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Abstract. Accurately simulating overland flow in vegetated landscapes remains a challenge in hydrological modeling due to
the complex interactions between vegetation, surface roughness, and soil infiltration. This study evaluates multiple methods
10 for estimating Manning’s roughness coefficient and explores the influence of vegetation on infiltration processes using the
OpenLISEM model. Based on 132 artificial rainfall experiments across 22 sites in southwest Germany, the model was
calibrated and validated against observed runoff data, incorporating both depth-independent and depth-dependent roughness
formulations. Incorporating water depth-dependent roughness into the model can improve its performance in simulating
overland flow. Beyond roughness effects, vegetation was shown to significantly alter soil hydraulic properties, particularly
15 saturated hydraulic conductivity (Ksat). Paired site comparisons revealed that increased vegetation cover corresponded with
higher infiltration capacities, emphasizing vegetation's role not only in surface resistance but also in enhancing subsurface
water fluxes. The findings demonstrate that models must account for both surface and subsurface impacts of vegetation to

improve runoff predictions.

1 Introduction

20 Overland flow is a critical component of the hydrological cycle, playing a significant role in flood generation, soil erosion,
and pollutant transport. Accurate overland flow modelling is essential for effective water resource management, flood
prediction, and environmental protection. Accurately representing the effects of vegetated areas remains one of the primary
challenges in overland flow modelling, as these areas play a critical role in the hydrological cycle (Peel, 2009). Vegetation
significantly influences flow dynamics by increasing surface roughness, modifying flow patterns, and providing additional

25 drag (Zhang et al., 2018). Beyond these hydrodynamic effects, vegetation also changes the infiltration regime, thereby the
partitioning between infiltration and overland flow (Ajayi et al., 2021).

The hydrodynamic effects of vegetation on flow vary significantly between emergent and submergent plant communities, with
distinct hydrodynamic impacts based on their structural characteristics and interaction with water depth (D’Ippolito et al.,
2021). As vegetation density increases, it slows flow velocity and can reduce the erosive power of surface runoff (Mu et al.,

30 2019). The interaction between vegetation and overland flow is often quantified through roughness coefficients, with
Manning's coefficient being one of the most widely used parameters in hydrological modelling. At present, roughness
parameters for overland flow are derived mainly from field measurements and laboratory experiments (Oberle et al., 2024).
Recent studies have shown that roughness coefficients are not constant but vary with factors such as water depth, vegetation
density, and flow velocity (Ruiz Rodriguez, 2017; Fu et al., 2019; Hinsberger et al., 2022). Hinsberger et al. (2022) performed

35 laboratory experiments to investigate roughness variations in submerged and emergent vegetation, demonstrating that
increased submergence reduces roughness, whereas for emergent vegetation, greater submergence leads to heightened
roughness. Their findings suggested that roughness-water depth relationships for intermediate zones can be approximated
using a linear approach. Feldmann et al. (2023) proposed a framework to estimate Manning roughness dependent on shallow
water depth. First, the partitioning of overland flow and infiltration was calculated during the descending limb of the

40 hydrograph to determine the minimum infiltration rate. Then, they reduced the solution space by comparing experiments
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conducted at one site and by comparing sites with similar properties. The framework's robustness was tested using three
different depth-dependent roughness equations and a constant Manning coefficient.
Utilizing flow resistance models in vegetated areas holds immense value in evaluating the potential for flooding and
formulating flood mitigation strategies grounded in scientific principles (Green, 2005). However, evaluating these equations
45 to calculate overland flows continues to be a staple area of research within hydrology. The uncertainty associated with
roughness coefficients can significantly impact surface runoff accumulation. For example, Dalledonne et al. (2019) introduced
an approach to evaluate uncertainty in floodplain hydrodynamic models influenced by vegetation, testing four resistance
formulas. Oberle et al. (2021), carried out a review on flow resistance in overland flow. Based on some previous laboratory
experiments concerning artificial grass, they demonstrated that the roughness function varies with water depth in the presence
50 of vegetation. They noted that uncertainties emerge as the cross-sectional impact of vegetation elements is usually not
considered in the calculation of resistance coefficients. In contrast, Luhar and Nepf (2013) investigated the effect of vegetation
distribution on channel velocity, presenting physically based models that link drag generated by vegetation at the blade and
patch scale to hydraulic resistance. This resistance depends on the blockage factor, which represents the fraction of the channel
cross-section occupied by vegetation. However, the applicability of their approach to overland flow is examined in this study.
55 These findings highlight the need for further evaluation of roughness estimation methods under varying hydrological
conditions.
On the other hand, vegetation and root systems influences soil structure, creates preferential flow paths, which promote
infiltration and reduce overland flow (Ajayi et al., 2021; Jarvis et al., 2013). Gao et al. (2023) stated that the most established
hydrological theories, such as those presented by Drewniak (2019) and Lu et al. (2019), predominantly parameterize water
60 fluxes based on soil properties, including texture, porosity, moisture retention capacity, wilting point, and plant-available
water. These approaches are grounded in the assumption that soil properties govern key hydrological processes such as
infiltration, drainage, and evapotranspiration. In traditional modelling approaches, infiltration parameters are often estimated
using soil texture-based pedotransfer functions as a primary input when direct measurements are unavailable. Gao et al. (2023)
challenge this perspective, suggesting instead that this causality is misrepresented: soil properties should be viewed as
65 outcomes rather than drivers of water movement, which is fundamentally regulated by the dynamics of the surrounding
terrestrial ecosystem. Neglecting key site factors, such as land use, in parameter estimation routines can introduce significant
errors in the partitioning of infiltration and runoff in hydrological modelling (Jarvis et al., 2013). The impact of vegetation
cover on infiltration properties such as saturated hydraulic conductivity remains insufficiently implemented in surface runoff
models. Understanding the vegetation effects on soil parameters is crucial for improving the accuracy of hydrological models.
70 In surface runoff models, saturated hydraulic conductivity is often calibrated to align with observed data, indirectly capturing
the influence of vegetation on soil properties. This study explores whether such calibrated values can implicitly reflect the

influence of vegetation on soil hydraulic properties. The scope of our research encompasses the following objectives:

e Modelling the overland flow to compare and validate different approaches for Manning's coefficient estimation.

75 e Evaluation of overland flow model performance in estimating infiltration in the presence of vegetation

By addressing these objectives, our research contributes to improving the accuracy of hydrological models and enhancing our
understanding of overland flow dynamics in vegetated areas. By utilizing the experimental dataset and hydrodynamic
simulation, this study assesses the accuracy of roughness coefficient estimations in a hydrological model in a realistic
80 environment. This assessment covers a variety of scenarios involving different levels of vegetation coverage and vegetation
height and varying rainfall intensities. By providing insights into the most effective approaches for estimating surface

roughness and understanding the interactions of vegetation and infiltration, this research aims to enhance the reliability of
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overland flow predictions and support more informed decision-making in hydrological engineering and environmental

planning.

2 Materials and methods
2.1 Study site and experimental setup

To develop and evaluate overland flow models in the absence of real measurement, artificial sprinkling studies present an
opportunity to investigate vegetation effects on overland flow. Ries et al. (2020) conducted 132 sprinkling experiments on
natural hillslopes at 23 sites with different soil types and land use in Baden-Wiirttemberg (Germany), one of the most extensive
datasets accessible in southwest Germany. Table 1 provides information about land use, vegetation properties, and soil
characteristics for each site. The experimental area was a 10 by 10-meter square, with slopes ranging from 9% to 32%. These
experiments aimed to simulate a 100-year or locally observed maximum rainfall intensity event with different durations.
Rainfall experiments started with Run 1 on the first day. Subsequently, Run2 — Run5 were conducted on the following day

and Run 6 was carried out on the third day (Table 2).

Table 1: Properties of experimental sites and the values of constant Manning's roughness coefficient.

Plant
Slope* Veg_height* n n
Site* Vegetation* coverage®*  soil type
% (m) (Chow) (Feldmann)
%

1 12 Pasture 0.15 100 Clay 0.05 0.58
2 18 Pasture 0.1 100 Silty loam 0.05 0.60
3 16 Pasture 0.1 90 Loam 0.05 0.70
4 16 Mustard 0.15 40 Clay loam 0.04 045
5 14 Triticale (seeded) 0 0 Silty loam 0.03 0.18
6 21 Pasture 0.05 100 Silty loam 0.04 0.65
7 14 Winter Barley 0.3 80 Silty loam 0.05 0.38
8 16 Corn (seeded) 0.05 15 Sandy loam 0.035 0.13
9 21 Pasture 0.1 100 Sandy loam 0.05 0.58
10 32 Pasture 0.15 100 Sandy clay loam - -

11 18 Pasture 0.1 80 Silty clay 0.045 0.68
12 19 Pasture 0.15 100 Silty clay 0.05 0.65
13 11 Alfalfa 0.2 40 Silty clay 0.04 0.28
14 27 Pasture 0.15 100 Silty clay 0.05 0.70
15 14 Winter Barley 0.05 0 Clay loam 0.03 0.50
16 12 Pasture 0.1 100 Clay loam 0.05 0.40
17 14 Pasture 0.05 100 Silty loam 0.05 0.48
18 12 Alfalfa and Clover 0.2 60 Clay 0.045 0.38
19 21 Pasture 0.15 100 Sandy clay loam  0.05 0.98
20 9 Corn (harvested) 0 0 Clay loam 0.03 0.05
21 14 Green Manure 0.15 50 Silty clay loam 0.04 0.35
22 12 Pasture 0.2 100 Silty clay 0.05 0.38
23 14 Corn (harvested) 0 0 Clay 0.03 0.08

* Data from Ries et al. (2020)
l:l Pair sites

The experiments conducted at Site 10 did not produce any runoff and were not used in this study. Discharge at the outlet,

rainfall intensity, and initial soil moisture were measured at a temporal resolution of 1 minute. Out of the 23 sites surveyed, 12
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locations are paired sites, highlighted in bold in Table 1. This arrangement facilitates a direct comparison between the effects

100 of two different land uses on runoff and infiltration. The deliberate choice of these paired sites is underscored by their
proximity, with distances maintained within the threshold of less than 100 meters. For more comprehensive details of these
experiments, refer to Ries et al. (2020).

Table 2: Characteristics of rainfall for experimental sites (Ries et al. 2020).

Run no. Durgtion Return period Intensit}r Cumulative Runoff:
(min) (yr) (mm hr!) min, max, mean (mm)
Run 1 60 100 42-76 0.0,44.3,13.0
Run 2 60 100 42-76 0.0, 58.6,26.9
Run 3 30 100 82-130 0.0,50.9,31.7
Run 4 15 100 110-172 1.4,30.4,22.2
Run § 180 worst case 44-53 0.1, 145.1, 100.6
Run 6 60 worst case 99-126 32.0,100.1, 71.0

2.1 Model

105 To explore the impact of roughness on overland flow simulations, it is crucial to integrate the relationship between roughness
and water depth into the model. For this purpose, OpenLISEM (Open LImburg Soil Erosion Model), which was developed
based on the original LISEM (Jetten, 2002), was chosen for its modular structure, physics-based approach and accessibility of

the source code, published under a free licence (GNU Public Licence v3, https:/github.com/vjetten/openlisem/ ). It is an event-

based and spatial hydrological model suitable for different sizes of catchments. It focuses on simulating runoff, sediment
110  dynamics, and infiltration during heavy rainstorms, allowing for detailed assessments of land use changes and conservation
measures (Baartman et al., 2012). The elevation model is generated with a cell size of 0.5x 0.5 meter, providing information
about the gradient of each specific location in the database (Table 1). Since the surface of the experimental plots is
homogeneous, the generated DEM does not include micro-depressions. So, all surface parameters that may influence overland
flow are represented within Manning’s coefficient. This simplification does not affect our evaluation of different roughness
115 approaches, as the conditions are consistent across all roughness methods. The last row of the DEM, colorized black in Figure
1-a, represents the trench designed to collect runoff, positioned 40 cm below the surface as in constructed experiments. Figure
1-b illustrates the field setup from Ries et al. (2020), which measured flow at three points within the trench. In our model,
discharge data is recorded at the outlet, located at the corner end of the trench. Since the trench length to the outlet in the
experiments is one-third of that in our model, we compensated by tripling the water velocity in the trench through a reduction

120  in Manning’s coefficient for the trench surface.

Figure 1: a) 0.5 x 0.5-meter digital elevation model applied for simulations, incorporating the specific slope of each site. b) Setup of
field experiments by Ries et al. (2020).
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125 Time resolution for simulation is 1second and the total simulation time is chosen based on observation runoff data.
For the distributed routing of overland flow, a four-point finite-difference solution of the kinematic wave is together with
Manning's equation (Jetten, 2002). Infiltration was estimated using the Green-Ampt method (Rawls et al., 1983), which
incorporates field-measured variables such as porosity and initial soil moisture content. Two additional parameters, saturated
hydraulic conductivity (Ksat) and average soil suction at the wetting front (Psi), are not typically measured in the field. Prior
130 studies, including those by Jetten (2002), Hessel et al. (2003) and Starkloff and Stolte (2014), have highlighted the primary
sensitivity of OpenLISEM to Ksat and Psi parameters. Therefore, reasonable ranges for Ksat and Psi were adopted from Rawls
et al. (1983), and the values were subsequently calibrated to best match observed runoff data. It should be considered that,
infiltration in model depends on both soil properties and surface water depth, increased vegetation cover or a higher Manning’s
roughness coefficient reduces flow velocity, leading to greater surface water depth and, consequently, an enhanced infiltration
135 rate.
OpenLISEM version 6.873 has been utilized which employs Manning's approach to calculate the runoff velocity. While the
original software employed a constant Manning's coefficient as a raster map for roughness, a new feature called the dynamic
Manning's n function has been introduced into the software to implement different Manning's coefficient estimation methods
in simulations. This feature enables users to select from various methods of roughness estimation, including not only a constant
140  value but also methods dependent on the depth of runoff. Detailed information about these extensions can be found in the

‘Code availability.” section.

2.2 Surface roughness functions

Surface roughness functions are foundational components in the simulating of overland flow, affecting the accuracy of
hydrological models. Roughness estimation approaches represent the resistance of the surface in the model that affects the
145 momentum and energy dissipation of overland flow. In this study, two depth-independent Manning's roughness coefficients
and five depth-dependent roughness functions were introduced into OpenLISEM to assess the impact of different Manning’s

roughness functions on vegetation modeling.

2.2.1 Constant Manning’s coefficient

The initial approach assumes a constant value for Manning's roughness coefficient (n) based on Chow (1959), representing the
150 range of flow resistance for floodplains covered by vegetations. The values of Manning's roughness coefficient using Chow's
method for each site of the artificial rainfall experiments are given in Table 1. In this method, values are typically selected
based on established literature or site-specific calibration. This is suitable for homogeneous surfaces and it does not consider

the effect of water depth in presence of vegetation.

2.2.2 Robust Manning’s coefficient

155  In the study conducted by Feldmann et al. (2023), the n values were directly iterated within the framework they established.
The authors reported that the most robust results, characterized by high Nash-Sutcliffe Efficiency (NSE) values, were achieved
with constant Manning values, as presented in Table 1. They estimate surface roughness by analyzing the shape of the
hydrograph, fitting the Hortonian equation to the difference between rainfall input and observed discharge for the falling limb
of the hydrograph. To achieve this goal, they assumed that the infiltration rate in the descending limb of the hydrograph is

160 constant. For more details, see Feldmann et al. (2023).

2.2.3 Linear method

Drawing on previous literature on artificial grass, including Ruiz Rodriguez (2017), Oberle et al. (2021) concluded that a flow-

depth-dependent roughness spectrum can be derived for overland flow, despite inherent variability in the data. Similarly,

5
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Hinsberger et al. (2022) found Strickler coefficient, kg, values varied with different water depths in the presence of

165 vegetation. Based on their results, there are three zones to specify roughness within the data range, categorized according to
the submergence ratio: for emergent and fully submergent zones they emphasis the roughness is constant.
A linear function of relative submergence can be described for the roughness coefficient between emergent and fully
submergence zones (1 < hL < 5 to 7) (Hinsberger et al. 2022).
veg
These relationships are summarized in equation 1:
ks
ST for 0<h < hyy
1/n oo =1 kgt h—h (1)
Manning T’ + kstr— ey fOr hyeg < h < 5.hyey
kser for h> hyey
170  In this study, the parameter kg, is Strickler’s coefficient which is estimated based on the inverse of the roughness coefficient
above the vegetation using Chow (1959). Then Manning’s coefficient is calculated from Eq.1, depending on the submergence
ratio.
2.2.4 Luhar and Nepf’s method
Another method to investigate vegetation effect on roughness was proposed by Luhar and Nepf (2013) for open channel. They
175 suggested the following relationships between the Manning roughness caused by vegetation and blockage factor, By, for both
submerged and emergent vegetation.
1
Khé (Cp\2 _3
— (7) (1-B,) 2 for h < hyey and B, < 0.8
g2
1 1
Khé (Cyah\2
- ( ) for h < hyey and B, > 0.8
NManning-veg = gz 2 2)
1
Khe 1
- I 3 I for h > hyeq
TET (- ) ()
Cr h Cqhyeg h
where Ny anning—veg 18 the vegetation component of Manning’s n, a is the frontal area per unit volume parameter, and Cy is
180 drag coefficient. We assumed that the stem of vegetation is cylindrical in shape, and therefore a C, value of 1 was used. Cr (=
0.015 - 0.19) is a coefficient to parameterize the shear stress at the interface between vegetated and unvegetated regions and
1
the constant K = 1 mT3 is required to make the equation dimensionally correct. The other parameters will still be the same.
Although the equation was originally proposed for channel flow, this study examines its applicability to overland flow.
2.2.5 Exponential method
185 The exponential equation describes the relationship between n and /4 in terms of the variables ¢ and d (Eq. 3).
1
n= ct+edh G)
The optimum values of the ¢ and d parameters for each location were derived from the study by Feldmann et al. (2023), whose
proposed approach is explained in section 2.2.2.
2.2.6 Kadlec’s method
190 Based on experimental studies on overland flow, Kadlec’s power law was simplified by Jain et al. (2004) (Eq. 4).

6
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where /o establishes the minimum flow depth, beyond which the roughness coefficient no is assumed to remain constant.
€ represents the influence of vegetation drag. Our study utilized the optimal values for the parameters no and € as outlined in
Feldmann et al. (2023). As they did not provide information on the /o value, we assumed /o to be five times the plant height

195  to apply the Kadlec’s method in our study. This assumption is confirmed by previous studies (Hinsberger et al., 2022; Oberle
et al., 2021).

2.2.7 Fu’s equation

Fu et al., (2019) developed an equation to calculate Manning’s n based on plant basal cover and flow depth (Eq. 5).
n=(a+b(l— e—0.061c,,)1.668)h0.604—0.710e‘°-21"cv *)

200 Where variable C,, is the ratio between the area covered by stems and the flume bed. It is considered as plant coverage in Ries
etal. (2020). The plant basal cover varied between 1.25% and 30%. However, uncertainties arise in the calculation of resistance
coefficients. This is because the basal elements of the vegetation may cover a smaller area than the canopy, which can result
in an incomplete representation of flow resistance. The parameters a and b vary with vegetation type. In this study, the values
of a and b parameters obtained by Feldmann et al., (2023) are used.

205  All of these equations were incorporated into the source code of OpenLISEM in order to assess the impact of various roughness

methodologies on overland flow modeling.

2.3 Parameter calibration and validation

To compare the different roughness equations, we calibrate the unknown sensitive parameters of the model using one of the
six rainfall experiments (Run) per site and validate the parameters using the remaining rainfall experiments. The most sensitive
210 parameters saturated conductivity (Ksat) and average soil suction at the wetting front (Psi) are calibrated for 23 sites and 7
different roughness approaches (154 models). The parameters for the roughness functions are selected as described above and
Manning’s n is selected from the well-known Chow-Table (Chow, 1959). To assess the effect of these preselected values, we
added Manning’s n as an additional parameter, adding one model per location with 3 calibrated parameters (total 176 models).
The calibration was performed with 5,000 simulations per model (880,000 models) with a distribution of the 2 or 3 parameters
215 using the latin hypercube sampling (LHS) method using the implementation in SPOTPY (Statistical Parameter Optimization
Tool) (Houska et al., 2015). The saturated hydraulic conductivity (Ksat) varies between 5 and 100 mm/hr, and the wetting
front suction head (Psi) from 0 to 50 cm water column, as suggest by Gowdish and Mufioz-Carpena, (2009) for different soil
types. For most locations, run 2 (100-year return period event, prewetted soil) was selected as the calibration event. Runs 1, 3,
4, 5, and 6 were selected as validation experiments. The reason for choosing Run 2 for calibration was that the soil moisture
220 conditions during this test were neither excessively dry nor fully saturated. Since Run 2 in site 14 does not have any runoff,
Run 6 is selected for calibration. Site 1 has a different order of experiments, so we are using Run 4 as the calibration run.
The best calibrated parameters are selected by ranking the model runs by their Nash-Sutcliffe efficiency. After calibrating the
Ksat and Psi, models were developed for the rest experiments. The validation performance is reported as Nash-Sutcliffe
efficiency (NSE) and relative bias in percent (pBias) (Table 3). High positive NSE values (close to 1) indicate that the model's
225 predictions are in excellent agreement with the observed data. pBias with values closer to zero indicating better model
performance.
Figure 2 displays a framework illustrating the calibration and simulation process of models. The simulations were iteratively
repeated, considering all methods of roughness estimation. A total of 104 runs were simulated, each representing different
sites or rainfall events, and repeated for various roughness methods, resulting in 832 simulations. However, models associated

230 with Run 2 and 3 at Site 14, as well as Run 1 at Sites 12 and 16, were excluded from NSE assessment due to the absence of
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runoff in these experimental runs. Since the observed data were zero, the NSE could not be calculated. Nevertheless, based on
a comparison between the simulated hydrographs and the corresponding MSE values, the differences between the simulations
and observations indicate that the model performance is acceptable.

Table 3: Criteria of NSE value (Motovilov et al., 1999) and pBias.

NSE value pBias value Interpretation
0.75<NSE -10%<pBias<10% Good
0.36<NSE<0.75 -50%<pBias<-10% or 10%<pBias<50% Qualified
NSE<0.36 pBias<-50% or 50%<pBias Not-Qualified

235
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Figure 2: Framework for calibration and validation of the models.

2.4 Initial soil moisture

240 Initial soil moisture plays a critical role in hydrological modeling, as it directly influences the partitioning between infiltration
and surface runoff. Soil moisture measured at two points at each site was used in the runoff modeling.
In addition, the sequence of six rainfall-runoff experiments (Runs 1-6, as shown in Table 2) was considered, which involved
varied antecedent moisture conditions, ranging from dry to saturated. This experimental design provides a general
representation of initial soil moisture states.

245  Therefore, in addition to point-based measurements, considering the antecedent moisture conditions of each run enhances the

interpretation of simulation results and improves understanding of the hydrological model’s response.

4 Result
4.1 Calibration of different roughness methods

During the calibration process using various roughness estimation methods, the simulated hydrographs generally aligned well

250 with observed hydrographs across most sites. For instance, Figure 3 compares the calibrated hydrographs at site 6, where
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simulated results successfully capture the temporal pattern of measured discharge for other sites; the results are presented in
supplementary data. The NSE values for all sites are summarized in Figure 4. Additionally, the pBias values, computed using
the calibrated Ksat and Psi parameters, are presented in Figure 5. A larger deviation of pBias from zero typically indicates a
less accurate calibration.
255  Overall, the NSE values obtained from different roughness estimation methods showed limited variation at each site. However,
Fu’s method yielded poor calibration performance at Sites 5, 8, 15, 20, and 23, shown by negative NSE values and a pBias of
-100. These results indicate a complete failure of the Fu method to simulate runoff at these locations, with the modeled
hydrographs resulting in zero discharge.
Unfavorable calibration performance was also observed at Sites 11 and 16, where all roughness estimation methods produced
260 relatively low NSE and pBias values. It indicates a significant discrepancy between the observed and simulated hydrographs.
In contrast, the remaining sites showed satisfactory calibration results using all methods except Fu’s. Excluding Sites 11 and
16, the NSE values across other locations, except Fu’s method, generally ranged between 0.65 and 0.87, reflecting an

acceptable level of model performance.
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Figure 3: Comparison of the hydrograph computed using OpenLISEM with various roughness coefficient methodologies against
the observed discharge.
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Figure 4: Maximum model performance (Nash-Sutcliffe-Efficiency) for the calibration runs of the different roughness models,
270 separated for each site. The red bars show model failure.
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Figure 5: pBias values for parameters calibration of the different roughness models, separated for each site. Rainfall simulation
Run 2 has been used for calibration, except for sites 1 and 14 (see section 3).

275 Runoff is generally underestimated by the model, only 13% of the runs show a slight overestimation (< 5% bias). 59% of the
model runs underestimate the measured runoff by less than 5%, while 21% of the runs are underestimated by 5 — 15% of the
runoff. Massive underestimation of runoff (>15%) happens outside at 5 runs using Fu’s equation for surface roughness, while
the runoff at site 16 is underestimated by most model runs, which is connected to the low total runoff at this site.

Table 4 presents a summary of the calibrated values of saturated hydraulic conductivity and average soil suction at the wetting

280 front, calculated using different methods across all sites. In the case of Fu's method, the Ksat values for sites 5, 8, 15, 20, and
23 differ significantly from those obtained using other methods. These discrepancies suggest that Fu's method does not perform
well in calibrating Ksat at these specific sites. The highly negative NSE values of the Fu method at these sites further support
this observation. Additional results are presented in detail in the supplementary data.

A comparison of Ksat values shows that the differences between roughness methods are generally not significant, P-

285 value=0.94, across sites. However, the values of Psi for different roughness methods show differences, P-value=0.038. By
considering the soil type at each location and comparing the calibrated Ksat and Psi values with the estimates provided by
Rawls et al. (1982), it becomes evident that the calibrated values are consistently higher across all sites. The only exceptions
are Sites 8 and 9, which have sandy loam soils; in these cases, the calibrated values closely match those estimated by Rawls et
al. (1983).

290  Since this discrepancy occurs across all roughness function methods, it suggests that the difference is not related to the choice
of roughness method. Rather, it highlights a potential limitation of applying simplified, texture-based infiltration parameters
to complex field conditions. Factors such as macropores or root development may influence soil hydraulic behavior and lead

to higher infiltration rates than those predicted using generalized soil texture classifications.

295 Table 4: Statistical summary of calibrated parameters, Ksat (mm/hr) and Psi (cm), by site for different roughness methods.

Site No. 1 2 3 4 5 6 7 8 9 11 12

Range- Ksat 149.8-53.9 |35.5-41.6 [32.3-37.5 |30.4-34.7 |5.7-13.2 |26.0-29.7 (30.4-33.4 |7.4- 11.4|5.0- 8.6  [35.8-39.8 |45.6-47.9
Avg- Ksat  [52.6 38.6 34.2 31.9 11.9 27.7 32.0 8.7 6.4 382 46.9
Range- Psi  [1.5-50.0 |18.8-49.9 [19.5-50.0 |19.6-49.7 |0.1- 50 0.0-48.0 [16.5-49.7 0.1-19.0 |11.1-49.7 |18.6- 49.9 |16.0- 49.9
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Avg- Psi 37.7 45.6 455 452 23.1 15.0 40.1 4.0 30.5 455 439
Site No. 13 14 15 16 17 18 19 20 21l 22 23
Range- Ksat [38.2-40.3 |56.8- 63.7 {36.4- 85.9 |68.9- 70.3 |24.6- 30.5 [37.7-41.2 |9.0- 14.6 [5.0-94.7|5.0-6.9 [11.2-15.5|7.2-18.3
Avg- Ksat  (39.1 60.2 433 69.6 28.2 39.1 11.0 16.3 55 14.4 8.7
Range- Psi  [19.4-49.7 |18.4-49.9 (0.9-49.7 {19.9-49.0 |19.7-49.9 [19.2-49.9 |0.4-49.9 (2.4-49.4|3.8-47.6 [0.1-48.8 |1.7-45.4
Avg- Psi 41.8 455 27.0 41.5 458 452 30.8 36.8 233 12.7 19.4

4.2 Validation of different roughness methods

The outcomes of validation reveal that the maximum NSE range is 0.96-0.98 for different methods. Depending on the type of
method, the number of models with negative NSE varies between 29 and 46, of which most of them are Run 1 and Run 5.
300 Given that greater NSE values indicate more efficiency of the model in simulating runoff, we focused our investigation on the
distribution of positive NSE values by excluding these underperforming models. Figure 6 illustrates the distribution of NSE
for values greater than zero. The results indicate that the Linear and Nepf methods perform better in estimating runoff compared
to the other methods; however, the differences are not statistically significant. ANOVA analysis on NSE values reveals
significant differences between all group means, including Fu and Exp (P-value = 1.3e-11). In contrast, when excluding Fu

305 and Exp from the analysis, no significant differences are observed among the remaining roughness methods (P-value = 0.4).
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Figure 6: Distribution of the absolute values of NSE for each method of roughness for the validation runs.

The pBias results for the simulated hydrograph compared to the measured hydrograph exhibit a broad range from
-100% to 100% in Figure 7. It is evident that all the methods exhibit almost a consistent trend, with the majority showcasing
310 model bias consistently below zero. This suggests an underestimation across various roughness estimation methods. However,
ANOVA analysis of the pBias values for all methods excluding Fu indicates no statistically significant difference between

group means (p-value = 0.99).
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Figure 7: Distribution of the pBias for each method of roughness for the validation runs.

315 The analysis reveals that the Nepf, Linear, and Chow methods exhibit the most favorable performance, with 39, 38, and 34
models falling into the "Good" category based on NSE values. Conversely, for Robust n, Kadlec, 3-parameter, exponential,
and Fu methods, 33, 29, 25, 15, and 9 models respectively meet the "Good" NSE criteria. Interestingly, pBias values across
different methods are relatively comparable. Nepf, Chow, Linear, and 3-parameter demonstrate particularly robust
performance, each with 27, 27, 26, and 26 models falling within the -10% to 10% bias range. This consistency in bias values

320 suggests a commendable performance by these models based on pBias criteria.

4.3 Effect of initial condition and pre-event soil moisture

The validation outcomes of the roughness methods revealed Run 1 (dry conditions) and Run 5 (saturated conditions) generally
shows poor model performance, with most of the methods. From the 36 model runs with negative NSE using the Nepf method,
30 are from Runs 1 and 5, as an example. Run 1 tends to overestimate runoff (positive pBias), while Run 5 underestimates it
325 (negative pBias). The extremely low observed runoff in Run 1 makes NSE highly sensitive and often unreliable. On the other
hand, these weak performance for Runs1 and Runs 5 in comparison others may because of the different on the initial condition

of models with Run 2 which was selected for calibration.

4.4 Result of different vegetation coverage

The spatial proximity between the paired experimental sites offers a unique advantage in the research, providing an
330 environment where variations in soil characteristics can be minimized, enhancing the validity of the comparative analysis.

In Figure 8, a comparative analysis between vegetation cover and Ksat, as determined by the Chow method, is presented.

Comparing the pair sites reveal an increase in Ksat corresponding to more vegetation coverage. Notably, the contrast in Ksat

is particularly pronounced between sites 15 and 16. Site 15, characterized as devoid of vegetation cover, displays a stark

difference from site 16, boasting 100% vegetation coverage. The calibration results underscore this disparity, indicating a
335 substantial Ksat difference of approximately 30 mm/hr. Conversely, for sites 8 and 9, this difference in Ksat is minimal. It's

noteworthy that, although Ksat values may show only slight differences, another critical parameter influencing infiltration,

Psi, exhibits a substantial contrast between sites 8 and 9. As presented in

Table 4, the average of Psi value in site 9 is 30.5 cm; however, this value for site 8 is 4 cm. Specifically, Psi is higher for site

9 than site 8, resulting in an enhancement in infiltration. This highlights the relationship between various parameters and their

340 combined impact on the overall dynamics of infiltration.
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345

350

Vegetation Cover (%)
Ksat (mm/hr)

Location W Veg Cover mKsat

Figure 8: Saturated hydraulic conductivity values for various land uses in paired sites. ** The vegetation cover images are from
Ries et al. (2020). There is no picture for Site 13.

As an example, the result for pair sites 12, 13 are shown in Figure 9. Site 12 with 100% vegetation cover and site 13 with 40%
show different hydrographs both in observation and simulation. The results for Runs 2, 3, 4, and 6 are presented in this figure.
For these runs, the model performs well, and the differences between observed and simulated values are not significant, the
result for the other paired locations are shown in the supplementary material (Masoodi and Kraft, 2025). In these figures solid
lines show the observed hydrographs and the shaded areas show the spread of results from different roughness methods. The
green shaded area shows the results for the location with more vegetation cover. The spread of simulations is much larger for
location 13, with less vegetation. It means in the presence of vegetation; the infiltration rate is higher than in places with less

vegetation cover.
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Figure 9: Comparison of observed, solid lines, and simulated hydrographs, shaded areas, at sites 12 and 13 using different

roughness methods for Run2, 3, 4, and 6.
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355 An example illustrating the model results with weak performance in Runs 1 and 5 is presented in Figure 10, which shows the
outcomes for Sites 12 and 13. As discussed previously, the most models perform poorly for these two runs. A comparison
between Figures 9 and 10 indicates that the weak performance in Runs 1 and 5 is not related to either the infiltration modeling
or the roughness approach. This conclusion is supported by the fact that the infiltration modeling in the other runs (2, 3, 4, and
6) shows acceptable agreement between observed and simulated values. The different roughness methods cannot account for

360 the large discrepancies observed. This substantial variation may instead be attributed to the initial soil moisture conditions,
which are discussed in Section 5.2.
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Figure 10: Comparison of observed, solid lines, and simulated hydrographs, shaded areas, at sites 12 and 13 using different
365

370

375

roughness methods for Runl and Run5.

5 Discussion
5.1 Validation of different roughness methods

Our study on the validation of various roughness estimation methods revealed that models using Fu’s function yielded
comparatively weaker simulation results compared to experimental data. This finding is consistent with Feldmann et al. (2023),
who reported that Fu’s equation typically produces lower NSE values, attributed primarily to the formula’s limited
adaptability. This limitation may stem from the fact that the function was developed based on laboratory experiments and is
most applicable under similar controlled conditions where plant basal cover varied between 1.25% and 30%. Among the five
sites where Fu’s method completely failed during calibration, four lack vegetation cover, which may partially explain the poor
model performance. An analysis of Fu’s equation shows that when the value of vegetation cover, Cv, is less than 0.74, the
parameter Manning’s n decreases with increasing h, whereas for Cv values greater than 0.74, n increases with increasing h.
This shift in behaviour may explain why Fu’s method performs less effectively in runs without vegetation cover. In contrast,

models based on Nepf, Linear, Chow, and Robust n methods, ranked in that order, demonstrated a closer match between the

simulated and observed hydrographs. Although the differences in NSE values among these latter methods are not substantial,
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their use in roughness estimation leads to simulated hydrographs that more closely represent those derived from physical

380 observations. One notable strength of the Nepf and Linear methods is their incorporation of water-depth-dependent
relationships in estimating roughness coefficients. This is in agreement with Hinsberger et al. (2022), who emphasized the
critical role of water depth in influencing hydraulic roughness and highlighted the importance of integrating this factor into
catchment-scale modeling. It should be noted that in our simulations, water depth remained below vegetation height, placing
the system in an emerged flow regime. Under this condition, the performance of the applied methods is considered valid;

385 however, further investigation is required to assess their accuracy under submerged flow conditions. Additionally, the
improved performance of the Nepf method may also be attributed to its inclusion of the blockage factor, which effectively
represents vegetation cover and enhances the simulation of overland flow. Although originally developed for channel flow,
the Nepf method demonstrates strong alignment with physically measured hydrographs in overland flow scenarios as well.
Therefore, further research is warranted to assess and refine its applicability in such contexts.

390 Our results using the 3-parameter method indicate that increasing the number of parameters during calibration can lead to
greater model complexity, which may hinder the ability to efficiently identify optimal solutions. This increase in complexity
can also negatively impact overall model performance. Similar findings have been reported in previous studies involving
conceptual rainfall-runoff models. For instance, Zhu et al. (2024) concluded that increasing model complexity by adding more
parameters often leads to challenges in calibration, including difficulty in parameter estimation and reduced calibration

395 efficiency. Likewise, Garcia-Romero et al. (2019) calibrated three hydrological models with varying levels of complexity,
comprising 4, 10, and 16 parameters, across nine catchments. Their results demonstrated that simpler models required fewer
iterations to reach convergence, whereas more complex models demanded significantly more computational effort.

The results of methods in which roughness values are derived using the approach of Feldmann et al.'s (2023) concept, including
Kadlec, Robust n, Fu, and exponential, tend to exhibit greater deviation from experimental data. Figure 11 illustrates a

400 comparison of the simulated hydrographs using different roughness estimation methods for all experiments conducted at site
9. Site 9 is specifically chosen because its hydrographs were featured in Feldmann et al.'s (2023) study, and the calibration for
the four methods employed therein is superior to that of the Linear and Nepf methods, as depicted in Figure 4. Figure 11
demonstrates that Kadlec, Robust n, Exponential, and Fu methods approximate the falling limb of the hydrograph more closely
to the observed hydrograph compared to the Linear, Nepf, and Chow methods. It's essential to note that the base of optimization

405  in Feldmann et al. (2023) study is on the falling limb of the hydrograph, where it shows superior performance. However, the
NSE results for the entire hydrograph are better for Nepf, Linear, and Chow.
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Figure 11: Comparison of validated and observed hydrographs at site 9. NSE values are calculated for the entire hydrograph, with

This discrepancy may stem from the approach’s omission of vegetation effects on infiltration parameters. Feldmann et al.

(2023) proposed a more constrained roughness estimation method by identifying overlapping solution spaces and reducing the

overall solution space to enhance reliability. Their methodology focuses on the falling limb of the hydrograph, where

415

infiltration is assumed to remain relatively constant. They fitted an infiltration function to this segment of the hydrograph and

derived infiltration rates without explicitly considering vegetation’s role in modifying these rates. However, our findings

suggest that vegetation significantly influences not only roughness coefficients but also key infiltration parameters, such as

Ksat, thereby affecting overall infiltration dynamics. These results are consistent with the conclusions of Gao et al. (2023),

who emphasized that soil hydraulic properties are influenced by both water movement and ecosystem activity. They

420

highlighted the root zone as a critical component with substantial storage capacity, playing a key role in regulating how

precipitation is partitioned into streamflow. According to their framework, vegetation actively alters soil characteristics to
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optimize water availability, which underscores the importance of incorporating ecosystem and soil interactions into

hydrological modeling.

5.2 Effect of initial condition and pre-event soil moisture

425  Our results highlight the significant influence of antecedent soil moisture conditions on runoff modeling accuracy, particularly
in Runs 1 and 5 (Figure 10). Run 1 began with unusually dry soil, while Run 5 followed a sequence of moderate rainfall events
(Runs 2, 3, and 4), leading to substantially wetter initial conditions. Both exhibited significant deviations between simulated
and observed runoff, suggesting that the model struggled to replicate hydrological responses under extreme antecedent
moisture states.

430 These findings are in agreement with Brocca et al. (2008), who demonstrated that pre-event soil moisture is a key determinant
of runoff depth and peak discharge. Their conceptual soil water balance model incorporates Green—Ampt infiltration and non-
linear drainage mechanism. In our study, models calibrated under a specific initial moisture condition (e.g., Run 2) yielded
more reliable results when validated against runs with comparable antecedent states (e.g., Runs 3, 4, and 6). However,
performance declined when these models were applied to scenarios with contrasting initial soil moisture (e.g., Runs 1 and 5),

435 emphasizing the model’s sensitivity to calibration context. Feldmann et al. (2023) observed a decrease in median deviation
from the roughness mean in Run 5 during prolonged rainfall events and attributed this to the formation of flow paths
influencing roughness values. However, we suggest that this reduction may be linked to the effects of antecedent rainfall on
runoff response, and not to rainfall intensity or flow path development. This is supported by the behavior in Run 6, where the
deviation from the roughness mean increased again despite continued rainfall, indicating that the changes are not solely due to

440 flow path formation.

Zehe and Bloschl (2004) investigated how uncertainty in initial soil moisture affects hydrologic responses at the plot and
catchment scales, using a physical model that accounts for transitions between matrix and preferential flow. Their simulation
results showed that model predictability is lowest near the soil moisture threshold separating these flow regimes in the soil. In
the present study, Runs 1 and 5 represent transitional soil moisture conditions similar to those reported by Zehe and Bloschl

445  (2004). Comparing the results of these runs highlight the difficulty of accurately predicting hydrological responses under
uncertain initial soil moisture conditions. These findings are consistent with Zehe and Bléschl (2004).

We found that the response of our model under different soil moisture condition has uncertainty, particularly when soil
approaches saturation. This discrepancy may stem from limitations in infiltration modeling under these conditions. For
example, the Green—Ampt approach assumes an initially dry soil profile, which can result in unrealistic infiltration estimates

450 during high-intensity storms on already wet soils. This limitation highlights the need for improved infiltration models that

better accommodate a range of antecedent soil moisture conditions.

5.3 Result of different vegetation coverage

The findings presented in our study validate previous research, which has emphasized the differences in near-surface Ksat
across various land covers (Zwartendijk et al., 2023). These differences result in different shaping perched water table
455  dynamics and overland flow responses (Ghimire et al., 2020; van Meerveld et al., 2021; Zwartendijk et al., 2020, 2023). The
study conducted by Wu et al. (2024) on the temporal variability of Ksat throughout the growing season revealed the significant
influence of root growth. They explained that root development improves soil pore connectivity, thereby increasing Ksat.
Consequently, top-soil infiltration rates typically experience improvement, resulting in reduced overland flow and a decrease
or delayed runoff response to rainfall events (van Meerveld et al., 2019). Jarvis et al. (2013) identified land use as one of the
460 top three most significant predictors for Ksat. They concluded that intensive cultivation of arable land significantly diminishes
topsoil hydraulic conductivity compared to perennial agriculture, natural vegetation, and forests, by approximately 2—3 times.

They attributed this reduction to the disruptive effects of tillage on macropores, including faunal and root bio pores.
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Our research indicates that in the presence of vegetation, not only is surface roughness important in hydrological processes,
but the increase in Ksat also significantly influences the response of hydrological models to runoff. This highlights the critical
465 importance of incorporating vegetation-induced changes in hydraulic conductivity when modeling runoff responses. A great
difference from the related studies by Feldmann et al. (2023) and Hinsberger et al. (2022) is the use of a model with an
integrated infiltration model. Classical engineering models for surface runoff and most commercial models deal with
infiltration as a process that can be determined a priori and subtracted directly from the rainfall. The ability of the soil to absorb
water is dynamic in nature but is often oversimplified which led to inaccuracies (Beven, 2021). We used the dynamic Green-
470  Ampt Infiltration model from OpenLISEM, and which captured the infiltration process in the majority of cases.
Thus, the result is both a validation of expected trends and a contribution to understanding the importance of incorporating
Ksat variability in hydrological models. While we observe the strong effect of vegetation on infiltration capacity, our data set

is not sufficient to come up with a robust estimate to quantify this effect.

6 Conclusion

475  Our study evaluates of various roughness estimation methods and their impact on hydrological modeling using OpenLISEM.
Through model calibration and validation, we have gained valuable insights into the performance of each roughness method.
Our findings reveal that certain methods, such as Linear, constant Manning’s n proposed by Chow, and the physical base
method proposed by Luhar and Nepf (2013), demonstrate favorable performance in reproducing observed hydrological data,
as evidenced by high NSE values and minimal bias. Methods like Fu's equation exhibit weaker simulation results, attributed
480 to its limited adaptability and lower NSE values. The methods have been developed for submerged vegetation, but in our study,
as for sheet flow events on vegetated surfaces in general, the runoff depth observed in this study did not exceed the height of
the vegetation.
We observed notable differences in near-surface saturated hydraulic conductivity across various vegetation covers. The
differences observed in model outcomes between various runs in one site highlight the need for improved models that
485 accurately account for infiltration for varying antecedent conditions. Surface runoff models use vegetation solely as a
parameter of surface roughness and rainfall runoff models as a transpiration parameter. For the effect of storm events in
developed landscapes, vegetation is an important regulator of infiltration, yet this effect is not well represented in current
models. Future studies should investigate which rainfall events yield better results when included in the calibration process.
Selecting the most representative rainfall event should consider both dry and saturated soil moisture conditions, enhancing the
490 accuracy of hydrological modeling. It is important to acknowledge the inherent limitations of hydrological models, which may
influence our results. For instance, this model does not explicitly consider the effects of increased water pressure at higher

water levels, which could also impact infiltration dynamics.
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