; Lui et al., 2017).The column loading of HCHO is also successfully retrieved by TROPOMI, although its uncertainty is 

larger than for CO ( Romahn et al., 2021). In this work, concurrent data of retrieved HCHO and CO at the same time and 
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location are used, allowing for consistency between the retrieved species. In this study, L3 HCHO data from GEE is utilized, 110 

resampled by HARP to a resolution of 0.05°×0.05°. These data can be downloaded from https://disc.gsfc.nasa.gov/datasets. 

wind: ECMWF Reanalysis v5 (ERA5) data is a widely used reanalysis dataset providing high-resolution climate data, 

covering multiple meteorological parameters and variables (Hersbach et al., 2020). This study employs wind field products 

averaged at 05:00 and 06:00 Coordinated Universal Time (UTC) under the monthly mean surface pressure field. The 05:00 

and 06:00 UTC times correspond to the observation periods of the TROPOMI satellite. More details can be found at 115 

https://www.ecmwf.int/en/forecasts/dataset/ecmwfreanalysis-v5. 

EDGAR: The Emissions Database for Global Atmospheric Research (EDGAR) emissions database (Olivier et al., 1999) 

provides monthly bottom-up emissions for CO, NOx, VOCs, and CH4, among other species. This study specifically utilizes 

sectoral monthly grid data provided by the version 8.1 database, with a resolution of 0.1°×0.1°, with subsequent resampling at 

0.05°×0.05°. The data cover the following key sectors: power industry, industrial combustion, buildings, transport, agriculture, 120 

fuel exploitation, industrial processes, and waste management. The data can be accessed at https://edgar.jrc.ec.europa.eu/. 

AAOD：The Multi-angle Imaging Spectro Radiometer (MISR), aboard NASA's Terra satellite, is a pioneering instrument 

designed to characterize Earth's atmosphere and surface through simultaneous observation at nine distinct angles. A key 

advanced product derived from MISR data is the Absorption Aerosol Optical Depth (AAOD). This parameter quantitatively 

estimates the fractional optical thickness of aerosols attributable to absorption processes, primarily caused by light-absorbing 125 

species such as black carbon and mineral dust. The L3 AAOD data product used in this paper has a resolution of 0.25° and is 

resampled to 0.05° to distinguish dust-affected regions. The data can be searched from https://disc.gsfc.nasa.gov/datasets (Liu 

et al., 2025). 

2.3 Research Methods 

The MFIEF is utilized to estimate CO emissions (Li et al., 2023; Qin et al., 2023). Equation (2) takes into account factors 130 

such as CO column changes, chemical decay and production, and transport, and relies on retrieved data from TROPOMI CO 

and HCHO in order to approximation of the weighting terms of the underlying partial differential equations that govern the 

transformation between CO and its driving factors, using the same equations used by world-leading chemical transport models 

(Cohen and Prinn, 2011). Specifically, emissions cause CO to increase, acting as a source term, while chemical reactions and 

mixing between in-plume and out of plume regions may lead to the loss or gain of CO, and are represented by a first order 135 

linearization around the CO concentration. The transport of CO is also an important factor, affected by both pressure-induced 

and advective processes, with the advective term representing the horizontal movement of CO due to wind, and the pressure-

induced transport term accounting for the convergence or divergence of the atmosphere itself (i.e. vertical motion). Since 

vertical changes do not affect inverted CO total column loadings, so instead this term accounts for the gain or loss due to non-

uniform winds. As such, the transport terms can either increase or decrease the CO column in a given location depending on 140 

the direction and magnitude of the flow (Cohen et al., 2024; Li et al., 2023; Qin et al., 2023), and are related to topography, 

land-sea breezes, weather systems, and more. Combining these terms yields the CO emissions Eq. (1), where: 
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𝐸𝐶𝑂 =
𝑑𝑉𝐶𝑂
𝑑𝑡

+ 𝛼2 ⋅ 𝑉𝐶𝑂 + 𝛼3 ⋅ ∇(𝒖 ⋅ 𝑉𝐶𝑂) − 𝛼4 ⋅ 𝑉𝐻𝐶𝐻𝑂 (1) 

𝑉𝐶𝑂 represents the TROPOMI CO column loading after converted the unit into (µg/m2). 𝛼2 ⋅ 𝑉𝐶𝑂  represents the sink of CO 

with 𝛼2(s-1) as the inverse CO lifetime. 𝛼4 ⋅ 𝑉𝐻𝐶𝐻𝑂 represents CO production, with 𝛼4(s-1) as the inverse HCHO lifetime. 

∇(𝒖 ⋅ 𝑉𝐶𝑂) represents the daily zonal and meridional dispersion of CO with a unit of (µg/m2/s), and 𝛼3(m-1) represents the 145 

transport distance. This mass conservation equation for CO provides a framework for understanding and quantifying the 

changes in CO columns in the atmosphere, considering the various processes that influence its distribution, following (Li et 

al., 2025) . 

The terms of this equation are initialized using this equation, TROPOMI observations and their retrieved uncertainties, 

meteorological data, and either an initial a priori emissions dataset, or our own previously inverted emissions dataset in the 150 

case of multiple iterations. The fitting is based on multiple least squares regression grid-by-grid on a month-by-month basis, 

reflecting the differences in albedo, elevation, land-surface use, emissions type, and differences in confounding variables on 

each pixel specifically grouping all daily data from TROPOMI and the ECMWF reanalysis where they all occur. This process 

provides sufficient data to compute the weighting terms, while also accounting for the changes in land-surface, atmosphere, 

and other factors. In the case where a pixel in any given month either does not have enough data or produces a fit with a p 155 

value larger than 0.05, the values of the model are set to NaN on that grid during that month. To ensure physically realistic and 

mathematically consistent values for the coefficients α₂, α₃, and α₄, physical cutoffs are applied. Any value that is not positive 

(α > 0) is set to NaN. 

The resulting equation is then used to calculate estimates of CO emissions and associated uncertainty across all grids 

when and where data exists. To estimate the maximum probability density of the coefficients during the corresponding grid-160 

by-grid and month-by-month basis, the solution distribution of α within the valid range (from the 10th percentile to the 90th 

percentile of the Probability Density Function (PDF)) is sampled 1000 times per grid. The mean value of this distribution is 

assigned as the day's average emission in that grid, and the standard deviation is assigned as the day's average uncertainty. This 

process allows us to estimate the coefficients and their uncertainties, taking into account the available data and the physical 

constraints on the parameters, providing a more robust and accurate representation of the CO mass conservation equation in 165 

the study region. 

For the calculation of CO emissions, grid point filtering based on zero-mean distribution is required. First, the emission 

distribution characteristics of each grid point are identified. For each grid, the distribution of its emission values is analyzed. 

Since random errors should behave similar to white noise, they are expected to cluster around zero mean, and have an 

uncertainty range roughly equally reflected by both positive and negative values. To accomplish this, we first focus on pixels 170 

with a near zero mean. Next, we find the most negative emission value -θ µg/m2/s for each grid point and define a range from 

[-θ: θ] µg/m2/s. The emission values within this range are considered to be mainly caused by noise rather than an actual 

emission signal. These noisy values are filtered, further eliminating pixels with large retrieval errors, and increasing confidence 

that the resulting inversions are valid, reliable, and robust. 
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2.4 Uncertainty 175 

The accuracy and precision targets for TROPOMI total CO column prior to launch were 15% and 10% respectively 

(Landgraf et al., 2016; Martínez-Alonso et al., 2020; Veefkind et al., 2012). There hasn't been enough research on specific 

issues like aerosol levels, cloud cover in low cloud conditions, changes in surface reflectivity from pixel to pixel, and the initial 

CO and CH4 data, which could result in greater uncertainty than what has been mentioned (Hu et al., 2024; Lu et al., 2024). 

The uncertainty in TROPOMI CO total column has implications for CO emission calculations. First, emission calculation 180 

relies on accurate and precise CO column concentration data. Second, since emissions estimation requires the use of a non-

linear gradient operator (Cohen and Prinn, 2011), uncertainty in the spatial domain plays an additional role. Such uncertainty 

may propagate through the emissions equations, leading to cases where small perturbations in the observations (i.e., due to 

observational or retrieval uncertainty) lead to larger perturbations in inverted emissions (Beekmann and Derognat, 2003; Rao, 

2005; Reilly et al., 1987) In such instances, the emissions cannot be regarded as stable; thus, their reliability is questionable. 185 

This lack of precise quantification hinders a more robust understanding of CO emissions. Therefore, it is necessary to conduct 

an uncertainty analysis of the observed data, and understand how it is transformed into the uncertainty of the inverted emissions 

products. 

This work suggests perturbing the uncertainties in TROPOMI retrieved CO and HCHO column data randomly. All 

perturbations are randomly added to the observed data and a bootstrap is performed to sufficiently sample the uncertainty 190 

space. Specifically, each data point of CO column and HCHO column retrieved from TROPOMI, on a daily and gridded basis, 

has a random perturbation within the range of -10% to +10% added. In addition to the point-by-point changes, spatial changes 

are analyzed. For example, given two neighboring grids, if there is an overlapping portion of the data range after the random 

±10% perturbations are applied, the direction of the computed gradient, and therefore the emissions may shift. In these cases, 

the gradient computed is likely not trustworthy, and therefore the emissions estimate is also not likely trustworthy. Specifically, 195 

the uncertainty can be expressed by Eq. (2): 

𝐸𝑢𝑛 =(𝐸𝐶𝑂(±)−𝐸𝐶𝑂)/𝐸𝐶𝑂 (2) 

𝐸𝐶𝑂(±) denotes the newly calculated CO emission, 𝐸𝐶𝑂  denotes the initial CO emission, 𝐸𝑢𝑛 denotes the change of CO 

emission result, i.e., uncertainty. Other retrieved terms will behave similarly, meaning that if any of the variables behave in 

such a way locally across any grids on any given day, those subsets of grids may lead to a change in the net total inverted 

emissions which is too large, and the data ultimately not being reliable. This work adapts a conservative approach, setting any 200 

such data to NaN and discarding it from the ultimate inverted emissions products, following Zheng (2024). The CO emission 

calculation and data screening process flow chart is shown in Fig. 2. 
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Figure 2: CO emissions calculation flowchart. 

3. Results 205 

3.1 Spatiotemporal Distribution of CO Observations 

Fig. 3a presents the spatial distribution of the average TROPOMI CO total column from 2019 to 2024 across the study 

area, revealing a domain-wide mean of 1.54×1018 molec/cm2. The concentration is predominantly influenced by anthropogenic 

activities, with elevated values (>2.0×1018 molec/cm2) located in, around, and downwind of major urban and industrial centers 

such as Urumqi, Fergana, Almaty, Jiayuguan, and the Zhundong Coalfield. In contrast, natural areas like the Tianshan and 210 

Altai Mountains exhibit lower concentrations, averaging around 1.0×1018 molec/cm2. Moderately high CO levels are also 

observed in the desert regions of central Xinjiang, likely due to enhanced photochemical production from VOCs under intense 

ultraviolet radiation, as well as in northwestern Kazakhstan, primarily attributable to widespread biomass incomplete 

combustion. The statistical distribution of the CO total column, shown in Fig. 3b, deviates from a normal distribution and is 

distinctly bimodal, with the 25th and 75th percentiles for the entire period calculated at 1.23 and 1.83×1018 molec/cm2, 215 

respectively. Analysis of interannual variability shows that the highest CO levels occurred in 2021, with an annual mean of 

1.59×1018 molec/cm2, particularly in high-value zones. Conversely, 2022 marked the lowest concentrations across both high- 

and low-value zones, with the mean dropping to 1.44×1018 molec/cm2. The values subsequently rebounded to an intermediate 

level in 2023 (1.52×1018 molec/cm2), followed by a further increase in 2024 (1.56×1018 molec/cm2). This consistent with 
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findings indicating that the general air pollution policies implemented by China are driving CO (Li et al., 2025; Liu et al., 2024) 220 

more than lockdowns related to COVID-19 (Fan et al., 2021; Zheng et al., 2021).  

 

Figure 3: (a) The average of TROPOMI CO total column from 2019 to 2024; (b) PDF for 6 years. 

The CO total column on a daily basis is provided in Fig. 4 for the following sites: the Wugonggou Coal Fire in Fukang, 

(latitude 44.075° N, longitude 88.156° E) a representative power plant, a representative steel plant, and the center of Urumqi. 225 

As observed, the CO column contains a mixture of seasonal factors (generally higher in winter and lower in summer), 

anthropogenic factors (generally more production near the end of the year, and additional power for heating in the coldest 

months including November and December), as well as some amount of random day-to-day variability. This set of findings is 

tied to both anthropogenic and natural forcing related to temperature, light and OH. Summer usually has more UV radiation, 

more OH, and less CO (Liu et al., 2022; Sun et al., 2023; Yang et al., 2021).  230 

Among the four points in Fig. 4, the underground coal fire site, with a mean CO total column of 1.96×1018 molec/cm2 

and the smallest interquartile range (25th-75th percentile: 1.78-2.11), is primarily influenced by natural conditions and exhibits 

lower peak values and reduced daily variability. In contrast, the central area of Urumqi (mean: 2.18; 25th-75th percentile: 1.90-

2.37), the steel plant (mean: 2.09; 25th-75th percentile:1.82-2.30), and the power plant (mean: 2.16; 25th-75th percentile: 1.88-

2.32) are mainly affected by human activities and production demands, showing generally higher concentrations and stronger 235 
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variability. All four locations display seasonal fluctuations with clear peaks and troughs. Statistically, emissions from the power 

plant closely resemble those in central Urumqi (R² = 0.55, p < 0.001, RMSE = 0.30×1018 molec/cm²), while the Wugonggou 

Coal Fire site aligns more closely with the steel plant (R² = 0.35, p < 0.001, RMSE = 0.33×1018 molec/cm²). These distinctions 

in both concentration levels and temporal behavior suggest that different types of emission sources can be identified based on 

their varying seasonal patterns and trends. 240 

 

Figure 4: Time series of TROPOMI CO column for (a) coal fire site; (b) Urumqi city center (c) steel plant; and (d) power plant. 

3.2 Spatiotemporal Distribution of CO Emissions 

To distinguish dust-dominated regions from other aerosol types, we utilized the AAOD ratio between 443 nm and 880 

nm. Mineral dust typically exhibits stronger absorption at shorter wavelengths due to its iron oxide content, leading to higher 245 

AAOD443/AAOD880 ratios, whereas other aerosols like black carbon show less spectral dependence. A higher ratio thus 

suggests a greater contribution of dust to total absorption. Based on this spectral behavior, we selected a threshold of 

AAOD443/AAOD880 > 4.5 to identify and mask dust-dominated areas, thereby minimizing potential biases in CO emission 

estimates associated with dust contamination. Grid cells exceeding this threshold were excluded, effectively removing spurious 

emission signals caused by high surface reflectivity in arid regions. As shown in Fig. 5a, the spatial distribution of AAOD 250 

ratios highlights extensive dust-affected areas, primarily in the desert and arid parts of western China and southern Kazakhstan. 

https://doi.org/10.5194/egusphere-2025-5890
Preprint. Discussion started: 6 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

11 

This screening process resulted in the exclusion of approximately 14% of the study area, underscoring the importance of 

aerosol correction in satellite-based emission inversion. 

To evaluate the impact of input data uncertainty on emission estimates, we performed a perturbation analysis by varying 

the total column concentrations of CO and HCHO within ranges of ±10% and ±20%, reflecting uncertainties from TROPOMI 255 

retrievals and model inputs. Grid cells were classified as having “ reliable emissions” only if the relative variation in estimated 

emissions remained within the corresponding threshold. As illustrated in Fig. 5b, under the ±10% and ±20% uncertainty 

thresholds, 31.3% and 33.7% of grid cells, respectively, met the reliability criterion over the six-year period. Furthermore, Fig. 

5c shows the number of days with reliable emissions after applying the ±10% filter, with a spatial average of approximately 

135 days per grid cell. The results indicate that stricter uncertainty filtering leads to a gradual reduction in credible emission 260 

estimates, highlighting the sensitivity of inversion outcomes to uncertainties in the input column concentrations. 

 

Figure 5: (a) AAOD₄₄₃/AAOD₈₈₀ Ratio; (b)Plausible CO emission share with perturbation added to both CO and HCHO columns; 

and (c) number of credible data in uncertainty calculations. 

 265 
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Following the application of a ±10% uncertainty filter, the spatial pattern of CO emissions was found to be consistent 

with that of the CO total column, though significant interannual variability was observed. As shown in Fig. 6, a pronounced 

decreasing trend from 2019 to 2024 is demonstrated by the contraction of emission hotspots in the spatial distribution (a), a 

systematic leftward shift of the probability distribution toward lower values (b), and a marked reduction in spatial variability 

reflected in the standard deviation distribution (c).  270 

The annual mean CO concentration in the study area has been substantially declined, from 4.93µg/m2/s in 2019 to 3.06 

µg/m2/s in 2024, with a reduction of approximately 38%. This overall trend toward lower emissions is further reflected in the 

evolution of emission hotspots, which are defined as regions where the concentration is exceeded twice the study area’s mean 

(6.72 µg/m2/s). A total of 11 such hotspots were identified, primarily situated between 39.83°-46.58°N and 81.08°-98.23°E. 

Their average intensity decreased markedly from 9.51 µg/m2/s in 2019 to 5.63µg/m2/s in 2024, representing a total reduction 275 

of 40.8% or an average annual decrease of 0.68 µg/m2/s. The PDFs of the emissions (Fig. 6b) provide further evidence of this 

systematic reduction, showing a distinct leftward shift toward lower values. The distribution peak decreased from 3.34 µg/m2/s 

in 2019 to 2.85 µg/m2/s in 2024, while the mean emission fell from 4.47 µg/m2/s to 3.17 µg/m2/s. Concurrently, the PDFs of 

the standard deviations (Fig. 6c) indicate a significant weakening of spatial heterogeneity, with the peak value dropping from 

1.66 µg/m2/s to below 1.30 µg/m2/s. In summary, the results depicted in Fig. 6 clearly highlight a marked downward trend in 280 

CO emissions between 2019 and 2024, characterized by a contraction and weakening of emission hotspots, a systematic shift 

of the emission distribution to lower values, and reduced spatial variability. These observed changes are likely attributable to 

the combined effects of implemented emission control policies, ongoing industrial restructuring, and shifts in regional energy 

consumption patterns. 
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 285 

Figure 6: (a)Annual mean of CO emissions, excluding all locations which have fewer than 10 days of successfully retrieved CO 

emissions; (b) PDF of CO emissions for each year (c) PDF of standard deviations for every year. 

Fig.7 presents the monthly variations of average CO emissions and the corresponding number of valid observational days 

over the study region during December 2018-December 2024. Overall, CO emissions exhibited a clear downward trend, 

decreasing from an exceptionally high level of 9.25 µg/m2/s in January 2019 to around 2.5-3.0 µg/m2/s after 2022, with 290 

occasional wintertime rebounds (e.g., 5.07 µg/m2/s in December 2023). Seasonal fluctuations are evident, with higher 

emissions generally observed in winter and early spring, and lower values during late spring and summer, consistent with 

stronger heating-related combustion sources in cold seasons and enhanced atmospheric dispersion in warmer months. The 

number of valid observational days shows substantial variability, ranging from fewer than 2 days per month (e.g., July 2020 

and August 2022-2024) to more than 5 days per month (December 2021). Despite this variability, the temporal patterns of 295 

emissions are robust and not simply driven by observation coverage. The joint evolution of these two metrics highlights both 

the long-term decline in regional CO emissions and the persistence of seasonal emission peaks, which together reflect the 

combined influences of anthropogenic activity, energy use, and atmospheric conditions across Xinjiang and Central Asia. 
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 300 
Figure 7: Average CO emissions and average valid Days per grid, per month, over the region. 

Fig. 8 illustrates the temporal evolution of CO emissions from four representative point sources, namely the Wugonggou 

Coal Fire site, Urumqi city center, a steel plant, and a power plant. The coal fire site shows an average emission of 4.56 µg/m2/s, 

with peak values exceeding 14.0 µg/m2/s in 2019, but a significant long-term decline (trend slope = -0.78 µg/m2/s per year). 

Strong seasonality is evident, with emissions nearly tripling in winter (December–January: ~8.4 µg/m2/s) compared to 305 

summer months (<3.5 µg/m2/s). In contrast, Urumqi exhibits the highest variability, with an overall mean of 5.14 µg/m2/s but 

extreme peaks reaching 17.33 µg/m2/s in December 2018. The city center also shows the steepest downward trend (slope = -

1.32 µg/m2/s per year), reflecting both stringent emission controls and seasonal heating demand. Wintertime (December -

January) emissions are consistently elevated (~9-11 µg/m2/s), highlighting the influence of residential heating and traffic-

related combustion. The steel plant records a similar mean level (5.27 µg/m2/s), but with more frequent high-emission episodes 310 

(20 exceedances above 8.3 µg/m2/s), particularly in 2018-2019 when values exceeded 16 µg/m2/s. Despite subsequent 

reductions, moderate seasonal peaks persist in late autumn and winter, suggesting the role of industrial production cycles. 

Finally, the power plant exhibits the highest average emissions (5.37 µg/m2/s) among the four sites, with peaks above 15 

µg/m2/s in December 2018. Although emissions have gradually declined (slope = -0.92 µg/m2/s per year), strong winter 

enhancements remain (December average: 8.36 µg/m2/s), consistent with increased electricity and heating demand. Overall, 315 

all four sources demonstrate a common pattern of pronounced winter peaks and declining interannual trends, but with varying 

magnitudes and persistence. These results emphasize the combined impact of seasonal energy consumption, urban activity, 

and industrial operations on localized CO emission dynamics across Xinjiang. 
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Figure 8: CO emissions of (a) Wugonggou Coal Fire site; (b) Urumqi city center; (c) steel plant; and (d) power plant. 320 
 

From Table 1, all four point source categories show a consistent downward trend in CO emissions from 2019 to 2024. 

The most pronounced reduction occurred at the power plants, where the mean value dropped from 6.45 to 3.76 µg/m²/s, a 

decrease of 42%. Substantial declines are also observed at the coal fire site and the steel plants; the former decreased from 

5.08 to 3.10 µg/m²/s (-39%), and the latter from 6.81 to 4.36 µg/m²/s (-36%). In comparison, the city center site recorded the 325 

smallest relative reduction, with its mean value falling from 6.44 to 4.17 µg/m²/s (-35%). This trend is even more evident in 

the upper percentiles. The 90th percentile value for power plants fell sharply from 11.77 µg/m²/s in 2019 to 5.95 µg/m²/s in 

2024, while the steel plants saw a decrease from 11.87 µg/m²/s to 7.36 µg/m²/s over the same period. This indicates a 

significant control over high-emission episodes across all categories, particularly at the industrial facilities. Overall, the data 

demonstrates effective emission mitigation across all categories during this period, with power plants and the coal fire site 330 

achieving the largest relative decreases. 

 

 

 

 335 
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Table 1: Percentile of CO emission data for four types of points (City Center, Coal fire site, Steel Plants and Power Plants) 

from 2019-2024 and the Change rate (unit: µg/m2/s). 

type Year Mean 10th 20th 50th 80th 90th Rate 

City Center 

2019 6.44  3.09  3.83  5.50  9.04  11.12   

2020 5.10  2.43  3.05  4.39  6.75  8.48  -21% 

2021 4.37  2.32  2.75  3.79  5.55  7.48  -14% 

2022 4.43  1.85  2.26  3.63  5.67  8.33  1% 

2023 4.47  2.36  2.81  3.95  5.94  7.38  1% 

2024 4.17  2.08  2.57  3.51  5.34  6.61  -7% 

Coal fire 

site 

2019 5.08  2.45  2.93  4.42  6.91  8.33   

2020 4.27  2.25  2.77  3.95  5.59  6.80  -16% 

2021 3.38  1.85  2.31  3.16  4.38  5.22  -21% 

2022 3.09  1.64  1.90  2.87  4.08  4.78  -9% 

2023 3.30  1.89  2.35  2.99  4.30  4.79  7% 

2024 3.10  1.73  2.01  2.93  4.14  4.70  -6% 

Steel 

plants 

2019 6.81  3.04  3.75  5.64  9.45  11.87   

2020 5.53  2.79  3.42  5.01  7.07  9.52  -19% 

2021 4.96  2.61  3.27  4.50  6.51  7.78  -10% 

2022 5.12  2.07  2.73  4.56  6.80  8.39  3% 

2023 4.82  2.58  3.03  4.29  6.47  8.02  -6% 

2024 4.36  2.00  2.36  3.93  6.06  7.36  -9% 

Power 

plants 

2019 6.45  2.91  3.54  5.31  9.00  11.77   

2020 5.29  2.65  3.22  4.77  6.94  8.76  -18% 

2021 4.40  2.28  2.81  4.02  5.76  7.00  -17% 

2022 4.02  2.04  2.50  3.61  5.31  6.41  -9% 

2023 3.97  2.16  2.67  3.75  5.12  6.03  -1% 

2024 3.76  2.00  2.42  3.44  4.85  5.95  -5% 

 

To evaluate the consistency of the inverted CO emissions with actual fuel usage, we collected official data on annual coal 

consumption for several major power plants within the study area for the year 2023. As shown in Table 2, coal consumption 340 

per plant varied from about 57,070 to 205,440 tons, with corresponding estimated CO emissions ranging from approximately 

1,675 to 6,426 tons. The derived emission factors (EF), defined as the ratio of CO emissions to coal consumed (EF = CO 

emissions / coal consumption), vary between 0.9% and 7.7%. Larger facilities such as Ganquanbao TBEA, Huadian Urumqi, 

Huaneng Fukang Industrial Park, and Tianchi Changji Cogen generally exhibit lower EFs, ranging from 0.9% to 2.9%, 

suggesting higher combustion efficiency and effective emission control. In contrast, smaller or industrially associated plants, 345 

including Urumqi Petrochemical, Xinjiang Joinworld, and Xinjiang Zhongtai Fukang, show higher EFs, between 2.9% and 

7.7%, which may reflect variations in coal quality, boiler technology, or combustion conditions. Overall, these emission factors 

align well with typical ranges for CO from coal combustion reported in established bottom-up inventories such as EDGAR 
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and MEIC. The coherence between reported fuel use and satellite-derived emissions supports the reliability of the inversion 

methodology, particularly in regions with limited ground-based monitoring. 350 

 

Table 2: Annual coal consumption and CO emissions of 12 power plants in 2023 

Name Latitude Longitude 
Tons of Coal 

(2023) 

Tons of CO 

(2023)10th 

Tons of CO 

(2023)90th 
EF (10th -90th) 

Huadian Urumqi power station 43.901111 87.6975 188320 2098  4265  1.1%-2.3% 

Xinjiang Joinworld power station 43.914734 87.583101 85600 2258  4311  2.6%-5.0% 

Xinjiang Zhongtai Huatai power 

station 
43.942935 87.664081 85600 2098  4265  2.5%-5.0% 

Urumqi Petrochemical power 

station 
43.970245 87.721928 57070 1675  4367  2.9%-7.7% 

Tianchi Changji Cogen power 

station 
44.004362 87.171961 199740 1865  4229  0.9%-2.1% 

Huadian Changji power station 44.06325 87.326558 188320 1936  5754  1.0%-3.1% 

Xinjiang Zhongtai Fukang power 

station 
44.08098 88.588901 85600 1742  4832  2.0%-5.6% 

Tianlong Mining Fukang Smelting 

power station 
44.099778 88.373315 114140 1746  3904  1.5%-3.4% 

Ganquanbao TBEA power station 44.124707 87.770718 199740 2025  5727  1.0%-2.9% 

Huaneng Fukang Industrial Park 

power station 
44.133333 87.933333 199740 1886  4512  0.9%-2.3% 

Shenhua Guoneng Fukang power 

station 
44.13336 87.834665 85600 2075  5084  2.4%-5.9% 

Wujiaqu power station 44.26892 87.687877 205440 2574  6426  1.3%-3.1% 

4. Discussion 

A comparison between this emission and EDGAR is presented in Fig. 9a, illustrating the spatial distribution of the 

mean CO emissions in the study area for the period from 2019 to 2022, during which it can be observed that the high 355 

emission values are mainly concentrated in urban and industrialized regions in northern Xinjiang, as well as in some 

regions of Kazakhstan, which may have high CO emissions due to industrial activities, transportation and home heating. 

In contrast, low emission values are mainly found in remote areas of Xinjiang, such as steppes, deserts, and mountainous 

regions, as well as in some sparsely populated and less industrialized regions of Kazakhstan. Overall, the geographical 

distribution of CO emissions shows obvious unevenness, with the emission intensity in urban and industrial areas being 360 

significantly higher than that in the surrounding rural and natural areas, especially in the urban agglomerations in northern 

Xinjiang and some industrial areas in Kazakhstan, where high emissions may be related to the local level of economic 

development, the structure of energy consumption, and the industrial layout. Fig. 9b shows the mean difference between 
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the CO emissions estimated in this study and the EDGAR emission inventory across the study area from 2019 to 2022. 

While the emissions from this study are higher than EDGAR in most regions, urban centers such as Urumqi and Almaty 365 

show the opposite trend, with values up to 5 µg/m2/s lower than EDGAR. In the figure, the blue areas of the figure are 

mainly distributed. Madrazo et al (2018) compared local Cuban emission inventories with EDGAR for CO emissions 

and mentioned that EDGAR overestimates the stationary source emission factors by a factor of three, while Li et al (2025) 

indicates that both EDGAR and MEIC estimates of well-established urban areas and large factories overestimate CO 

emissions in Shanxi, while newer and smaller urban sources are underestimated or missing. Fig.9(c) shows the PDF of 370 

the differences between our CO emission estimates and the EDGAR inventory over the study region. Across 2019-2022, 

the differences are predominantly positive, with 99.9% of grid points showing higher emissions in our estimates. The 

annual mean and median differences gradually decrease from 3.95 and 3.64 µg/m2/s in 2019 to 2.50 and 2.43 µg/m2/s in 

2022, indicating a narrowing gap over time. The PDF peaks shift similarly from 3.20 µg/m2/s in 2019 to 2.20 µg/m2/s in 

2022, while the overall range remains largely positive. These statistics suggest that our inversion generally yields higher 375 

CO emissions than EDGAR, with differences decreasing over time and concentrated in high-emission areas. 

 

Figure 9: (a) EDGAR CO emissions; and (b) difference between this study's results and EDGAR; and (c) monthly difference PDF. 
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A fundamental methodological divergence between satellite observations and model-based inventories is demonstrated 380 

in Fig.10. At four confirmed coal fire sites, TROPOMI unambiguously detects strong CO emission, whereas the EDGAR 

inventory shows negligible emissions. This discrepancy arises because the bottom-up EDGAR inventory, by design, excludes 

non-industrial sources such as coal fires. Furthermore, the comparison in urban regions (e.g., Urumqi, Almaty) reveals a pattern 

of partial agreement and quantitative divergence. While the datasets show consistent temporal trends, EDGAR exhibits 

systematic biases, overestimating winter peaks in some cities and displaying spatial inaccuracies in others. These discrepancies 385 

are attributable to limitations in the inventory's activity data, the regional applicability of its emission factors, and its coarse 

spatial resolution. 

Collectively, these findings underscore the value of top-down satellite data. This approach not only identifies emission 

sources missing from conventional inventories but also provides an independent means for validating urban emission estimates, 

proving indispensable for developing accurate global carbon budgets and targeted climate policies. 390 

 

Figure 10: Comparison of CO Emission Fluxes from TROPOMI Observations and EDGAR Inventory at (a) Coal Fire Sites; 

and (b) Urban Centers. 
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5. Conclusion 

In this study, we applied the MFIEF to quantify CO emissions across Central Asia by integrating TROPOMI CO and 395 

HCHO retrievals with meteorological reanalysis data. By explicitly accounting for satellite observational uncertainties, our 

approach provides a more reliable representation of emission dynamics in a region where ground-based measurements and 

inventory data remain scarce. This is especially important in this region of the world, where the economic growth is very large 

and industries and urban areas are both expanding rapidly. Furthermore, there is rapid development of both the chemical 

industry due to the production of many rare earths in this area, coupled with the rapid implementation of solar and wind power, 400 

all of which leads to substantial CO emissions during the production process. 

The results reveal a pronounced interannual decline of approximately 38% in CO emissions from 2019 to 2024, indicating 

that although not directly targeted by various emissions rules and regulations, that it is never the less being mitigated as a co-

emitted substance along with targeted species. Furthermore, distinct seasonal variations are observed with stronger emissions 

during winter and early spring, reflecting increases in energy demand through the colder periods of the year, industrial 405 

production increases in the lead up to the Chinese New Year, and local meteorological influences in part due to the unique 

snow and desert environment. Attribution analysis further highlights the contribution of major industrial centers, power plants, 

and urban agglomerations, while also pointing to previously underrepresented sources such as underground coal fires. 

Comparison with the commonly used EDGAR emissions database underscores both the limitations of global inventories in 

capturing local emission characteristics and the value of satellite-based approaches for identifying missing or mischaracterized 410 

sources.  

Beyond providing an updated regional emission assessment, this work demonstrates the critical importance of explicitly 

treating observational uncertainties, which contribute substantially to the fact that about 69% of grids are found to not have 

sufficiently reliable CO retrievals to be useful for successful emissions inversion. This study advances the understanding of 

CO emissions in Central Asia by integrating TROPOMI observations with the MFIEF framework and explicitly computing 415 

both emissions uncertainties, as well as regions when and where emissions cannot be reliably inverted. The results not only 

provide valuable constraints for regional inventories and emission source characterization but also strengthen the foundation 

for retrieving CH4, CO2, and other SWIR- and NIR-absorbing species. Beyond regional relevance, the approach offers broader 

implications for improving bottom-up inventories, supporting air quality modeling, and informing climate and carbon 

mitigation strategies. 420 

Limitations of the current work come from three different directions. First, there are no on-the-ground or direct 

observations of emissions from CEMS or other networks for CO, although such observations do exist for NOx and SO2 and 

may be possible to be scaled. Second, the observational uncertainty in this work is based on the column values of retrieved 

CO, and the issue of the vertical distribution has not been considered. This is also true in part because of the lack of vertical 

observations in this part of the world. Finally, due to the rapid growth of the economy on the ground, there may be assumptions 425 

which were made in terms of surface albedo or land-use type which are already outdated in terms of updating the algorithms 
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of the satellite retrieval themselves. This is highlighted by the identified substantial underground coal fire, which emits a large 

amount of CO while at the same time emitting a large amount of absorbing aerosol. Since the a priori used to invert the satellite 

retrieval did not contain this information, it is possible that there is some bias in the retrieved column values, in addition to the 

uncertainties posed, providing additional insights for future work. 430 
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