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Abstract. Constraining methane (CH4) emissions at high spatial and temporal resolution is critical for accurate European

greenhouse gas budgets and mitigation policy. We use the Community Inversion Framework to estimate monthly CH4 fluxes

across Europe 2017–2022 at 0.2◦ × 0.2◦, coupling the FLEXPART and assimilating observations from 46 in situ stations,

including ICOS and non-ICOS sites. Prior emissions combine GAINS and EDGARv8 anthropogenic inventories with GFED

biomass burning, JSBACH-HIMMELI wetland fluxes, and climatological natural sources. The inversion markedly improves5

agreement with atmospheric observations (r2 = 0.87, RMSE = 24.35 ppb, mean bias = –2.14 ppb), performing best at northern

European stations. Posterior EU27+3 CH4 totals 23.28 ± 0.36 Tg CH4 yr–1, 6.6 % above the prior. Anthropogenic emissions

average 17.6 ± 0.3 Tg CH4 yr–1, exceeding GAINS by 11 %, EDGARv8 by 4 %, and UNFCCC NGHGI (2023) by 3 %, con-

sistent with recent studies. Country-level differences are substantial: emissions are higher in BENELUX (+54 %), Germany

(+37 %), and France (+10 %), and lower in the UK (-11 %), Romania (-25 %), Poland (-16 %), and Italy (-11 %) compared to10

UNFCCC NGHGI (2023). Sectoral changes primarily reflect agricultural increases in western and central Europe, with reduc-

tions in northern wetlands and southern geological sources. Sensitivity tests highlight the influence of horizontal correlation

length and the value of dense observational networks for refining regional CH4 budgets.

1 Introduction

Methane (CH4) mole fractions in Earth’s atmosphere have nearly tripled since 1750, significantly contributing to a 0.6◦C15

rise in global temperatures since the pre-industrial era (Saunois et al., 2020; Chen et al., 2022; Shen et al., 2023). The

World Meteorological Organization (WMO) has reported record increases in global methane levels from 2020 to 2021,

with further rises observed in 2022 (WMO, 2023). These increases pose substantial challenges, such as accelerating cli-

mate change, disrupting ecosystems, and complicating efforts to meet international climate goals. In response to these chal-

lenges and the urgent need to mitigate climate change, countries have pledged to reduce methane emissions by 30 % from20
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2020 levels by 2030, aiming for a 0.2◦C reduction in global temperatures by 2050 (Cael and Goodwin, 2023). Similarly,

the European Commission aims to achieve a climate-neutral Europe by 2050, as outlined in the European Climate Law

(https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32021R1119, last access: 30 October 2025), which mandates

net-zero greenhouse gas (GHG) emissions (Rayner and Jordan, 2016). To effectively meet this goal, strategies must address

reductions in both methane and carbon dioxide emissions, as both are crucial for mitigating global temperature rise. Methane25

is a significantly more potent greenhouse gas than carbon dioxide, with a global warming potential 28 times greater over a 100-

year period and 84 times greater over 20 years (IPCC, 2023; Myhre et al., 2013; Saunois et al., 2020). As a result, reducing

methane emissions offers an especially effective short-term strategy for mitigating overall greenhouse gas emissions (Dlugo-

kencky et al., 2011; Kikstra et al., 2022). Achieving this, however, requires accurate estimates of methane emissions. Despite

substantial research, considerable uncertainty remains in identifying the geographic and temporal sources of these emissions.30

Current national methane estimates reported to the UNFCCC predominantly rely on bottom-up methodologies, which apply

emission factors to activity data, often supplemented by facility-specific information. However, these inventories are affected

by significant uncertainties, often varying by a factor of two or more (Saunois et al., 2020; Solazzo et al., 2021), primarily due

to the considerable variability in emission intensity across sources such as landfills, gas production facilities, and distribution

networks (Leip et al., 2018). This variability cannot be fully captured by the use of generic emission factors, leading to substan-35

tial uncertainty in the resulting estimates. The reliance on uncertain and sparse input data, combined with poorly characterized

emission factors, further undermines the accuracy of these estimates, especially when lacking comprehensive characterization.

Moreover, since NGHGIs by design include only anthropogenic emissions, they do not account for natural methane sources

and sinks. Therefore, complementary top-down approaches are essential to provide a more complete understanding of the total

methane budget and to better constrain both anthropogenic and natural components.40

To address these challenges, top-down approaches have increasingly been employed to generate independent, optimized emis-

sions estimates. These methods use inverse techniques that assimilate observational data from in situ and/or satellite obser-

vations. Such estimates help to refine and constrain the data from bottom-up inventories. In recent years, the growing avail-

ability of greenhouse gas measurements and advancements in regional monitoring networks, particularly in Europe and North

America, have significantly bolstered the effectiveness of top-down approaches (Bergamaschi et al., 2015). Numerous atmo-45

spheric inverse modelling studies have demonstrated the effectiveness of these approaches in quantifying methane emissions

across regional to national scales. Such analyses have provided essential constraints on source magnitudes and spatial dis-

tributions, thereby informing climate mitigation strategies and policy development (e.g., Bocquet and Sakov, 2013; Saunois

et al., 2020, 2025; Qu et al., 2021; Bergamaschi et al., 2022; Chen et al., 2022; Petrescu et al., 2021; Ernst et al., 2024; Pe-

trescu et al., 2023; Steiner et al., 2024; Ioannidis et al., 2025). Complementing these scientific efforts, international initiatives50

such as the Global Carbon Project (GCP) (Friedlingstein et al., 2022), VERIFY (Petrescu et al., 2021), and EYE-CLIMA

(https://eyeclima.eu, last access: 30 October 2025) have played a central role in developing coordinated frameworks for inde-

pendent, observation-based assessments of greenhouse gas emissions and sinks. These programs integrate atmospheric obser-

vations, bottom-up inventories, and Earth system modelling to enhance transparency, support policy evaluation, and improve

the robustness of emission estimates at regional to global scales. VERIFY, in particular, aimed to develop scientifically robust55
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tools for verifying national emission inventories by integrating atmospheric observations, satellite data, emission inventories,

and ecosystem models. Building on these efforts, the EYE-CLIMA project has taken a step further by focusing explicitly on

reducing uncertainties in inversion-based estimates of methane and other greenhouse gases. Similarly, GCP provides compre-

hensive global assessments of carbon sources and sinks, supporting transparency and consistency in reporting and informing

international climate agreements. These coordinated efforts have laid the groundwork for standardized, policy-relevant veri-60

fication systems that bridge the gap between scientific research and national reporting. These studies highlight the essential

role of top-down approaches in enhancing the reliability of national methane inventories through independent verification. For

example, Chen et al. (2022) identified a 21 % upward correction needed for the Chinese methane inventory reported to the UN-

FCCC in 2019, demonstrating how top-down methods can uncover significant underestimations in bottom-up data. Similarly,

Bergamaschi et al. (2022) reported elevated methane emissions for Germany, France, and the BENELUX countries in 201865

compared to those reported to the UNFCCC, further showcasing the ability of top-down approaches to reveal higher emissions

than those recorded by bottom-up inventories. In contrast, Bergamaschi et al. (2022) also showed a close alignment between

top-down estimates and both anthropogenic and natural bottom-up inventories for the UK and Ireland, illustrating how these

methods can also validate bottom-up data. Although atmospheric inverse modeling is widely recognized as a valuable tool

for verifying bottom-up estimates (IPCC, 2006), its incorporation into national reports faces several challenges. These include70

the limited availability of high-quality atmospheric measurements and uncertainties in transport models. Additionally, most

past top-down studies have focused either on total emissions or on specific regions, often lacking the spatial resolution and

source attribution needed to provide robust estimates at the national or sectoral level. As a result, while progress has been made

in constraining total methane fluxes, there remains a clear research gap in applying inverse modeling to optimize emissions

from individual sectors such as agriculture, waste, fossil fuels, wetlands, and geological sources. This gap limits our ability to75

disentangle source-specific contributions, thereby constraining the design of targeted and effective mitigation strategies. Fur-

thermore, the complexity of atmospheric processes and the resource-intensive nature of inversion systems present additional

barriers to integrating top-down estimates into national inventory frameworks.

In this study, we address these gaps by presenting high-resolution atmospheric inversion estimates for CH4 emissions over

Europe, covering the domain between 12◦ W, 37◦ E and 35◦ N, 73◦ N. Using the Community Inversion Framework (CIF;80

Berchet et al. 2021), we apply a 4-dimensional variational optimization approach (4D-Var) driven by footprint estimates from

FLEXPART v10.4 (Stohl et al., 1995; Pisso et al., 2019). The inversion assimilates data from 46 Integrated Carbon Observation

System ICOS and non-ICOS in situ CH4 observation sites across Europe (ICOS RI et al., 2023), providing monthly CH4

emission estimates for the years 2017–2022 at a resolution of 0.2◦ × 0.2◦. In addition to optimizing total methane emissions, our

framework explicitly performs sector-specific optimization, enabling improved quantification of emissions from major sources85

including the energy sector, agriculture, waste management, wetlands, and geological sources. This dual approach strengthens

both national-scale reporting and sectoral attribution, bridging a key gap in the current application of atmospheric inversions.

Due to computational expenses of the calculations, sensitivity and uncertainty analyses were conducted using a representative

sample month, serving also as a verification step to identify discrepancies in the optimized fluxes arising from inversion setup

choices. By integrating both total and sector-resolved inversion estimates, our study provides a more detailed spatial and90
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source-specific characterization of methane emissions over Europe. These advances are crucial for informing climate policy,

guiding sector-targeted mitigation strategies, and deepening scientific understanding of methane dynamics. The findings have

the potential to substantially improve national reporting accuracy and support global efforts to reduce methane emissions in

line with climate goals.

2 Datasets and Methodology95

2.1 CIF-Flexpart Inversion Framework

We perform total and sector-specific methane inversions using the CIF coupled with a Lagrangian transport model FLEXPART

and a 4D-Var optimization scheme, hereafter referred to as CIF-FLEXPART. CIF provides a unified platform for atmospheric

inversions, supporting multiple transport models and enabling consistent assessments of greenhouse gas fluxes and their uncer-

tainties. The posterior estimate is obtained by 4D-Var approach that seeks the optimal state vector x through minimizing the100

cost function:

J(x) =
1
2
(x−xb)TB−1(x−xb) +

1
2
(yo−H(x))TR−1(yo−H(x)), (1)

where x is the control vector of surface fluxes, xb the prior estimate with covariance B, yo the observed CH4 mole fractions,

and R the observation error covariance. Efficient minimization of the cost function necessitates the computation of its gradient

with respect to the control vector. This gradient is evaluated using the adjoint operator H⊤ of FLEXPART:105

∇J(x) = B−1(x−xb)−H⊤R−1(yo−H(x)), (2)

which propagates mismatches between observed and modeled mole fractions back into the flux space. The minimization is

performed iteratively using the M1QN3 quasi-Newton algorithm (Gilbert and Lemaréchal, 2009), a limited-memory variant of

the variable metric method, which updates the state vector with each iteration. The iterations continue until the norm of the

gradient falls below a preset convergence threshold, which in this study is set to 0.01 % of its initial value or a maximum of 30110

simulations.

Unlike analytical Bayesian solutions, which explicitly compute the posterior covariance, the variational approach efficiently

yields the maximum a posteriori flux estimate in high-dimensional settings. The analytical solution

xa = xb +K
(
yo−H(xb)

)
, K = BH⊤(

HBH⊤+R
)−1

, A =
(
B−1 +H⊤R−1H

)−1
. (3)

represents the exact solution, where xa is the posterior (optimized) flux state, K is the Kalman gain matrix, and A is the115

posterior error covariance matrix. In high-resolution applications, iterative numerical methods such as M1QN3 provide a

computationally tractable approximation, though the resulting posterior is not identical to the analytical solution. Accordingly,

we adopt a variational 4D-Var framework with iterative minimization to optimize surface fluxes. The prior covariance matrix

B is modeled as:

B = DT ·C ·D (4)120
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where D is a diagonal matrix representing relative flux uncertainties, set to 50 % of the prior fluxes for all optimized categories.

The state vector is defined in physical flux units, with each element corresponding directly to the flux of a given category or grid

cell. Accordingly, the variances in D are expressed relative to the prior flux magnitudes, representing proportional uncertainties

in the physical flux values rather than dimensionless scaling factors. The matrix C contains the correlation structure, with

off-diagonal elements modeled using a Gaussian function that decays exponentially with spatial distance r as exp(−r2/l2)125

(Gaspari and Cohn, 1999; Peters et al., 2005). The spatial correlation length is set to lland = 200 km over land and locean = 500

km over oceans, while the temporal correlation length is prescribed as 90 days.

Observational errors are represented by R, which accounts for instrument precision, model representativeness, and transport

model errors. A minimum uncertainty of 5 ppb is imposed on all station observations to account for∼3 ppb of transport model

error. To avoid biasing surface fluxes, joint optimization of surface emissions and background mole fractions is performed.130

Background uncertainties of 0.5 % (∼10 ppb) were applied, consistent with previous studies that used values in the range of

0.05–1 % (Thompson and Stohl, 2014; Szénási et al., 2021; Steiner et al., 2024; Ioannidis et al., 2025). We also tested a lower

value of 0.05 % in sensitivity experiments.

In our setup, we optimize the initial mole fractions together with the fluxes, and the extended control vector is:

x =


 f

c0


 , (5)135

where f represents the fluxes to be optimized, and c0 represents the initial mole fraction. Optimizing c0 ensures the transport

model starts from a consistent atmospheric state, which is crucial for species like CH4 where early-time conditions affect the

entire simulation. The correlation structure of c0 is defined consistently with the fluxes, using a Gaussian function that decays

with spatial distance r as exp(−r2/l2) (Gaspari and Cohn, 1999; Peters et al., 2005). The spatial correlation length is set to

lland = 200 km over land and locean = 500 km over oceans, while the temporal correlation length is prescribed as 30 days. This140

formulation allows CIF to adjust both the emissions and the initial atmospheric state to best match the observed mole fractions,

while respecting the prior uncertainties and correlation structures.

For the sector-specific inversion, the control vector x is partitioned into distinct methane source sectors as:

x =




xWetlands

xAgriculture

xEnergy

xWaste

xIndustrial

xFire

xGeological

xTermites

xOcean




, x =
∑

i

xi (6)
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where sub-vector xi corresponds to emissions from sector i. The prior covariance B encodes both uncertainties and cross-145

sector correlations, thereby guiding how total flux adjustments are redistributed among sectors. By preserving the correlation

structure in B, the inversion allows sector-specific adjustments to be inferred from total flux constraints. Although this approach

does not replace source-specific tracers (e.g., isotopes or co-emitted species), it provides a first-order quantification of sectoral

contributions to methane variability.

2.2 FLEXPART in the Inversion Framework150

We employ the Lagrangian Particle Dispersion Model FLEXPART v10.4 (Pisso et al., 2019), a widely used open-source

transport model for simulating the dispersion and turbulent mixing of atmospheric tracers (Stohl et al., 1995). Within our

inversion framework, FLEXPART is used to quantify source–receptor relationships (SRRs) between surface methane fluxes

and atmospheric observations.

Meteorological input fields were taken from the ERA5 reanalysis of the European Centre for Medium-Range Weather Forecasts155

(ECMWF). We use hourly data on 137 vertical levels, regridded to a horizontal resolution of 1◦× 1◦. These data are pre-

processed for FLEXPART using the FlexExtract toolbox (Tipka et al., 2020). FLEXPART is operated in backward mode:

for each observation, 10,000 pseudo-particles are released at the receptor location and traced backward in time for 10 days.

The resulting surface flux footprints are archived at an hourly temporal resolution with a spatial resolution of 0.2◦× 0.2◦ for

the nested domain and 2◦× 2◦ for the global domain. The dominant atmospheric sink of CH4 through oxidation by OH is160

explicitly represented in FLEXPART using the CH4 + OH reaction parameters together with 3-D OH fields from GEOS-Chem.

The particle residence time within each grid cell is proportional to the observation’s sensitivity to fluxes in that grid cell,

yielding the source–receptor sensitivity matrix

Sij =
∂yi

∂qj
, (7)

where Sij represents the sensitivity of observation yi to a surface flux qj in grid cell j. These SRRs explicitly account for165

advection, turbulence, convection, and deposition processes (Stohl et al., 1995; Seibert and Frank, 2004; Pisso et al., 2019).

For long-lived greenhouse gases such as CH4, it is essential to represent not only local and regional flux contributions but

also the large-scale background concentration (Thompson and Stohl, 2014). CIF accounts for this by employing two types

of sensitivities within the observation operator: (i) surface-flux sensitivities, separated into nested-domain and outside-nested

contributions, and (ii) three-dimensional (3-D) concentration sensitivities that are multiplied by external 3-D mole-fraction170

fields to represent the large-scale background. The modeled methane mixing ratio at receptor i is then given by

ym
i =

∑

j

Snest
ij xnest

j +
∑

j

Sout
ij xout

j +
∑

k

S3D
ik ck, (8)

where Snest
ij and Sout

ij denote the FLEXPART sensitivities of observation i to surface fluxes inside and outside the nested

domain, respectively, and S3D
ik denotes the sensitivity to the CH4 mole fraction in 3-D grid cell k. For the sector-specific

inversion flux vectors xj can be further decomposed into sectoral contributions xjs Eq. (6) (e.g., agriculture, wetlands, biomass175
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burning), such that the flux contribution yflux becomes

yflux
i =

∑

s

∑

j

Snest
ij xnest

js +
∑

s

∑

j

Sout
ij xout

js . (9)

Thus, each modeled observation combines (i) local and regional flux enhancements, optionally partitioned by sector, and (ii)

large-scale background contributions from external 3-D mole-fraction fields.

2.3 In situ observations of CH4 mixing ratio180

We utilised surface concentration measurements primarily from the Integrated Carbon Observation System (ICOS), a compre-

hensive European dataset of atmospheric CH4 concentration time series that serves as a crucial input for atmospheric inversion

models. This dataset includes both quality controlled ICOS and non-ICOS observations. Our base inversion setup has assimi-

lated data from 44 in situ measurements sourced from the obspack_CH4_466_GVeu_v10.0_20240729 European CH4 time se-

ries (ICOS RI et al., 2023). Additionally, we included data from two Finnish Meteorological Institute (FMI) stations, Kumpula185

and Sodankylä, which have been identified as reliable observation sites (Tsuruta et al., 2019; Tenkanen et al., 2025). To ensure

robust observational constraints on CH4 emissions, we applied the site selection criteria separately for each year, retaining

only stations with at least 30 days of data coverage in each year. A preliminary screening was performed to exclude stations

for which the model did not adequately reproduce observed variability or magnitude. This screening removed only one site,

Ispra (IPR, Italy), which exhibited consistently low correlation and comparatively high bias relative to observations, consistent190

with previous studies (Steiner et al., 2024). In addition, stations TAC and ZSF were excluded because they fell within the same

model grid boxes as WAO and HPB, respectively. Since the two stations in each grid box likely experience identical modelled

conditions, the choice of which one to retain was arbitrary. Furthermore, several mountain stations in the Alps were removed

due to the model’s limited ability to represent complex topography at its resolution. For the sensitivity analysis, an additional

set of 10 stations was included, comprising: (i) the station with poor model–observation agreement (IPR), (ii) stations located195

in grid boxes shared with another site, and (iii) the previously omitted Alpine mountain stations. These additional stations

were included in the sensitivity analysis to assess the impact of observation network density. Figure 1a shows the locations

of all observation sites and the nested modelling domain. The study domain spans 12◦ W, 37◦ E and 35◦ N, 73◦ N and is

hereafter referred to as Domain/Europe. It is further subdivided into subregions: the 27 European Union member states (EU27)

plus the United Kingdom, Norway, and Switzerland (EU27+3); and four subregional groupings (Northern, Central, Western,200

and Southern). A detailed list of countries within each subregion is provided in Appendix A Table A1. Figure 1b displays the

daily-averaged concentration time series for each station, calculated over the assimilated hours only (see Appendix A Table A2

for a complete list of stations). For a detailed description of the measurement procedures and data processing, see (Ramonet

et al., 2020; Hazan et al., 2016).

When multiple intake heights were available, such as at the Cabauw station, where intakes were positioned at 27, 67, 127,205

and 207 meters above ground level, we chose to use data exclusively from the highest intake height. This approach was

adopted to mitigate the difficulties that transport models encounter in accurately representing concentration gradients close to

the ground, where such gradients tend to be steep and variable. By selecting the highest intake height, we ensured that the

7
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Figure 1. a) Distribution of the CH4 observational network used in the inversion. Black dots: low-altitude stations (<1000 m a.s.l); blue dots:

high-altitude stations (>1000 m a.s.l). Stations used in the sensitivity analysis are starred. EU27+3 countries are divided into four sub-regions,

color-coded as in the legend. b) overview of daily mean CH4 mole fractions from each assimilated station and ICOS levelling. Data after the

red dot are ICOS-labeled. White gaps indicate periods with no data.

assimilated data effectively represented the characteristics of a well-mixed boundary layer, thereby improving the consistency

of the methane modelled mole fraction (Vermeulen et al., 2011). Vertical gradients of CH4 near the surface are notoriously210

difficult to simulate accurately due to factors such as complex local meteorology, surface interactions, and diurnal changes

(Peltola et al., 2015). To mitigate these issues, we use recommended quality-controlled observations during periods when

vertical gradients are expected to be lower, thus reducing potential errors in transport model simulations. For low-altitude sites

(≤ 1000 m a.s.l.) over relatively flat terrain, we assimilate 3-hour afternoon averages (14:00–16:00 LT), when the boundary

layer tends to be well mixed and vertical mixing is strong. For high-altitude or mountainous sites (> 1000 m a.s.l.), we instead215

use 3-hour night-time averages (02:00–04:00 LT). These conditions are more likely to reflect free-tropospheric conditions and

reduce contamination from daytime valley winds, which are challenging to represent at coarse model resolution. By focusing

on these windows, we aim to mitigate biases associated with shallow, stable nocturnal layers and poorly resolved slope/valley

circulations, thereby improving assimilation fidelity. This strategy is broadly consistent with practices in atmospheric inverse

modeling, where daytime (often afternoon) observations are preferred for lowland sites to avoid difficulties in representing220

stable nocturnal boundary layers, and nighttime observations are often used in mountainous regions to limit the influence of

unresolved diurnal circulations (Steiner et al., 2024; Monteiro et al., 2024).
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2.4 Prior fluxes

High-resolution monthly data are employed for key contributors (anthropogenic, biospheric and fire) to capture fine-scale

spatial variability and to identify localized hotspots. For sources with sparse data availability and limited temporal variability225

(ocean, geological and termites), coarser climatological estimates are used. However, all datasets are regridded to match the

inversion spatial resolution (0.2◦×0.2◦ for the nested European domain and 2◦×2◦ for the global background). Within the

nested European domain, agriculture is the dominant source, contributing approximately 11.7 Tg yr-1 (estimates for 2020,

34 % of the annual regional total). Other major contributors include waste (9.5 Tg yr-1, 28 %), energy (5.5 Tg yr-1, 16 %),

geological emissions (5.1 Tg yr-1, 15 %) and wetlands (2.9 Tg yr-1, 9 %), smaller contributions arise from ocean (0.7 Tg yr-1,230

2 %), termites (0.6 Tg yr-1, 2 %), industrial processes (0.03 Tg yr-1, <1 %) and fires (0.03 Tg yr-1, <1 %), with all estimates in

brackets corresponding to the year 2020. These individual source contributions are then combined to calculate the total CH4

prior emissions used in the inversion. A comprehensive overview of the prior data is provided in Table 1, with the corresponding

map of mean fluxes for 2017–2022 shown in Appendix A Figure A1.

Table 1. Overview of CH4 emission sources, their native resolutions, and average total emissions for the global and nested domains (Tg yr-1).

The reported values correspond to 2020 prior emissions.

Sector Data Source Native Resolution Global Nested Domain

Wetlands JSBACH–HIMMELI for EU, LPX-Bern otherwise 0.10◦ × 0.10◦ daily 119.28 2.92

Agriculture GAINS for EU27 + 3, EDGARv8 otherwise 0.10◦ × 0.10◦ monthly 134.10 11.74

Energy GAINS for EU27 + 3, EDGARv8 otherwise 0.10◦ × 0.10◦ monthly 120.40 5.53

Waste GAINS for EU27 + 3, EDGARv8 otherwise 0.10◦ × 0.10◦ monthly 87.85 9.52

Industrial Processes EDGARv8 0.10◦ × 0.10◦ monthly 0.55 0.03

Fire GFED4s1 (Van Der Werf et al., 2017) 0.25◦ × 0.25◦ monthly 11.42 0.03

Geological Sources Etiope et al. (2019), global total scaled to 23 Tg 1◦ × 1◦ climatology 23.10 5.11

Termites Saunois et al. (2020) climatology 1◦ × 1◦ climatology 9.91 0.56

Ocean Weber et al. (2019) 1◦ × 1◦ climatology 9.35 0.71

Total 513.96 36.15

Monthly anthropogenic CH4 emissions are derived from the Emission Database for greenhouse gas and Atmospheric Research235

(EDGARv8.0) (Crippa et al., 2020) and Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) (Höglund-

Isaksson et al., 2020) inventories, both providing high-resolution (0.1◦ × 0.1◦) global estimates of greenhouse gas emissions

across multiple sectors. For EU27+3, we use emission estimates from the GAINS inventory, which incorporates country-

specific activity data and mitigation assumptions, providing regionally consistent estimates that reflect national circumstances

more closely than the globally uniform EDGARv8.0 inventory. On average, GAINS estimates are 3 Tg yr-1 (ranging from240

1 to 4 Tg yr-1) lower than EDGARv8.0, amounting to approximately 10 % of the total anthropogenic CH4 emissions in

the EU27+3 region during the study period. For categorising anthropogenic emission sources, we adopted the IPCC (2006)
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Common Reporting Format (CRF) to classify the emissions into four main sectors: Energy, Industrial Processes and Product

Use, Agriculture, and Waste. This sectoral breakdown is consistent with UNFCCC NGHGI reporting guidelines and used by

major inventories such as GAINS and EDGAR, allowing for direct comparison with national reports.245

Biospheric emissions in our prior estimates are sourced from the JSBACH model, which simulates key ecosystem processes

such as photosynthesis, respiration, carbon and water cycling, vegetation dynamics, and land ecosystem processes (Reick et al.,

2021). Specifically, we use the version of JSBACH coupled with HIMMELI (Raivonen et al., 2017) (JSBACH-HIMMELI),

which provides hourly, high-resolution (0.1◦ × 0.1◦) CH4 emissions, including contributions from peatlands, inundated soils

and net mineral soils over Europe. As the JSBACH-HIMMELI product used in this study provides data only for the European250

domain, we complement it with global biospheric emissions from the LPX-Bern DYPTOP v1.4 dataset (Lienert and Joos,

2018) to represent the global background.

Monthly prior fire emissions are obtained from the Global Fire Emissions Database version 4 (GFED4s) described in van der

Werf et al. (2017) at a spatial resolution of 0.25◦×0.25◦, excluding methane emissions from biomass and agricultural waste

burning, which were already included in GAINS and EDGAR. Oceanic CH4 emissions are represented by climatological255

estimates from Weber et al. (2019), while geological emissions are based on the dataset by Etiope et al. (2019), globally scaled

to 23 Tg yr–1, following the Intergovernmental Panel on Climate Change (IPCC) AR6 Working Group I report (IPCC, 2023;

Tsuruta et al., 2023). Termite-related emissions are included according to the estimates provided by Saunois et al. (2020).

2.5 Sensitivity Tests

We conducted eight inversion sensitivity experiments (S1–S8) to evaluate how key elements of the inversion setup influence the260

posterior CH4 flux estimates and the associated error reduction. The base inversion (S1) serves as a reference for comparison.

In S2, the background CH4 mole fractions were replaced from CAMSv22r2 (Bergamaschi et al., 2013) to CTE-CH4 (Tenka-

nen et al., 2025) to evaluate the effect of background assumptions. Although both products rely on TM5-based transport (Krol

et al., 2005), they differ in their inversion configurations, including data assimilation methods, flux resolution, prior constraints,

and assimilated observations. Inversions S3 and S4 address uncertainty assumptions. In S3, the prior flux uncertainty was in-265

creased from 50 % to 100 %, allowing more flexibility for the inversion to adjust emissions. In S4, the uncertainty assigned to

background mixing ratios was reduced from 0.5 % to 0.05 %, thereby increasing the influence of observed enhancements on

the posterior flux adjustments. In S5, the observational network was expanded from 46 to 56 sites, including a denser station

distribution along the Swiss Alps (see Fig. 1), to examine the sensitivity to observational coverage. In S6, the prior emissions

were replaced from GAINS-based estimates to EDGARv8, which are approximately 10 % higher, allowing assessment of how270

differences in emission inventories affect the posterior flux estimates. Finally, S7 and S8 address spatial error correlations in

the prior. The horizontal correlation length was reduced from 200 km to 50 km (S7) and 20 km (S8), enabling finer spatial

adjustments in the inversion. All inversions were performed using a 4D-Var ensemble approach, where 30 Monte Carlo real-

izations were generated by perturbing both prior fluxes and observational data. Posterior uncertainties were estimated from the

ensemble spread following Bocquet and Sakov (2013). The error reduction was computed as 1− σpost
σprior

, where σpost and σprior275
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denote the posterior and prior uncertainties, respectively. Due to computational constraints, the sensitivity experiments were

carried out for July 2021 only. A summary of the inversion configurations is provided in Table 2.

Table 2. Inversion setups for the sensitivity analysis. Deviations from the base inversion (S1) are indicated with an asterisk (*).

Sensitivity
Case

Initial
Concentration

Prior
Uncertainty

Initial Conc.
Uncertainty

Number of
Stations

Prior
Dataset

Correlation
Length

S1 CAMSvr22 50 % 0.5 % 46 GAINS-based 200/500

S2 CTE-CH4* 50 % 0.5 % 46 GAINS-based 200/500

S3 CAMSvr22 100 %* 0.5 % 46 GAINS-based 200/500

S4 CAMSvr22 50 % 0.05 %* 46 GAINS-based 200/500

S5 CAMSvr22 50 % 0.5 % 56* GAINS-based 200/500

S6 CAMSvr22 50 % 0.5 % 46 EDGARv8-based* 200/500

S7 CAMSvr22 50 % 0.5 % 46 GAINS-based 50/500*

S8 CAMSvr22 50 % 0.5 % 46 GAINS-based 20/50*

3 Results and discussion

3.1 Comparison of Simulated and Measured Methane Mole Fractions

Standard metrics such as mean bias, root-mean-square error (RMSE), and correlation play a crucial role in evaluating the280

performance of atmospheric inversion models by enabling direct comparison between simulated and observed CH4 mole

fractions. In this section, these metrics are applied to assess the CIF-FLEXPART inversion simulated mole fractions against the

assimilated in situ observations. Figure 2 displays time series of both prior and posterior mole fractions from the base inversion

set-up, alongside observations from selected European in situ stations in 2021, which cover a range of geographical settings

and emission regimes. The prior methane mixing ratios generally underestimate the observations, resulting in a mean negative285

bias at most sites. In contrast, the posterior estimates substantially reduce this bias. These improvements are clearly visible

in the time series Figure 2, which illustrate the discrepancies between observed and prior-simulated mole fractions and their

correction in the posterior. For instance, at stations BIS, CRP, HPB, KIT, and TRN, the prior exhibits a pronounced negative

bias (-11.11 to -22.39 ppb) and systematically underestimates sharp observational peaks when regional fluxes are elevated. The

prior initial concentration contribution is overly smoothed and lacks the sharp variability of the observed and simulated mole290

fractions, though it still shows meaningful variations. The posterior reduces these biases (mean bias -3.21 to 3.82 ppb) and

improves the representation of both the initial condition and regional flux contributions, providing a more realistic depiction

of the regional signal. This adjustment is further reflected in the corresponding flux contributions in Appendix A Figure A2,

where regional fluxes are increased in the posterior to better match the observations. At CBW, where local influences dominate,

the prior fails to reproduce the full variability (see Fig. 2, CBW); the posterior reduces the overall bias, although some high-295

frequency discrepancies persist. The regional flux contributions show substantial adjustments in the posterior, consistent with
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the improved match to observations. At PAL, prior mole fractions generally match observations, but pronounced mismatches

occur during the first months of 2021. These were largely corrected by adjustments to the initial concentration contribution,

while the global flux contribution remained relatively more influential and unchanged in the posterior ( see Appendix A Figure

A2). At ERS, unlike most other stations, the prior exhibits a mean positive bias of 8.53 ppb, which is reduced to 4.06 ppb in the300

posterior. The background contribution is adjusted upward, reinforcing the positive bias, while the regional flux contribution

is lowered in the posterior. Together, these adjustments improve the overall agreement between simulated and observed mole

fractions, illustrating the inversion’s ability to correct both the initial condition and the regional flux components. Overall, these

results demonstrate that the inversion effectively corrects biases in both the initial conditions and the regional fluxes, improving

the representation of CH4 dynamics across stations. These station-level mole fractions are further illustrated in Figure 3,305

which evaluates model–observation agreement across all stations and years (2017–2022). The coefficient of determination

(R2) increased from 0.54 to 0.76, RMSE decreased from 33.40 to 24.35 ppb, and mean bias was reduced from –12.20 to –2.14

ppb. The posterior regression slope (0.75) is closer to unity than the prior (0.57), and Pearson correlation increased from 0.78 to

0.87 (p < 0.001), reflecting enhanced responsiveness to observed changes. Modelled versus observation performance metrics

for all assimilated stations are summarized in Appendix A Table A3. Our posterior statistical results closely align with the310

findings of (Steiner et al., 2024; Bergamaschi et al., 2022). By assimilating data from 28 stations, Steiner et al. (2024) reported

a Pearson correlation of approximately 0.7 for 25 of the stations. Figure 3 also reveals that the prior simulation systematically

underestimates high CH4 mole fractions, with many data points falling below the regression line. This underestimation is

particularly pronounced at stations such as LUT, LMU, STE, and CBW, all of which exhibit strong negative biases (below -

35 ppb). Although the posterior simulation substantially reduces this underestimation, with biases improving to around -10 ppb,315

some discrepancies persist at the highest mole fractions, likely reflecting unresolved local emissions or sub-grid variability.

These results highlight the importance of targeted improvements in emission inventories and model resolution for stations with

persistent negative bias. To further assess the level of agreement across subregions, we compare posterior and prior simulations

for different categories. This includes geographical regions (Central, Northern, Western, Southern) consistent with Petrescu

et al. (2021), as well as elevation (mountain vs. non-mountain) and station type (coastal vs. non-coastal). Figure 4 presents the320

distributions of residuals using violin plots, with the 25th-75th interquartile range indicated by a vertical line. Posterior residuals

exhibit systematically narrower spreads and improved alignment with observations. Across regions, RMSE and interquartile

range (IQ75) decrease by 26–37 %, with median residuals moving closer to zero, except in the Southern region. Mountain

stations show a smaller spread reduction (IQ75: 21.5 vs. 27.6, RMSE reduction 26 %), reflecting higher variability likely due

to complex transport, whereas non-mountain, coastal, and non-coastal stations show 28–32 % RMSE reductions. Overall, these325

analyses demonstrate that the inversion effectively reduces uncertainty and bias across all categories, enhancing model fidelity

and observational agreement (see Table 3).
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Figure 2. Time series of observed and modeled CH4 mole fractions at selected stations, averaged at the assimilated hour for 2021: BIS

(Biscarrosse, France), CBW (Cabauw, Netherlands), CRP (Carnsore Point, Ireland), ERS (Ersa, coastal Mediterranean site), HPB (Ho-

henpeissenberg, mountain station in Germany), KIT (Karlsruhe, Germany), PAL (Pallas, Finland), and TRN (Trainou, France), where the

numbers in parentheses indicate the station’s latitude and longitude. Shown are observations (black), prior simulations (orange), posterior

simulations (green), and background contributions (cyan for prior, purple for posterior). Text boxes in each panel report mean bias (MBias),

root mean square error (RMSE), and correlation coefficient (r2) for the prior and posterior relative to the observations.

3.2 Posterior Flux

In Figure 5, we presented the six-year mean methane fluxes (2017–2022) over the study domain. Fig. 5(a–c) display prior

estimates, posterior estimates, and their differences, while Fig. 5(d–e) present monthly time series and inland average estimates330

for subregions. The spatial maps highlight regions of substantial flux adjustments, and the time series illustrate temporal

variability and regional contrasts between prior and posterior estimates. The inversion reveals pronounced regional corrections,

with posterior emissions being systematically higher over BENELUX, France, and Germany, pointing to underestimation in the
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Figure 3. Modeled versus observed CH4 mole fractions for all assimilated in situ observations. Left panels: posterior vs. observations; right

panels: prior vs. observations. Statistical metrics are shown in each panel. Black dashed line: one-to-one; red line: best-fit regression.

Figure 4. Residuals between observed (obs) and modelled (sim) CH4 concentrations for assimilated in situ stations, grouped by subregional

category (see Appendix A A2) The horizontal dashed line indicates zero residual, and the vertical bar shows the 25th–75th interquartile

range. Negative values indicate that simulated concentrations are lower than observed.

prior, whereas reductions occur over the United Kingdom, Italy, and Romania, indicating prior overestimation. These patterns

align well with earlier inversion studies (Bergamaschi et al., 2022; Steiner et al., 2024). In regions with sparse observational335

data, such as the Iberian Peninsula and eastern Europe, the prior fluxes change only slightly.

Despite these pronounced regional adjustments, the mean emission exhibits only a modest net change at the domain scale,

with average total methane emissions shifted 36.11 ± 0.38 Tg yr–1 in the prior to 36.72 ±0.62 Tg yr–1 in the posterior, a

rise of 1.69 % (see Fig. 5d), reflecting strong subregional contrasts. Notable posterior CH4 flux increases are observed in

Central Europe (+32 %) and Western Europe (+19 %), in contrast, Southern Europe shows a decrease of 17 % (see Fig. 5e).340
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Table 3. Prior and posterior performance metrics of CH4 mole fraction simulations grouped by sub-regional category (see in Appendix A

Table A2. Reported statistics include regional mean bias, the interquartile ranges: the 25th–75th (IQ75), and the 5th–95th range (IQ95),

root mean square error (RMSE), relative RMSE reduction (∆RMSE), number of observation stations, and the total number of data points

(N-data) used in the evaluation.

Metric Central Southern Western North Mountain Non-mountain Non-coastal Coastal

Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior Prior Posterior

Bias (ppb) -16.14 -2.38 -0.0 2.5 -16.2 -4.1 -7.1 -0.9 -3.3 3.4 -13.6 -3.0 -13.1 -1.6 -9.3 -3.6

IQ75 (ppb) 27.17 20.44 25.1 17.1 25.6 17.2 15.1 11.4 27.6 21.5 23.6 15.7 23.5 16.3 21.8 16.1

IQ95 (ppb) 97.67 73.64 86.9 49.1 91.1 65.4 52.4 38.9 91.6 66.3 82.3 58.2 80.0 58.4 99.1 66.3

RMSE (ppb) 36.27 25.24 27.9 17.7 40.0 28.1 18.8 13.1 29.9 22.2 33.9 23.4 30.7 20.8 40.8 29.6

∆RMSE ( %) 30 37 30 30 26 31 32 28

Stations 16 5 15 10 6 40 33 13

N-data 24886 8354 27038 19897 11086 69089 60904 19271

The monthly time series reveals a clear seasonality in northern regions, with a peak in summer months. The southern region

exhibits a slight opposing seasonality, while other regions show no clear seasonal cycle. Additionally, it displays that posterior

emissions from Central and Western Europe are consistently higher than the prior throughout the study period, while in the

southern region, the posterior emissions are generally lower than the prior. At the domain and EU27+3 scales, however, there is

no clear or persistent difference between posterior and prior emissions, and no significant trend is evident over the 2017–2022345

period at either the domain or subregional scale. Over the EU27+3, the average posterior flux for 2017–2022 is 23.28 ±
0.36 Tg yr–1, representing a 6.6 % increase relative to the prior. For EU27+UK, the posterior flux is 22.67 Tg yr–1, which

falls within the 22–26 Tg yr–1 range reported by Petrescu et al. (2021, 2023) for 2006–2017 based on three inversion setups.

Although our estimate is at the lower end of this range, it provides a meaningful comparison given the difference in time

periods, as EU27+UK emissions show no strong trend over the interval considered.350

While spatial patterns in total methane flux adjustments indicate where the inversion has modified prior estimates, analysing

these changes by sector reveals the dominant sources driving regional flux adjustments and highlights systematic biases in

prior inventories. Figure 6 presents the spatial distribution of sector-specific methane flux increments (posterior – prior) over

Europe for 2017–2022. Panels (a–d) correspond to anthropogenic sectors: agriculture (AGR), energy (ENG), waste (WST),

and industry (IND); whereas panels (e–g) depict natural sources, including wetlands (WET), geological seepage (GEO), and355

biomass burning (FIR). Posterior agricultural emissions increase markedly across the BENELUX region, suggesting system-

atic underestimation in the prior inventory. Adjustments in other anthropogenic sectors are generally more spatially localized.

Energy-related emissions decrease over the North Sea, but localized increases are observed in Belgium, Luxembourg, Ukraine,

and western Russia. Waste emissions show localized hotspots in BENELUX, France, and Poland, while decreasing in Italy and

the United Kingdom. Industrial emissions rise predominantly over BENELUX and Germany. CH4 emissions from wetland are360

reduced, particularly in northern Europe and the United Kingdom, largely reflecting a reduction in summer fluxes. Reductions

in the GEO sector over Italy and Romania are consistent with previously reported overestimations arising from globally scaled

geological emission factors. Although prior geological emissions were harmonized to 23 Tg yr–1 at the global scale, the inver-
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Figure 5. Top row: Mean methane (CH4) fluxes over the EU27+3 domain for the study period (a) prior fluxes, (b) posterior fluxes after

inversion, and (c) flux increments (posterior – prior). Middle rows: Monthly CH4 flux time series averaged over the entire domain, within

EU27+3, and outside EU27+3. Bottom row: Monthly CH4 flux time series for selected EU27+3 subregions (Northern, Central, Southern,

and Western), showing prior (dashed lines) and posterior (solid lines) estimates. Bars on the right summarize mean annual prior and posterior

fluxes estimates ( with a 1σ interannual variability).

sion results underscore the need for regionally differentiated adjustments. Biomass burning emissions increase over Portugal,

with minor reductions elsewhere.365
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Figure 6. Spatial distribution of sector-specific methane flux increments (posterior - prior) over Europe averaged in the years (2017–2022).

Panels show adjustments for agriculture (AGR), energy (ENG), waste (WST), industry (IND), wetlands (WET), geological sources (GEO)

and fires (FIR). Agricultural emissions exhibit the largest posterior increase, particularly across central and western Europe, whereas wetlands

show strong reductions in northern Europe. Geological emissions decrease mainly in southern Europe and Romania. Note that the colour

scale is different.

Figure 7 summarizes the prior and posterior fluxes by European subregion. Agricultural emissions show the largest positive

adjustments. In central EU27+3, emissions increase from a prior estimate of 2.37 to a posterior estimate of 3.19 Tg yr-1 (+35 %),

and in western EU27+3 they rise from 3.51 (prior) to 4.54 Tg yr-1 (posterior), which is a 29 % rise. The strongest relative

increase occurs in the BENELUX region, where mean agricultural emissions nearly double from 0.68 to 1.29 Tg yr-1 (+90 %).

At the domain scale, posterior agricultural CH4 emissions amount to 13.63 Tg yr-1, representing a 16 % increase compared370

with the prior. EU27+3 posterior emissions are estimated at 10.82 Tg yr-1, corresponding to a 21 % increase relative to the

GAINS prior (Fig. 7a). Agricultural emissions account for 46 % of the total EU27+3 CH4 budget in our estimate, representing

the largest sectoral share. This aligns with consolidated assessments and UNFCCC NGHGI reports, which attribute 52.4 %

(±8.7 %) of EU27+UK CH4 emissions in 2019 to agriculture (Petrescu et al., 2021, 2023). The dominant role of agriculture

in total anthropogenic CH4 emissions also holds globally (IPCC, 2019). Emissions from energy-related sectors show modest375

increases in central Europe, rising from 0.81 to 0.87 Tg yr-1 (+8 %), and in western Europe, from 0.31 to 0.32 Tg yr-1 (+3 %).
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Figure 7. Mean estimates of prior and posterior CH4 fluxes averaged over Europe and its subregions for the years 2017–2022. The panels

display boxplots for total CH4 emissions (Total), agriculture (AGR), energy (ENG), waste (WST), wetlands (WET), and geological sources

(GEO). Boxplots within the yellow-shaded area of each subpanel (Ocean - Scandic) correspond to smaller regions and are plotted against the

right-hand y-axis.

In contrast, emissions decrease over oceanic regions from 1.44 to 1.15 Tg yr-1 (–20 %), largely reflecting reduced fossil

fuel contributions (Fig. 7b). Waste-sector emissions show relatively minor adjustments at the regional and subregional scales,

reflecting compensating regional contrasts. Posterior corrections are nevertheless evident in specific hotspot regions (Fig. 7c),

with increases in BENELUX, France, and Poland, and decreases in the United Kingdom and Italy, highlighting substantial380

country-level heterogeneity. Wetland emissions decrease slightly in northern Europe, from 1.13 Tg yr-1 (prior) to 1.10 Tg yr-1

(posterior) (–3 %), largely due to reductions during summer months, as well as in the UK, Ireland, Italy, and coastal areas,
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indicating minor overestimations in these regions. In contrast, increases are observed in Eastern Europe and BENELUX (see

Fig. 7d). CH4 emissions from geological seepage decline sharply in southern Europe, from 2.8 Tg yr–1 in the prior estimate

to 1.47 Tg yr–1 in the posterior, representing a 48 % reduction, primarily driven by substantial decreases in the previously385

overestimated emissions from Italy and Romania (Steiner et al., 2024) (see Fig. 7e). Details of regional and sectoral posterior

fluxes estimates are provided in Appendix A Table A4. Total CH4 emissions increase at the EU27+3 level, mainly in western

and central Europe, while decreases occur in southern and oceanic regions (Fig. 7f). Overall, these posterior flux adjustments

highlight that anthropogenic activity, especially emissions from agriculture and waste, drives most of the net increase in CH4

emissions, while geological emissions decrease. These heterogeneous corrections underscore the importance of refining prior390

emission patterns at both sectoral and regional scales to develop robust methane budgets for Europe.

3.3 Temporal Variation of CH4 Flux

Figure 8 illustrates the seasonal patterns of CH4 emissions from the Agriculture, Energy, Waste, and Wetlands sectors, spatially

aggregated across the EU27+3 subregions. Among these, the Wetlands sector in Northern Europe exhibits the most pronounced

seasonality, with emissions peaking during the summer months, particularly in July. This pattern is primarily driven by warmer395

temperatures and consistently sufficient soil moisture, which together enhance microbial activity and methane production in

wetland ecosystems (Bechtold et al., 2025; Aalto et al., 2025). The accelerated decomposition of organic matter under these

conditions further contributes to elevated emissions during this period (Voigt et al., 2023). The red hatched shading in the

figure indicates a posterior reduction in summer wetland emissions, suggesting a downward correction of potentially higher

prior estimates in summer. The Waste sector shows notable seasonal patterns, particularly in Central EU27+3 countries, where400

emissions increase significantly during summer. This is likely due to intensified microbial decomposition of organic waste in

warmer temperatures, leading to greater methane generation in landfills and wastewater treatment facilities. In contrast, the

Southern EU27+3 countries display a distinct summer minimum in waste emissions, highlighting regional differences that

may be influenced by climate or waste management practices. Emissions from the Energy sector exhibit an opposite seasonal

trend, with a clear peak during the winter and a minimum in summer. This pattern is largely attributed to increased heating405

demand in colder months, resulting in higher fossil fuel combustion and methane emissions. Additionally, winter energy use

often involves greater reliance on natural gas, which can lead to methane leakage from pipelines and storage systems, further

contributing to wintertime emission peaks. These contrasting seasonal dynamics between sectors may counterbalance one

another, contributing to the lack of a clear overall seasonal pattern in total CH4 emissions at the regional scale. The Agriculture

sector, by comparison, does not exhibit a distinct seasonal pattern across any of the regions. However, hatched blue shading in410

the figure indicates posterior increases in agricultural emissions over Central and Western EU27+3 countries, suggesting model

adjustments based on observational constraints. These regional and sector-specific variations underscore the complexity of CH4

emission dynamics and highlight the importance of disaggregated analyses to improve understanding and model representation

of seasonal fluxes.
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Figure 8. Seasonal patterns of CH4 emission from major sectors, aggregated over the subregions for 2017–2022: (a) northern, (b) western,

(c) central, and (d) southern Europe. The solid line represents the multi-year monthly mean, while the shaded area indicates the interannual

variability (standard deviation). The hatched area shows the difference from the prior.

3.4 EU27+3 CH4 Emission Estimates and Comparison with UNFCCC Reports415

We calculated country-level anthropogenic CH4 emission estimates for the EU27+3 and compared them with EDGARv8,

GAINS, and UNFCCC NGHGI (2023) reports. Our posterior estimates averaged 17.6 Tg yr–1 for 2017–2021 (range: 17.0–18.2),

with a mean annual decline of 0.3 Tg yr–1. These posterior estimates are 11 % higher than GAINS, 4 % higher than EDGARv8,

and 3 % higher than UNFCCC, indicating good overall consistency at the EU27+3 scale. They are also in close agreement with

previous inversion studies; for example, Steiner et al. (2024) reported 17.4 Tg yr–1 for EU27+UK in 2018, compared to our420

estimate of 17.59 Tg yr–1 for the same region and year. The top three emitting countries (France, Germany, and the UK) ac-

counted for 39 % of EU27+3 emissions, similar to inventories but with differing country rankings. The UK stood second in

the UNFCCC report. However, larger discrepancies appear at the national level (see Fig. 9 and Appendix A Table A5). Com-

pared with UNFCCC, posterior emissions are higher for BENELUX (+54 %), Germany (+37 %), and France (+10 %), but

lower for Romania (–25 %), Poland (–16 %), and Italy (–11 %). Notable differences also occur in the Nordics, with decreases425

in Norway (–39 %), Finland (–16 %), and Denmark (–13 %), but an increase in Sweden (+10 %). Relative to EDGARv8,

posterior estimates are higher for Portugal (+40 %), Italy (+18 %), and Germany (+10 %), but substantially lower in the UK
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(–18 %), Poland (–7 %), Romania (–18 %), and especially the Nordics. Adjustments relative to GAINS are upward for Ger-

many (+29 %), France (+16 %), and BENELUX (+40 %), but downward for Switzerland (–13 %) and Italy (–7 %). In addition

to country-level discrepancies in total anthropogenic estimates, systematic patterns emerge across sectors, as displayed in Fig-430

ure 9. In agriculture, inventories generally underestimate emissions in large agricultural countries such as France, Germany,

and the Netherlands, whereas our posterior consistently suggests higher values. This implies that bottom-up activity data and

emission factors may not fully capture agricultural methane sources. In the waste sector, EDGARv8 tends to overestimate

emissions in countries like Germany and France but underestimates them in others, including the United Kingdom, Italy, and

Poland. Our posterior estimates often fall closer to GAINS and UNFCCC values. For the energy sector, inconsistencies are435

more pronounced. In the United Kingdom, EDGARv8 clearly overestimates emissions, whereas in Poland and Romania, both

EDGARv8 and UNFCCC report higher values than our posterior. These differences are likely driven by variations in fossil fuel

activity data and the emission factors employed by different reporting frameworks. Overall, the EU27+3 total appears relatively

robust across inventories, yet sectoral and country-level comparisons reveal significant discrepancies. Our inversion estimates

provide an essential independent constraint in this context, helping to reconcile inconsistencies in bottom-up reporting systems440

and strengthening confidence in national and sectoral methane emission estimates.

3.5 Sensitivity Experiments and Their Impact on Optimised Flux Estimates

To assess the sensitivity of the inversion framework, we conducted eight inversions (S1-S8) by varying key parameters, includ-

ing background mole fractions, prior flux and background mole fraction error assumptions, observational coverage, choice of

prior inventories, and correlation assumptions detailed in Section 2.5. Figure 10 presents the resulting posterior flux increments445

and error reductions for July 2021. Inversion setups from S1 to S5 exhibit broadly consistent spatial patterns and magnitudes

of posterior flux increments, though the degree of error reduction varies among cases. The base inversion setup (S1) achieves

substantial reductions of 14 % for Europe and 21 % for EU27+3, with particularly strong constraints in Central Europe (38 %)

and Western Europe (30 %) (see Table 4). S2 is nearly indistinguishable from S1 at both regional and subregional scales,

showing only slightly weaker reductions in northern Europe, suggesting that posterior adjustments are relatively insensitive to450

the choice of background concentration. S3 and S4 yield somewhat weaker mean error reductions of about 16 % for EU27+3,

indicating moderate sensitivity of posterior adjustments to prior uncertainty scaling and background error assumptions. Larger

assumed background errors allow observations to exert a stronger influence, whereas smaller errors suppress corrections and

increase reliance on the prior. Although these effects are modest in magnitude (–2 to +2 ppb), they highlight the critical role of

background error settings in modulating inversion flexibility and posterior responsiveness. The influence of background error455

settings on concentration fields is illustrated in Fig. 11.

Network densification in S5 enhances error reduction across most regions, particularly in Western Europe, where reductions

exceed 35 %. This improvement reflects the added influence of stations such as TAC in the United Kingdom and PDM and

OHP in France, which help better constrain emissions over the UK and southern France. The additional mountain station in

the Alps, however, does not show a clear enhancement in posterior uncertainty reduction, suggesting that its effectiveness may460

depend on representativeness or transport model resolution. Although the spatial pattern of posterior flux increments remains
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Figure 9. Annual mean anthropogenic CH4 emissions (2017–2021) for selected EU27+3 countries, shown as bar plots for the posterior

estimates, GAINS, UNFCCC, and EDGARv8. Subpanels display CH4 emissions from major anthropogenic sectors: (a) total anthropogenic

emissions excluding land-use and land-cover change, (b) agriculture, (c) waste, and (d) energy. For each country and sector, bars are stacked

by year, from bottom (2017) to top (2021).

consistent with earlier inversion setups, the expanded network clearly strengthens the overall robustness of the inversion. These
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findings are consistent with previous studies demonstrating that increased observational density improves posterior reliability

in well-sampled regions (Villani et al., 2010; Thompson and Stohl, 2014).

More pronounced differences emerge from the S6-S8 inversion setup. Using EDGARv8 as the prior (S6) increases the prior465

flux magnitude to 26.1 Tg yr-1 for EU27+3, compared to 24.5 Tg yr-1 in S1, reflecting EDGARv8’s higher reported emissions.

However, the posterior flux in S6 decreases substantially to 23.0 Tg yr-1, closely aligning with the posterior estimate from the

base inversion (S1). The 19 % mean error reduction in S6 is also comparable to S1, highlighting the sensitivity of inversion

results to the choice of emission inventory and the convergence of posterior estimates despite differing priors. In contrast,

reducing correlation lengths leads to diminished error reduction. At 50 km (S7), reductions are minimal (1–3 %), while at 20470

km (S8) they are negligible (<0.2 %). This reflects the trade-off between allowing fine-scale flux variability and weakening the

effective observational constraint per degree of freedom. Such behaviour is consistent with Thompson and Stohl (2014), who

showed that extreme localization increases small-scale heterogeneity at the cost of inversion robustness.

Despite these sensitivities, the dominant spatial patterns of posterior corrections remain robust across sensitivity inversion

setups: decreases over Italy, Romania, and the United Kingdom, and increases over BENELUX, Germany, and France. This475

consistency with previous European inversion studies (Saunois et al., 2020; Steiner et al., 2024) underscores the resilience

of large-scale flux signals, even under varying methodological assumptions. Overall, S1 emerges as a balanced configuration,

providing a reasonable compromise between observational constraint and inversion flexibility. Alternative setups highlight

sensitivities to priors, background errors, and correlation lengths, but the preservation of large-scale spatial patterns across

experiments supports the robustness of the main conclusions.480

Figure 11 illustrates the background concentration changes and their sensitivity to background error assumptions. Under the

larger background error scenario (0.5 % uncertainty), we found a systematic decrease in background CH4 over the Northern and

Mediterranean Seas, suggesting that the prior background fields were biased high in these regions (see Fig. 11b). The spatially

averaged time series of the posterior increment exhibits a clear seasonal pattern, occurring from May to October (see Fig.

11d), reflecting the correction of this high bias through the inversion. Conversely, assuming a smaller error (0.05 %) resulted in485

much weaker corrections, both spatially (see Fig. 11c) and temporally (see Fig. 11d), as seen in the posterior mean increment

time series. Under a low-error assumption, the inversion relies more strongly on the initial concentration estimates, limiting

adjustments to the posterior background concentration field. Conversely, higher error assumptions allow the observations to

exert greater influence, producing stronger corrections in regions where the prior background fields were biased.

Figure 11e shows the relative annual mean difference of the posterior fluxes under background error assumptions of 0.5 %490

and 0.05 %. The relative difference is defined as 1−F0.5%/F0.05%, where F0.5% and F0.05% denote the annual mean fluxes

computed using background-error assumptions of 0.5 % and 0.05 %, respectively. Flux adjustments under these scenarios

generally follow the spatial patterns of the mean map (see Fig. 5c), with additional corrections of approximately –20 % in

regions showing decreases and +20 % in regions showing increases. An extreme reduction (–40 %) occurs over Italy, likely

contributing to the observed posterior flux decrease. Overall, background-related adjustments remain modest (–2 to +2 ppb)495

and are secondary to the dominant sectoral flux corrections.
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Figure 10. Flux increments (posterior - prior) and error reduction for July 2021 across eight sensitivity inversion setups (S1–S8). Each panel

illustrates the spatial distribution of flux adjustments relative to the prior, highlighting the influence of varying prior emissions, background

treatment, observational network density, and error correlation assumptions. The last subpanel displays the stations added for inversion setup

S5. Mountain stations are shown as black dots, while low-altitude stations are shown as blue dots.

4 Conclusions

In this study, we have presented a high-resolution, top-down estimates of European CH4 emissions for the period 2017–2022,

offering robust new evidence on their magnitude, spatial structure, and temporal evolution across the continent. By combining

the CIF-FLEXPART inversion framework with a 4D-Var data assimilation approach, we demonstrated the value of advanced500

atmospheric inverse modelling for resolving fine-scale emission patterns that are not accessible through conventional analytical

inversion techniques. The use of FLEXPART-derived source–receptor sensitivities, together with the optimisation of a large set

of control variables, enables a detailed representation of emission patterns at monthly timescales and a spatial resolution of 0.2◦
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Table 4. Prior, Posterior, and Mean Error Reduction ( %) for different regions and sensitivity inversion setups (S1-S8) as described in Section

2.5

Prior (Tg yr-1 )

Region S1 S2 S3 S4 S5 S6 S7 S8

Europe 38.65 38.61 38.30 38.37 38.37 40.33 38.51 38.53

EU27+3 24.51 24.59 24.30 24.36 24.36 26.07 24.48 24.49

Northern 4.01 4.04 3.97 3.98 3.98 4.61 3.99 3.99

Western 7.03 7.10 6.97 6.99 6.99 7.35 7.02 7.02

Central 5.93 5.92 5.85 5.87 5.87 6.31 5.92 5.92

Southern 8.08 8.07 8.04 8.06 8.06 8.36 8.09 8.09

Posterior (Tg yr-1)

Region S1 S2 S3 S4 S5 S6 S7 S8

Europe 37.06 37.20 35.43 36.92 36.52 36.02 36.34 38.09

EU27+3 24.10 24.40 23.01 24.08 23.80 22.99 23.70 24.42

Northern 3.63 3.70 3.43 3.39 3.56 3.55 3.75 3.96

Western 7.20 7.32 7.33 7.50 7.42 6.88 7.13 7.15

Central 6.79 6.79 6.33 6.79 6.33 6.29 5.97 5.86

Southern 7.19 7.30 6.60 7.11 7.19 6.90 7.52 8.05

Mean Error Reduction (%)

Region S1 S2 S3 S4 S5 S6 S7 S8

Europe 14.04 12.97 10.70 11.06 14.93 11.51 3.06 0.13

EU27+3 21.23 20.00 16.38 16.34 21.12 19.21 1.55 0.16

Northern 16.62 12.77 11.49 9.93 16.28 14.56 1.18 0.05

Western 29.96 30.38 27.53 28.53 35.76 28.82 3.37 0.39

Central 37.77 38.28 29.69 30.55 33.98 36.70 1.97 0.34

Southern 10.41 10.36 6.53 7.31 9.07 7.21 0.49 0.03

× 0.2◦. The assimilation of observations from a dense network of 46 in situ monitoring stations substantially strengthens the

observational constraints over Europe, leading to improved confidence in the inferred emissions and their sectoral attribution.505

By separately optimising emissions from major source categories, including agriculture, energy-related activities, waste man-

agement, industrial processes, wetlands, geological sources, and biomass burning, this work provides actionable information

that is directly relevant to national inventories and mitigation strategies.

The posterior concentration in our study shows a great improvement with atmospheric observations (r2 = 0.87, RMSE =

24.35 ppb, mean bias = –2.14 ppb) and captures most of the observed CH4 variability. Our results reveal substantial regional-510

scale adjustments relative to prior inventories. Posterior emissions are consistently higher over the BENELUX region, France,
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Figure 11. Impact of background error assumptions on optimized methane mole fractions and fluxes for 2021. Top row: (a) Prior mole

fractions from CAMS and posterior increments with background error assumptions of (b) 0.5 % and (c) 0.05 %. Bottom row: (d) Time series

of posterior mean increments under both settings and (e) relative annual flux difference between inversions with background errors of 0.5 %

and 0.05 %. To quantify the impact of background-error assumptions, the relative difference was defined as 1− F0.5%
F0.05%

, where F0.5% and

F0.05% denote the flux computed using a background-error assumption of ( 0.5 % ) and ( 0.05 % ) respectively.

and Germany, suggesting underestimation in current inventories, whereas posterior reductions over the United Kingdom, Italy,

and Romania indicate possible prior overestimation. These regional patterns are broadly consistent with earlier inversion stud-

ies (Bergamaschi et al., 2022; Saunois et al., 2020; Petrescu et al., 2021; Steiner et al., 2024), which lends confidence to their

robustness. At the aggregated EU27+3 scale, our total posterior methane emissions are corrected from 21.84 ± 0.57 to 23.28515

± 0.36 Tg yr–1, representing a modest 6.6 % rise compared with the prior. Although this is a modest overall increase, there are

strong regional and sectoral differences. Anthropogenic CH4 emissions are averaged 17.6 Tg yr–1 during 2017–2021 (range:

17.0–18.2 Tg yr–1), corresponding to a mean annual decrease of 0.3 Tg yr–1. These values are 11 % higher than GAINS, 4 %

higher than EDGARv8, and 3 % higher than UNFCCC NGHGI (2023), indicating good overall consistency with bottom-up

inventories and recent inversion-based estimates (e.g. Steiner et al. 2024). However, country-level comparisons reveal notable520

discrepancies: emissions are higher than reported for BENELUX (+54 %), Germany (+37 %), and France (+10 %), but lower

for Romania (–25 %), Poland (–16 %), and Italy (–11 %). Notable decreases are also found for Norway (–39 %), Finland
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(–16 %), and Denmark (–13 %), while Sweden exhibits a modest increase (+10 %), pointing to areas where inventory improve-

ments are needed. Furthermore, our sectoral analysis indicated that agriculture is the dominant source of European methane

emissions and the primary driver of the posterior increase, accounting for nearly half of total EU27+3 emissions and corrected525

upward by 21 % relative to the prior estimate. Energy-sector emissions show a small increase over land regions, while decreas-

ing in coastal and ocean areas, and waste emissions remain broadly stable, despite pronounced national variability. In contrast,

emissions from wetlands and geological sources show decreases, particularly reductions in wetland emissions observed during

the summer months in Northern Europe and decreases in geological emissions in Italy, Romania, and the UK. In addition, we

conducted eight sensitivity experiments by varying key parameters in the inversion setup. The results indicated that posterior530

fluxes show limited sensitivity to the choice of initial mole fractions and prior fluxes, underscoring the dominant role of atmo-

spheric observations in constraining emissions. In contrast, assumptions regarding error correlation lengths and observational

density strongly influence uncertainty reduction and the magnitude of posterior fluxes, emphasising the importance of realistic

error characterisation and the continued expansion of atmospheric measurement networks.

Our study demonstrates that dense atmospheric monitoring combined with high-resolution inversion modelling provides a535

robust top-down framework to evaluate national inventories, identify regional emission hotspots, and support verification of

methane mitigation efforts in Europe. By improving both spatial resolution and sectoral attribution, these results advance under-

standing of European methane sources and their variability, with direct relevance for climate policy and mitigation verification.

Nevertheless, some limitations remain. Observational coverage is sparse in parts of eastern and southeastern Europe, limiting

the ability to resolve emissions at finer spatial scales in these regions. Uncertainties in the transport model and assumptions540

about background CH4 levels may also affect the posterior estimates. In addition, this study didn’t systematically assess the

impacts of different resolutions, grid-based uncertainty, different natural priors and OH fields. Thereby, future work should

address these limitations through dedicated sensitivity analyses and by integrating satellite observations and isotopic signa-

tures (e.g., 13CH4) to improve source attribution, expand spatial coverage, and further strengthen European methane emission

estimates.545

Appendix A: Supplementary Figures and Tables
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Figure A1. Mean spatial distribution of prior methane (CH4) fluxes over the inversion domain for 2017–2022. Prior emissions are shown

by sector: a) Agriculture (AGR), b) Energy (ENG), c) Industrial processes (IND), d) Waste (WST), e) Ocean (OCE), f) Wetlands and

soil sinks (WET), g) Biomass burning (BBR), h) Geological (GEO), and i) Termites (TER). Anthropogenic prior fluxes were derived

monthly from GAINS (for EU27+3) and EDGARv8 (for the rest of the world). The GAINS sectors contributing to the AGR, ENG,

and WST categories include: Energy: A_PublicPower, B_Industry, D_Fugitives, F_RoadTransport, C_OtherStationaryComb; Agriculture:

K_AgriLivestock, L_AgriOther; Waste: J_Waste. The EDGARv8 sectoral inputs correspond to IPCC categories: Energy: BUILDINGS,

TRANSPORT, IND_COMBUSTION, POWER_INDUSTRY, FUEL_EXPLOITATION; Industrial processes: IND_PROCESSES; Agricul-

ture; AGRICULTURE; Waste: WASTE.

Table A1: Subregional grouping of European countries used in this study. ISO codes follow ISO 3166-1 alpha-3.

Subregion Countries

Northern Denmark (DNK), Estonia (EST), Finland (FIN), Lithuania (LTU), Latvia (LVA), Norway (NOR), Sweden (SWE)

Western Belgium (BEL), France (FRA), Ireland (IRL), Luxembourg (LUX), Netherlands (NLD), United Kingdom (GBR)

Central Austria (AUT), Switzerland (CHE), Czech Republic (CZE), Germany (DEU), Hungary (HUN), Poland (POL), Slovakia (SVK)

Southern Spain (ESP), Italy (ITA), Malta (MLT), Portugal (PRT), Bulgaria (BGR), Cyprus (CYP), Greece (GRC), Croatia (HRV), Romania (ROU),

Slovenia (SVN)

BENELUX Belgium (BEL), Luxembourg (LUX), Netherlands (NLD)

NorCheBri United Kingdom (GBR), Norway (NOR), Switzerland (CHE)

Scandic Finland (FIN), Sweden (SWE), Norway (NOR)

EU27+3 Austria (AUT), Belgium (BEL), Bulgaria (BGR), Croatia (HRV), Cyprus (CYP), Czech Republic (CZE), Denmark (DNK), Estonia

(EST), Finland (FIN), France (FRA), Germany (DEU), Greece (GRC), Hungary (HUN), Ireland (IRL), Italy (ITA), Latvia (LVA), Lithua-

nia (LTU), Luxembourg (LUX), Malta (MLT), Netherlands (NLD), Poland (POL), Portugal (PRT), Romania (ROU), Slovakia (SVK),

Slovenia (SVN), Spain (ESP), Sweden (SWE), United Kingdom (GBR), Norway (NOR), Switzerland (CHE)
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Figure A2. Time series of CH4 flux contributions from the nested and global domains at selected stations, averaged at the assimilated hour

for 2021: BIS (Biscarrosse, France), CBW (Cabauw, Netherlands), CRP (Carnsore Point, Ireland), ERS (Ersa, coastal Mediterranean site),

HPB (Hohenpeissenberg, mountain station in Germany), KIT (Karlsruhe, Germany), PAL (Pallas, Finland), and TRN (Trainou, France)

Table A2: List of CH4 concentration observation sites assimilated in this study. The “Alt” represents the sum of the surface

elevation and the intake height above ground level. The “Usage” column uses “M” to denote stations included in the base

inversion and “S” to denote stations used only in the sensitivity test. An asterisk (*) in the three-letter station code indicates

the station is classified as a mountain station, while a double asterisk (**) indicates the station is classified as a coastal station.

Time series of CH4 concentration are obtained from the ICOS European ObsPack compilation, except for SOD and KMP,

which are provided by FMI.

Code Name/Country Lat Lon Alt Intake Usage Region PI name / PID

BIK Bialystok, Poland 53.23 23.01 363 180 M Central Christoph Gerbig 11676/dIb_-MKOwY-lXLSoS6Ix_uEH

BIR** Birkenes, Norway 58.39 8.25 294 75 M North Ove Hermansen 11676/Op0FOOTp3OiA0sosQa7c7r8f

BIS** Biscarrosse, France 44.38 -1.23 120 47 M Western Morgan Lopez 11676/CZz7D5w1MOjb5G7tx6OpzF5O

BRM* Beromunster, Switzerland 47.19 8.18 1009 212 S Central Markus Leuenberger 11676/xliOFWs-4Fa8uHRc-f7WdjVt

BSD Bilsdale, UK 54.36 -1.15 630 248 M Western Simon O’Doherty 11676/N_Rk4k74hPRVqQb0LU6dn3MW

CBW Cabauw, Netherlands 51.97 4.93 207 207 M Western Arnoud Frumau 11676/5o7nE4zCWxiOqSOLxy_qPFaa

CMN* Monte Cimone, Italy 44.19 10.70 2173 8 M Southern Paolo Cristofanelli 11676/rV56OWUN0lG6xDvDjAPoUy8P

CRA Centre Atmosphériques, France 43.13 0.37 630 30 M Western Marc Delmotte 11676/B-sdBT0x3-XAOZ1Dv7G0efUO

CRP** Carnsore Point, Ireland 52.18 -6.37 23 14 M Western Damien Martin 11676/3lYhyLy5Op2eKMna-N8MRDeG

ERS** Ersa, France 42.97 9.38 573 40 M Southern Marc Delmotte 11676/eAlLggNtZSSEhLIP4VQF3FzB

FKL Finokalia, Greece 35.34 25.67 265 15 M Southern Marc Delmotte 11676/Z2jyS96qwt8yC9lH0vPKUq9w

GAT Gartow, Germany 53.07 11.44 411 341 M Central Sabrina Arnold 11676/Oc0MscHjLDwjTTROlzNzwecN

HEI Heidelberg, Germany 49.42 8.68 143 30 S Central Samuel Hammer 11676/fSuVm1oug0U-eYnDmY89vvnO

HEL** Helgoland, Germany 54.18 7.88 153 110 M Central Sabrina Arnold 11676/lHon6TrJFT4xSnnWu_t7kiOE

HPB* Hohenpeissenberg, Germany 47.80 11.03 1065 131 M Central Sabrina Arnold 11676/JV5tGrF4G1ki6IuUSSYhud4e

HTM Hyltemossa, Sweden 56.10 13.42 265 150 M North Tobias Biermann 11676/Eve4cRnozSvtdD1uR2J8eQ1e

HUN Hegyhátsál, Hungary 46.96 16.65 363 115 M Central Laszlo Haszpra 11676/nDi91KPtJmGKca15n4OO8K4y

IPR Ispra, Italy 45.82 8.64 310 100 S Central Peter Bergamaschi 11676/6-63kMo0iwyaOG_IDm2e05sI

JFJ Jungfraujoch, Switzerland 46.55 7.99 3585.7 13.9 S Central Lukas Bäni 11676/43dS11kEAb1O1e-CVx4V5FYf
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Code Name/Country Lat Lon Alt Intake Usage Region PI name / PID

JUE Jülich, Germany 50.91 6.41 218 120 M Central Sabrina Arnold 11676/7-ZcZxJaSr6aYNsPtkxlR5iu

KAS* Kasprowy Wierch, Poland 49.23 19.98 1994 7 M Central Lukasz Chmura 11676/rjzUrVpnGJgkfrE3ivHKM4M4

KIT Karlsruhe, Germany 49.09 8.43 310 200 M Central Sabrina Arnold 11676/xunTpxiKBxeCATiklITfmVfO

KMP** Kumpula, Finland 60.20 24.96 83 30 M North Juha Hatakka

KRE Křešín u Pacova, Czech Republic 49.57 15.08 784 250 M Central Vlastimil Hanuš 11676/OBvoGzvun2yJUhwGSSw_IPFU

LHW Laegern-Hochwacht, Switzerland 47.48 8.40 872 32 M Central Dominik Brunner 11676/ZngGiV560IXmFhPKAvr9VsW9

LIN Lindenberg, Germany 52.17 14.12 171 98 M Central Sabrina Arnold 11676/heVVCRDRi0NAmsTjVT7P5uqx

LMP** Lampedusa, Italy 35.52 12.63 53 8 M Southern Tatiana Di Iorio 11676/iBrGUittGQ0MbSa2d_DRAqSL

LMU La Muela, Spain 41.60 -1.10 3079 79 M Southern Josep-Anton Morguí 11676/RogGl0k9ncLrfQpamPGuHCOw

LUT** Lutjewad, Netherlands 53.40 6.35 61 60 M Western Huilin Chen 11676/-6jCU6FKSHK1QUpTY2ycbA9g

MHD** Mace Head, Ireland 53.33 -9.90 29 24 M Western Morgan Lopez 11676/Z1C0-rDRAwVr_HJqvRWAQ0t-

MLH** Malin Head, Ireland 55.36 -7.33 69 47 M Western Damien Martin 11676/DUzJl8dy-0juDUQpxjkbdZWJ

NOR Norunda, Sweden 60.09 17.48 146 100 M North Irene Lehner 11676/tIU04tuXHJOUQoiUpUx0Lo-m

OHP Haute, France 43.93 5.71 750 100 M Western Pierre-Eric Blanc 11676/eOOPOJiJFIKePdO8pBY3NfWB

OPE pérenne, France 48.56 5.50 510 120 M Western Sébastien Conil 11676/5eJvlDQFaqrMdZJpFeroX0CB

OXK* Ochsenkopf, Germany 50.03 11.81 1185 163 M Central Sabrina Arnold 11676/c-7hY8ADIyUbXnAseeHvPUOG

PAL Pallas, Finland 67.97 24.12 577 12 M North Juha Hatakka 11676/BRQdok2fWTkZjbY2EWt5j_kp

PDM* Pic du Midi, France 42.94 0.14 2905 28 M Southern Marc Delmotte 11676/l78B6eUemNE5fwxPYRmh_aQ5

PRS* Plateau Rosa, Italy 45.93 7.70 3490 10 M Southern Francesco Apadula 11676/EiykeME8LDvWqDMWBnVEl8Dr

PUI Puijo, Finland 62.91 27.66 316 84 M North Kari Lehtinen 11676/oUL5PFu3G24d3faQB8Y32BFX

PUY* Puy de Dôme, France 45.77 2.97 1475 10 M Central Marc Delmotte 11676/Epa5vyYIPOlJgqCvSYf8wKQQ

RGL Ridge Hill, UK 52.00 -2.54 297 90 M Western Simon O’Doherty 11676/uginioEdmGdx6eeXbWCgqqWJ

ROC Roc’h Trédudon, France 48.41 -3.89 502 140 M Western Marc Delmotte 11676/EhkaIxjU0afvi4NoRTPhIjrN

SAC Saclay, France 48.72 2.14 260 100 M Western Marc Delmotte 11676/AoLSAFdhH6ZHK-XKlIWEcMKJ

SMR Hyytiälä, Finland 61.85 24.30 306 125 M North Janne Levula

SOD Sodankylä, Finland 67.36 26.64 406 179 M North Juha Hatakka

SSL* Schauinsland, Germany 47.92 7.92 1240 35 M Central Cédric Couret 11676/-VQ8RK_VTU7EpH65m4nDRt2Z

STE Steinkimmen, Germany 53.04 8.46 281 252 M Central Sabrina Arnold 11676/3aRDFH65i1aOWHtoNhfK0jxp

SVB Svartberget, Sweden 64.26 19.78 419 150 M North Per Marklund 11676/4t7iW7h2mQNwkbokFa5cHn-3

TAC Tacolneston, UK 52.52 1.14 249 185 M Western Simon O’Doherty 11676/pMNbqZiucxfHuFZMSqiec5fB

TOH Torfhaus, Germany 51.81 10.54 948 147 M Central Sabrina Arnold 11676/POM9VeLfoJu7oF5NyCizMoHQ

TRN Trainou, France 47.97 2.11 311 180 M Western Marc Delmotte 11676/IHLvYYV0v68h1XTvHGfACr9D

UTO** Utö - Baltic Sea, Finland 59.78 21.37 65 57 M North Juha Hatakka 11676/4oH7xjDD9SWLlMLmD5vdVHZM

WAO Weybourne, UK 52.95 1.12 41 10 M Western Grant Forster 11676/mf2wNzCd_92k2K4rlbXmA8Xt

WES** Westerland, Germany 54.92 8.31 26 14 M Western Cédric Couret 11676/YO64anbwHvGNYchIXX8dNMsB

ZSF* Zugspitze, Germany 47.42 10.98 2669 3 M Central Cédric Couret 11676/VyAUTyJFxZvM1OPRntBBQr23

Table A3: Prior and posterior model performance statistics at all measurement stations used in this study. The table reports the

root-mean-square error (RMSE), mean bias (MBias), and Pearson correlation coefficient (r2) for both the prior and posterior

simulations at the assimilated hour. RMSE and MBias are given in ppb.

Station
RMSE MBias r2

Prior Post Prior Post Prior Post

bik 24.14 17.68 -11.02 -3.19 0.82 0.88

bir 18.11 14.48 -4.12 2.53 0.77 0.86

bis 25.09 16.66 -11.73 0.47 0.83 0.91

Continued on next page
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Station
RMSE MBias r2

Prior Post Prior Post Prior Post

brm 42.04 26.92 -3.17 -1.62 0.58 0.84

bsd 19.01 16.11 -3.52 -1.38 0.80 0.87

cbw 60.61 35.58 -39.14 -10.21 0.76 0.87

cmn 25.15 19.57 3.87 4.19 0.71 0.80

cra 30.08 18.31 -20.87 -5.42 0.73 0.83

crp 24.80 20.30 -8.00 -3.30 0.83 0.88

ers 24.06 15.33 8.22 1.99 0.79 0.89

fkl 16.10 13.40 4.52 5.54 0.85 0.91

gat 28.05 21.10 -16.75 0.09 0.84 0.87

hel 48.90 30.71 -23.23 -5.64 0.77 0.87

hpb 33.38 26.91 -3.26 4.48 0.66 0.80

htm 23.96 16.17 -11.61 -3.01 0.85 0.92

hun 35.81 26.56 -22.69 -11.52 0.79 0.85

jue 47.85 31.21 -32.05 -6.27 0.78 0.82

kas 24.17 21.52 4.52 10.45 0.74 0.84

kit 35.75 21.43 -21.38 1.09 0.85 0.91

kmp 24.92 17.46 -11.90 -6.11 0.83 0.91

kre 29.25 20.37 -19.33 -4.32 0.83 0.87

lhw 44.04 32.17 -25.31 -12.97 0.70 0.81

lin 34.75 22.26 -22.81 -6.89 0.85 0.90

lmp 20.68 14.00 12.80 7.22 0.83 0.92

lmu 49.36 25.94 -38.78 -9.97 0.51 0.72

lut 94.98 69.98 -48.70 -26.00 0.73 0.82

mhd 16.56 13.81 -2.69 1.31 0.90 0.93

mlh 23.50 19.83 -3.03 -2.28 0.79 0.86

nor 15.21 10.56 -4.75 1.10 0.91 0.95

ope 28.73 17.51 -18.15 -0.79 0.86 0.92

oxk 23.26 17.63 -11.77 1.22 0.75 0.82

pal 14.55 9.78 -5.40 0.56 0.91 0.95

pui 16.15 10.94 -5.14 0.89 0.91 0.95

puy 22.05 15.59 -11.56 1.53 0.83 0.89

rgl 27.74 21.39 -13.88 -7.96 0.84 0.90

roc 28.47 17.80 -15.26 -3.98 0.70 0.86

sac 31.05 21.90 -14.22 0.89 0.87 0.92

smr 14.63 10.34 -4.38 1.37 0.92 0.96

sod 24.17 17.10 -13.57 -6.91 0.84 0.90

ste 55.41 36.62 -37.24 -13.25 0.74 0.82

svb 12.19 9.26 -3.67 1.66 0.94 0.96

toh 22.97 18.42 -13.07 3.42 0.82 0.85

trn 27.80 17.12 -15.49 -1.39 0.85 0.92

uto 18.42 12.42 -4.25 1.13 0.87 0.94

wao 37.63 26.99 -7.12 -1.73 0.77 0.88

wes 57.38 37.85 -27.93 -12.52 0.76 0.87
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Table A4: Six-year mean methane fluxes (2017-2022) by region and sector. Values are given in Tg yr-1 with ranges in paren-

theses.

Region/Subregion Prior Flux Posterior Flux Increment (%)

Total Fluxes
Domain 36.11 (35.54-36.60) 36.70 (35.98-37.38) +1.62

EU27+3 21.84 (21.13-22.55) 23.28 (22.78-23.85) +6.56

non EU27+3 14.27 (13.80-14.47) 13.42 (12.98-14.37) -5.96

EU27 18.80 (18.23-19.33) 20.50 (19.97-21.09) +9.06

non EU27+3 land 10.26 (9.73-10.49) 9.97 (9.76-10.39) -2.74

Oceans 5.08 (5.01-5.17) 4.44 (3.89-5.07) -12.53

Northern 2.07 (2.03-2.18) 2.05 (1.99-2.13) -1.01

Central 5.19 (4.98-5.53) 6.84 (6.45-7.35) +31.95

Western 6.36 (6.08-6.65) 7.57 (7.44-7.96) +19.15

Southern 8.23 (8.04-8.35) 6.81 (6.68-6.98) -17.25

Benelux 0.92 (0.90-0.96) 1.74 (1.67-1.79) +88.94

NorCheBri 3.05 (2.90-3.23) 2.78 (2.55-3.04) -8.83

Scandic 1.50 (1.47-1.61) 1.44 (1.39-1.54) -4.03

Agricultural Sector
Domain 11.70 (11.62-11.79) 13.63 (13.42-13.88) +16.53

EU27+3 8.94 (8.83-9.11) 10.82 (10.61-11.01) +21.03

non EU27+3 2.76 (2.64-2.82) 2.81 (2.70-2.87) +1.96

EU27 7.83 (7.73-7.97) 9.67 (9.43-9.81) +23.48

non EU27+3 land 2.41 (2.29-2.48) 2.45 (2.34-2.50) +1.57

Oceans 0.76 (0.75-0.77) 0.81 (0.80-0.83) +6.71

Northern 0.64 (0.63-0.65) 0.68 (0.66-0.69) +6.59

Central 2.37 (2.35-2.39) 3.19 (3.09-3.31) +34.63

Western 3.51 (3.45-3.60) 4.54 (4.35-4.72) +29.26

Southern 2.42 (2.39-2.46) 2.41 (2.37-2.45) -0.44

Benelux 0.68 (0.67-0.69) 1.29 (1.13-1.38) +89.87

NorCheBri 1.11 (1.10-1.14) 1.16 (1.11-1.21) +3.77

Scandic 0.30 (0.30-0.31) 0.31 (0.30-0.31) +1.99

Energy Sector
Domain 4.89 (4.57-5.31) 4.71 (4.54-5.03) -3.71

EU27+3 1.70 (1.58-1.91) 1.77 (1.59-2.03) +4.18

non EU27+3 3.19 (2.98-3.40) 2.94 (2.82-3.00) -7.92

EU27 1.53 (1.41-1.74) 1.60 (1.42-1.86) +4.56

non EU27+3 land 1.81 (1.77-1.85) 1.84 (1.77-1.89) +1.52

Oceans 1.44 (1.22-1.66) 1.15 (1.04-1.26) -19.64

Northern 0.07 (0.07-0.07) 0.07 (0.07-0.07) -0.50

Central 0.81 (0.72-0.95) 0.87 (0.74-1.07) +8.07

Western 0.31 (0.29-0.33) 0.32 (0.30-0.35) +3.02

Southern 0.52 (0.49-0.56) 0.51 (0.49-0.55) -0.59

Benelux 0.06 (0.06-0.06) 0.07 (0.06-0.07) +8.73

NorCheBri 0.17 (0.17-0.18) 0.17 (0.17-0.18) +0.75

Scandic 0.04 (0.04-0.05) 0.04 (0.04-0.05) -0.55

Waste Sector
Domain 9.60 (9.48-9.74) 9.65 (9.52-9.77) +0.48

EU27+3 4.90 (4.59-5.32) 4.96 (4.65-5.33) +1.33

non EU27+3 4.70 (4.41-4.99) 4.68 (4.39-4.97) -0.40

Continued on next page
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Table A4 – continued from previous page

Region/Subregion Prior Flux Posterior Flux Increment (%)

EU27 4.06 (3.87-4.31) 4.13 (3.93-4.37) +1.70

non EU27+3 land 3.57 (3.33-3.79) 3.56 (3.32-3.78) -0.20

Oceans 1.39 (1.36-1.45) 1.38 (1.34-1.44) -0.83

Northern 0.22 (0.21-0.24) 0.23 (0.21-0.24) +0.50

Central 1.01 (0.92-1.15) 1.05 (0.95-1.20) +3.84

Western 1.59 (1.43-1.82) 1.64 (1.48-1.82) +3.20

Southern 2.07 (2.03-2.12) 2.05 (2.01-2.08) -1.23

Benelux 0.16 (0.14-0.19) 0.18 (0.16-0.21) +11.02

NorCheBri 0.84 (0.72-1.01) 0.83 (0.72-0.96) -0.43

Scandic 0.09 (0.09-0.10) 0.09 (0.09-0.10) -0.25

Wetland Sector
Domain 2.59 (2.39-2.93) 2.57 (2.42-2.91) -0.49

EU27+3 1.44 (1.30-1.71) 1.40 (1.30-1.67) -2.61

non EU27+3 1.14 (1.09-1.26) 1.17 (1.10-1.27) +2.19

EU27 0.91 (0.78-1.12) 0.89 (0.79-1.11) -1.66

non EU27+3 land 1.10 (1.05-1.22) 1.13 (1.06-1.23) +2.36

Oceans 0.09 (0.08-0.10) 0.09 (0.08-0.10) -2.95

Northern 1.13 (1.10-1.25) 1.10 (1.05-1.22) -3.27

Central -0.09 (-0.11–0.04) -0.08 (-0.10–0.04) -7.05

Western 0.37 (0.31-0.43) 0.36 (0.30-0.42) -1.85

Southern 0.03 (-0.07-0.12) 0.03 (-0.07-0.12) -0.37

Benelux 0.02 (0.01-0.02) 0.02 (0.02-0.02) +9.53

NorCheBri 0.53 (0.50-0.59) 0.51 (0.48-0.56) -4.25

Scandic 1.05 (1.00-1.16) 1.01 (0.97-1.13) -3.62

Geological Sector
Domain 5.10 (5.10-5.12) 3.47 (3.11-3.77) -31.98

EU27+3 3.89 (3.89-3.90) 2.51 (2.16-2.76) -35.42

non EU27+3 1.22 (1.22-1.22) 0.96 (0.87-1.01) -20.98

EU27 3.56 (3.56-3.56) 2.24 (1.89-2.48) -37.13

non EU27+3 land 0.63 (0.63-0.63) 0.52 (0.48-0.55) -16.79

Oceans 0.71 (0.71-0.71) 0.51 (0.41-0.54) -28.69

Northern 0.02 (0.02-0.02) 0.02 (0.02-0.02) +0.81

Central -0.65 (0.65-0.65) -0.65 (0.56-0.72) -0.27

Western 0.41 (0.41-0.41) 0.38 (0.34-0.40) -7.07

Southern 2.81 (2.81-2.82) 1.47 (1.21-1.67) -47.87

Benelux 0.01 (0.01-0.01) 0.01 (0.01-0.01) +14.21

NorCheBri 0.33 (0.33-0.33) 0.28 (0.24-0.30) -17.12

Scandic 0.01 (0.01-0.01) 0.01 (0.01-0.01) +0.26

Table A5: Comparison of posterior anthropogenic CH4 emissions (Tg yr−1) for EU27+3 countries with GAINS, UNFCCC,

and EDGARv8 inventories, including relative differences (%).

Emissions (Tg yr−1) Posterior increments (%)

Country Posterior GAINS / Prior UNFCCC EDGARv8 Post vs Prior Post vs UNFCCC Post vs EDGAR

AUT 0.26 0.22 0.24 0.35 12.74 7.00 -35.06

BEL 0.44 0.27 0.29 0.49 39.75 34.78 -11.26

Continued on next page
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Table A5 – continued from previous page

Emissions (Tg yr−1) Posterior increments (%)

Country Posterior GAINS / Prior UNFCCC EDGARv8 Post vs Prior Post vs UNFCCC Post vs EDGAR

BGR 0.26 0.26 0.24 0.30 -0.55 7.10 -18.39

CHE 0.17 0.19 0.18 0.20 -13.30 -8.22 -16.22

CYP 0.00 0.00 0.04 0.03 1.00 1.00 1.00

CZE 0.49 0.42 0.49 0.48 13.99 -0.85 1.36

DEU 2.41 1.71 1.75 2.17 29.22 27.38 10.04

DNK 0.26 0.23 0.31 0.29 11.29 -16.00 -7.71

ESP 1.51 1.47 1.49 1.32 2.88 1.66 12.83

EST 0.05 0.05 0.04 0.11 0.52 12.03 -128.64

FIN 0.15 0.15 0.18 0.36 -0.39 -20.28 -140.65

FRA 2.54 2.15 2.30 2.48 15.50 9.52 2.36

GBR 1.89 1.84 1.93 1.68 2.46 -1.99 11.17

GRC 0.35 0.35 0.40 0.26 -1.07 -16.48 24.11

HRV 0.11 0.11 0.15 0.16 2.05 -31.75 -41.13

HUN 0.36 0.35 0.33 0.32 3.42 8.41 11.76

IRL 0.57 0.57 0.62 0.63 -0.11 -8.48 -10.37

ITA 1.51 1.61 1.70 1.23 -6.90 -12.88 18.31

LTU 0.13 0.13 0.12 0.11 2.77 7.28 19.65

LUX 0.03 0.02 0.02 0.03 36.55 27.50 17.78

LVA 0.08 0.08 0.07 0.07 1.48 13.68 16.38

MLT 0.00 0.00 0.01 0.00 1.00 1.00 1.00

NLD 1.07 0.62 0.69 0.62 41.90 35.50 41.54

NOR 0.12 0.12 0.19 0.17 0.28 -64.88 -46.41

POL 1.33 1.22 1.58 1.42 8.06 -19.46 -7.44

PRT 0.44 0.44 0.37 0.26 0.79 15.89 39.93

ROU 0.70 0.70 0.94 0.83 0.24 -34.16 -18.30

SVK 0.13 0.13 0.13 0.16 5.74 0.29 -19.36

SVN 0.10 0.09 0.08 0.08 3.50 21.20 22.56

SWE 0.19 0.18 0.17 0.36 2.76 9.33 -94.28

EU27 17.10 15.11 16.44 16.28 11.66 3.88 4.77

EU27+3 17.64 15.67 17.05 16.96 11.17 3.35 3.89

Code availability. This study makes use of the Community Inversion Framework (CIF) and the Lagrangian transport model FLEXPART,
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tained from publicly available sources: GAINS (https://iiasa.ac.at/web/home/research/researchPrograms/air/GAINS.html, EDGARv8 (https:
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