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Abstract. Constraining methane (CH4) emissions at high spatial and temporal resolution is critical for accurate European
greenhouse gas budgets and mitigation policy. We use the Community Inversion Framework to estimate monthly CH4 fluxes
across Europe 2017-2022 at 0.2° x 0.2°, coupling the FLEXPART and assimilating observations from 46 in situ stations,
including ICOS and non-ICOS sites. Prior emissions combine GAINS and EDGARvVS anthropogenic inventories with GFED
biomass burning, JSBACH-HIMMELI wetland fluxes, and climatological natural sources. The inversion markedly improves
agreement with atmospheric observations (1> = 0.87, RMSE = 24.35 ppb, mean bias = —2.14 ppb), performing best at northern
European stations. Posterior EU27+3 CHj totals 23.28 + 0.36 Tg CH, yr!, 6.6 % above the prior. Anthropogenic emissions
average 17.6 £ 0.3 Tg CH, yr™!, exceeding GAINS by 11 %, EDGARvVS by 4 %, and UNFCCC NGHGI (2023) by 3 %, con-
sistent with recent studies. Country-level differences are substantial: emissions are higher in BENELUX (+54 %), Germany
(+37 %), and France (+10 %), and lower in the UK (-11 %), Romania (-25 %), Poland (-16 %), and Italy (-11 %) compared to
UNFCCC NGHGTI (2023). Sectoral changes primarily reflect agricultural increases in western and central Europe, with reduc-
tions in northern wetlands and southern geological sources. Sensitivity tests highlight the influence of horizontal correlation

length and the value of dense observational networks for refining regional CH4 budgets.

1 Introduction

Methane (CHy4) mole fractions in Earth’s atmosphere have nearly tripled since 1750, significantly contributing to a 0.6°C
rise in global temperatures since the pre-industrial era (Saunois et al., 2020; Chen et al., 2022; Shen et al., 2023). The
World Meteorological Organization (WMO) has reported record increases in global methane levels from 2020 to 2021,
with further rises observed in 2022 (WMO, 2023). These increases pose substantial challenges, such as accelerating cli-
mate change, disrupting ecosystems, and complicating efforts to meet international climate goals. In response to these chal-

lenges and the urgent need to mitigate climate change, countries have pledged to reduce methane emissions by 30 % from
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2020 levels by 2030, aiming for a 0.2°C reduction in global temperatures by 2050 (Cael and Goodwin, 2023). Similarly,
the European Commission aims to achieve a climate-neutral Europe by 2050, as outlined in the European Climate Law
(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32021R 1119, last access: 30 October 2025), which mandates
net-zero greenhouse gas (GHG) emissions (Rayner and Jordan, 2016). To effectively meet this goal, strategies must address
reductions in both methane and carbon dioxide emissions, as both are crucial for mitigating global temperature rise. Methane
is a significantly more potent greenhouse gas than carbon dioxide, with a global warming potential 28 times greater over a 100-
year period and 84 times greater over 20 years (IPCC, 2023; Myhre et al., 2013; Saunois et al., 2020). As a result, reducing
methane emissions offers an especially effective short-term strategy for mitigating overall greenhouse gas emissions (Dlugo-
kencky et al., 2011; Kikstra et al., 2022). Achieving this, however, requires accurate estimates of methane emissions. Despite
substantial research, considerable uncertainty remains in identifying the geographic and temporal sources of these emissions.
Current national methane estimates reported to the UNFCCC predominantly rely on bottom-up methodologies, which apply
emission factors to activity data, often supplemented by facility-specific information. However, these inventories are affected
by significant uncertainties, often varying by a factor of two or more (Saunois et al., 2020; Solazzo et al., 2021), primarily due
to the considerable variability in emission intensity across sources such as landfills, gas production facilities, and distribution
networks (Leip et al., 2018). This variability cannot be fully captured by the use of generic emission factors, leading to substan-
tial uncertainty in the resulting estimates. The reliance on uncertain and sparse input data, combined with poorly characterized
emission factors, further undermines the accuracy of these estimates, especially when lacking comprehensive characterization.
Moreover, since NGHGIs by design include only anthropogenic emissions, they do not account for natural methane sources
and sinks. Therefore, complementary top-down approaches are essential to provide a more complete understanding of the total
methane budget and to better constrain both anthropogenic and natural components.

To address these challenges, top-down approaches have increasingly been employed to generate independent, optimized emis-
sions estimates. These methods use inverse techniques that assimilate observational data from in situ and/or satellite obser-
vations. Such estimates help to refine and constrain the data from bottom-up inventories. In recent years, the growing avail-
ability of greenhouse gas measurements and advancements in regional monitoring networks, particularly in Europe and North
America, have significantly bolstered the effectiveness of top-down approaches (Bergamaschi et al., 2015). Numerous atmo-
spheric inverse modelling studies have demonstrated the effectiveness of these approaches in quantifying methane emissions
across regional to national scales. Such analyses have provided essential constraints on source magnitudes and spatial dis-
tributions, thereby informing climate mitigation strategies and policy development (e.g., Bocquet and Sakov, 2013; Saunois
et al., 2020, 2025; Qu et al., 2021; Bergamaschi et al., 2022; Chen et al., 2022; Petrescu et al., 2021; Ernst et al., 2024; Pe-
trescu et al., 2023; Steiner et al., 2024; loannidis et al., 2025). Complementing these scientific efforts, international initiatives
such as the Global Carbon Project (GCP) (Friedlingstein et al., 2022), VERIFY (Petrescu et al., 2021), and EYE-CLIMA
(https://eyeclima.eu, last access: 30 October 2025) have played a central role in developing coordinated frameworks for inde-
pendent, observation-based assessments of greenhouse gas emissions and sinks. These programs integrate atmospheric obser-
vations, bottom-up inventories, and Earth system modelling to enhance transparency, support policy evaluation, and improve

the robustness of emission estimates at regional to global scales. VERIFY, in particular, aimed to develop scientifically robust
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tools for verifying national emission inventories by integrating atmospheric observations, satellite data, emission inventories,
and ecosystem models. Building on these efforts, the EYE-CLIMA project has taken a step further by focusing explicitly on
reducing uncertainties in inversion-based estimates of methane and other greenhouse gases. Similarly, GCP provides compre-
hensive global assessments of carbon sources and sinks, supporting transparency and consistency in reporting and informing
international climate agreements. These coordinated efforts have laid the groundwork for standardized, policy-relevant veri-
fication systems that bridge the gap between scientific research and national reporting. These studies highlight the essential
role of top-down approaches in enhancing the reliability of national methane inventories through independent verification. For
example, Chen et al. (2022) identified a 21 % upward correction needed for the Chinese methane inventory reported to the UN-
FCCC in 2019, demonstrating how top-down methods can uncover significant underestimations in bottom-up data. Similarly,
Bergamaschi et al. (2022) reported elevated methane emissions for Germany, France, and the BENELUX countries in 2018
compared to those reported to the UNFCCC, further showcasing the ability of top-down approaches to reveal higher emissions
than those recorded by bottom-up inventories. In contrast, Bergamaschi et al. (2022) also showed a close alignment between
top-down estimates and both anthropogenic and natural bottom-up inventories for the UK and Ireland, illustrating how these
methods can also validate bottom-up data. Although atmospheric inverse modeling is widely recognized as a valuable tool
for verifying bottom-up estimates (IPCC, 2006), its incorporation into national reports faces several challenges. These include
the limited availability of high-quality atmospheric measurements and uncertainties in transport models. Additionally, most
past top-down studies have focused either on total emissions or on specific regions, often lacking the spatial resolution and
source attribution needed to provide robust estimates at the national or sectoral level. As a result, while progress has been made
in constraining total methane fluxes, there remains a clear research gap in applying inverse modeling to optimize emissions
from individual sectors such as agriculture, waste, fossil fuels, wetlands, and geological sources. This gap limits our ability to
disentangle source-specific contributions, thereby constraining the design of targeted and effective mitigation strategies. Fur-
thermore, the complexity of atmospheric processes and the resource-intensive nature of inversion systems present additional
barriers to integrating top-down estimates into national inventory frameworks.

In this study, we address these gaps by presenting high-resolution atmospheric inversion estimates for CH4 emissions over
Europe, covering the domain between 12° W, 37° E and 35° N, 73° N. Using the Community Inversion Framework (CIF;
Berchet et al. 2021), we apply a 4-dimensional variational optimization approach (4D-Var) driven by footprint estimates from
FLEXPART v10.4 (Stohl et al., 1995; Pisso et al., 2019). The inversion assimilates data from 46 Integrated Carbon Observation
System ICOS and non-ICOS in situ CH4 observation sites across Europe (ICOS RI et al., 2023), providing monthly CHy
emission estimates for the years 2017-2022 at a resolution of 0.2° x 0.2°. In addition to optimizing total methane emissions, our
framework explicitly performs sector-specific optimization, enabling improved quantification of emissions from major sources
including the energy sector, agriculture, waste management, wetlands, and geological sources. This dual approach strengthens
both national-scale reporting and sectoral attribution, bridging a key gap in the current application of atmospheric inversions.
Due to computational expenses of the calculations, sensitivity and uncertainty analyses were conducted using a representative
sample month, serving also as a verification step to identify discrepancies in the optimized fluxes arising from inversion setup

choices. By integrating both total and sector-resolved inversion estimates, our study provides a more detailed spatial and
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source-specific characterization of methane emissions over Europe. These advances are crucial for informing climate policy,
guiding sector-targeted mitigation strategies, and deepening scientific understanding of methane dynamics. The findings have
the potential to substantially improve national reporting accuracy and support global efforts to reduce methane emissions in

line with climate goals.

2 Datasets and Methodology
2.1 CIF-Flexpart Inversion Framework

We perform total and sector-specific methane inversions using the CIF coupled with a Lagrangian transport model FLEXPART
and a 4D-Var optimization scheme, hereafter referred to as CIF-FLEXPART. CIF provides a unified platform for atmospheric
inversions, supporting multiple transport models and enabling consistent assessments of greenhouse gas fluxes and their uncer-
tainties. The posterior estimate is obtained by 4D-Var approach that seeks the optimal state vector x through minimizing the
cost function:
1 _ 1 _

J(x) = 5 (x=%) B (x = x3) + 5 (vo — H(x)) "R (v, — H(x)), (D
where x is the control vector of surface fluxes, x; the prior estimate with covariance B, y, the observed CH4 mole fractions,

and R the observation error covariance. Efficient minimization of the cost function necessitates the computation of its gradient

with respect to the control vector. This gradient is evaluated using the adjoint operator H' of FLEXPART:
VJ(x) =B} (x—x) ~H 'R (y, — H(x)), 2)

which propagates mismatches between observed and modeled mole fractions back into the flux space. The minimization is
performed iteratively using the M1QN3 quasi-Newton algorithm (Gilbert and Lemaréchal, 2009), a limited-memory variant of
the variable metric method, which updates the state vector with each iteration. The iterations continue until the norm of the
gradient falls below a preset convergence threshold, which in this study is set to 0.01 % of its initial value or a maximum of 30
simulations.

Unlike analytical Bayesian solutions, which explicitly compute the posterior covariance, the variational approach efficiently

yields the maximum a posteriori flux estimate in high-dimensional settings. The analytical solution

1

xa =%+ K(y,—H(x;)), K =BH' (HBH +R) ', A= (B"'+H R 'H) . 3)

represents the exact solution, where x, is the posterior (optimized) flux state, K is the Kalman gain matrix, and A is the
posterior error covariance matrix. In high-resolution applications, iterative numerical methods such as MIQN3 provide a
computationally tractable approximation, though the resulting posterior is not identical to the analytical solution. Accordingly,
we adopt a variational 4D-Var framework with iterative minimization to optimize surface fluxes. The prior covariance matrix

B is modeled as:

B=D".C-D 4)
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where D is a diagonal matrix representing relative flux uncertainties, set to 50 % of the prior fluxes for all optimized categories.
The state vector is defined in physical flux units, with each element corresponding directly to the flux of a given category or grid
cell. Accordingly, the variances in D are expressed relative to the prior flux magnitudes, representing proportional uncertainties
in the physical flux values rather than dimensionless scaling factors. The matrix C contains the correlation structure, with
off-diagonal elements modeled using a Gaussian function that decays exponentially with spatial distance r as exp(—r2/1?)
(Gaspari and Cohn, 1999; Peters et al., 2005). The spatial correlation length is set to l;n¢ = 200 km over land and lycean = 500
km over oceans, while the temporal correlation length is prescribed as 90 days.

Observational errors are represented by R, which accounts for instrument precision, model representativeness, and transport
model errors. A minimum uncertainty of 5 ppb is imposed on all station observations to account for ~3 ppb of transport model
error. To avoid biasing surface fluxes, joint optimization of surface emissions and background mole fractions is performed.
Background uncertainties of 0.5 % (~10 ppb) were applied, consistent with previous studies that used values in the range of
0.05-1 % (Thompson and Stohl, 2014; Szénési et al., 2021; Steiner et al., 2024; loannidis et al., 2025). We also tested a lower
value of 0.05 % in sensitivity experiments.

In our setup, we optimize the initial mole fractions together with the fluxes, and the extended control vector is:
X = ) ®)

where f represents the fluxes to be optimized, and c( represents the initial mole fraction. Optimizing ¢ ensures the transport
model starts from a consistent atmospheric state, which is crucial for species like CH4 where early-time conditions affect the
entire simulation. The correlation structure of ¢ is defined consistently with the fluxes, using a Gaussian function that decays
with spatial distance r as exp(—r?2/12) (Gaspari and Cohn, 1999; Peters et al., 2005). The spatial correlation length is set to
liana = 200 km over land and l,ce,n = 500 km over oceans, while the temporal correlation length is prescribed as 30 days. This
formulation allows CIF to adjust both the emissions and the initial atmospheric state to best match the observed mole fractions,
while respecting the prior uncertainties and correlation structures.

For the sector-specific inversion, the control vector x is partitioned into distinct methane source sectors as:

XWetlands
X Agriculture
XEnergy
XWaste
X = | XIndustrial | » X = Z X (6)
XFire
XGeological

XTermites

XOcean
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where sub-vector x; corresponds to emissions from sector ¢. The prior covariance B encodes both uncertainties and cross-
sector correlations, thereby guiding how total flux adjustments are redistributed among sectors. By preserving the correlation
structure in B, the inversion allows sector-specific adjustments to be inferred from total flux constraints. Although this approach
does not replace source-specific tracers (e.g., isotopes or co-emitted species), it provides a first-order quantification of sectoral

contributions to methane variability.
2.2 FLEXPART in the Inversion Framework

We employ the Lagrangian Particle Dispersion Model FLEXPART v10.4 (Pisso et al., 2019), a widely used open-source
transport model for simulating the dispersion and turbulent mixing of atmospheric tracers (Stohl et al., 1995). Within our
inversion framework, FLEXPART is used to quantify source-receptor relationships (SRRs) between surface methane fluxes
and atmospheric observations.

Meteorological input fields were taken from the ERAS reanalysis of the European Centre for Medium-Range Weather Forecasts
(ECMWEF). We use hourly data on 137 vertical levels, regridded to a horizontal resolution of 1° x 1°. These data are pre-
processed for FLEXPART using the FlexExtract toolbox (Tipka et al., 2020). FLEXPART is operated in backward mode:
for each observation, 10,000 pseudo-particles are released at the receptor location and traced backward in time for 10 days.
The resulting surface flux footprints are archived at an hourly temporal resolution with a spatial resolution of 0.2° x 0.2° for
the nested domain and 2° x 2° for the global domain. The dominant atmospheric sink of CHy through oxidation by OH is
explicitly represented in FLEXPART using the CH4 + OH reaction parameters together with 3-D OH fields from GEOS-Chem.
The particle residence time within each grid cell is proportional to the observation’s sensitivity to fluxes in that grid cell,
yielding the source-receptor sensitivity matrix

i
Si j — )
J aq]

)

where S;; represents the sensitivity of observation y; to a surface flux ¢; in grid cell j. These SRRs explicitly account for
advection, turbulence, convection, and deposition processes (Stohl et al., 1995; Seibert and Frank, 2004; Pisso et al., 2019).
For long-lived greenhouse gases such as CHy, it is essential to represent not only local and regional flux contributions but
also the large-scale background concentration (Thompson and Stohl, 2014). CIF accounts for this by employing two types
of sensitivities within the observation operator: (i) surface-flux sensitivities, separated into nested-domain and outside-nested
contributions, and (ii) three-dimensional (3-D) concentration sensitivities that are multiplied by external 3-D mole-fraction

fields to represent the large-scale background. The modeled methane mixing ratio at receptor ¢ is then given by

it = Y SISy a4+ Y S e, ®)
J J k

where Sfje“ and S%“t denote the FLEXPART sensitivities of observation % to surface fluxes inside and outside the nested

domain, respectively, and Sf’,? denotes the sensitivity to the CH4 mole fraction in 3-D grid cell k. For the sector-specific

inversion flux vectors x; can be further decomposed into sectoral contributions z;, Eq. (6) (e.g., agriculture, wetlands, biomass
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burning), such that the flux contribution y** becomes

ﬂux ZZ Sneqt ne st + Z ZSOU[ out. 9)

Thus, each modeled observation combines (i) local and regional flux enhancements, optionally partitioned by sector, and (ii)

large-scale background contributions from external 3-D mole-fraction fields.
2.3 In situ observations of CH4 mixing ratio

We utilised surface concentration measurements primarily from the Integrated Carbon Observation System (ICOS), a compre-
hensive European dataset of atmospheric CH, concentration time series that serves as a crucial input for atmospheric inversion
models. This dataset includes both quality controlled ICOS and non-ICOS observations. Our base inversion setup has assimi-
lated data from 44 in situ measurements sourced from the obspack_CH4_466_GVeu_v10.0_20240729 European CH, time se-
ries (ICOS Rl et al., 2023). Additionally, we included data from two Finnish Meteorological Institute (FMI) stations, Kumpula
and Sodankyl4, which have been identified as reliable observation sites (Tsuruta et al., 2019; Tenkanen et al., 2025). To ensure
robust observational constraints on CH4 emissions, we applied the site selection criteria separately for each year, retaining
only stations with at least 30 days of data coverage in each year. A preliminary screening was performed to exclude stations
for which the model did not adequately reproduce observed variability or magnitude. This screening removed only one site,
Ispra (IPR, Italy), which exhibited consistently low correlation and comparatively high bias relative to observations, consistent
with previous studies (Steiner et al., 2024). In addition, stations TAC and ZSF were excluded because they fell within the same
model grid boxes as WAO and HPB, respectively. Since the two stations in each grid box likely experience identical modelled
conditions, the choice of which one to retain was arbitrary. Furthermore, several mountain stations in the Alps were removed
due to the model’s limited ability to represent complex topography at its resolution. For the sensitivity analysis, an additional
set of 10 stations was included, comprising: (i) the station with poor model—observation agreement (IPR), (ii) stations located
in grid boxes shared with another site, and (iii) the previously omitted Alpine mountain stations. These additional stations
were included in the sensitivity analysis to assess the impact of observation network density. Figure 1a shows the locations
of all observation sites and the nested modelling domain. The study domain spans 12° W, 37° E and 35° N, 73° N and is
hereafter referred to as Domain/Europe. It is further subdivided into subregions: the 27 European Union member states (EU27)
plus the United Kingdom, Norway, and Switzerland (EU27+3); and four subregional groupings (Northern, Central, Western,
and Southern). A detailed list of countries within each subregion is provided in Appendix A Table Al. Figure 1b displays the
daily-averaged concentration time series for each station, calculated over the assimilated hours only (see Appendix A Table A2
for a complete list of stations). For a detailed description of the measurement procedures and data processing, see (Ramonet
et al., 2020; Hazan et al., 2016).

When multiple intake heights were available, such as at the Cabauw station, where intakes were positioned at 27, 67, 127,
and 207 meters above ground level, we chose to use data exclusively from the highest intake height. This approach was
adopted to mitigate the difficulties that transport models encounter in accurately representing concentration gradients close to

the ground, where such gradients tend to be steep and variable. By selecting the highest intake height, we ensured that the
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Figure 1. a) Distribution of the CH4 observational network used in the inversion. Black dots: low-altitude stations (<1000 m a.s.l); blue dots:
high-altitude stations (>1000 m a.s.1). Stations used in the sensitivity analysis are starred. EU27+3 countries are divided into four sub-regions,
color-coded as in the legend. b) overview of daily mean CH4 mole fractions from each assimilated station and ICOS levelling. Data after the

red dot are ICOS-labeled. White gaps indicate periods with no data.

assimilated data effectively represented the characteristics of a well-mixed boundary layer, thereby improving the consistency
of the methane modelled mole fraction (Vermeulen et al., 2011). Vertical gradients of CH4 near the surface are notoriously
difficult to simulate accurately due to factors such as complex local meteorology, surface interactions, and diurnal changes
(Peltola et al., 2015). To mitigate these issues, we use recommended quality-controlled observations during periods when
vertical gradients are expected to be lower, thus reducing potential errors in transport model simulations. For low-altitude sites
(<1000 m a.s.l.) over relatively flat terrain, we assimilate 3-hour afternoon averages (14:00-16:00 LT), when the boundary
layer tends to be well mixed and vertical mixing is strong. For high-altitude or mountainous sites (> 1000 m a.s.l.), we instead
use 3-hour night-time averages (02:00-04:00 LT). These conditions are more likely to reflect free-tropospheric conditions and
reduce contamination from daytime valley winds, which are challenging to represent at coarse model resolution. By focusing
on these windows, we aim to mitigate biases associated with shallow, stable nocturnal layers and poorly resolved slope/valley
circulations, thereby improving assimilation fidelity. This strategy is broadly consistent with practices in atmospheric inverse
modeling, where daytime (often afternoon) observations are preferred for lowland sites to avoid difficulties in representing
stable nocturnal boundary layers, and nighttime observations are often used in mountainous regions to limit the influence of

unresolved diurnal circulations (Steiner et al., 2024; Monteiro et al., 2024).
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2.4 Prior fluxes

High-resolution monthly data are employed for key contributors (anthropogenic, biospheric and fire) to capture fine-scale
spatial variability and to identify localized hotspots. For sources with sparse data availability and limited temporal variability
(ocean, geological and termites), coarser climatological estimates are used. However, all datasets are regridded to match the
inversion spatial resolution (0.2°x0.2° for the nested European domain and 2° x2° for the global background). Within the
nested European domain, agriculture is the dominant source, contributing approximately 11.7 Tg yr'! (estimates for 2020,
34 % of the annual regional total). Other major contributors include waste (9.5 Tg yr'', 28 %), energy (5.5 Tg yr'!, 16 %),
geological emissions (5.1 Tg yr'!, 15 %) and wetlands (2.9 Tg yr'!, 9 %), smaller contributions arise from ocean (0.7 Tg yr'!,
2 %), termites (0.6 Tg yr'', 2 %), industrial processes (0.03 Tg yr'!, <1 %) and fires (0.03 Tg yr'!, <1 %), with all estimates in
brackets corresponding to the year 2020. These individual source contributions are then combined to calculate the total CHy
prior emissions used in the inversion. A comprehensive overview of the prior data is provided in Table 1, with the corresponding

map of mean fluxes for 2017-2022 shown in Appendix A Figure Al.

Table 1. Overview of CH, emission sources, their native resolutions, and average total emissions for the global and nested domains (Tg yr™').

The reported values correspond to 2020 prior emissions.

Sector Data Source Native Resolution Global Nested Domain
Wetlands JSBACH-HIMMELI for EU, LPX-Bern otherwise ~ 0.10° x 0.10° daily 119.28 292
Agriculture GAINS for EU27 + 3, EDGARVS otherwise 0.10° x 0.10° monthly  134.10  11.74
Energy GAINS for EU27 + 3, EDGARVS otherwise 0.10° x 0.10° monthly  120.40  5.53
Waste GAINS for EU27 + 3, EDGARVS otherwise 0.10° x 0.10° monthly ~ 87.85 9.52
Industrial Processes EDGARVS 0.10° x 0.10° monthly  0.55 0.03
Fire GFED4s1 (Van Der Werf et al., 2017) 0.25° x 0.25° monthly  11.42 0.03
Geological Sources  Etiope et al. (2019), global total scaled to 23 Tg 1° x 1° climatology 23.10 5.11
Termites Saunois et al. (2020) climatology 1° x 1° climatology 9.91 0.56
Ocean Weber et al. (2019) 1° x 1° climatology 9.35 0.71
Total 513.96  36.15

Monthly anthropogenic CH4 emissions are derived from the Emission Database for greenhouse gas and Atmospheric Research
(EDGARVS.0) (Crippa et al., 2020) and Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) (Hoglund-
Isaksson et al., 2020) inventories, both providing high-resolution (0.1° x 0.1°) global estimates of greenhouse gas emissions
across multiple sectors. For EU27+3, we use emission estimates from the GAINS inventory, which incorporates country-
specific activity data and mitigation assumptions, providing regionally consistent estimates that reflect national circumstances
more closely than the globally uniform EDGARVS.0 inventory. On average, GAINS estimates are 3 Tg yr'! (ranging from
1 to 4 Tg yr'') lower than EDGARVS.0, amounting to approximately 10 % of the total anthropogenic CH, emissions in
the EU27+3 region during the study period. For categorising anthropogenic emission sources, we adopted the IPCC (2006)
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Common Reporting Format (CRF) to classify the emissions into four main sectors: Energy, Industrial Processes and Product
Use, Agriculture, and Waste. This sectoral breakdown is consistent with UNFCCC NGHGI reporting guidelines and used by
major inventories such as GAINS and EDGAR, allowing for direct comparison with national reports.

Biospheric emissions in our prior estimates are sourced from the JSBACH model, which simulates key ecosystem processes
such as photosynthesis, respiration, carbon and water cycling, vegetation dynamics, and land ecosystem processes (Reick et al.,
2021). Specifically, we use the version of JSBACH coupled with HIMMELI (Raivonen et al., 2017) (JSBACH-HIMMELI),
which provides hourly, high-resolution (0.1° x 0.1°) CH, emissions, including contributions from peatlands, inundated soils
and net mineral soils over Europe. As the JSBACH-HIMMELI product used in this study provides data only for the European
domain, we complement it with global biospheric emissions from the LPX-Bern DYPTOP v1.4 dataset (Lienert and Joos,
2018) to represent the global background.

Monthly prior fire emissions are obtained from the Global Fire Emissions Database version 4 (GFED4s) described in van der
Werf et al. (2017) at a spatial resolution of 0.25°x0.25°, excluding methane emissions from biomass and agricultural waste
burning, which were already included in GAINS and EDGAR. Oceanic CH4 emissions are represented by climatological
estimates from Weber et al. (2019), while geological emissions are based on the dataset by Etiope et al. (2019), globally scaled
to 23 Tg yr~!, following the Intergovernmental Panel on Climate Change (IPCC) AR6 Working Group I report (IPCC, 2023;

Tsuruta et al., 2023). Termite-related emissions are included according to the estimates provided by Saunois et al. (2020).
2.5 Sensitivity Tests

We conducted eight inversion sensitivity experiments (S1-S8) to evaluate how key elements of the inversion setup influence the
posterior CH4 flux estimates and the associated error reduction. The base inversion (S1) serves as a reference for comparison.
In S2, the background CH,4 mole fractions were replaced from CAMSv22r2 (Bergamaschi et al., 2013) to CTE-CH4 (Tenka-
nen et al., 2025) to evaluate the effect of background assumptions. Although both products rely on TM5-based transport (Krol
et al., 2005), they differ in their inversion configurations, including data assimilation methods, flux resolution, prior constraints,
and assimilated observations. Inversions S3 and S4 address uncertainty assumptions. In S3, the prior flux uncertainty was in-
creased from 50 % to 100 %, allowing more flexibility for the inversion to adjust emissions. In S4, the uncertainty assigned to
background mixing ratios was reduced from 0.5 % to 0.05 %, thereby increasing the influence of observed enhancements on
the posterior flux adjustments. In S5, the observational network was expanded from 46 to 56 sites, including a denser station
distribution along the Swiss Alps (see Fig. 1), to examine the sensitivity to observational coverage. In S6, the prior emissions
were replaced from GAINS-based estimates to EDGARvVS, which are approximately 10 % higher, allowing assessment of how
differences in emission inventories affect the posterior flux estimates. Finally, S7 and S8 address spatial error correlations in
the prior. The horizontal correlation length was reduced from 200 km to 50 km (S7) and 20 km (S8), enabling finer spatial
adjustments in the inversion. All inversions were performed using a 4D-Var ensemble approach, where 30 Monte Carlo real-
izations were generated by perturbing both prior fluxes and observational data. Posterior uncertainties were estimated from the

Opost

ensemble spread following Bocquet and Sakov (2013). The error reduction was computed as 1 — —22 where 0,05t and oprior
prior
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denote the posterior and prior uncertainties, respectively. Due to computational constraints, the sensitivity experiments were

carried out for July 2021 only. A summary of the inversion configurations is provided in Table 2.

Table 2. Inversion setups for the sensitivity analysis. Deviations from the base inversion (S1) are indicated with an asterisk (*).

Sensitivity Initial Prior Initial Conc. Number of  Prior Correlation
Case Concentration Uncertainty  Uncertainty Stations Dataset Length

S1 CAMSvr22 50 % 0.5 % 46 GAINS-based 200/500

S2 CTE-CH4* 50 % 0.5% 46 GAINS-based 200/500

S3 CAMSvr22 100 %* 0.5 % 46 GAINS-based 200/500

S4 CAMSvr22 50 % 0.05 %* 46 GAINS-based 200/500

S5 CAMSvr22 50 % 0.5 % 56% GAINS-based 200/500

S6 CAMSvr22 50 % 0.5 % 46 EDGARvVS8-based*  200/500

S7 CAMSvr22 50 % 0.5 % 46 GAINS-based 50/500%*

S8 CAMSvr22 50 % 0.5 % 46 GAINS-based 20/50*

3 Results and discussion
3.1 Comparison of Simulated and Measured Methane Mole Fractions

Standard metrics such as mean bias, root-mean-square error (RMSE), and correlation play a crucial role in evaluating the
performance of atmospheric inversion models by enabling direct comparison between simulated and observed CH4 mole
fractions. In this section, these metrics are applied to assess the CIF-FLEXPART inversion simulated mole fractions against the
assimilated in situ observations. Figure 2 displays time series of both prior and posterior mole fractions from the base inversion
set-up, alongside observations from selected European in situ stations in 2021, which cover a range of geographical settings
and emission regimes. The prior methane mixing ratios generally underestimate the observations, resulting in a mean negative
bias at most sites. In contrast, the posterior estimates substantially reduce this bias. These improvements are clearly visible
in the time series Figure 2, which illustrate the discrepancies between observed and prior-simulated mole fractions and their
correction in the posterior. For instance, at stations BIS, CRP, HPB, KIT, and TRN, the prior exhibits a pronounced negative
bias (-11.11 to -22.39 ppb) and systematically underestimates sharp observational peaks when regional fluxes are elevated. The
prior initial concentration contribution is overly smoothed and lacks the sharp variability of the observed and simulated mole
fractions, though it still shows meaningful variations. The posterior reduces these biases (mean bias -3.21 to 3.82 ppb) and
improves the representation of both the initial condition and regional flux contributions, providing a more realistic depiction
of the regional signal. This adjustment is further reflected in the corresponding flux contributions in Appendix A Figure A2,
where regional fluxes are increased in the posterior to better match the observations. At CBW, where local influences dominate,
the prior fails to reproduce the full variability (see Fig. 2, CBW); the posterior reduces the overall bias, although some high-

frequency discrepancies persist. The regional flux contributions show substantial adjustments in the posterior, consistent with
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the improved match to observations. At PAL, prior mole fractions generally match observations, but pronounced mismatches
occur during the first months of 2021. These were largely corrected by adjustments to the initial concentration contribution,
while the global flux contribution remained relatively more influential and unchanged in the posterior ( see Appendix A Figure
A2). At ERS, unlike most other stations, the prior exhibits a mean positive bias of 8.53 ppb, which is reduced to 4.06 ppb in the
posterior. The background contribution is adjusted upward, reinforcing the positive bias, while the regional flux contribution
is lowered in the posterior. Together, these adjustments improve the overall agreement between simulated and observed mole
fractions, illustrating the inversion’s ability to correct both the initial condition and the regional flux components. Overall, these
results demonstrate that the inversion effectively corrects biases in both the initial conditions and the regional fluxes, improving
the representation of CHs dynamics across stations. These station-level mole fractions are further illustrated in Figure 3,
which evaluates model-observation agreement across all stations and years (2017-2022). The coefficient of determination
(R?) increased from 0.54 to 0.76, RMSE decreased from 33.40 to 24.35 ppb, and mean bias was reduced from —12.20 to —2.14
ppb. The posterior regression slope (0.75) is closer to unity than the prior (0.57), and Pearson correlation increased from 0.78 to
0.87 (p < 0.001), reflecting enhanced responsiveness to observed changes. Modelled versus observation performance metrics
for all assimilated stations are summarized in Appendix A Table A3. Our posterior statistical results closely align with the
findings of (Steiner et al., 2024; Bergamaschi et al., 2022). By assimilating data from 28 stations, Steiner et al. (2024) reported
a Pearson correlation of approximately 0.7 for 25 of the stations. Figure 3 also reveals that the prior simulation systematically
underestimates high CH4 mole fractions, with many data points falling below the regression line. This underestimation is
particularly pronounced at stations such as LUT, LMU, STE, and CBW, all of which exhibit strong negative biases (below -
35 ppb). Although the posterior simulation substantially reduces this underestimation, with biases improving to around -10 ppb,
some discrepancies persist at the highest mole fractions, likely reflecting unresolved local emissions or sub-grid variability.
These results highlight the importance of targeted improvements in emission inventories and model resolution for stations with
persistent negative bias. To further assess the level of agreement across subregions, we compare posterior and prior simulations
for different categories. This includes geographical regions (Central, Northern, Western, Southern) consistent with Petrescu
et al. (2021), as well as elevation (mountain vs. non-mountain) and station type (coastal vs. non-coastal). Figure 4 presents the
distributions of residuals using violin plots, with the 25th-75th interquartile range indicated by a vertical line. Posterior residuals
exhibit systematically narrower spreads and improved alignment with observations. Across regions, RMSE and interquartile
range (IQ75) decrease by 26-37 %, with median residuals moving closer to zero, except in the Southern region. Mountain
stations show a smaller spread reduction (IQ75: 21.5 vs. 27.6, RMSE reduction 26 %), reflecting higher variability likely due
to complex transport, whereas non-mountain, coastal, and non-coastal stations show 28-32 % RMSE reductions. Overall, these
analyses demonstrate that the inversion effectively reduces uncertainty and bias across all categories, enhancing model fidelity

and observational agreement (see Table 3).
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Figure 2. Time series of observed and modeled CH,4 mole fractions at selected stations, averaged at the assimilated hour for 2021: BIS
(Biscarrosse, France), CBW (Cabauw, Netherlands), CRP (Carnsore Point, Ireland), ERS (Ersa, coastal Mediterranean site), HPB (Ho-
henpeissenberg, mountain station in Germany), KIT (Karlsruhe, Germany), PAL (Pallas, Finland), and TRN (Trainou, France), where the
numbers in parentheses indicate the station’s latitude and longitude. Shown are observations (black), prior simulations (orange), posterior
simulations (green), and background contributions (cyan for prior, purple for posterior). Text boxes in each panel report mean bias (MBias),

root mean square error (RMSE), and correlation coefficient (%) for the prior and posterior relative to the observations.

3.2 Posterior Flux

In Figure 5, we presented the six-year mean methane fluxes (2017-2022) over the study domain. Fig. 5(a—c) display prior
330 estimates, posterior estimates, and their differences, while Fig. 5(d—e) present monthly time series and inland average estimates
for subregions. The spatial maps highlight regions of substantial flux adjustments, and the time series illustrate temporal
variability and regional contrasts between prior and posterior estimates. The inversion reveals pronounced regional corrections,

with posterior emissions being systematically higher over BENELUX, France, and Germany, pointing to underestimation in the
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Figure 3. Modeled versus observed CH4 mole fractions for all assimilated in situ observations. Left panels: posterior vs. observations; right

panels: prior vs. observations. Statistical metrics are shown in each panel. Black dashed line: one-to-one; red line: best-fit regression.
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Figure 4. Residuals between observed (obs) and modelled (sim) CH4 concentrations for assimilated in situ stations, grouped by subregional

category (see Appendix A A2) The horizontal dashed line indicates zero residual, and the vertical bar shows the 25th—75th interquartile

range. Negative values indicate that simulated concentrations are lower than observed.

prior, whereas reductions occur over the United Kingdom, Italy, and Romania, indicating prior overestimation. These patterns

335 align well with earlier inversion studies (Bergamaschi et al., 2022; Steiner et al., 2024). In regions with sparse observational

data, such as the Iberian Peninsula and eastern Europe, the prior fluxes change only slightly.

Despite these pronounced regional adjustments, the mean emission exhibits only a modest net change at the domain scale,

with average total methane emissions shifted 36.11 & 0.38 Tg yr™!' in the prior to 36.72 +0.62 Tg yr! in the posterior, a

rise of 1.69 % (see Fig. 5d), reflecting strong subregional contrasts. Notable posterior CH4 flux increases are observed in

340 Central Europe (+32 %) and Western Europe (+19 %), in contrast, Southern Europe shows a decrease of 17 % (see Fig. Se).
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Table 3. Prior and posterior performance metrics of CHs mole fraction simulations grouped by sub-regional category (see in Appendix A
Table A2. Reported statistics include regional mean bias, the interquartile ranges: the 25th—75th (IQ75), and the 5th-95th range (1Q95),
root mean square error (RMSE), relative RMSE reduction (ARMSE), number of observation stations, and the total number of data points

(N-data) used in the evaluation.

Metric Central Southern Western North Mountain Non-mountain Non-coastal Coastal

Prior  Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior

Bias (ppb) -16.14 -2.38 -0.0 2.5 -16.2 -4.1 -7.1 -0.9 -3.3 34 -13.6 -3.0 -13.1 -1.6 9.3 -3.6
1Q75 (ppb) 27.17 20.44 25.1 17.1 25.6 17.2 15.1 11.4 27.6 21.5 23.6 15.7 23.5 16.3 21.8 16.1
1Q95 (ppb) 97.67 73.64 86.9 49.1 91.1 65.4 52.4 38.9 91.6 66.3 823 58.2 80.0 58.4 99.1 66.3
RMSE (ppb) 36.27 25.24 279 17.7 40.0 28.1 18.8 13.1 29.9 222 339 234 30.7 20.8 40.8 29.6
ARMSE ( %) 30 37 30 30 26 31 32 28
Stations 16 5 15 10 6 40 33 13
N-data 24886 8354 27038 19897 11086 69089 60904 19271

The monthly time series reveals a clear seasonality in northern regions, with a peak in summer months. The southern region
exhibits a slight opposing seasonality, while other regions show no clear seasonal cycle. Additionally, it displays that posterior
emissions from Central and Western Europe are consistently higher than the prior throughout the study period, while in the
southern region, the posterior emissions are generally lower than the prior. At the domain and EU27+3 scales, however, there is
no clear or persistent difference between posterior and prior emissions, and no significant trend is evident over the 2017-2022
period at either the domain or subregional scale. Over the EU27+3, the average posterior flux for 2017-2022 is 23.28 +
0.36 Tg yr ', representing a 6.6 % increase relative to the prior. For EU27+UK, the posterior flux is 22.67 Tg yr~!, which
falls within the 22-26 Tg yr~' range reported by Petrescu et al. (2021, 2023) for 2006-2017 based on three inversion setups.
Although our estimate is at the lower end of this range, it provides a meaningful comparison given the difference in time
periods, as EU27+UK emissions show no strong trend over the interval considered.

While spatial patterns in total methane flux adjustments indicate where the inversion has modified prior estimates, analysing
these changes by sector reveals the dominant sources driving regional flux adjustments and highlights systematic biases in
prior inventories. Figure 6 presents the spatial distribution of sector-specific methane flux increments (posterior — prior) over
Europe for 2017-2022. Panels (a—d) correspond to anthropogenic sectors: agriculture (AGR), energy (ENG), waste (WST),
and industry (IND); whereas panels (e—g) depict natural sources, including wetlands (WET), geological seepage (GEO), and
biomass burning (FIR). Posterior agricultural emissions increase markedly across the BENELUX region, suggesting system-
atic underestimation in the prior inventory. Adjustments in other anthropogenic sectors are generally more spatially localized.
Energy-related emissions decrease over the North Sea, but localized increases are observed in Belgium, Luxembourg, Ukraine,
and western Russia. Waste emissions show localized hotspots in BENELUX, France, and Poland, while decreasing in Italy and
the United Kingdom. Industrial emissions rise predominantly over BENELUX and Germany. CH, emissions from wetland are
reduced, particularly in northern Europe and the United Kingdom, largely reflecting a reduction in summer fluxes. Reductions
in the GEO sector over Italy and Romania are consistent with previously reported overestimations arising from globally scaled

geological emission factors. Although prior geological emissions were harmonized to 23 Tg yr' at the global scale, the inver-
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Figure 5. Top row: Mean methane (CH4) fluxes over the EU27+3 domain for the study period (a) prior fluxes, (b) posterior fluxes after
inversion, and (c) flux increments (posterior — prior). Middle rows: Monthly CH4 flux time series averaged over the entire domain, within
EU27+3, and outside EU27+3. Bottom row: Monthly CH4 flux time series for selected EU27+3 subregions (Northern, Central, Southern,
and Western), showing prior (dashed lines) and posterior (solid lines) estimates. Bars on the right summarize mean annual prior and posterior

fluxes estimates ( with a 1o interannual variability).

sion results underscore the need for regionally differentiated adjustments. Biomass burning emissions increase over Portugal,

with minor reductions elsewhere.
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Figure 6. Spatial distribution of sector-specific methane flux increments (posterior - prior) over Europe averaged in the years (2017-2022).
Panels show adjustments for agriculture (AGR), energy (ENG), waste (WST), industry (IND), wetlands (WET), geological sources (GEO)
and fires (FIR). Agricultural emissions exhibit the largest posterior increase, particularly across central and western Europe, whereas wetlands
show strong reductions in northern Europe. Geological emissions decrease mainly in southern Europe and Romania. Note that the colour

scale is different.

Figure 7 summarizes the prior and posterior fluxes by European subregion. Agricultural emissions show the largest positive
adjustments. In central EU27+3, emissions increase from a prior estimate of 2.37 to a posterior estimate of 3.19 Tg yr'! (+35 %),
and in western EU27+3 they rise from 3.51 (prior) to 4.54 Tg yr'! (posterior), which is a 29 % rise. The strongest relative
increase occurs in the BENELUX region, where mean agricultural emissions nearly double from 0.68 to 1.29 Tg yr! (+90 %).
At the domain scale, posterior agricultural CH4 emissions amount to 13.63 Tg yr'!, representing a 16 % increase compared
with the prior. EU27+3 posterior emissions are estimated at 10.82 Tg yr'!, corresponding to a 21 % increase relative to the
GAINS prior (Fig. 7a). Agricultural emissions account for 46 % of the total EU27+3 CH,4 budget in our estimate, representing
the largest sectoral share. This aligns with consolidated assessments and UNFCCC NGHGTI reports, which attribute 52.4 %
(£8.7 %) of EU27+UK CHy4 emissions in 2019 to agriculture (Petrescu et al., 2021, 2023). The dominant role of agriculture
in total anthropogenic CH4 emissions also holds globally (IPCC, 2019). Emissions from energy-related sectors show modest

increases in central Europe, rising from 0.81 to 0.87 Tg yr'! (+8 %), and in western Europe, from 0.31 to 0.32 Tg yr'! (+3 %).
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Figure 7. Mean estimates of prior and posterior CHy4 fluxes averaged over Europe and its subregions for the years 2017-2022. The panels
display boxplots for total CH4 emissions (Total), agriculture (AGR), energy (ENG), waste (WST), wetlands (WET), and geological sources
(GEO). Boxplots within the yellow-shaded area of each subpanel (Ocean - Scandic) correspond to smaller regions and are plotted against the
right-hand y-axis.

In contrast, emissions decrease over oceanic regions from 1.44 to 1.15 Tg yr!' (20 %), largely reflecting reduced fossil
fuel contributions (Fig. 7b). Waste-sector emissions show relatively minor adjustments at the regional and subregional scales,
reflecting compensating regional contrasts. Posterior corrections are nevertheless evident in specific hotspot regions (Fig. 7c),
with increases in BENELUX, France, and Poland, and decreases in the United Kingdom and Italy, highlighting substantial
country-level heterogeneity. Wetland emissions decrease slightly in northern Europe, from 1.13 Tg yr'! (prior) to 1.10 Tg yr!

(posterior) (-3 %), largely due to reductions during summer months, as well as in the UK, Ireland, Italy, and coastal areas,
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indicating minor overestimations in these regions. In contrast, increases are observed in Eastern Europe and BENELUX (see
Fig. 7d). CH, emissions from geological seepage decline sharply in southern Europe, from 2.8 Tg yr~' in the prior estimate
to 1.47 Tg yr'! in the posterior, representing a 48 % reduction, primarily driven by substantial decreases in the previously
overestimated emissions from Italy and Romania (Steiner et al., 2024) (see Fig. 7e). Details of regional and sectoral posterior
fluxes estimates are provided in Appendix A Table A4. Total CH, emissions increase at the EU27+3 level, mainly in western
and central Europe, while decreases occur in southern and oceanic regions (Fig. 7f). Overall, these posterior flux adjustments
highlight that anthropogenic activity, especially emissions from agriculture and waste, drives most of the net increase in CHy
emissions, while geological emissions decrease. These heterogeneous corrections underscore the importance of refining prior

emission patterns at both sectoral and regional scales to develop robust methane budgets for Europe.
3.3 Temporal Variation of CH4 Flux

Figure 8 illustrates the seasonal patterns of CH4 emissions from the Agriculture, Energy, Waste, and Wetlands sectors, spatially
aggregated across the EU27+3 subregions. Among these, the Wetlands sector in Northern Europe exhibits the most pronounced
seasonality, with emissions peaking during the summer months, particularly in July. This pattern is primarily driven by warmer
temperatures and consistently sufficient soil moisture, which together enhance microbial activity and methane production in
wetland ecosystems (Bechtold et al., 2025; Aalto et al., 2025). The accelerated decomposition of organic matter under these
conditions further contributes to elevated emissions during this period (Voigt et al., 2023). The red hatched shading in the
figure indicates a posterior reduction in summer wetland emissions, suggesting a downward correction of potentially higher
prior estimates in summer. The Waste sector shows notable seasonal patterns, particularly in Central EU27+3 countries, where
emissions increase significantly during summer. This is likely due to intensified microbial decomposition of organic waste in
warmer temperatures, leading to greater methane generation in landfills and wastewater treatment facilities. In contrast, the
Southern EU27+3 countries display a distinct summer minimum in waste emissions, highlighting regional differences that
may be influenced by climate or waste management practices. Emissions from the Energy sector exhibit an opposite seasonal
trend, with a clear peak during the winter and a minimum in summer. This pattern is largely attributed to increased heating
demand in colder months, resulting in higher fossil fuel combustion and methane emissions. Additionally, winter energy use
often involves greater reliance on natural gas, which can lead to methane leakage from pipelines and storage systems, further
contributing to wintertime emission peaks. These contrasting seasonal dynamics between sectors may counterbalance one
another, contributing to the lack of a clear overall seasonal pattern in total CH4 emissions at the regional scale. The Agriculture
sector, by comparison, does not exhibit a distinct seasonal pattern across any of the regions. However, hatched blue shading in
the figure indicates posterior increases in agricultural emissions over Central and Western EU27+3 countries, suggesting model
adjustments based on observational constraints. These regional and sector-specific variations underscore the complexity of CHy
emission dynamics and highlight the importance of disaggregated analyses to improve understanding and model representation

of seasonal fluxes.
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Figure 8. Seasonal patterns of CH, emission from major sectors, aggregated over the subregions for 2017-2022: (a) northern, (b) western,
(c) central, and (d) southern Europe. The solid line represents the multi-year monthly mean, while the shaded area indicates the interannual

variability (standard deviation). The hatched area shows the difference from the prior.

3.4 EU27+3 CH4 Emission Estimates and Comparison with UNFCCC Reports

We calculated country-level anthropogenic CH, emission estimates for the EU27+3 and compared them with EDGARVS,
GAINS, and UNFCCC NGHGI (2023) reports. Our posterior estimates averaged 17.6 Tg yr~! for 20172021 (range: 17.0-18.2),
with a mean annual decline of 0.3 Tg yr~!. These posterior estimates are 11 % higher than GAINS, 4 % higher than EDGARVS,
and 3 % higher than UNFCCC, indicating good overall consistency at the EU27+3 scale. They are also in close agreement with
previous inversion studies; for example, Steiner et al. (2024) reported 17.4 Tg yr~! for EU27+UK in 2018, compared to our
estimate of 17.59 Tg yr~! for the same region and year. The top three emitting countries (France, Germany, and the UK) ac-
counted for 39 % of EU27+3 emissions, similar to inventories but with differing country rankings. The UK stood second in
the UNFCCC report. However, larger discrepancies appear at the national level (see Fig. 9 and Appendix A Table AS5). Com-
pared with UNFCCC, posterior emissions are higher for BENELUX (+54 %), Germany (+37 %), and France (+10 %), but
lower for Romania (-25 %), Poland (-16 %), and Italy (-11 %). Notable differences also occur in the Nordics, with decreases
in Norway (-39 %), Finland (-16 %), and Denmark (—13 %), but an increase in Sweden (+10 %). Relative to EDGARVS,
posterior estimates are higher for Portugal (+40 %), Italy (+18 %), and Germany (+10 %), but substantially lower in the UK
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(-18 %), Poland (-7 %), Romania (—18 %), and especially the Nordics. Adjustments relative to GAINS are upward for Ger-
many (+29 %), France (+16 %), and BENELUX (+40 %), but downward for Switzerland (—13 %) and Italy (-7 %). In addition
to country-level discrepancies in total anthropogenic estimates, systematic patterns emerge across sectors, as displayed in Fig-
ure 9. In agriculture, inventories generally underestimate emissions in large agricultural countries such as France, Germany,
and the Netherlands, whereas our posterior consistently suggests higher values. This implies that bottom-up activity data and
emission factors may not fully capture agricultural methane sources. In the waste sector, EDGARVS tends to overestimate
emissions in countries like Germany and France but underestimates them in others, including the United Kingdom, Italy, and
Poland. Our posterior estimates often fall closer to GAINS and UNFCCC values. For the energy sector, inconsistencies are
more pronounced. In the United Kingdom, EDGARVS clearly overestimates emissions, whereas in Poland and Romania, both
EDGARvS and UNFCCC report higher values than our posterior. These differences are likely driven by variations in fossil fuel
activity data and the emission factors employed by different reporting frameworks. Overall, the EU27+3 total appears relatively
robust across inventories, yet sectoral and country-level comparisons reveal significant discrepancies. Our inversion estimates
provide an essential independent constraint in this context, helping to reconcile inconsistencies in bottom-up reporting systems

and strengthening confidence in national and sectoral methane emission estimates.
3.5 Sensitivity Experiments and Their Impact on Optimised Flux Estimates

To assess the sensitivity of the inversion framework, we conducted eight inversions (S1-S8) by varying key parameters, includ-
ing background mole fractions, prior flux and background mole fraction error assumptions, observational coverage, choice of
prior inventories, and correlation assumptions detailed in Section 2.5. Figure 10 presents the resulting posterior flux increments
and error reductions for July 2021. Inversion setups from S1 to S5 exhibit broadly consistent spatial patterns and magnitudes
of posterior flux increments, though the degree of error reduction varies among cases. The base inversion setup (S1) achieves
substantial reductions of 14 % for Europe and 21 % for EU27+3, with particularly strong constraints in Central Europe (38 %)
and Western Europe (30 %) (see Table 4). S2 is nearly indistinguishable from S1 at both regional and subregional scales,
showing only slightly weaker reductions in northern Europe, suggesting that posterior adjustments are relatively insensitive to
the choice of background concentration. S3 and S4 yield somewhat weaker mean error reductions of about 16 % for EU27+3,
indicating moderate sensitivity of posterior adjustments to prior uncertainty scaling and background error assumptions. Larger
assumed background errors allow observations to exert a stronger influence, whereas smaller errors suppress corrections and
increase reliance on the prior. Although these effects are modest in magnitude (-2 to +2 ppb), they highlight the critical role of
background error settings in modulating inversion flexibility and posterior responsiveness. The influence of background error
settings on concentration fields is illustrated in Fig. 11.

Network densification in S5 enhances error reduction across most regions, particularly in Western Europe, where reductions
exceed 35 %. This improvement reflects the added influence of stations such as TAC in the United Kingdom and PDM and
OHP in France, which help better constrain emissions over the UK and southern France. The additional mountain station in
the Alps, however, does not show a clear enhancement in posterior uncertainty reduction, suggesting that its effectiveness may

depend on representativeness or transport model resolution. Although the spatial pattern of posterior flux increments remains
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Figure 9. Annual mean anthropogenic CH4 emissions (2017-2021) for selected EU27+3 countries, shown as bar plots for the posterior
estimates, GAINS, UNFCCC, and EDGARVS. Subpanels display CH4 emissions from major anthropogenic sectors: (a) total anthropogenic
emissions excluding land-use and land-cover change, (b) agriculture, (c) waste, and (d) energy. For each country and sector, bars are stacked

by year, from bottom (2017) to top (2021).

consistent with earlier inversion setups, the expanded network clearly strengthens the overall robustness of the inversion. These
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findings are consistent with previous studies demonstrating that increased observational density improves posterior reliability
in well-sampled regions (Villani et al., 2010; Thompson and Stohl, 2014).

More pronounced differences emerge from the S6-S8 inversion setup. Using EDGARVS as the prior (S6) increases the prior
flux magnitude to 26.1 Tg yr'! for EU27+3, compared to 24.5 Tg yr'! in S1, reflecting EDGARVS’s higher reported emissions.
However, the posterior flux in S6 decreases substantially to 23.0 Tg yr'!, closely aligning with the posterior estimate from the
base inversion (S1). The 19 % mean error reduction in S6 is also comparable to S1, highlighting the sensitivity of inversion
results to the choice of emission inventory and the convergence of posterior estimates despite differing priors. In contrast,
reducing correlation lengths leads to diminished error reduction. At 50 km (S7), reductions are minimal (1-3 %), while at 20
km (S8) they are negligible (<0.2 %). This reflects the trade-off between allowing fine-scale flux variability and weakening the
effective observational constraint per degree of freedom. Such behaviour is consistent with Thompson and Stohl (2014), who
showed that extreme localization increases small-scale heterogeneity at the cost of inversion robustness.

Despite these sensitivities, the dominant spatial patterns of posterior corrections remain robust across sensitivity inversion
setups: decreases over Italy, Romania, and the United Kingdom, and increases over BENELUX, Germany, and France. This
consistency with previous European inversion studies (Saunois et al., 2020; Steiner et al., 2024) underscores the resilience
of large-scale flux signals, even under varying methodological assumptions. Overall, S1 emerges as a balanced configuration,
providing a reasonable compromise between observational constraint and inversion flexibility. Alternative setups highlight
sensitivities to priors, background errors, and correlation lengths, but the preservation of large-scale spatial patterns across
experiments supports the robustness of the main conclusions.

Figure 11 illustrates the background concentration changes and their sensitivity to background error assumptions. Under the
larger background error scenario (0.5 % uncertainty), we found a systematic decrease in background CHy4 over the Northern and
Mediterranean Seas, suggesting that the prior background fields were biased high in these regions (see Fig. 11b). The spatially
averaged time series of the posterior increment exhibits a clear seasonal pattern, occurring from May to October (see Fig.
11d), reflecting the correction of this high bias through the inversion. Conversely, assuming a smaller error (0.05 %) resulted in
much weaker corrections, both spatially (see Fig. 11c) and temporally (see Fig. 11d), as seen in the posterior mean increment
time series. Under a low-error assumption, the inversion relies more strongly on the initial concentration estimates, limiting
adjustments to the posterior background concentration field. Conversely, higher error assumptions allow the observations to
exert greater influence, producing stronger corrections in regions where the prior background fields were biased.

Figure 11e shows the relative annual mean difference of the posterior fluxes under background error assumptions of 0.5 %
and 0.05 %. The relative difference is defined as 1 — F{ 59,/ Fp.05%, Where Fy 50, and Fy g59, denote the annual mean fluxes
computed using background-error assumptions of 0.5 % and 0.05 %, respectively. Flux adjustments under these scenarios
generally follow the spatial patterns of the mean map (see Fig. 5c), with additional corrections of approximately —20 % in
regions showing decreases and +20 % in regions showing increases. An extreme reduction (—40 %) occurs over Italy, likely
contributing to the observed posterior flux decrease. Overall, background-related adjustments remain modest (-2 to +2 ppb)

and are secondary to the dominant sectoral flux corrections.
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Figure 10. Flux increments (posterior - prior) and error reduction for July 2021 across eight sensitivity inversion setups (S1-S8). Each panel
illustrates the spatial distribution of flux adjustments relative to the prior, highlighting the influence of varying prior emissions, background
treatment, observational network density, and error correlation assumptions. The last subpanel displays the stations added for inversion setup

S5. Mountain stations are shown as black dots, while low-altitude stations are shown as blue dots.

4 Conclusions

In this study, we have presented a high-resolution, top-down estimates of European CH4 emissions for the period 2017-2022,
offering robust new evidence on their magnitude, spatial structure, and temporal evolution across the continent. By combining
the CIF-FLEXPART inversion framework with a 4D-Var data assimilation approach, we demonstrated the value of advanced
atmospheric inverse modelling for resolving fine-scale emission patterns that are not accessible through conventional analytical
inversion techniques. The use of FLEXPART-derived source—receptor sensitivities, together with the optimisation of a large set

of control variables, enables a detailed representation of emission patterns at monthly timescales and a spatial resolution of 0.2°
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Table 4. Prior, Posterior, and Mean Error Reduction ( %) for different regions and sensitivity inversion setups (S1-S8) as described in Section
2.5

Prior (Tg yr!)

Region S1 S2 S3 S4 S5 S6 S7 S8

Europe 38.65 38.61 3830 3837 3837 4033 3851 38.53
EU27+3 2451 2459 2430 2436 2436 2607 2448 2449
Northern ~ 4.01 4.04 397 3.98 398 461 3.99 3.99
Western 7.03 7.10 697 699 699 735 7.02  7.02
Central 5.93 592 585 5.87 5.87 6.31 592 592
Southern  8.08 8.07 8.04 8.06 8.06 836  8.09 8.09

Posterior (Tg yr")

Region S1 S2 S3 S4 S5 S6 S7 S8

Europe 37.06 37.20 3543 3692 3652 36.02 3634 38.09
EU2743 24.10 2440 23.01 2408 23.80 2299 2370 2442
Northern ~ 3.63 370 343 339 356 355 3.75 3.96
Western 720 732 733 750 742 688  7.13 7.15
Central 679 679 633 6.79  6.33 6.29 597  5.86
Southern  7.19  7.30  6.60 7.11 7.19 690 752  8.05

Mean Error Reduction (%)

Region S1 S2 S3 S4 S5 S6 S7 S8

Europe 14.04 1297 1070 11.06 1493 1151 3.06 0.13
EU27+3 2123 20.00 1638 1634 21.12 1921 1.55 0.16
Northern  16.62 12.77 1149 993 1628 1456 1.18 0.05
Western 2996 30.38 27.53 2853 3576 28.82 337 0.39
Central 3777 3828 29.69 30.55 3398 3670 197 034
Southern 1041 10.36  6.53 7.31 9.07 721 049  0.03

x 0.2°. The assimilation of observations from a dense network of 46 in situ monitoring stations substantially strengthens the
observational constraints over Europe, leading to improved confidence in the inferred emissions and their sectoral attribution.
By separately optimising emissions from major source categories, including agriculture, energy-related activities, waste man-
agement, industrial processes, wetlands, geological sources, and biomass burning, this work provides actionable information
that is directly relevant to national inventories and mitigation strategies.

The posterior concentration in our study shows a great improvement with atmospheric observations (r> = 0.87, RMSE =
24.35 ppb, mean bias = —2.14 ppb) and captures most of the observed CHy variability. Our results reveal substantial regional-

scale adjustments relative to prior inventories. Posterior emissions are consistently higher over the BENELUX region, France,
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Figure 11. Impact of background error assumptions on optimized methane mole fractions and fluxes for 2021. Top row: (a) Prior mole
fractions from CAMS and posterior increments with background error assumptions of (b) 0.5 % and (c) 0.05 %. Bottom row: (d) Time series
of posterior mean increments under both settings and (e) relative annual flux difference between inversions with background errors of 0.5 %

and 0.05 %. To quantify the impact of background-error assumptions, the relative difference was defined as 1 — ;;0#"5’;, where Fj 59, and

Fjy.05% denote the flux computed using a background-error assumption of ( 0.5 % ) and ( 0.05 % ) respectively.

and Germany, suggesting underestimation in current inventories, whereas posterior reductions over the United Kingdom, Italy,
and Romania indicate possible prior overestimation. These regional patterns are broadly consistent with earlier inversion stud-
ies (Bergamaschi et al., 2022; Saunois et al., 2020; Petrescu et al., 2021; Steiner et al., 2024), which lends confidence to their
robustness. At the aggregated EU2743 scale, our total posterior methane emissions are corrected from 21.84 £ 0.57 to 23.28
+ 0.36 Tg yr!, representing a modest 6.6 % rise compared with the prior. Although this is a modest overall increase, there are
strong regional and sectoral differences. Anthropogenic CH,4 emissions are averaged 17.6 Tg yr~' during 2017-2021 (range:
17.0-18.2 Tg yr™!), corresponding to a mean annual decrease of 0.3 Tg yr™'. These values are 11 % higher than GAINS, 4 %
higher than EDGARVS, and 3 % higher than UNFCCC NGHGI (2023), indicating good overall consistency with bottom-up
inventories and recent inversion-based estimates (e.g. Steiner et al. 2024). However, country-level comparisons reveal notable
discrepancies: emissions are higher than reported for BENELUX (+54 %), Germany (+37 %), and France (+10 %), but lower
for Romania (=25 %), Poland (-16 %), and Italy (—11 %). Notable decreases are also found for Norway (-39 %), Finland
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(=16 %), and Denmark (—13 %), while Sweden exhibits a modest increase (+10 %), pointing to areas where inventory improve-
ments are needed. Furthermore, our sectoral analysis indicated that agriculture is the dominant source of European methane
emissions and the primary driver of the posterior increase, accounting for nearly half of total EU27+3 emissions and corrected
upward by 21 % relative to the prior estimate. Energy-sector emissions show a small increase over land regions, while decreas-
ing in coastal and ocean areas, and waste emissions remain broadly stable, despite pronounced national variability. In contrast,
emissions from wetlands and geological sources show decreases, particularly reductions in wetland emissions observed during
the summer months in Northern Europe and decreases in geological emissions in Italy, Romania, and the UK. In addition, we
conducted eight sensitivity experiments by varying key parameters in the inversion setup. The results indicated that posterior
fluxes show limited sensitivity to the choice of initial mole fractions and prior fluxes, underscoring the dominant role of atmo-
spheric observations in constraining emissions. In contrast, assumptions regarding error correlation lengths and observational
density strongly influence uncertainty reduction and the magnitude of posterior fluxes, emphasising the importance of realistic
error characterisation and the continued expansion of atmospheric measurement networks.

Our study demonstrates that dense atmospheric monitoring combined with high-resolution inversion modelling provides a
robust top-down framework to evaluate national inventories, identify regional emission hotspots, and support verification of
methane mitigation efforts in Europe. By improving both spatial resolution and sectoral attribution, these results advance under-
standing of European methane sources and their variability, with direct relevance for climate policy and mitigation verification.
Nevertheless, some limitations remain. Observational coverage is sparse in parts of eastern and southeastern Europe, limiting
the ability to resolve emissions at finer spatial scales in these regions. Uncertainties in the transport model and assumptions
about background CHj, levels may also affect the posterior estimates. In addition, this study didn’t systematically assess the
impacts of different resolutions, grid-based uncertainty, different natural priors and OH fields. Thereby, future work should
address these limitations through dedicated sensitivity analyses and by integrating satellite observations and isotopic signa-
tures (e.g., '*CH,) to improve source attribution, expand spatial coverage, and further strengthen European methane emission

estimates.

Appendix A: Supplementary Figures and Tables
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Figure Al. Mean spatial distribution of prior methane (CH4) fluxes over the inversion domain for 2017-2022. Prior emissions are shown

by sector: a) Agriculture (AGR), b) Energy (ENG), c¢) Industrial processes (IND), d) Waste (WST), e) Ocean (OCE), f) Wetlands and

soil sinks (WET), g) Biomass burning (BBR), h) Geological (GEO), and i) Termites (TER). Anthropogenic prior fluxes were derived
monthly from GAINS (for EU27+3) and EDGARvVS (for the rest of the world). The GAINS sectors contributing to the AGR, ENG,

and WST categories include: Energy: A_PublicPower, B_Industry, D_Fugitives, F_RoadTransport, C_OtherStationaryComb; Agriculture:

K_AgriLivestock, L_AgriOther; Waste: J_Waste. The EDGARVS sectoral inputs correspond to IPCC categories: Energy: BUILDINGS,
TRANSPORT, IND_COMBUSTION, POWER_INDUSTRY, FUEL_EXPLOITATION; Industrial processes: IND_PROCESSES; Agricul-
ture; AGRICULTURE; Waste: WASTE.

Table Al: Subregional grouping of European countries used in this study. ISO codes follow ISO 3166-1 alpha-3.

Subregion Countries

Northern Denmark (DNK), Estonia (EST), Finland (FIN), Lithuania (LTU), Latvia (LVA), Norway (NOR), Sweden (SWE)

Western Belgium (BEL), France (FRA), Ireland (IRL), Luxembourg (LUX), Netherlands (NLD), United Kingdom (GBR)

Central Austria (AUT), Switzerland (CHE), Czech Republic (CZE), Germany (DEU), Hungary (HUN), Poland (POL), Slovakia (SVK)

Southern Spain (ESP), Italy (ITA), Malta (MLT), Portugal (PRT), Bulgaria (BGR), Cyprus (CYP), Greece (GRC), Croatia (HRV), Romania (ROU),
Slovenia (SVN)

BENELUX Belgium (BEL), Luxembourg (LUX), Netherlands (NLD)

NorCheBri United Kingdom (GBR), Norway (NOR), Switzerland (CHE)

Scandic Finland (FIN), Sweden (SWE), Norway (NOR)

EU27+3 Austria (AUT), Belgium (BEL), Bulgaria (BGR), Croatia (HRV), Cyprus (CYP), Czech Republic (CZE), Denmark (DNK), Estonia

(EST), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC), Hungary (HUN), Ireland (IRL), Italy (ITA), Latvia (LVA), Lithua-
nia (LTU), Luxembourg (LUX), Malta (MLT), Netherlands (NLD), Poland (POL), Portugal (PRT), Romania (ROU), Slovakia (SVK),
Slovenia (SVN), Spain (ESP), Sweden (SWE), United Kingdom (GBR), Norway (NOR), Switzerland (CHE)
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Figure A2. Time series of CH4 flux contributions from the nested and global domains at selected stations, averaged at the assimilated hour

for 2021: BIS (Biscarrosse, France), CBW (Cabauw, Netherlands), CRP (Carnsore Point, Ireland), ERS (Ersa, coastal Mediterranean site),

HPB (Hohenpeissenberg, mountain station in Germany), KIT (Karlsruhe, Germany), PAL (Pallas, Finland), and TRN (Trainou, France)

Table A2: List of CHy4 concentration observation sites assimilated in this study. The “Alt” represents the sum of the surface

elevation and the intake height above ground level. The “Usage” column uses “M” to denote stations included in the base

inversion and “S” to denote stations used only in the sensitivity test. An asterisk (*) in the three-letter station code indicates

the station is classified as a mountain station, while a double asterisk (**) indicates the station is classified as a coastal station.

Time series of CH, concentration are obtained from the ICOS European ObsPack compilation, except for SOD and KMP,

which are provided by FMI.

Code Name/Country Lat Lon Alt Intake  Usage  Region PI name / PID

BIK Bialystok, Poland 53.23 23.01 363 180 M Central Christoph Gerbig 11676/dIb_-MKOwY-1XLS0oS6Ix_uEH
BIR** Birkenes, Norway 58.39 8.25 294 75 M North Ove Hermansen 11676 /0p0FO0Tp30iA0sosQa7c7r8f
BIS** Biscarrosse, France 44.38 -1.23 120 47 M Western Morgan Lopez 11676/CZz7D5w1MOJb5G7tx60pzF50
BRM* Beromunster, Switzerland 47.19  8.18 1009 212 S Central Markus Leuenberger 11676/x110FWs—-4Fa8uHRc—£7WdjVt
BSD Bilsdale, UK 54.36 -1.15 630 248 M Western Simon O’Doherty 11676/N_Rk4k74hPRVgQb0LU6dn3MW
CBW Cabauw, Netherlands 51.97 4.93 207 207 M ‘Western Arnoud Frumau 11676/507nE4zCWxi10gSOLxy_gPFaa
CMN* Monte Cimone, Italy 44.19 10.70 2173 8 M Southern Paolo Cristofanelli 11676/ rV560WUNO01G6xDvDjAPoUy8P
CRA Centre Atmosphériques, France 43.13  0.37 630 30 M Western Marc Delmotte 11676/B-sdBT0x3-XA0Z1Dv7G0efUO
CRP** Carnsore Point, Ireland 52.18 -6.37 23 14 M Western Damien Martin 11676/31YhyLy50p2eKMna-N8MRDeG
ERS** Ersa, France 42.97 9.38 573 40 M Southern Marc Delmotte 11676/eA1LggNt ZSSEhLIP4VQF3FzB
FKL Finokalia, Greece 35.34 25.67 265 15 M Southern Marc Delmotte 11676/22jyS96qwt8yCILHOVPKUgIw
GAT Gartow, Germany 53.07 11.44 411 341 M Central Sabrina Arnold 11676/0c0MscHILDwjTTRO1zNzwecN
HEI Heidelberg, Germany 4942  8.68 143 30 S Central Samuel Hammer 11676/ £Suvmloug0U-eYnDmY89vvnO
HEL** Helgoland, Germany 54.18 7.88 153 110 M Central Sabrina Arnold 11676/1Hon6TrJFT4xSnnWu_t 7ki0E
HPB* Hohenpeissenberg, Germany 47.80 11.03 1065 131 M Central Sabrina Arnold 11676/JV5tGrF4Glki6IuUSSYhudde
HTM Hyltemossa, Sweden 56.10 1342 265 150 M North Tobias Biermann 11676/Eve4cRnozSvtdDluR2J8eQle
HUN Hegyhatsal, Hungary 46.96 16.65 363 115 M Central Laszlo Haszpra 11676/nDi91KPtJmGKcal5n4008K4y
IPR Ispra, Italy 4582  8.64 310 100 S Central Peter Bergamaschi 11676/ 6-63kMo0iwyaOG_IDm2e05sT
JFI Jungfraujoch, Switzerland 46.55  7.99 3585.7 13.9 S Central Lukas Bidni 11676/43dS11kEAb101e-CVx4V5FYE
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Code Name/Country Lat Lon Alt Intake  Usage  Region PI name / PID

JUE Jiilich, Germany 50.91 6.41 218 120 M Central Sabrina Arnold 11676/7-2ZcZxJaSr6aYNsPtkx1R5iu
KAS* Kasprowy Wierch, Poland 49.23 19.98 1994 7 M Central Lukasz Chmura 11676/rjzUrVpnGJgkfrE31vHKM4M4
KIT Karlsruhe, Germany 49.09 843 310 200 M Central Sabrina Arnold 11676/xunTpxiKBxeCATik1ITfmVEO
KMP** Kumpula, Finland 6020 2496 83 30 M North Juha Hatakka

KRE Kfesin u Pacova, Czech Republic 49.57 15.08 784 250 M Central Vlastimil Hanu§ 11676/0BvoGzvun2yJUhwGSSw_IPFU
LHW Laegern-Hochwacht, Switzerland 47.48 8.40 872 32 M Central Dominik Brunner 11676/2ngGiV560IXmFhPKAvVr 9VsW9
LIN Lindenberg, Germany 52.17 14.12 171 98 M Central Sabrina Arnold 11676/heVVCRDR10NAmsT jVT7P5ugx
LMP** Lampedusa, Italy 35.52 12.63 53 8 M Southern ~ Tatiana Di Iorio 11676/1BrGUittGQOMbSa2d_DRAQSL
LMU La Muela, Spain 41.60  -1.10 3079 79 M Southern  Josep-Anton Morgui 11676/RogG1l0k9IncLrfQpamPGuHCOwW
LUT** Lutjewad, Netherlands 53.40 6.35 61 60 M Western Huilin Chen 11676/-6jCU6FKSHK1QUpPTY2ycbA9g
MHD#*#* Mace Head, Ireland 53.33 -9.90 29 24 M Western Morgan Lopez 11676/Z1C0~rDRAwWVr_HJIQVRWAQOt -~
MLH** Malin Head, Ireland 55.36 -7.33 69 47 M Western Damien Martin 11676/DUzJ18dy-0juDUQpx jkbdZWJ
NOR Norunda, Sweden 60.09 17.48 146 100 M North Irene Lehner 11676/t IU04tuXHJOUQoiUpUx0Lo-m
OHP Haute, France 43.93 5.71 750 100 M Western Pierre-Eric Blanc 11676/e00P0J1JFIKePdO8pBY3NfWB
OPE pérenne, France 48.56  5.50 510 120 M Western Sébastien Conil 11676/5eJv1DQFaqrMdZJpFeroX0CB
OXK* Ochsenkopf, Germany 50.03 11.81 1185 163 M Central Sabrina Arnold 11676/c-7hY8ADIyUbXnAseeHvPUOG
PAL Pallas, Finland 67.97 24.12 577 12 M North Juha Hatakka 11676/BRQdok2fWTkZ jbY2EWt5j_kp
PDM* Pic du Midi, France 42.94 0.14 2905 28 M Southern Marc Delmotte 11676/178B6eUemNE5fwxPYRmh_aQ5
PRS* Plateau Rosa, Italy 4593  7.70 3490 10 M Southern  Francesco Apadula 11676 /EiykeME8LDVWGDMWBNVE18Dr
PUI Puijo, Finland 62.91 27.66 316 84 M North Kari Lehtinen 11676/0UL5PFu3G24d3faQB8Y32BFX
PUY* Puy de Dome, France 45.77 297 1475 10 M Central Marc Delmotte 11676 /Epa5vyYIPO1JgqCvSY£8wKQQ
RGL Ridge Hill, UK 52.00 -2.54 297 90 M Western Simon O’Doherty 11676/uginioEdmGdx6eeXbWCgqgWJ
ROC Roc’h Trédudon, France 48.41 -3.89 502 140 M Western Marc Delmotte 11676/EhkaIxjU0afvi4NoRTPhIjrN
SAC Saclay, France 48.72 2.14 260 100 M Western Marc Delmotte 11676/A0LSAFdhH6ZHK-XK1 IWECMKJ
SMR Hyytiild, Finland 61.85 2430 306 125 M North Janne Levula

SOD Sodankyli, Finland 67.36  26.64 406 179 M North Juha Hatakka

SSL* Schauinsland, Germany 4792 792 1240 35 M Central Cédric Couret 11676/-VQ8RK_VTU7EpH65m4nDRt272
STE Steinkimmen, Germany 53.04 8.46 281 252 M Central Sabrina Arnold 11676/3aRDFH6511a0WHt oNh KO0 jxp
SVB Svartberget, Sweden 64.26 19.78 419 150 M North Per Marklund 11676/4t7iW7h2mQNwkbokFa5cHn-3
TAC Tacolneston, UK 52.52 1.14 249 185 M Western Simon O’Doherty 11676/pMNbgzZiucxfHuFZMSqiec5£fB
TOH Torfhaus, Germany 51.81 10.54 948 147 M Central Sabrina Arnold 11676/POM9VeLfoJu7oF5NyCizMoHQ
TRN Trainou, France 47.97 2.11 311 180 M Western Marc Delmotte 11676/ IHLvYYVOv68h1XTvHGEACT 9D
UTO** Ut6 - Baltic Sea, Finland 59.78  21.37 65 57 M North Juha Hatakka 11676/40H7x jDD9SWL1MLmD5vdAVHZM
WAO Weybourne, UK 52.95 1.12 41 10 M Western Grant Forster 11676/mf2wNzCd_92k2K4r1bXmA8Xt
WES** Westerland, Germany 5492 831 26 14 M Western Cédric Couret 11676/Y064anbwHvGNYchIXX8dNMsB
ZSF* Zugspitze, Germany 47.42 10.98 2669 3 M Central Cédric Couret 11676/VyAUTyJFxZvM1OPRnNtBBQr23

Table A3: Prior and posterior model performance statistics at all measurement stations used in this study. The table reports the

root-mean-square error (RMSE), mean bias (MBias), and Pearson correlation coefficient (r?) for both the prior and posterior

simulations at the assimilated hour. RMSE and MBias are given in ppb.

Station RMSE MBias ?

Prior Post Prior Post Prior Post
bik 24.14 17.68  -11.02 -3.19 0.82 0.88
bir 18.11 14.48 -4.12 2.53 0.77 0.86
bis 25.09 16.66  -11.73 0.47 0.83 0.91
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RMSE MBias I

Station

Prior Post Prior Post Prior Post
brm 42.04 2692 -3.17 -1.62 0.58 0.84
bsd 19.01 16.11 -3.52 -1.38 0.80 0.87
cbw 60.61 3558  -39.14  -10.21 0.76 0.87
cmn 25.15 19.57 3.87 4.19 0.71 0.80
cra 30.08 18.31 -20.87 -5.42 0.73 0.83
crp 2480 2030 -8.00 -3.30 0.83 0.88
ers 24.06 15.33 8.22 1.99 0.79 0.89
k1 16.10 13.40 4.52 5.54 0.85 0.91
gat 28.05  21.10 -16.75 0.09 0.84 0.87
hel 4890  30.71 -23.23 -5.64 0.77 0.87
hpb 3338 26091 -3.26 4.48 0.66 0.80
htm 23.96 16.17  -11.61 -3.01 0.85 0.92
hun 35.81 2656 -22.69  -11.52 0.79 0.85
jue 4785 31.21 -32.05 -6.27 0.78 0.82
kas 24.17 21.52 4.52 10.45 0.74 0.84
kit 3575 2143 -21.38 1.09 0.85 0.91
kmp 24.92 1746  -11.90 -6.11 0.83 0.91
kre 29.25 2037  -19.33 -4.32 0.83 0.87
Ihw 44.04  32.17  -25.31 -12.97 0.70 0.81
lin 3475 2226  -22.81 -6.89 0.85 0.90
Imp 20.68 14.00 12.80 7.22 0.83 0.92
Imu 4936 2594  -38.78 -9.97 0.51 0.72
lut 9498 6998  -48.70  -26.00 0.73 0.82
mhd 16.56 13.81 -2.69 1.31 0.90 0.93
mlh 23.50 19.83 -3.03 -2.28 0.79 0.86
nor 15.21 10.56 -4.75 1.10 0.91 0.95
ope 28.73 17.51 -18.15 -0.79 0.86 0.92
oxk 23.26 17.63  -11.77 1.22 0.75 0.82
pal 14.55 9.78 -5.40 0.56 091 0.95
pui 16.15 10.94 -5.14 0.89 0.91 0.95
puy 22.05 1559  -11.56 1.53 0.83 0.89
rgl 2774 2139  -13.88 -7.96 0.84 0.90
roc 28.47 17.80  -15.26 -3.98 0.70 0.86
sac 31.05 2190 -14.22 0.89 0.87 0.92
smr 14.63 10.34 -4.38 1.37 0.92 0.96
sod 24.17 17.10  -13.57 -6.91 0.84 0.90
ste 55.41 36.62  -37.24  -13.25 0.74 0.82
svb 12.19 9.26 -3.67 1.66 0.94 0.96
toh 22.97 1842  -13.07 342 0.82 0.85
trn 27.80 17.12 -15.49 -1.39 0.85 0.92
uto 18.42 12.42 -4.25 1.13 0.87 0.94
wao 37.63  26.99 -7.12 -1.73 0.77 0.88
wes 57.38 3785 -27.93  -12.52 0.76 0.87
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Table A4: Six-year mean methane fluxes (2017-2022) by region and sector. Values are given in Tg yr'! with ranges in paren-

theses.

Region/Subregion

Prior Flux

Posterior Flux

Increment (%)

Total Fluxes
Domain
EU27+3

non EU27+3
EU27

non EU27+3 land
Oceans
Northern
Central
Western
Southern
Benelux
NorCheBri

Scandic

36.11 (35.54-36.60)
21.84 (21.13-22.55)
14.27 (13.80-14.47)
18.80 (18.23-19.33)
10.26 (9.73-10.49)
5.08 (5.01-5.17)
2.07 (2.03-2.18)
5.19 (4.98-5.53)
6.36 (6.08-6.65)
8.23 (8.04-8.35)
0.92 (0.90-0.96)
3.05 (2.90-3.23)
1.50 (1.47-1.61)

36.70 (35.98-37.38)
23.28 (22.78-23.85)
13.42 (12.98-14.37)
20.50 (19.97-21.09)
9.97 (9.76-10.39)
4.44 (3.89-5.07)
2.05 (1.99-2.13)
6.84 (6.45-7.35)
7.57 (7.44-7.96)
6.81 (6.68-6.98)
1.74 (1.67-1.79)
278 (2.55-3.04)
1.44 (1.39-1.54)

+1.62
+6.56
-5.96
+9.06
-2.74
-12.53
-1.01
+31.95
+19.15
-17.25
+88.94
-8.83
-4.03

Agricultural Sector

Domain
EU27+3
non EU27+3
EU27

non EU27+3 land
Oceans
Northern
Central
Western
Southern
Benelux
NorCheBri

Scandic

11.70 (11.62-11.79)
8.94 (8.83-9.11)
2.76 (2.64-2.82)
7.83 (7.73-1.97)
2.41(2.29-2.48)
0.76 (0.75-0.77)
0.64 (0.63-0.65)
2.37(2.35-2.39)
3.51 (3.45-3.60)
2.42 (2.39-2.46)
0.68 (0.67-0.69)
1.11 (1.10-1.14)
0.30 (0.30-0.31)

13.63 (13.42-13.88)
10.82 (10.61-11.01)
2.81(2.70-2.87)
9.67 (9.43-9.81)
2.45(2.34-2.50)
0.81 (0.80-0.83)
0.68 (0.66-0.69)
3.19 (3.09-3.31)
4.54 (4.35-4.72)
2.41(2.37-2.45)
1.29 (1.13-1.38)
1.16 (1.11-1.21)
0.31 (0.30-0.31)

+16.53
+21.03
+1.96
+23.48
+1.57
+6.71
+6.59
+34.63
+29.26
-0.44
+89.87
+3.77
+1.99

Energy Sector
Domain
EU27+3

non EU27+3
EU27

non EU27+3 land
Oceans
Northern
Central
Western
Southern
Benelux
NorCheBri

Scandic

4.89 (4.57-5.31)
1.70 (1.58-1.91)
3.19 (2.98-3.40)
1.53 (1.41-1.74)
1.81 (1.77-1.85)
1.44 (1.22-1.66)
0.07 (0.07-0.07)
0.81 (0.72-0.95)
0.31 (0.29-0.33)
0.52 (0.49-0.56)
0.06 (0.06-0.06)
0.17 (0.17-0.18)
0.04 (0.04-0.05)

4.71 (4.54-5.03)
1.77 (1.59-2.03)
2.94 (2.82-3.00)
1.60 (1.42-1.86)
1.84 (1.77-1.89)
1.15 (1.04-1.26)
0.07 (0.07-0.07)
0.87 (0.74-1.07)
0.32(0.30-0.35)
0.51 (0.49-0.55)
0.07 (0.06-0.07)
0.17 (0.17-0.18)
0.04 (0.04-0.05)

-3.71
+4.18
-7.92
+4.56
+1.52
-19.64
-0.50
+8.07
+3.02
-0.59
+8.73
+0.75
-0.55

Waste Sector
Domain
EU27+3

non EU27+3

9.60 (9.48-9.74)
4.90 (4.59-5.32)
4.70 (4.41-4.99)

9.65 (9.52-9.77)
4.96 (4.65-5.33)
4.68 (4.39-4.97)

+0.48
+1.33
-0.40
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Table A4 — continued from previous page

Region/Subregion

Prior Flux

Posterior Flux

Increment (%)

EU27

non EU27+3 land
Oceans

Northern

Central

Western

Southern
Benelux
NorCheBri

Scandic

4.06 (3.87-4.31)
3.57 (3.33-3.79)
1.39 (1.36-1.45)
0.22 (0.21-0.24)
1.01 (0.92-1.15)
1.59 (1.43-1.82)
2.07 (2.03-2.12)
0.16 (0.14-0.19)
0.84 (0.72-1.01)
0.09 (0.09-0.10)

4.13 (3.93-4.37)
3.56 (3.32-3.78)
1.38 (1.34-1.44)
0.23 (0.21-0.24)
1.05 (0.95-1.20)
1.64 (1.48-1.82)
2.05 (2.01-2.08)
0.18 (0.16-0.21)
0.83 (0.72-0.96)
0.09 (0.09-0.10)

+1.70
-0.20
-0.83
+0.50
+3.84
+3.20
-1.23
+11.02
-0.43
-0.25

Wetland Sector
Domain
EU27+3

non EU27+3
EU27

non EU27+3 land
Oceans
Northern
Central

Western
Southern
Benelux
NorCheBri

Scandic

2.59 (2.39-2.93)
1.44 (1.30-1.71)
1.14 (1.09-1.26)
0.91 (0.78-1.12)
1.10 (1.05-1.22)
0.09 (0.08-0.10)
1.13 (1.10-1.25)

-0.09 (-0.11-0.04)
0.37 (0.31-0.43)
0.03 (-0.07-0.12)
0.02 (0.01-0.02)
0.53 (0.50-0.59)
1.05 (1.00-1.16)

2.57 (2.42-2.91)
1.40 (1.30-1.67)
1.17 (1.10-1.27)
0.89 (0.79-1.11)
1.13 (1.06-1.23)
0.09 (0.08-0.10)
1.10 (1.05-1.22)

-0.08 (-0.10-0.04)
0.36 (0.30-0.42)
0.03 (-0.07-0.12)
0.02 (0.02-0.02)
0.51 (0.48-0.56)
1.01 (0.97-1.13)

-0.49
-2.61
+2.19
-1.66
+2.36
-2.95
-3.27
-7.05
-1.85
-0.37
+9.53
-4.25
-3.62

Geological Sector
Domain

EU27+3

non EU27+3
EU27

non EU27+3 land
Oceans

Northern

Central

Western

Southern

Benelux
NorCheBri

Scandic

5.10 (5.10-5.12)
3.89 (3.89-3.90)
122 (1.22-1.22)
3.56 (3.56-3.56)
0.63 (0.63-0.63)
0.71 (0.71-0.71)
0.02 (0.02-0.02)
-0.65 (0.65-0.65)
0.41 (0.41-0.41)
2.81 (2.81-2.82)
0.01 (0.01-0.01)
0.33 (0.33-0.33)
0.01 (0.01-0.01)

347 (3.11-3.77)
2.51 (2.16-2.76)
0.96 (0.87-1.01)
2.24 (1.89-2.48)
0.52 (0.48-0.55)
0.51 (0.41-0.54)
0.02 (0.02-0.02)
-0.65 (0.56-0.72)
0.38 (0.34-0.40)
1.47 (1.21-1.67)
0.01 (0.01-0.01)
0.28 (0.24-0.30)
0.01 (0.01-0.01)

-31.98
-35.42
-20.98
-37.13
-16.79
-28.69
+0.81
-0.27
-1.07
-47.87
+14.21
-17.12
+0.26

EGUsphere

Table AS5: Comparison of posterior anthropogenic CH4 emissions (Tg yr—1) for EU27+3 countries with GAINS, UNFCCC,

and EDGARVS inventories, including relative differences (%).

1

Emissions (Tgyr™ ") Posterior increments (%)

Country  Posterior ~ GAINS/Prior UNFCCC  EDGARvV8  PostvsPrior  Post vs UNFCCC  Post vs EDGAR
AUT 0.26 0.22 0.24 0.35 12.74 7.00 -35.06
BEL 0.44 0.27 0.29 0.49 39.75 34.78 -11.26

Continued on next page
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Table AS - continued from previous page

Emissions (Tg yr— 1 ) Posterior increments (%)

Country  Posterior ~ GAINS/Prior UNFCCC  EDGARvV8  PostvsPrior  Post vs UNFCCC  Post vs EDGAR

BGR 0.26 0.26 0.24 0.30 -0.55 7.10 -18.39
CHE 0.17 0.19 0.18 0.20 -13.30 -8.22 -16.22
CYP 0.00 0.00 0.04 0.03 1.00 1.00 1.00
CZE 0.49 0.42 0.49 0.48 13.99 -0.85 1.36
DEU 241 1.71 1.75 2.17 29.22 27.38 10.04
DNK 0.26 0.23 0.31 0.29 11.29 -16.00 -1.71
ESP 1.51 1.47 1.49 1.32 2.88 1.66 12.83
EST 0.05 0.05 0.04 0.11 0.52 12.03 -128.64
FIN 0.15 0.15 0.18 0.36 -0.39 -20.28 -140.65
FRA 2.54 2.15 2.30 2.48 15.50 9.52 2.36
GBR 1.89 1.84 1.93 1.68 2.46 -1.99 11.17
GRC 0.35 0.35 0.40 0.26 -1.07 -16.48 24.11
HRV 0.11 0.11 0.15 0.16 2.05 -31.75 -41.13
HUN 0.36 0.35 0.33 0.32 3.42 8.41 11.76
IRL 0.57 0.57 0.62 0.63 -0.11 -8.48 -10.37
ITA 1.51 1.61 1.70 1.23 -6.90 -12.88 18.31
LTU 0.13 0.13 0.12 0.11 2.77 7.28 19.65
LUX 0.03 0.02 0.02 0.03 36.55 27.50 17.78
LVA 0.08 0.08 0.07 0.07 1.48 13.68 16.38
MLT 0.00 0.00 0.01 0.00 1.00 1.00 1.00
NLD 1.07 0.62 0.69 0.62 41.90 35.50 4154
NOR 0.12 0.12 0.19 0.17 0.28 -64.88 -46.41
POL 1.33 1.22 1.58 1.42 8.06 -19.46 -7.44
PRT 0.44 0.44 0.37 0.26 0.79 15.89 39.93
ROU 0.70 0.70 0.94 0.83 0.24 -34.16 -18.30
SVK 0.13 0.13 0.13 0.16 5.74 0.29 -19.36
SVN 0.10 0.09 0.08 0.08 3.50 21.20 22.56
SWE 0.19 0.18 0.17 0.36 2.76 9.33 -94.28
EU27 17.10 15.11 16.44 16.28 11.66 3.88 4.77
EU27+3 17.64 15.67 17.05 16.96 11.17 3.35 3.89

Code availability. This study makes use of the Community Inversion Framework (CIF) and the Lagrangian transport model FLEXPART,
both of which are publicly available. The CIF and FLEXPART codes used for this study are available from the GitLab repositories at
https://gitlab.in2p3.fr/satinv/cif and https://gitlab.phaidra.org/flexpart/flexpart/-/releases/v10.4, respectively.

Data availability. The time series of CHy dry air mole fraction data used in this study are available from the Integrated Carbon Observation
System (ICOS) at https://www.icos-cp.eu/ obspack_CHs_466_GVeu_v10.0_20240729 European CHy. Prior emission inventories were ob-
tained from publicly available sources: GAINS (https://iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.html, EDGARvVS (https:
/ledgar.jrc.ec.europa.eu/, and JSBACH-HIMMELI (available upon request from the model developers). Climatological emissions from geo-
logical, oceanic, and termite sources follow published datasets cited in this study. Data used for plotting the results of this study will be made

available on Zenodo following final publication.
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