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Abstract.

Quantifying the combined effects of earthquakes and their cascading hazards is essential for realistic risk
10 assessment, yet such approaches remain limited in practice. Dynamic frameworks that explicitly correlate hazard
intensities and their uncertainties across cascading perils provide more consistent and physically plausible impact
estimates, offering greater value for resilience planning and risk management.
This study introduces a probabilistic risk assessment framework that integrates ground shaking, tsunami
inundation, liquefaction, landslides, and their combined impacts into a unified modelling approach. The
15 framework employs a fully correlated Monte Carlo—based hazard and damage model, ensuring that secondary
perils and their effects on assets are conditionally linked to the triggering ground motions. This dynamic
correlation maximises the representation of realistic damage scenarios.
The framework was tested in Napier, a city of 65,000 inhabitants situated directly above the Hikurangi Subduction
Zone (HSZ), New Zealand’s largest earthquake source with an estimated maximum credible magnitude of about
20 Mw9.1. A 100,000-year stochastic catalogue of ruptures was generated and applied to ~30,000 residential
buildings, with ground shaking, tsunami inundation, liquefaction severity, and landslide runouts explicitly
modelled.
Results include damage state and damage ratio metrics for individual and combined perils. Earthquake shaking
and liquefaction emerge as the dominant drivers of risk, followed by tsunami, lateral spreading, and landslides.
25 These findings demonstrate the importance of capturing interdependent hazards in earthquake risk analysis. The
framework provides decision makers, urban planners, and the (re)insurance sector with actionable metrics to guide

resilience investments, refine underwriting, and minimise losses from cascading hazard events.

1.Introduction

Megathrust faults along the interface of subducting plates are responsible for the largest and most powerful
30 earthquakes in the world, such as the 2004 Mw 9.3 Sumatra, 2010 Mw 8.8 Chile, 2011 Mw 9.1 Tohoku (Japan)
and 2025 Mw 8.8 Kamchatka earthquakes. The Hikurangi Subduction Zone (HSZ), where the western Pacific
Plate subducts under the Australian Plate off the east coast of the North Island of New Zealand, is thus potentially
the most significant source of earthquake hazard and risk in New Zealand (Figure 1). An earthquake on the
Hikurangi margin could trigger a cascading sequence of hazards that would have a significant impact on New

35 Zealand communities, assets, and the national economy. For example, a large earthquake could trigger widespread
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shaking, landslides, tsunami, fires, onshore ground subsidence, liquefaction, and further large earthquakes via a
prolonged sequence of aftershocks. These effects could then create their own cascading series of further potential
impacts. An earthquake on the HSZ is one of the most likely sources of offshore tsunami hazard for the several
major New Zealand cities on the North Island (Power et al, 2022) and it is also one the largest single sources of
seismic hazard to these cities, including New Zealand’s capital city Wellington (Gerstenberger et al, 2022). To
better prepare for, and mitigate, the effects of a large earthquake on the HSZ as many as possible of the combined
perils that could be caused by the earthquake should therefore be considered.
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Figure 1: New Zealand within the seismotectonic context of subduction between the Pacific and the Australian tectonic
plates; Grey circles symbolize the 5.0 <Mw < 7.0 earthquakes since 1970; colored circles symbolize the Mw7.0+
earthquakes since 1900 (USGS catalogue)

Natural hazard risk assessments are traditionally carried out on individual hazards in isolation. This type of
approach can be referred to as “single hazard” as opposed to a more holistic “multi-hazard” approach. Global
scientific interest has been building over the last few years toward improving the quantification of risk by taking
into account the potentially disastrous combination of multiple hazards, where the interactions between perils, or
between cascading perils, are considered (e.g., Kappes et al 2012, Zariirova et al, 2019). For example, the necessity
for a “holistic and multi-hazard approach to disaster risk management” (ISDR 2007) has been called for as part
of the Hyogo Framework for Action. The 2011 Mw9.1 Tohoku earthquake and subsequent tsunami precipitating
the Fukushima nuclear disaster (Pescaroli & Alexander 2015), the 2018 Mw?7.5 Palu earthquake (severe shaking

and tsunamis with extensive landslides, liquefaction and mudflows; Goda et al. 2019) and the 2008 Mw7.9
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Wenchuan earthquake with seven episodes of extraordinary hazards impacting the Sichuan area (earthquake,
multiple large landslides, dam-breaching floods, large-scale debris flows, severe sedimentation, change of river
course, and flooding/scouring; Zhang et al. 2014; Fan et al. 2019) are three global examples highlighting the
amplifying effect of cascading and multisource hazard systems. New Zealand has also experienced the disruptive
60 effect of multi-hazards and cascading effects. For example, in the 2010-2012 Canterbury earthquake Sequence
(ground shaking, landslides and liquefaction) and during the 2016 Kaikoura earthquake (earthquake shaking,
landslides, tsunami, landslide dams and floodplain subsidence; Hughes et al. 2015; Robinson & Rosser 2017).
Cyclone Gabriel 2023 caused flood and rainfall induced landslides in New Zealand’s North Island (ref) - plus
cascading impact to infrastructure. Interactions within and across possible event chains can be complex and can

65 involve a range of both geological and meteorological perils.

For the purposes of this paper, we define “cascading hazard” to be a hazard which has a causal link to the triggering
event, possible via other perils. We are not including in this study the potential impact from coincidental perils,
such as a tsunami that coincidentally arrives at the same time as equinox high tide or storm surge, or any changes

70 to the risk due to long-term changes like, for example, the climate.

1.1 Multi-hazard Risk Assessments

Existing methods for multi-hazard risk assessment can be classified into qualitative, semi-quantitative and
quantitative (Kappes et al. 2012, Zharikova et al. 2019). For qualitative methods the hazard intensity and
recurrence interval limits are predefined and are then used to classify each of the perils into several classes. The
75 value boundaries are usually determined by the location or objectives of the assessment. However, it is difficult
to compare information from different sources in these types of assessments since most assessments have different
criteria (Marzocchi et al. 2009).
Semi-quantitative methods typically use index-based approaches to represent risk on a standardized numerical
scale (Kappes et al., 2012). With indices, the risk is given a score usually on a continuum. For example, this score
80 could be calculated by multiplying the frequency of the peril per annum by the number of people (or the area)
affected by it. If the index is needed for multiple perils combined, they are usually summed together from the
individual perils. Both qualitative and semi-quantitative methods treat multiple perils as being independent. It is
therefore difficult to consider the relationship between the perils within these frameworks.
In the context of risk reduction, quantitative methods offer advantage with the ability to quantify impact or risks
85 and evaluate risk reduction measures thereby supporting decision making. Tilloy et al. (2019) did an extensive
review of quantitative methods dealing with interconnected hazard and classified quantitative approaches into
three techniques: stochastic, empirical, and mechanistic. Stochastic methods consider the statistical dependency
between occurrence and intensity of hazards. For stochastic methods, the purpose is either to model the
distribution of each individual hazard (Hao & Singh 2016; Liu et al. 2018), or to model the joint probability
90 between hazards (Sadegh et al. 2018). The empirical method uses existing datasets to fit probability distributions.
The accuracy of the fit can be quantified using dependence measures like Pearson or Spearman (Cdado, 2019), or
regressions (Petroliagkis et al. 2016). The limitation of the empirical method is its dependency on data, and data
is often limited in number due to rarity of mega events occurrence and damage information recorded. Mechanistic
methods have been widely used by risk scientists for computing the potential impact of natural hazard events.

95 However, the intensive nature of the computation makes them difficult to use for probabilistic risk assessment

3
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and hence there can be bias toward a particular set of outcomes (Geist et al. 2009). Tocchi et al (2023) propose a
multi-risk framework by integrating probabilistic hazard data (earthquakes and floods) with exposure and
physical/social vulnerability indicators at the municipal level. A weighted, normalized aggregation produces a

composite risk index to support disaster risk reduction prioritization.

100 1.2 Earthquake Hazard and Risk Assessment

Probabilistic earthquake risk assessments generally focus on one earthquake peril, typically seismic stochastic
models with many of the parameters constrained through empirical methods and, sometimes, physical modelling.
For probabilistic seismic hazard assessments, it is common practice to model the expected level of ground shaking
and its variability due to site effects and aleatory uncertainty using ground motion prediction equations (GMPEs)
105 across a region. Examples of these types of models span local (e.g., Burbidge et al, 2019a), national (e.g., Burbidge
et al, 2012, Leonard et al, 2014, Gerstenberger et al, 2022) to global scale (e.g., Johnson et al, 2023).
It is much rarer for a probabilistic earthquake impact or risk assessment to consider a combination of earthquake
induced perils. The most common method to incorporate the cascading effects of earthquakes is to focus on one
or two earthquake scenarios and cascades (e.g., Power et al., 2018; Burbidge et al., 2019a; Kianrad et al., 2019).
110 These are often done for a particular cascade of secondary effects (e.g., Power et al, 2018) in a deterministic or
expert judgment-based approach or are done probabilistically but without fully quantifying the uncertainty and
variability in the final loss estimates (e.g., Kianrad et al, 2019). The paper by Iannacone et al. (2024) introduces a
simulation-based methodology to generate multi-hazard event sets over a system's life cycle, accounting for Level
1 (occurrence-based) interactions. Utilizing competing Poisson processes and sequential Monte Carlo sampling,
115 the approach models concurrent, triggering, and altering interactions among hazards, producing realistic event
sequences.
Two earthquake-induced perils that have been combined to calculate the combined probabilistic losses are those
from strong ground shaking and tsunami (e.g., Goda 2020). In Goda (2020) the earthquake occurrence was
represented by a set of multiple renewal models, implemented using a logic-tree approach, whereas earthquake
120 rupture characterization is based on stochastic source models with variable fault geometry and heterogeneous slip
distribution. By integrating these hazard components with seismic and tsunami fragility functions, the author
calculated the time dependent multi-hazard loss potential from the combined impact of ground shaking and
tsunami for some coastal communities in Japan. However, that study only considers the direct losses caused by
shaking, not the losses caused by the cascading impacts of shaking such as liquefaction and earthquake induced
125 landslides, both of which have been commonly observed in New Zealand following large earthquakes (e.g., during
the 2010-2011 Canterbury Earthquake Sequence and the 2016 Kaikoura earthquake).
One probabilistic approach that captures the uncertainties in the ground motion modelling and its variability across
the sites, the triggered cascading hazards, and the uncertainties in the asset’s performance for a specific earthquake
is presented by Moratalla and Uma (2023). In that study they first created an event tree of possible cascades from
130 a Mw8.4 earthquake offshore Napier and then used Monte Carlo Simulation to determine a range of possible
series of disruption outcomes to the road network for that specific earthquake. The study included the combined
effect of shaking, liquefaction, lateral spreading, landslides and building collapse on the road network, but did not

include tsunamis or consider a range of possible earthquakes. It thus could not calculate impact metrics such as



https://doi.org/10.5194/egusphere-2025-5884
Preprint. Discussion started: 19 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

annualized probabilistic loss or risk exceedance curves from the combined effects of these earthquakes induced
135 perils which require assessment of the risk across a range of earthquakes, rather than just one scenario.

Dunant et al. (2021) proposed a novel method for probabilistic cascading multi-hazard risk assessments using

graph theory. The framework was tested in Franz Josef, New Zealand, and included impacts from earthquakes,

landslides, and floods to housing and road infrastructure. One major advance provided by that study was the

inclusion of non-dependent perils such as geological and meteorological hazards in a multi-hazard approach

140 capable of combining them.

1.3 Objectives of this study

The work presented herein aims to first create a probabilistic framework for quantitatively estimating the
combined impact, in terms of physical damage states and corresponding damage ratios (DRs), from earthquakes
resulting from one or more faults’ ruptures. The impacts will include those caused by the ground shaking, the
145 tsunamis produced by the earthquakes and the cascading effects caused by the ground shaking (i.e. landslides,
liquefaction and lateral spreading). The uncertainty in the hazards, and the damage they cause, will be
concatenated (i.e., combined) using a Monte Carlo Simulation approach, described in detail in Sect. 2.
The key advantage, and novel, of this proposed framework is that it generates hazard intensities that are internally
consistent across all perils within each earthquake event. This would allow the creation of realistic, event-driven
150 cascading hazard scenarios where secondary impacts were conditionally linked to the primary seismic event
parameters. The process would be repeated across all stochastic event sets (SES), enabling the construction of
long-term, statistically robust hazard and damage distributions that capture both frequency and interdependence
among hazards.
We then demonstrate the framework through a case study for earthquakes occurring on the HSZ affecting the
155 residential buildings in Napier City, New Zealand (see Sect. 3).
Potential users of these risk metrics include asset owners, emergency managers, and government agencies. These
risk outputs could be utilized for various purposes, such as land and emergency planning, prioritizing mitigation
efforts, enhancing preparedness and resilience against cascading earthquake hazards, as well as planning and

budgeting for recovery.

160 2. Methodology
2.1 A Monte-Carlo based approach for cascading hazards

In this study, we propose a Monte Carlo Simulation (MCS)-based framework to estimate the impact of earthquakes
and their cascading hazards on the built environment. The framework is designed to model the effects of ground
shaking, liquefaction, tsunami inundation, lateral spreading, and earthquake-induced landslides, using a synthetic
165 catalogue of earthquakes. The results generated include Damage States (DS), which represent discrete levels of
structural damage ranging from slight to complete. These are harmonized across all perils using a unified five-
level classification developed in this study, based on existing fragility models such as those in HAZUS (2013)
and Suprasri et al. (2013). In addition, the framework estimates mean damage ratios (MDRs)—representing the
proportion of repair cost relative to full replacement—assigned to each harmonized DS using values derived from

170 the HAZUS methodology.
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2.2 Required Inputs

The implementation of the framework requires the 6 following components:

(1) Earthquake Catalogue: A stochastic catalogue of earthquakes affecting the study area, including rupture
geometries, magnitudes, and recurrence information. For example, in the case study presented in this study we

175 use a 100,000-year synthetic catalogue of Hikurangi Subduction Zone (HKSZ) earthquakes, developed using
Event-Based Probabilistic Seismic Hazard Assessment (PSHA), the magnitude-frequency distribution (MFD)
based on the 2022 New Zealand National Seismic Hazard Model (Gerstenberger et al., 2022) and implemented
in OpenQuake (GEM, 2019).

(2) Ground Shaking Footprints: Ground motion intensity fields (e.g., Peak Ground Acceleration, PGA)
180 generated for each event in the earthquake catalogue using Ground Motion Prediction Equations (GMPEs).

(3) Tsunami Inundation Depths: Inundation models triggered by each earthquake rupture capable of
inundating the region of interest, providing water depth footprints.

(4) Cascading Ground Shaking Hazard Models: These include models for earthquake-induced landslides,
lateral spreading, and liquefaction, which compute hazard intensities conditionally based on ground shaking.

185 (5) Fragility Functions: Harmonised peril-specific fragility models that relate hazard intensities to structural
damage probabilities for different building types.

(6) Exposure Model: A dataset of buildings including location and construction characteristics, used to assign
appropriate fragility functions.

2.3 Framework Workflow

190 Each earthquake in the catalogue is analysed using an MCS-based approach, which simulates damage from each
individual peril and the combined effects of cascading hazards. The overall procedure, detailed in steps 1-9 and
illustrated in Figure 2, is as follows:

1) Event Selection: A single earthquake event is selected from the stochastic catalogue (see Sect. 3.1).
2) Shaking Intensity Modeling: GMPEs are used to generate a ground shaking footprint (e.g., PGA, PGV)

195 for the event at all exposure locations.

3) Tsunami Inundation Modeling: The earthquake ruptures are used to model tsunami generation and

inundation depths, which are mapped to exposed assets (Sect. 3.3).

4) Liquefaction Severity Modeling: Liquefaction Severity Number (LSN) is calculated using local

geotechnical conditions and shaking intensity (Tonkin & Taylor, 2013). LSN is sampled from a Poisson
200 distribution within predefined susceptibility zones (Sect. 3.2.3).
5) Lateral Spreading Modeling: Lateral Displacement Index (LDI) is calculated per site using

geotechnical data, slope angle, distance to a free face, and shaking intensity (Zhang et al., 2004). The
resulting displacements are assigned to exposed buildings (Sect. 3.2.4).
6) Landslide Modeling: Landslide probabilities (EILP) are calculated from an earthquake-induced
205 landslide susceptibility model to identify potential landslide source areas (Massey et al. 2021b, 2022).
Landslide runout modeling identifies potential debris-inundation areas should a landslide occur (Brideau
et al. 2020, 2021; Massey et al. 2021a). The resulting probabilities are assigned to exposed buildings
(Sect. 3.2.5).
7) Damage Estimation: For each peril, the corresponding hazard intensity at each building is passed to the
210 assigned fragility function to compute damage state (DS) probabilities. A uniform random number is

used to sample the final DS from these probabilities.
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8) Damage State Harmonization: Damage states from all perils are combined into a single harmonized

damage state for each asset, reflecting the aggregated effects of shaking, tsunami, and secondary seismic

hazards (Sect. 3.2.7).

9) Damage Ratio Assignment to Damage States: Once the harmonized damage state (DS) is determined

for each asset, a corresponding damage ratio is assigned to represent the proportion of structural loss.

This is done by mapping each DS to a predefined mean damage ratio (MDR), following established
relationships such as those proposed in the HAZUS methodology (FEMA, 2020). The MDR values vary

by building type and occupancy class, and are typically expressed as a fraction of total replacement cost

(e.g., DS1=2%, DS5 =100%). In this framework, damage ratios are sampled from a defined distribution

(e.g., triangular or normal) centered on the mean, enabling further use in loss estimation or economic

impact analysis if desired.

For every event in the catalogue, multiple Monte Carlo Simulations (MCS) are performed to sample the hazard

intensities from their uncertainty distributions and damage states are also sampled from their corresponding

damage state probabilities, resulting in randomly sampled damage state scenarios from every simulation. The

probabilistic sampling in the MCS allows the generation of a number of different damage scenarios. The number

of MCS’s required to achieve stable mean damage estimates for each event in the catalogue can be determined

via convergence analysis. Due to the inclusion of multiple hazards and uncertainty sources, the minimum number

of scenarios (N) needed for convergence is typically higher than in single-peril models.
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Figure 2: Damage state (DS) and Damage ratio (DR) calculation diagram for each simulation (i) performed for every
event in the stochastic catalogue.
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3. Case study: Napier City
235 3.1 Introduction

Napier City was selected as a pilot study area to test the cascading hazards framework developed in this work.
Situated on the eastern coast of New Zealand’s North Island, the city lies directly above the Hikurangi Subduction
Zone interface (Williams et al., 2013) and less than 200 km from the subduction trench, making it highly exposed
to seismic and tsunami hazards, as well as to cascading effects arising from intense ground shaking (as shown by
240 the historical examples in S1)
Liquefaction represents a major threat due to the prevalence of loose sedimentary deposits and a high groundwater
table, while the proximity of water channels to residential areas enhances the potential for lateral spreading. The
city also exhibits potential for landslides triggered by seismic shaking, particularly on surrounding slopes.
Furthermore, its coastal position facing the Hikurangi Subduction Zone increases vulnerability to earthquake-
245 induced tsunamis, as well as to possible submarine landslide-generated tsunamis. The coexistence and
interdependence of these hazards underscore Napier’s pronounced susceptibility to cascading impacts, justifying
its selection for the application and validation of the proposed framework. Sect. 3, along with the corresponding
Supplementary Material (S1 to S8), include the details of the hazards, exposure and fragility modelling for this

case study.

250 3.2 Hazard modelling
3.2.1 Earthquake

For this case study we generated a 100,000-years stochastic earthquake catalogue using the Hikurangi Subduction
Zone (HSZ) as the sole seismic source (Williams et al., 2013). The catalogue was produced with OpenQuake
(GEM, 2019), using the Hikurangi Magnitude—Frequency Distribution (Gutenberg—Richter a and b values) based
255 on the Distributed Seismicity Model of the New Zealand National Seismic Hazard Model (Rollins et al., 2022).
The HSZ was assumed capable of hosting events up to Mw 9.1, and Ground Motion Prediction Equations
(GMPEs) for subduction interface events were selected following the latest model recommendations
(Gerstenberger et al., 2022), with site effects incorporated through the mean shear-wave velocity in the upper 30
m (Vsso). The subduction interface geometry, recurrence implementation, and ground-motion modelling details

260 are described in more detail in S2.

3.2.2 Tsunami

To calculate the tsunami inundation, we first stochastically generate slip distributions for a set of earthquakes of
different magnitudes at a set of points distributed along the HSZ. Simulating tsunami inundations with a
hydrodynamic model at the resolution used in this study comes at a considerable computational cost. This meant
265 that we had to limit the number of tsunami models in order for the project to be tractable. To help with this, the
scenarios were carefully selected to include only those ruptures most likely to generate inundation in Napier,
taking into consideration the city’s unique topographic setting, notably which coast acts as a natural barrier against
tsunamis of small to moderate heights (e.g., elevated topography and presence of large coastal gravel ridges). In
the end, 33 scenarios were selected spaced with centroids spread along the HSZ. The scenarios ranged in moment

270 magnitude from 7.5 to 9.1. For each of these 33 scenarios, 10 variations of non-uniform slip distribution were
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calculated, and the resulting 330 models were then run through to inundation using the tsunami hydrodynamic
model, COMCOT on a set of nested grids, including a 10m resolution grid covering Napier and its neighbourhood.
The flow depth at each building in the city was then extracted from each of these tsunami scenarios. During the
MCS process, described below, the tsunami scenario for a particular earthquake realisation is randomly chosen
from the 10 possible slip variations in the tsunami inundation model library which were closest to the epicentre
and magnitude of the earthquake in the stochastic catalogue. For the purposes of this case study, each of the 10
possible slip variations is assumed to be equally likely. Further details of how the tsunami scenarios were created

can be found in S3.

3.2.3 Liquefaction

Liquefaction susceptibility zones defined by Rosser and Dellow (2017) were adopted to represent the spatial
variability of liquefaction potential across Napier City. These zones, derived from geomorphological and
sedimentological mapping, were used to delineate six liquefaction susceptibility areas in this study (Figure 3a).
To enhance the confidence in the 2017 maps, seventeen additional cone penetration tests were analysed for
liquefaction susceptibility, using the existing parameters from the 2017 work and new knowledge gained since
then (Griffin 2024).

For each susceptibility zone, borehole data were compiled and grouped, and their properties within the upper 10
m were analyzed to characterize material variability. The corresponding CPT-derived Liquefaction Severity
Number (LSN, Tonkin & Taylor, 2013) values were fitted to normal distributions, enabling a probabilistic
representation of LSN variability within each zone. This statistical approach captures the spatial variability in
liquefaction response across Napier and is used in the subsequent hazard and risk analyses.

Further methodological details, including CPT processing, software implementation, and the derivation of LSN

distributions under variable earthquake scenarios, are provided in S4.
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3.1.4 Lateral spreading

Liquefaction induced lateral displacements (LD) were estimated based on the method proposed by Zhang et al
(2004) to first calculate the Lateral Displacement Index (LDI) and further include the influence of ground slope
300 with and without a free face. This approach is recommended to be used for earthquake magnitudes between 6.4
and 9.2, and peak ground accelerations between 0.19 and 0.6 g. Areas with potential for lateral spreading were
identified by mapping free faces and surface slope in areas with liquefaction potential and mapping their attributes
to the building locations. Then, the Lateral Displacement Index (LDI) was estimated using the approach by Zang

et al, (2004). Further information about how this peril was calculated is also provided in S5.

305 3.1.5 Landslides

While most of the study area across Napier is flat, the areas in, or adjacent, to steep topography are potentially
vulnerable to landslide impact. The terrestrial risk from Earthquake-induced Landslides (EIL) was estimated based
on the methods proposed by Brideau et al. (2020, 2021) and Massey et al. (2021a). Underwater landslides, which
could potentially cause a tsunami, are not considered in the present study.

310 Co-seismic landslide probabilities were modelled using the New Zealand Earthquake-Induced Landslide Forecast
Tool (Version 2.0) (Massey et al., 2021b; 2022), which estimates regional landslide probability as a function of
ground shaking intensity, topography and geology. The model was run for ten uniform PGA levels (0.2-3.0 g) to
capture the range of shaking expected from the maximum event in the stochastic catalogue (Mw 9.1 HSZ
scenario).

315 Slope units were delineated from the NZ 8 m DEM, which were refined into source regions using empirical
relationships between slope, local slope relief, and landslide occurrence derived from the Kaikoura Earthquake
Inventory (Jones et al., 2024). For each source region, the maximum landslide volume class was defined, and the
probability of each class was determined from the Kaikoura EIL frequency-area distribution.

Landslide runout extents were modelled using empirical landslide runout relationships, which use the

320 Fahrboschung angle to estimate the runout distance for each volume class (Brideau et al. 2020, 2021; Massey et
al. 2021a). Only open-slope dry rock and debris avalanches (OSD) were considered, as they are the most
representative earthquake-triggered landslide type. Buildings intersecting either the landslide source regions or
debris-inundation polygons were identified for subsequent risk simulations (Figure 4). Further methodological

details for each of these steps are presented in S6.

10
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Figure 4: a) Example of the seven landslide volume classes within a single source region. b) Example of the runout for
each of the seven landslide volume classes within a single source region. The slope units, source regions and landslide
volume classes are defined

3.1.6 Exposure modelling

A national building inventory developed by Scheele et al. (2023) was used to represent the residential building
stock in the study area. The dataset provides building locations and key structural attributes required for risk
modelling. From this inventory, 38,344 residential buildings within the Napier City Territorial Authority were
extracted for analysis.

Residential buildings are primarily exposed to earthquake ground shaking, with additional exposure to
liquefaction, tsunami, lateral spreading, and landslide hazards. Due to the soil conditions across Napier City,
liquefaction is expected to be the most significant secondary hazard (Table 2). Further details on the building

inventory compilation and data matching procedures are provided in S7.

Table 1: Buildings exposure against the different hazards

No. buildings %

All 38344 100 %

Earthquake shaking 38344 100%

Liquefaction 33905 88%

Tsunami 17073 45%

Lateral spreading 15478 18%

Landslide 6612 17%

3.1.7 Fragility/vulnerability modelling

Building fragility functions express the probability of exceeding a given damage state (DS) for a specified
intensity measure (e.g., PGA). Damage states qualitatively describe structural damage, typically ranging from

minor to complete, with two or three intermediate levels commonly defined (e.g., HAZUS 2.1). Fragility models
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345 are developed using either empirical data, based on observed post-event damage, or analytical methods, where
structural response to hazard demand is modelled (Xin et al., 2020).
Earthquake damage was estimated using HAZUS 2.1 functions, which define four structural damage states (slight,
moderate, extensive, complete) for major building types. Buildings in Napier were classified by material, height,
and age. Each fragility curve follows a lognormal distribution, and damage ratios (DRs) were assigned as: slight
350 =0.15, moderate = 0.3, extensive = 0.7, complete = 1.0.
Tsunami damage used empirically derived fragility functions from Supprasri et al. (2013), based on post-2011
Great East Japan Tsunami data. Six damage states were simplified into four representative DRs: minor = 0.1,
moderate = 0.2, major = 0.7, and complete/collapse = 1.0.
Liquefaction effects were modelled as an aggravation factor (A) applied to earthquake fragility exceedance
355 probabilities, using LSN as a proxy for severity: LSN (0-15] A=1.1; (15-25] A=1.3;>25 A=1.5, capped at 100%.
Lateral spreading damage was modelled using permanent ground displacement (PGD)—based fragility functions
from HAZUS, with four damage states consistent with the ground-shaking model.
Landslide impacts were represented using a rule-based approach, classifying damage by the degree of overlap
between the building footprint and the runout area: no overlap = no damage; partial overlap = moderate; full
360 overlap = complete.
In multi-hazard risk assessment, particularly when evaluating cascading impacts from cascading hazards, a key
challenge arises from the need to integrate damage estimates derived from different fragility models, each with
their own damage state definitions and granularity. This process, known as damage state harmonization, involves
mapping and aligning the distinct damage classifications used for different perils into a unified framework.
365 The harmonized damage stated are summarised in table 3. Detailed description of the harmonized damage states
are included in S7.

Table 2: Unified five-level damage state framework developed to integrate disparate fragility model outputs for
shaking, liquefaction, lateral spreading, tsunami, and landslide hazards. The harmonization ensures consistency in
structural damage interpretation across cascading hazard scenarios.

Harmonized Label Shaking Liquefaction Lateral Tsunami Landslide
DS Spreading

DS1 Slight Slight Slight Slight Minor No debris
affects
building

DS2 Moderate Moderate Moderate Moderate Moderate No debris
affects
building

DS3 Severe Extensive Extensive Extensive Major Debris
affects part
of the
building
footprint

DS4 Complete Complete Complete Complete Complete Entire
footprint
covered by
debris

12
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DS5 Collapsed/ — — (implicit) — (implicit) = Collapsed / —
Washed (implicit) Washed (implicit)
away away

370

Damage Ratios (DRs) represent repair costs as a percentage of a building’s replacement value. Because DRs vary
with construction characteristics, damage severity, and repair practices, they are modelled as random variables
rather than fixed values.
Damage Ratios (DRs) express repair costs as a percentage of a building’s replacement value and were assigned
375 to each asset based on the harmonized damage states from the cascading hazard framework. Mean DR values
were adopted from the Structural Repair Cost Ratios in HAZUS (HAZUS, 2013), mapped to the five-level damage
scale used in this study. Because HAZUS provides only mean values, uncertainty was represented using a
triangular probability distribution with bounds of +30% around the mean. During each Monte Carlo simulation,
DRs were randomly sampled from this distribution to reflect variability in repair costs while maintaining
380  consistency with standardized engineering assumptions.
This study focuses exclusively on structural damage; potential losses to non-structural elements and building
contents are not included in the damage or cost estimates. It is also recognized that HAZUS damage ratios are
primarily calibrated for earthquake-induced losses, whereas other hazards may produce different damage
mechanisms and cost relationships. Future work should therefore incorporate peril-specific damage ratios to

385 enhance the accuracy of multi-hazard impact assessments.

3.2 Convergence analysis

A convergence analysis was conducted to assess the statistical stability of mean damage ratios (MDR) derived
from the stochastic seismic simulations. Convergence refers to the point at which the cumulative mean MDR
stabilizes with minimal variation as the number of simulations increases—a principle rooted in Monte Carlo—
390 based uncertainty quantification (Burt and Garman, 1971; Ata, 2007). Two convergence tests were performed.
The first evaluated site—event level convergence, where a single building was repeatedly exposed to a given
earthquake event to determine the number of realizations required for MDR stability. The mean MDR stabilized
within a 2% threshold after approximately 120—180 simulations, so 200 simulations per event were modelled

(Figure 5).
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Figure 5: Cumulative mean damage ratio (MDR) for four representative buildings across 500 stochastic damage
simulations of a single Mw7.15 earthquake event. Each curve shows the progressive average MDR per building, with
horizontal dashed lines indicating £2% bounds around the final cuamulative MDR value.

The second test assessed catalogue-level convergence, examining how many unique events were required for the
400 cumulative MDR to stabilize across the stochastic earthquake catalogue. The results show that stability was
achieved within £2% after 20,000-30,000 events, with full convergence reached at 45,000 events (Figure 6).
These findings confirm that the 100,000-year event catalogue provides a statistically sufficient basis for robust

risk estimation.

Convergence Analysis of Damage Ratio (4 Buildings)
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405 Figure 6: Cumulative Mean Damage Ratio (MDR) convergence for four representative buildings under the full
stochastic earthquake catalogue. Each colored curve represents the evolving MDR as a function of the number of
contributing events, while dashed lines indicate £2% bounds from the final cumulative mean.

3.3 Results

The framework proposed in this work is capable of providing damage state (DS) level results and damage ratios
410 (DR) at each asset location. Results can then be processed to present area-wide outputs such as regional damage
state curves vs return period, mean damage ratios from combined and dissagregated perils, or annual average

mean damage ratios.
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Results for the case study proposed — impacts from the Hikurangi Subduction Zone earthquakes and cascading
hazards to Napier City’s residential building portfolio- are presented as follows:

415 1. Regional damage states: Return period curves for damage states can be used to characterize urban
resilience by quantifying the probabilities of structural damage over time. Results can be presented in the
form of exceedance probability curves of different damage states and the proportion of buildings under
a certain damage state at different return periods. The DS exceedance probability per year (P) is

calculated as follows:

420 P(DS>x) = Npuildings(DS2x) 3)

Nbpuildings

Then, the return periods are obtained as:

RP; = “

Nyears+1
i

Where i is the i-th largest exceedance probability for damage state DS > x.
Figure 7 illustrates the distribution of exclusive damage states (DS0-DS4) in Napier City as a function
425 of return period for earthquakes on the HSZ. The bars indicate that the damage level increases with
hazard intensity. Minor damage (DS >1) becomes noticeable beyond ~100-year events, while extensive
damage and collapse (DS >3, DS >4) remain unlikely until return periods exceed ~500 years. At extreme
return periods (10,000—100,000 years), the probabilities of higher damage states rise sharply, with DS
>3 and DS >4 approaching or exceeding 50%, showing that severe shaking is required to trigger
430 widespread collapses. The spacing between the curves emphasizes the greater fragility to slight damage
compared to complete failure.

Exclusive Damage State Probabilities by Return Period (DS4 at Bottom)
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Figure 7: Proportion of buildings in the area of study at different damage states for different return periods.

2. MDR Return Period curves: Resulting mean damage ratios (MDR) can be presented as exceedance
435 probability curves (EP curves) for a given time interval (e.g., 1 year), or return period curves, which

represent the estimated period at which a given loss will be exceeded. Results can be disaggregated by
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hazard and also combined in a MDR curve.

The MDR for an event j is calculated as:

1 Npuitdi
MDR; = ———— ybuitdins DR, (5
J Npuildings Zl_l Y ( )
440 Where DRij is the damage ratio for building i under the event j. Results per year can then be sorted by

increasing MDR and RPs calculated as in Equation (4).
When disaggregating the results for each peril, results can be expressed relative to the total exposure in
the area considered (Total mean damage ratio, TMDR), or relative to the areas exposed to the different
hazards (Relative Mean Damage Ratio, RMDR). Each result provides a different view of the risk, the
445 first, TMDR, shows how each hazard contributes, separately, to the expected losses ; the second, RMDR,
presents how each hazard contributes to loss of its respective exposed buildings.
Figure 8 shows the TMDR and RMDR results for the Napier City case study. At the smaller return
periods the losses are primarily from the ground shaking (red curve) and liquefaction (orange curve) as
expected. At longer periods the losses from the other perils start to contribute to the total loss, with the
450 losses from tsunami (blue curves) becoming comparable to ground shaking and liquefaction at very long
return periods above about 10,000 years. The losses from EILs (green curves) are a relatively small
proportion of the total loss, as shown by the TMDR figure, but this is mainly due to the relatively small
amount of exposed assets to EILs in this case study region (Table 2). As shown by the RMDR curve,
EILs start to impact buildings in their exposed area quite significantly for return periods above about 50-

455 100 years.

100 0
a) —— Ground shaking b) = Ground shaking
Shaking and liquefaction 2227 shaking and liquefaction
—— Tsunami inundation —— Tsunami inundation
—— Lateral spreading Lateral spreading
Landslides 2 —— Landslides
=== Mean === Mean

TMDR
RMDR

10! 10? 10° 10* 10! 102 10° 104
Return Period (years) Return Period (years)

Figure 8: a) Total mean damage ratios (TMDR) and b) Relative mean damage ratios (RMDR) expected in Napier
City disaggregated for earthquakes on the HSZ for each peril considered in this study.

3. Annual average mean damage ratio (AAMDR): We have also calculated the average annual MDR for
460 the 100,000-years stochastic catalogue. The length of the catalogue was selected based on a convergence
analysis, which concluded that 100,000 years was of a sufficient length. The AAMDR can be calculated

as:

AAMDR = ¥¥., P, - MDR; (6)

465 Where N is the total number of simulated hazard events, Pj is the annual probability of event j (typically

1/Nyears if all events are equiprobable) and MDR is the mean damage ratio for an event j.
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4. A1 km regular grid was generated across the study area, and the average annual mean damage ratio

(AAMDR) for all buildings within each subdivision was computed to map its regional distribution

(Figure 9). Results show clear clustering of damage in areas with high building density (see Figure S9

for reference on exposure distribution) and where multiple hazards occur simultaneously. Additionally,

zones identified as landslide-prone display elevated AAMDR values, indicating the significant influence

of local topographic effects on the spatial pattern of cascading hazard impacts.
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Figure 9: Regional distribution of the average annual mean damage ratio of combined effect of earthquakes on the
HSZ and the cascading hazards considered in this study.

4.0 Discussion and conclusions

In this study we have described how to create an internally consistent framework for calculating earthquake risk,

including both primary and secondary perils, and applied it to a case study region in Napier City, NZ. All hazard

intensities and their associated damage states are sampled in a statistically coherent manner for each event within

a Monte Carlo framework, preserving the physical and causal relationships among hazards. This makes a
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difference with the more common alternative approach of simulating each hazard independently, adding the
advantage of capturing the inter-hazard intensity correlations inherent to each event realization.

From the damage state analysis of the area of study (Figure 7), the building stock in Napier City appears able to
withstand more frequent, moderate earthquakes with minor damage — most structures stay intact or only slightly

485 affected in events up to ~100-year return period, which suggests a reasonable performance for everyday seismicity
from the HSZ. However, the steep rise in damage probabilities and the shift toward predominantly severe damage
at longer return periods indicate that the structures become increasingly fragile under tail events. In rare, large-
magnitude earthquakes on the HSZ, well beyond the typical design level, damage is no longer distributed across
lower states but concentrated in the most severe states (DS3-DS4), meaning widespread heavy damage and

490  collapse caused by strong ground motion and the triggered cascading hazards. This concentration of expected
damage in extreme events points to limited urban resilience against the very largest events — while the city might
quickly recover from moderate quakes, a truly severe HSZ earthquake could overwhelm buildings and
infrastructure. In summary, the results suggest that Napier City’s buildings have a threshold of performance: they
perform adequately under moderate hazard levels, but beyond that threshold the probability of extensive structural

495 failure grows dramatically, posing a significant risk of catastrophic losses and challenging the city’s ability to
respond and recover.

Disaggregated MDR results confirm that earthquake shaking and liquefaction are the dominant damage drivers in
Napier City for HSZ earthquakes, followed by tsunami, lateral spreading, and landslides (Figure 8). The city’s
proximity to the subduction interface makes it highly exposed to intense ground shaking, which emerges as the

500 leading cause of losses.

Tsunami-related losses become comparable to shaking and liquefaction only at very long return periods, reflecting
the low-frequency, high-consequence nature of large offshore ruptures. This behaviour is consistent with tsunami
hazard curves (discussed and presented in S3) which show two main inflection points—around 0.3—-0.5 m and 4—
6 m flow depth. These correspond to, respectively, the early inundation of the Ahuriri estuary and the overtopping

505 of a 4-6 m coastal gravel ridge. Only the largest simulated HSZ earthquakes exceed this ridge, explaining why
severe tsunami damage is confined to the rarest events.

Liquefaction significantly amplifies shaking-induced damage because of Napier’s highly susceptible geological
conditions, confirmed by extensive geotechnical investigations. Its combined contribution with shaking dominates
total losses across most return periods, consistent with historical evidence from the 1931 Mw 7.3 Napier

510 earthquake.

Lateral spreading represents the second most relevant secondary hazard after liquefaction, particularly for
intermediate return periods up to about 2,000 years. This effect is linked to the city’s geomorphology—reclaimed
land and stream corridors prone to liquefaction-induced lateral displacements that exacerbate structural damage
during moderate to strong shaking.

515 Earthquake-induced landslides contribute the least to mean damage ratios due to the limited building exposure in
susceptible zones. However, for assets located within these zones, landslides can still be the second most
significant damage source, as illustrated in Figure 9.

This study shows that the proposed framework provides a robust, internally consistent means to quantify the
impacts of earthquakes and their cascading hazards. The framework can support efforts to strengthen resilience,

520 guide preparedness planning, and ultimately reduce the consequences of future earthquake events on communities.
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