
1 
 

Evaluating Different Roughness Approaches and Infiltration 
Parameters for Vegetation-Influenced Overland Flow in 

Hydrological Model 
Azam Masoodi1, Philipp Kraft1 

1Department of Landscape Ecology and Resources Management, Justus Liebig University Giessen, 35392, Germany 5 

Correspondence to: Philipp Kraft (philipp.kraft@umwelt.uni-giessen.de) 

 

Abstract. Accurately simulating overland flow in vegetated landscapes remains a challenge in hydrological modeling due to 

the complex interactions between vegetation, surface roughness, and soil infiltration. This study evaluates multiple methods 

for estimating Manning’s roughness coefficient and explores the influence of vegetation on infiltration processes using the 10 

OpenLISEM model. Based on 132 artificial rainfall experiments across 22 sites in southwest Germany, the model was 

calibrated and validated against observed runoff data, incorporating both depth-independent and depth-dependent roughness 

formulations. Incorporating water depth-dependent roughness into the model can improve its performance in simulating 

overland flow. Beyond roughness effects, vegetation was shown to significantly alter soil hydraulic properties, particularly 

saturated hydraulic conductivity (Ksat). Paired site comparisons revealed that increased vegetation cover corresponded with 15 

higher infiltration capacities, emphasizing vegetation's role not only in surface resistance but also in enhancing subsurface 

water fluxes. The findings demonstrate that models must account for both surface and subsurface impacts of vegetation to 

improve runoff predictions.  

1 Introduction 

Overland flow is a critical component of the hydrological cycle, playing a significant role in flood generation, soil erosion, 20 

and pollutant transport. Accurate overland flow modelling is essential for effective water resource management, flood 

prediction, and environmental protection. Accurately representing the effects of vegetated areas remains one of the primary 

challenges in overland flow modelling, as these areas play a critical role in the hydrological cycle (Peel, 2009). Vegetation 

significantly influences flow dynamics by increasing surface roughness, modifying flow patterns, and providing additional 

drag (Zhang et al., 2018). Beyond these hydrodynamic effects, vegetation also changes the infiltration regime, thereby the 25 

partitioning between infiltration and overland flow (Ajayi et al., 2021). 

The hydrodynamic effects of vegetation on flow vary significantly between emergent and submergent plant communities, with 

distinct hydrodynamic impacts based on their structural characteristics and interaction with water depth (D’Ippolito et al., 

2021). As vegetation density increases, it slows flow velocity and can reduce the erosive power of surface runoff (Mu et al., 

2019). The interaction between vegetation and overland flow is often quantified through roughness coefficients, with 30 

Manning's coefficient being one of the most widely used parameters in hydrological modelling. At present, roughness 

parameters for overland flow are derived mainly from field measurements and laboratory experiments (Oberle et al., 2024).  

Recent studies have shown that roughness coefficients are not constant but vary with factors such as water depth, vegetation 

density, and flow velocity (Ruiz Rodriguez, 2017; Fu et al., 2019; Hinsberger et al., 2022). Hinsberger et al. (2022) performed 

laboratory experiments to investigate roughness variations in submerged and emergent vegetation, demonstrating that 35 

increased submergence reduces roughness, whereas for emergent vegetation, greater submergence leads to heightened 

roughness. Their findings suggested that roughness-water depth relationships for intermediate zones can be approximated 

using a linear approach. Feldmann et al. (2023) proposed a framework to estimate Manning roughness dependent on shallow 

water depth. First, the partitioning of overland flow and infiltration was calculated during the descending limb of the 

hydrograph to determine the minimum infiltration rate. Then, they reduced the solution space by comparing experiments 40 
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conducted at one site and by comparing sites with similar properties. The framework's robustness was tested using three 

different depth-dependent roughness equations and a constant Manning coefficient.  

Utilizing flow resistance models in vegetated areas holds immense value in evaluating the potential for flooding and 

formulating flood mitigation strategies grounded in scientific principles (Green, 2005). However, evaluating these equations 

to calculate overland flows continues to be a staple area of research within hydrology. The uncertainty associated with 45 

roughness coefficients can significantly impact surface runoff accumulation. For example, Dalledonne et al. (2019) introduced 

an approach to evaluate uncertainty in floodplain hydrodynamic models influenced by vegetation, testing four resistance 

formulas. Oberle et al. (2021), carried out a review on flow resistance in overland flow. Based on some previous laboratory 

experiments concerning artificial grass, they demonstrated that the roughness function varies with water depth in the presence 

of vegetation. They noted that uncertainties emerge as the cross-sectional impact of vegetation elements is usually not 50 

considered in the calculation of resistance coefficients. In contrast, Luhar and Nepf (2013) investigated the effect of vegetation 

distribution on channel velocity, presenting physically based models that link drag generated by vegetation at the blade and 

patch scale to hydraulic resistance. This resistance depends on the blockage factor, which represents the fraction of the channel 

cross-section occupied by vegetation. However, the applicability of their approach to overland flow is examined in this study. 

These findings highlight the need for further evaluation of roughness estimation methods under varying hydrological 55 

conditions. 

On the other hand, vegetation and root systems  influences soil structure, creates preferential flow paths, which promote 

infiltration and reduce overland flow (Ajayi et al., 2021; Jarvis et al., 2013). Gao et al. (2023) stated that the most established 

hydrological theories, such as those presented by Drewniak (2019) and Lu et al. (2019), predominantly parameterize water 

fluxes based on soil properties, including texture, porosity, moisture retention capacity, wilting point, and plant-available 60 

water. These approaches are grounded in the assumption that soil properties govern key hydrological processes such as 

infiltration, drainage, and evapotranspiration. In traditional modelling approaches, infiltration parameters are often estimated 

using soil texture-based pedotransfer functions as a primary input when direct measurements are unavailable. Gao et al. (2023) 

challenge this perspective, suggesting instead that this causality is misrepresented: soil properties should be viewed as 

outcomes rather than drivers of water movement, which is fundamentally regulated by the dynamics of the surrounding 65 

terrestrial ecosystem. Neglecting key site factors, such as land use, in parameter estimation routines can introduce significant 

errors in the partitioning of infiltration and runoff in hydrological modelling (Jarvis et al., 2013). The impact of vegetation 

cover on infiltration properties such as saturated hydraulic conductivity remains insufficiently implemented in surface runoff 

models. Understanding the vegetation effects on soil parameters is crucial for improving the accuracy of hydrological models. 

In surface runoff models, saturated hydraulic conductivity is often calibrated to align with observed data, indirectly capturing 70 

the influence of vegetation on soil properties. This study explores whether such calibrated values can implicitly reflect the 

influence of vegetation on soil hydraulic properties. The scope of our research encompasses the following objectives: 

 

• Modelling the overland flow to compare and validate different approaches for Manning's coefficient estimation. 

• Evaluation of overland flow model performance in estimating infiltration in the presence of vegetation 75 

 

By addressing these objectives, our research contributes to improving the accuracy of hydrological models and enhancing our 

understanding of overland flow dynamics in vegetated areas. By utilizing the experimental dataset and hydrodynamic 

simulation, this study assesses the accuracy of roughness coefficient estimations in a hydrological model in a realistic 

environment. This assessment covers a variety of scenarios involving different levels of vegetation coverage and vegetation 80 

height and varying rainfall intensities. By providing insights into the most effective approaches for estimating surface 

roughness and understanding the interactions of vegetation and infiltration, this research aims to enhance the reliability of 
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overland flow predictions and support more informed decision-making in hydrological engineering and environmental 

planning.  

2 Materials and methods 85 

2.1 Study site and experimental setup 

To develop and evaluate overland flow models in the absence of real measurement, artificial sprinkling studies present an 

opportunity to investigate vegetation effects on overland flow. Ries et al. (2020) conducted 132 sprinkling experiments on 

natural hillslopes at 23 sites with different soil types and land use in Baden-Württemberg (Germany), one of the most extensive 

datasets accessible in southwest Germany. Table 1 provides information about land use, vegetation properties, and soil 90 

characteristics for each site. The experimental area was a 10 by 10-meter square, with slopes ranging from 9% to 32%. These 

experiments aimed to simulate a 100-year or locally observed maximum rainfall intensity event with different durations. 

Rainfall experiments started with Run 1 on the first day. Subsequently, Run2 – Run5 were conducted on the following day 

and Run 6 was carried out on the third day (Table 2). 

  95 
Table 1: Properties of experimental sites and the values of constant Manning's roughness coefficient. 

Site* 
Slope* 

% 
Vegetation* 

Veg_height* 

(m) 

Plant 

coverage* 

% 

soil type 
n 

(Chow) 

n 

(Feldmann) 

1 12 Pasture 0.15 100 Clay 0.05 0.58 

2 18 Pasture 0.1 100 Silty loam 0.05 0.60 

3 16 Pasture 0.1 90 Loam 0.05 0.70 

4 16 Mustard 0.15 40 Clay loam 0.04 0.45 

5 14 Triticale (seeded) 0 0 Silty loam 0.03 0.18 

6 21 Pasture 0.05 100 Silty loam 0.04 0.65 

7 14 Winter Barley 0.3 80 Silty loam 0.05 0.38 

8 16 Corn (seeded) 0.05 15 Sandy loam 0.035 0.13 

9 21 Pasture 0.1 100 Sandy loam 0.05 0.58 

10 32 Pasture 0.15 100 Sandy clay loam - - 

11 18 Pasture 0.1 80 Silty clay 0.045 0.68 

12 19 Pasture 0.15 100 Silty clay 0.05 0.65 

13 11 Alfalfa 0.2 40 Silty clay 0.04 0.28 

14 27 Pasture 0.15 100 Silty clay 0.05 0.70 

15 14 Winter Barley 0.05 0 Clay loam 0.03 0.50 

16 12 Pasture 0.1 100 Clay loam 0.05 0.40 

17 14 Pasture 0.05 100 Silty loam 0.05 0.48 

18 12 Alfalfa and Clover 0.2 60 Clay 0.045 0.38 

19 21 Pasture 0.15 100 Sandy clay loam 0.05 0.98 

20 9 Corn (harvested) 0 0 Clay loam 0.03 0.05 

21 14 Green Manure 0.15 50 Silty clay loam 0.04 0.35 

22 12 Pasture 0.2 100 Silty clay 0.05 0.38 

23 14 Corn (harvested) 0 0 Clay 0.03 0.08 

 * Data from Ries et al. (2020) 

   Pair sites 
 

 

The experiments conducted at Site 10 did not produce any runoff and were not used in this study.  Discharge at the outlet, 

rainfall intensity, and initial soil moisture were measured at a temporal resolution of 1 minute. Out of the 23 sites surveyed, 12 
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locations are paired sites, highlighted in bold in Table 1. This arrangement facilitates a direct comparison between the effects 

of two different land uses on runoff and infiltration. The deliberate choice of these paired sites is underscored by their 100 

proximity, with distances maintained within the threshold of less than 100 meters. For more comprehensive details of these 

experiments, refer to Ries et al. (2020). 
Table 2: Characteristics of rainfall for experimental sites (Ries et al. 2020). 

Run no. Duration 
(min) 

Return period 
(yr) 

Intensity 
(mm hr-1) 

Cumulative Runoff: 
min, max, mean (mm) 

Run 1 60 100 42-76 0.0, 44.3, 13.0 

Run 2 60 100 42-76 0.0, 58.6, 26.9 

Run 3 30 100 82-130 0.0, 50.9, 31.7 

Run 4 15 100 110-172 1.4, 30.4, 22.2 

Run 5 180 worst case 44-53 0.1, 145.1, 100.6 

Run 6 60 worst case 99-126 32.0, 100.1, 71.0 

2.1 Model 

To explore the impact of roughness on overland flow simulations, it is crucial to integrate the relationship between roughness 105 

and water depth into the model. For this purpose, OpenLISEM (Open LImburg Soil Erosion Model), which was developed 

based on the original LISEM (Jetten, 2002), was chosen for its modular structure, physics-based approach and accessibility of 

the source code, published under a free licence (GNU Public Licence v3, https://github.com/vjetten/openlisem/ ). It is an event-

based and spatial hydrological model suitable for different sizes of catchments. It focuses on simulating runoff, sediment 

dynamics, and infiltration during heavy rainstorms, allowing for detailed assessments of land use changes and conservation 110 

measures (Baartman et al., 2012). The elevation model is generated with a cell size of 0.5× 0.5 meter, providing information 

about the gradient of each specific location in the database (Table 1). Since the surface of the experimental plots is 

homogeneous, the generated DEM does not include micro-depressions. So, all surface parameters that may influence overland 

flow are represented within Manning’s coefficient. This simplification does not affect our evaluation of different roughness 

approaches, as the conditions are consistent across all roughness methods. The last row of the DEM, colorized black in Figure 115 

1-a, represents the trench designed to collect runoff, positioned 40 cm below the surface as in constructed experiments. Figure 

1-b illustrates the field setup from Ries et al. (2020), which measured flow at three points within the trench. In our model, 

discharge data is recorded at the outlet, located at the corner end of the trench. Since the trench length to the outlet in the 

experiments is one-third of that in our model, we compensated by tripling the water velocity in the trench through a reduction 

in Manning’s coefficient for the trench surface. 120 

  
Figure 1: a) 0.5 × 0.5-meter digital elevation model applied for simulations, incorporating the specific slope of each site. b) Setup of 

field experiments by Ries et al. (2020). 

 

 

b 

a 
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Time resolution for simulation is 1second and the total simulation time is chosen based on observation runoff data.  125 

For the distributed routing of overland flow, a four-point finite-difference solution of the kinematic wave is together with 

Manning's equation (Jetten, 2002). Infiltration was estimated using the Green-Ampt method (Rawls et al., 1983), which 

incorporates field-measured variables such as porosity and initial soil moisture content. Two additional parameters, saturated 

hydraulic conductivity (Ksat) and average soil suction at the wetting front (Psi), are not typically measured in the field. Prior 

studies, including those by Jetten (2002), Hessel et al. (2003) and Starkloff and Stolte (2014), have highlighted the primary 130 

sensitivity of OpenLISEM to Ksat and Psi parameters. Therefore, reasonable ranges for Ksat and Psi were adopted from Rawls 

et al. (1983), and the values were subsequently calibrated to best match observed runoff data. It should be considered that, 

infiltration in model depends on both soil properties and surface water depth, increased vegetation cover or a higher Manning’s 

roughness coefficient reduces flow velocity, leading to greater surface water depth and, consequently, an enhanced infiltration 

rate. 135 

OpenLISEM version 6.873 has been utilized which employs Manning's approach to calculate the runoff velocity. While the 

original software employed a constant Manning's coefficient as a raster map for roughness, a new feature called the dynamic 

Manning's n function has been introduced into the software to implement different Manning's coefficient estimation methods 

in simulations. This feature enables users to select from various methods of roughness estimation, including not only a constant 

value but also methods dependent on the depth of runoff. Detailed information about these extensions can be found in the 140 

‘Code availability.’ section. 

2.2 Surface roughness functions 

Surface roughness functions are foundational components in the simulating of overland flow, affecting the accuracy of 

hydrological models. Roughness estimation approaches represent the resistance of the surface in the model that affects the 

momentum and energy dissipation of overland flow. In this study, two depth-independent Manning's roughness coefficients 145 

and five depth-dependent roughness functions were introduced into OpenLISEM to assess the impact of different Manning’s 

roughness functions on vegetation modeling. 

2.2.1 Constant Manning’s coefficient 

The initial approach assumes a constant value for Manning's roughness coefficient (n) based on Chow (1959), representing the 

range of flow resistance for floodplains covered by vegetations. The values of Manning's roughness coefficient using Chow's 150 

method for each site of the artificial rainfall experiments are given in Table 1. In this method, values are typically selected 

based on established literature or site-specific calibration. This is suitable for homogeneous surfaces and it does not consider 

the effect of water depth in presence of vegetation. 

2.2.2 Robust Manning’s coefficient 

In the study conducted by Feldmann et al. (2023), the n values were directly iterated within the framework they established. 155 

The authors reported that the most robust results, characterized by high Nash-Sutcliffe Efficiency (NSE) values, were achieved 

with constant Manning values, as presented in Table 1. They estimate surface roughness by analyzing the shape of the 

hydrograph, fitting the Hortonian equation to the difference between rainfall input and observed discharge for the falling limb 

of the hydrograph. To achieve this goal, they assumed that the infiltration rate in the descending limb of the hydrograph is 

constant. For more details, see Feldmann et al. (2023). 160 

2.2.3 Linear method 

Drawing on previous literature on artificial grass, including Ruiz Rodriguez (2017), Oberle et al. (2021) concluded that a flow-

depth-dependent roughness spectrum can be derived for overland flow, despite inherent variability in the data. Similarly, 
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Hinsberger et al. (2022) found Strickler coefficient, 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 , values varied with different water depths in the presence of 

vegetation. Based on their results, there are three zones to specify roughness within the data range, categorized according to 165 

the submergence ratio: for emergent and fully submergent zones they emphasis the roughness is constant. 

A linear function of relative submergence can be described for the roughness coefficient between emergent and fully 

submergence zones (1 < ℎ
ℎ𝑣𝑣𝑣𝑣𝑣𝑣

< 5 to 7) (Hinsberger et al. 2022). 

These relationships are summarized in equation 1:  

1/𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

⎩
⎪
⎨

⎪
⎧
𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆

5
                                              𝑓𝑓𝑓𝑓𝑓𝑓  0 < ℎ < ℎ𝑣𝑣𝑣𝑣𝑣𝑣             

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
5

+ 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆
ℎ − ℎ𝑣𝑣𝑣𝑣𝑣𝑣

5
             𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑣𝑣𝑣𝑣𝑣𝑣 < ℎ < 5. ℎ𝑣𝑣𝑣𝑣𝑣𝑣     

𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆                                              𝑓𝑓𝑓𝑓𝑓𝑓 ℎ > ℎ𝑣𝑣𝑣𝑣𝑣𝑣                        

 (1) 

In this study, the parameter 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 is Strickler’s coefficient which is estimated based on the inverse of the roughness coefficient 170 

above the vegetation using Chow (1959). Then Manning’s coefficient is calculated from Eq.1, depending on the submergence 

ratio. 

2.2.4 Luhar and Nepf’s method 

Another method to investigate vegetation effect on roughness was proposed by Luhar and Nepf (2013) for open channel. They 

suggested the following relationships between the Manning roughness caused by vegetation and blockage factor, Bx, for both 175 

submerged and emergent vegetation.  

 

𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑣𝑣𝑣𝑣𝑣𝑣 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝐾𝐾ℎ

1
6

𝑔𝑔
1
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2
�
1
2

(1 − 𝐵𝐵𝑥𝑥)−
3
2                          𝑓𝑓𝑓𝑓𝑓𝑓  ℎ ≤ ℎ𝑣𝑣𝑣𝑣𝑣𝑣 and 𝐵𝐵𝑥𝑥 < 0.8  

𝐾𝐾ℎ
1
6

𝑔𝑔
1
2

 �
𝐶𝐶𝑑𝑑𝑎𝑎ℎ

2
�
1
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                                         𝑓𝑓𝑓𝑓𝑓𝑓 ℎ ≤ ℎ𝑣𝑣𝑣𝑣𝑣𝑣   and 𝐵𝐵𝑥𝑥 ≥ 0.8   

𝐾𝐾ℎ
1
6

𝑔𝑔
1
2

 
1
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𝐶𝐶𝑓𝑓
�
1
2
�1 −

ℎ𝑣𝑣𝑣𝑣𝑣𝑣
ℎ �

3
2

+ � 2
𝐶𝐶𝑑𝑑𝑎𝑎ℎ𝑣𝑣𝑣𝑣𝑣𝑣

�
1
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�
ℎ𝑣𝑣𝑣𝑣𝑣𝑣
ℎ �

            𝑓𝑓𝑓𝑓𝑓𝑓 ℎ > ℎ𝑣𝑣𝑣𝑣𝑣𝑣

 (2) 

 

where 𝑛𝑛𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑣𝑣𝑣𝑣𝑣𝑣  is the vegetation component of Manning’s 𝑛𝑛, 𝑎𝑎 is the frontal area per unit volume parameter, and Cd is 

drag coefficient. We assumed that the stem of vegetation is cylindrical in shape, and therefore a Cd value of 1 was used. Cf (= 180 

0.015 - 0.19) is a coefficient to parameterize the shear stress at the interface between vegetated and unvegetated regions and 

the constant 𝐾𝐾 = 1 𝑚𝑚
1
3

𝑠𝑠
 is required to make the equation dimensionally correct. The other parameters will still be the same. 

Although the equation was originally proposed for channel flow, this study examines its applicability to overland flow. 

2.2.5 Exponential method 

The exponential equation describes the relationship between 𝑛𝑛 and ℎ in terms of the variables 𝑐𝑐 and 𝑑𝑑 (Eq. 3).  185 

𝑛𝑛 = 1
𝑐𝑐+𝑒𝑒𝑑𝑑ℎ

                                                                                                                                                                             (3) 

The optimum values of the 𝑐𝑐 and 𝑑𝑑 parameters for each location were derived from the study by Feldmann et al. (2023), whose 

proposed approach is explained in section 2.2.2.  

2.2.6 Kadlec’s method 

Based on experimental studies on overland flow, Kadlec’s power law was simplified by Jain et al. (2004) (Eq. 4).  190 
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𝑛𝑛 = 𝑛𝑛0 �
ℎ
ℎ0
�
−𝜀𝜀

                                                                                                                                                                     (4) 

where ℎ₀ establishes the minimum flow depth, beyond which the roughness coefficient 𝑛𝑛₀ is assumed to remain constant. 

𝜀𝜀 represents the influence of vegetation drag. Our study utilized the optimal values for the parameters 𝑛𝑛₀ and ε as outlined in 

Feldmann et al. (2023).  As they did not provide information on the ℎ₀ value, we assumed ℎ₀ to be five times the plant height 

to apply the Kadlec’s method in our study. This assumption is confirmed by previous studies (Hinsberger et al., 2022; Oberle 195 

et al., 2021).   

2.2.7 Fu’s equation 

Fu et al., (2019) developed an equation to calculate Manning’s n based on plant basal cover and flow depth (Eq. 5). 

𝑛𝑛 = (𝑎𝑎 + 𝑏𝑏(1 − 𝑒𝑒−0.061𝐶𝐶𝑣𝑣)1.668)ℎ0.604−0.710𝑒𝑒−0.219𝐶𝐶𝑣𝑣                                                                                                         (5)  

Where variable 𝐶𝐶𝑣𝑣 is the ratio between the area covered by stems and the flume bed. It is considered as plant coverage in Ries 200 

et al. (2020). The plant basal cover varied between 1.25% and 30%. However, uncertainties arise in the calculation of resistance 

coefficients. This is because the basal elements of the vegetation may cover a smaller area than the canopy, which can result 

in an incomplete representation of flow resistance. The parameters 𝑎𝑎 and 𝑏𝑏 vary with vegetation type. In this study, the values 

of 𝑎𝑎 and 𝑏𝑏 parameters obtained by Feldmann et al., (2023) are used.  

All of these equations were incorporated into the source code of OpenLISEM in order to assess the impact of various roughness 205 

methodologies on overland flow modeling. 

2.3 Parameter calibration and validation 

To compare the different roughness equations, we calibrate the unknown sensitive parameters of the model using one of the 

six rainfall experiments (Run) per site and validate the parameters using the remaining rainfall experiments. The most sensitive 

parameters saturated conductivity (Ksat) and average soil suction at the wetting front (Psi) are calibrated for 23 sites and 7 210 

different roughness approaches (154 models). The parameters for the roughness functions are selected as described above and 

Manning’s n is selected from the well-known Chow-Table (Chow, 1959). To assess the effect of these preselected values, we 

added Manning’s n as an additional parameter, adding one model per location with 3 calibrated parameters (total 176 models). 

The calibration was performed with 5,000 simulations per model (880,000 models) with a distribution of the 2 or 3 parameters 

using the latin hypercube sampling (LHS) method using the implementation in SPOTPY (Statistical Parameter Optimization 215 

Tool) (Houska et al., 2015). The saturated hydraulic conductivity (Ksat) varies between 5 and 100 mm/hr, and the wetting 

front suction head (Psi) from 0 to 50 cm water column, as suggest by Gowdish and Muñoz-Carpena, (2009) for different soil 

types. For most locations, run 2 (100-year return period event, prewetted soil) was selected as the calibration event. Runs 1, 3, 

4, 5, and 6 were selected as validation experiments. The reason for choosing Run 2 for calibration was that the soil moisture 

conditions during this test were neither excessively dry nor fully saturated. Since Run 2 in site 14 does not have any runoff, 220 

Run 6 is selected for calibration. Site 1 has a different order of experiments, so we are using Run 4 as the calibration run.  

The best calibrated parameters are selected by ranking the model runs by their Nash-Sutcliffe efficiency. After calibrating the 

Ksat and Psi, models were developed for the rest experiments. The validation performance is reported as Nash-Sutcliffe 

efficiency (NSE) and relative bias in percent (pBias) (Table 3). High positive NSE values (close to 1) indicate that the model's 

predictions are in excellent agreement with the observed data. pBias with values closer to zero indicating better model 225 

performance. 

 Figure 2 displays a framework illustrating the calibration and simulation process of models.  The simulations were iteratively 

repeated, considering all methods of roughness estimation. A total of 104 runs were simulated, each representing different 

sites or rainfall events, and repeated for various roughness methods, resulting in 832 simulations. However, models associated 

with Run 2 and 3 at Site 14, as well as Run 1 at Sites 12 and 16, were excluded from NSE assessment due to the absence of 230 
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runoff in these experimental runs. Since the observed data were zero, the NSE could not be calculated. Nevertheless, based on 

a comparison between the simulated hydrographs and the corresponding MSE values, the differences between the simulations 

and observations indicate that the model performance is acceptable.   
Table 3: Criteria of NSE value (Motovilov et al., 1999) and pBias. 

NSE value pBias value Interpretation 

0.75<NSE -10%<pBias<10% Good 

0.36<NSE<0.75 -50%<pBias<-10% or 10%<pBias<50% Qualified 

NSE<0.36 pBias<-50% or 50%<pBias Not-Qualified 

 235 

 
Figure 2: Framework for calibration and validation of the models. 

 

2.4 Initial soil moisture 

Initial soil moisture plays a critical role in hydrological modeling, as it directly influences the partitioning between infiltration 240 

and surface runoff. Soil moisture measured at two points at each site was used in the runoff modeling. 

In addition, the sequence of six rainfall-runoff experiments (Runs 1–6, as shown in Table 2) was considered, which involved 

varied antecedent moisture conditions, ranging from dry to saturated. This experimental design provides a general 

representation of initial soil moisture states. 

Therefore, in addition to point-based measurements, considering the antecedent moisture conditions of each run enhances the 245 

interpretation of simulation results and improves understanding of the hydrological model’s response. 

4 Result 

4.1 Calibration of different roughness methods 

During the calibration process using various roughness estimation methods, the simulated hydrographs generally aligned well 

with observed hydrographs across most sites. For instance, Figure 3 compares the calibrated hydrographs at site 6, where 250 
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simulated results successfully capture the temporal pattern of measured discharge for other sites; the results are presented in 

supplementary data. The NSE values for all sites are summarized in Figure 4. Additionally, the pBias values, computed using 

the calibrated Ksat and Psi parameters, are presented in Figure 5. A larger deviation of pBias from zero typically indicates a 

less accurate calibration. 

Overall, the NSE values obtained from different roughness estimation methods showed limited variation at each site. However, 255 

Fu’s method yielded poor calibration performance at Sites 5, 8, 15, 20, and 23, shown by negative NSE values and a pBias of 

-100. These results indicate a complete failure of the Fu method to simulate runoff at these locations, with the modeled 

hydrographs resulting in zero discharge. 

 Unfavorable calibration performance was also observed at Sites 11 and 16, where all roughness estimation methods produced 

relatively low NSE and pBias values. It indicates a significant discrepancy between the observed and simulated hydrographs. 260 

In contrast, the remaining sites showed satisfactory calibration results using all methods except Fu’s. Excluding Sites 11 and 

16, the NSE values across other locations, except Fu’s method, generally ranged between 0.65 and 0.87, reflecting an 

acceptable level of model performance.  

 

 265 
Figure 3: Comparison of the hydrograph computed using OpenLISEM with various roughness coefficient methodologies against 

the observed discharge. 

 
Figure 4:  Maximum model performance (Nash-Sutcliffe-Efficiency) for the calibration runs of the different roughness models, 

separated for each site. The red bars show model failure. 270 
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Figure 5: pBias values for parameters calibration of the different roughness models, separated for each site. Rainfall simulation 

Run 2 has been used for calibration, except for sites 1 and 14 (see section 3).  

 

Runoff is generally underestimated by the model, only 13% of the runs show a slight overestimation (< 5% bias). 59% of the 275 

model runs underestimate the measured runoff by less than 5%, while 21% of the runs are underestimated by 5 – 15% of the 

runoff. Massive underestimation of runoff (>15%) happens outside at 5 runs using Fu’s equation for surface roughness, while 

the runoff at site 16 is underestimated by most model runs, which is connected to the low total runoff at this site. 

Table 4 presents a summary of the calibrated values of saturated hydraulic conductivity and average soil suction at the wetting 

front, calculated using different methods across all sites. In the case of Fu's method, the Ksat values for sites 5, 8, 15, 20, and 280 

23 differ significantly from those obtained using other methods. These discrepancies suggest that Fu's method does not perform 

well in calibrating Ksat at these specific sites. The highly negative NSE values of the Fu method at these sites further support 

this observation. Additional results are presented in detail in the supplementary data.  

A comparison of Ksat values shows that the differences between roughness methods are generally not significant, P-

value=0.94, across sites. However, the values of Psi for different roughness methods show differences, P-value=0.038. By 285 

considering the soil type at each location and comparing the calibrated Ksat and Psi values with the estimates provided by 

Rawls et al. (1982), it becomes evident that the calibrated values are consistently higher across all sites. The only exceptions 

are Sites 8 and 9, which have sandy loam soils; in these cases, the calibrated values closely match those estimated by Rawls et 

al. (1983). 

Since this discrepancy occurs across all roughness function methods, it suggests that the difference is not related to the choice 290 

of roughness method. Rather, it highlights a potential limitation of applying simplified, texture-based infiltration parameters 

to complex field conditions. Factors such as macropores or root development may influence soil hydraulic behavior and lead 

to higher infiltration rates than those predicted using generalized soil texture classifications. 

 

Table 4: Statistical summary of calibrated parameters, Ksat (mm/hr) and Psi (cm), by site for different roughness methods. 295 

Site No. 1 2 3 4 5 6 7 8 9 11 12 

Range- Ksat 49.8- 53.9 35.5- 41.6 32.3- 37.5 30.4- 34.7 5.7- 13.2 26.0- 29.7 30.4- 33.4 7.4- 11.4 5.0- 8.6 35.8- 39.8 45.6- 47.9 

Avg- Ksat 52.6 38.6 34.2 31.9 11.9 27.7 32.0 8.7 6.4 38.2 46.9 

Range- Psi 1.5- 50.0 18.8- 49.9 19.5- 50.0 19.6- 49.7 0.1- 50 0.0- 48.0 16.5-49.7 0.1-19.0 11.1- 49.7 18.6- 49.9 16.0- 49.9 
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Avg- Psi 37.7 45.6 45.5 45.2 23.1 15.0 40.1 4.0 30.5 45.5 43.9 

Site No. 13 14 15 16 17 18 19 20 21 22 23 

Range- Ksat 38.2- 40.3 56.8- 63.7 36.4- 85.9 68.9- 70.3 24.6- 30.5 37.7- 41.2 9.0- 14.6 5.0- 94.7 5.0- 6.9 11.2- 15.5 7.2- 18.3 

Avg- Ksat 39.1 60.2 43.3 69.6 28.2 39.1 11.0 16.3 5.5 14.4 8.7 

Range- Psi 19.4- 49.7 18.4- 49.9 0.9- 49.7 19.9- 49.0 19.7- 49.9 19.2- 49.9 0.4- 49.9 2.4- 49.4 3.8- 47.6 0.1- 48.8 1.7- 45.4 

Avg- Psi 41.8 45.5 27.0 41.5 45.8 45.2 30.8 36.8 23.3 12.7 19.4 

 

4.2 Validation of different roughness methods 

The outcomes of validation reveal that the maximum NSE range is 0.96-0.98 for different methods. Depending on the type of 

method, the number of models with negative NSE varies between 29 and 46, of which most of them are Run 1 and Run 5. 

Given that greater NSE values indicate more efficiency of the model in simulating runoff, we focused our investigation on the 300 

distribution of positive NSE values by excluding these underperforming models. Figure 6 illustrates the distribution of NSE 

for values greater than zero. The results indicate that the Linear and Nepf methods perform better in estimating runoff compared 

to the other methods; however, the differences are not statistically significant. ANOVA analysis on NSE values reveals 

significant differences between all group means, including Fu and Exp (P-value = 1.3e-11). In contrast, when excluding Fu 

and Exp from the analysis, no significant differences are observed among the remaining roughness methods (P-value = 0.4). 305 

 
Figure 6: Distribution of the absolute values of NSE for each method of roughness for the validation runs. 

The pBias results for the simulated hydrograph compared to the measured hydrograph exhibit a broad range from  

-100% to 100% in Figure 7. It is evident that all the methods exhibit almost a consistent trend, with the majority showcasing 

model bias consistently below zero. This suggests an underestimation across various roughness estimation methods. However, 310 

ANOVA analysis of the pBias values for all methods excluding Fu indicates no statistically significant difference between 

group means (p-value = 0.99). 
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Figure 7: Distribution of the pBias for each method of roughness for the validation runs. 

The analysis reveals that the Nepf, Linear, and Chow methods exhibit the most favorable performance, with 39, 38, and 34 315 

models falling into the "Good" category based on NSE values. Conversely, for Robust n, Kadlec, 3-parameter, exponential, 

and Fu methods, 33, 29, 25, 15, and 9 models respectively meet the "Good" NSE criteria. Interestingly, pBias values across 

different methods are relatively comparable. Nepf, Chow, Linear, and 3-parameter demonstrate particularly robust 

performance, each with 27, 27, 26, and 26 models falling within the -10% to 10% bias range. This consistency in bias values 

suggests a commendable performance by these models based on pBias criteria. 320 

4.3 Effect of initial condition and pre-event soil moisture 

The validation outcomes of the roughness methods revealed Run 1 (dry conditions) and Run 5 (saturated conditions) generally 

shows poor model performance, with most of the methods. From the 36 model runs with negative NSE using the Nepf method, 

30 are from Runs 1 and 5, as an example. Run 1 tends to overestimate runoff (positive pBias), while Run 5 underestimates it 

(negative pBias). The extremely low observed runoff in Run 1 makes NSE highly sensitive and often unreliable. On the other 325 

hand, these weak performance for Runs1 and Runs 5 in comparison others may because of the different on the initial condition 

of models with Run 2 which was selected for calibration.  

4.4 Result of different vegetation coverage 

The spatial proximity between the paired experimental sites offers a unique advantage in the research, providing an 

environment where variations in soil characteristics can be minimized, enhancing the validity of the comparative analysis.  330 

In Figure 8, a comparative analysis between vegetation cover and Ksat, as determined by the Chow method, is presented. 

Comparing the pair sites reveal an increase in Ksat corresponding to more vegetation coverage. Notably, the contrast in Ksat 

is particularly pronounced between sites 15 and 16. Site 15, characterized as devoid of vegetation cover, displays a stark 

difference from site 16, boasting 100% vegetation coverage. The calibration results underscore this disparity, indicating a 

substantial Ksat difference of approximately 30 mm/hr. Conversely, for sites 8 and 9, this difference in Ksat is minimal. It's 335 

noteworthy that, although Ksat values may show only slight differences, another critical parameter influencing infiltration, 

Psi, exhibits a substantial contrast between sites 8 and 9. As presented in 

Table 4, the average of Psi value in site 9 is 30.5 cm; however, this value for site 8 is 4 cm. Specifically, Psi is higher for site 

9 than site 8, resulting in an enhancement in infiltration. This highlights the relationship between various parameters and their 

combined impact on the overall dynamics of infiltration. 340 
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Figure 8: Saturated hydraulic conductivity values for various land uses in paired sites.  ** The vegetation cover images are from 

Ries et al. (2020). There is no picture for Site 13. 

As an example, the result for pair sites 12, 13 are shown in Figure 9. Site 12 with 100% vegetation cover and site 13 with 40% 

show different hydrographs both in observation and simulation. The results for Runs 2, 3, 4, and 6 are presented in this figure. 345 

For these runs, the model performs well, and the differences between observed and simulated values are not significant, the 

result for the other paired locations are shown in the supplementary material (Masoodi and Kraft, 2025). In these figures solid 

lines show the observed hydrographs and the shaded areas show the spread of results from different roughness methods. The 

green shaded area shows the results for the location with more vegetation cover. The spread of simulations is much larger for 

location 13, with less vegetation. It means in the presence of vegetation; the infiltration rate is higher than in places with less 350 

vegetation cover.  

 
Figure 9: Comparison of observed, solid lines, and simulated hydrographs, shaded areas, at sites 12 and 13 using different 

roughness methods for Run2, 3, 4, and 6. 
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An example illustrating the model results with weak performance in Runs 1 and 5 is presented in Figure 10, which shows the 355 

outcomes for Sites 12 and 13. As discussed previously, the most models perform poorly for these two runs. A comparison 

between Figures 9 and 10 indicates that the weak performance in Runs 1 and 5 is not related to either the infiltration modeling 

or the roughness approach. This conclusion is supported by the fact that the infiltration modeling in the other runs (2, 3, 4, and 

6) shows acceptable agreement between observed and simulated values. The different roughness methods cannot account for 

the large discrepancies observed. This substantial variation may instead be attributed to the initial soil moisture conditions, 360 

which are discussed in Section 5.2.  

 

 
Figure 10: Comparison of observed, solid lines, and simulated hydrographs, shaded areas, at sites 12 and 13 using different 

roughness methods for Run1 and Run5. 365 

5 Discussion 

5.1 Validation of different roughness methods 

Our study on the validation of various roughness estimation methods revealed that models using Fu’s function yielded 

comparatively weaker simulation results compared to experimental data. This finding is consistent with Feldmann et al. (2023), 

who reported that Fu’s equation typically produces lower  NSE values, attributed primarily to the formula’s limited 370 

adaptability. This limitation may stem from the fact that the function was developed based on laboratory experiments and is 

most applicable under similar controlled conditions where plant basal cover varied between 1.25% and 30%. Among the five 

sites where Fu’s method completely failed during calibration, four lack vegetation cover, which may partially explain the poor 

model performance. An analysis of Fu’s equation shows that when the value of vegetation cover, Cv, is less than 0.74, the 

parameter Manning’s n decreases with increasing h, whereas for Cv values greater than 0.74, n increases with increasing h. 375 

This shift in behaviour may explain why Fu’s method performs less effectively in runs without vegetation cover. In contrast, 

models based on Nepf, Linear, Chow, and Robust n methods, ranked in that order, demonstrated a closer match between the 

simulated and observed hydrographs. Although the differences in NSE values among these latter methods are not substantial, 
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their use in roughness estimation leads to simulated hydrographs that more closely represent those derived from physical 

observations. One notable strength of the Nepf and Linear methods is their incorporation of water-depth-dependent 380 

relationships in estimating roughness coefficients. This is in agreement with Hinsberger et al. (2022), who emphasized the 

critical role of water depth in influencing hydraulic roughness and highlighted the importance of integrating this factor into 

catchment-scale modeling. It should be noted that in our simulations, water depth remained below vegetation height, placing 

the system in an emerged flow regime. Under this condition, the performance of the applied methods is considered valid; 

however, further investigation is required to assess their accuracy under submerged flow conditions. Additionally, the 385 

improved performance of the Nepf method may also be attributed to its inclusion of the blockage factor, which effectively 

represents vegetation cover and enhances the simulation of overland flow. Although originally developed for channel flow, 

the Nepf method demonstrates strong alignment with physically measured hydrographs in overland flow scenarios as well. 

Therefore, further research is warranted to assess and refine its applicability in such contexts. 

Our results using the 3-parameter method indicate that increasing the number of parameters during calibration can lead to 390 

greater model complexity, which may hinder the ability to efficiently identify optimal solutions. This increase in complexity 

can also negatively impact overall model performance. Similar findings have been reported in previous studies involving 

conceptual rainfall-runoff models. For instance, Zhu et al. (2024) concluded that increasing model complexity by adding more 

parameters often leads to challenges in calibration, including difficulty in parameter estimation and reduced calibration 

efficiency. Likewise, García-Romero et al. (2019) calibrated three hydrological models with varying levels of complexity, 395 

comprising 4, 10, and 16 parameters, across nine catchments. Their results demonstrated that simpler models required fewer 

iterations to reach convergence, whereas more complex models demanded significantly more computational effort.  

The results of methods in which roughness values are derived using the approach of Feldmann et al.'s (2023) concept, including 

Kadlec, Robust n, Fu, and exponential, tend to exhibit greater deviation from experimental data. Figure 11 illustrates a 

comparison of the simulated hydrographs using different roughness estimation methods for all experiments conducted at site 400 

9. Site 9 is specifically chosen because its hydrographs were featured in Feldmann et al.'s (2023) study, and the calibration for 

the four methods employed therein is superior to that of the Linear and Nepf methods, as depicted in Figure 4. Figure 11 

demonstrates that Kadlec, Robust n, Exponential, and Fu methods approximate the falling limb of the hydrograph more closely 

to the observed hydrograph compared to the Linear, Nepf, and Chow methods. It's essential to note that the base of optimization 

in Feldmann et al. (2023) study is on the falling limb of the hydrograph, where it shows superior performance. However, the 405 

NSE results for the entire hydrograph are better for Nepf, Linear, and Chow.
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Chow= -0.14 Linear= -0.02 Nepf= -0.14 3param= 0.19 Chow= 0.82 Linear = 0.85 Nepf= 0.84 3param= 0.59 

Robust n= 0.09 Exp= 0.16 Kadlec= 0.08 Fu= 0.22 Robust n = 0.75 Exp= 0.51 Kadlec= 0.77 Fu= 0.45 

  
Chow= 0.86 Linear = 0.88 Nepf= 0.89 3param= 0.55 Chow= -0.22 Linear = 0.04 Nepf= -0.17 3param= 0.11 

Robust n = 0.73 Exp= 0.42 Kadlec= 0.77 Fu= 0.34 Robust n = 0.14 Exp= 0.05 Kadlec= 0.13 Fu= 0.00 

 

 

Chow= 0.84 Linear = 0.81 Nepf= 0.86 3param= 0.53  

Robust n = 0.68 Exp= 0.45 Kadlec= 0.71 Fu= 0.39  

Figure 11: Comparison of validated and observed hydrographs at site 9. NSE values are calculated for the entire hydrograph, with 
green cells indicating methods that have higher NSE values. 410 

 

 This discrepancy may stem from the approach’s omission of vegetation effects on infiltration parameters. Feldmann et al. 

(2023) proposed a more constrained roughness estimation method by identifying overlapping solution spaces and reducing the 

overall solution space to enhance reliability. Their methodology focuses on the falling limb of the hydrograph, where 

infiltration is assumed to remain relatively constant. They fitted an infiltration function to this segment of the hydrograph and 415 

derived infiltration rates without explicitly considering vegetation’s role in modifying these rates. However, our findings 

suggest that vegetation significantly influences not only roughness coefficients but also key infiltration parameters, such as 

Ksat, thereby affecting overall infiltration dynamics. These results are consistent with the conclusions of Gao et al.  (2023), 

who emphasized that soil hydraulic properties are influenced by both water movement and ecosystem activity. They 

highlighted the root zone as a critical component with substantial storage capacity, playing a key role in regulating how 420 

precipitation is partitioned into streamflow. According to their framework, vegetation actively alters soil characteristics to 
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optimize water availability, which underscores the importance of incorporating ecosystem and soil interactions into 

hydrological modeling. 

5.2 Effect of initial condition and pre-event soil moisture 

Our results highlight the significant influence of antecedent soil moisture conditions on runoff modeling accuracy, particularly 425 

in Runs 1 and 5 (Figure 10). Run 1 began with unusually dry soil, while Run 5 followed a sequence of moderate rainfall events 

(Runs 2, 3, and 4), leading to substantially wetter initial conditions. Both exhibited significant deviations between simulated 

and observed runoff, suggesting that the model struggled to replicate hydrological responses under extreme antecedent 

moisture states. 

These findings are in agreement with Brocca et al. (2008), who demonstrated that pre-event soil moisture is a key determinant 430 

of runoff depth and peak discharge. Their conceptual soil water balance model incorporates Green–Ampt infiltration and non-

linear drainage mechanism. In our study, models calibrated under a specific initial moisture condition (e.g., Run 2) yielded 

more reliable results when validated against runs with comparable antecedent states (e.g., Runs 3, 4, and 6). However, 

performance declined when these models were applied to scenarios with contrasting initial soil moisture (e.g., Runs 1 and 5), 

emphasizing the model’s sensitivity to calibration context. Feldmann et al. (2023) observed a decrease in median deviation 435 

from the roughness mean in Run 5 during prolonged rainfall events and attributed this to the formation of flow paths 

influencing roughness values. However, we suggest that this reduction may be linked to the effects of antecedent rainfall on 

runoff response, and not to rainfall intensity or flow path development. This is supported by the behavior in Run 6, where the 

deviation from the roughness mean increased again despite continued rainfall, indicating that the changes are not solely due to 

flow path formation. 440 

Zehe and Blöschl (2004) investigated how uncertainty in initial soil moisture affects hydrologic responses at the plot and 

catchment scales, using a physical model that accounts for transitions between matrix and preferential flow. Their simulation 

results showed that model predictability is lowest near the soil moisture threshold separating these flow regimes in the soil. In 

the present study, Runs 1 and 5 represent transitional soil moisture conditions similar to those reported by Zehe and Blöschl 

(2004). Comparing the results of these runs highlight the difficulty of accurately predicting hydrological responses under 445 

uncertain initial soil moisture conditions. These findings are consistent with Zehe and Blöschl (2004). 

We found that the response of our model under different soil moisture condition has uncertainty, particularly when soil 

approaches saturation. This discrepancy may stem from limitations in infiltration modeling under these conditions. For 

example, the Green–Ampt approach assumes an initially dry soil profile, which can result in unrealistic infiltration estimates 

during high-intensity storms on already wet soils. This limitation highlights the need for improved infiltration models that 450 

better accommodate a range of antecedent soil moisture conditions. 

5.3 Result of different vegetation coverage 

The findings presented in our study validate previous research, which has emphasized the differences in near-surface Ksat 

across various land covers (Zwartendijk et al., 2023). These differences result in different shaping perched water table 

dynamics and overland flow responses (Ghimire et al., 2020; van Meerveld et al., 2021; Zwartendijk et al., 2020, 2023). The 455 

study conducted by Wu et al. (2024) on the temporal variability of Ksat throughout the growing season revealed the significant 

influence of root growth. They explained that root development improves soil pore connectivity, thereby increasing Ksat. 

Consequently, top-soil infiltration rates typically experience improvement, resulting in reduced overland flow and a decrease 

or delayed runoff response to rainfall events (van Meerveld et al., 2019). Jarvis et al. (2013) identified land use as one of the 

top three most significant predictors for Ksat. They concluded that intensive cultivation of arable land significantly diminishes 460 

topsoil hydraulic conductivity compared to perennial agriculture, natural vegetation, and forests, by approximately 2–3 times. 

They attributed this reduction to the disruptive effects of tillage on macropores, including faunal and root bio pores. 
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Our research indicates that in the presence of vegetation, not only is surface roughness important in hydrological processes, 

but the increase in Ksat also significantly influences the response of hydrological models to runoff. This highlights the critical 

importance of incorporating vegetation-induced changes in hydraulic conductivity when modeling runoff responses. A great 465 

difference from the related studies by Feldmann et al. (2023) and Hinsberger et al. (2022) is the use of a model with an 

integrated infiltration model. Classical engineering models for surface runoff and most commercial models deal with 

infiltration as a process that can be determined a priori and subtracted directly from the rainfall. The ability of the soil to absorb 

water is dynamic in nature but is often oversimplified which led to inaccuracies (Beven, 2021). We used the dynamic Green-

Ampt Infiltration model from OpenLISEM, and which captured the infiltration process in the majority of cases. 470 

Thus, the result is both a validation of expected trends and a contribution to understanding the importance of incorporating 

Ksat variability in hydrological models. While we observe the strong effect of vegetation on infiltration capacity, our data set 

is not sufficient to come up with a robust estimate to quantify this effect.  

6 Conclusion 

Our study evaluates of various roughness estimation methods and their impact on hydrological modeling using OpenLISEM. 475 

Through model calibration and validation, we have gained valuable insights into the performance of each roughness method. 

Our findings reveal that certain methods, such as Linear, constant Manning’s n proposed by Chow, and the physical base 

method proposed by Luhar and Nepf (2013), demonstrate favorable performance in reproducing observed hydrological data, 

as evidenced by high NSE values and minimal bias. Methods like Fu's equation exhibit weaker simulation results, attributed 

to its limited adaptability and lower NSE values. The methods have been developed for submerged vegetation, but in our study, 480 

as for sheet flow events on vegetated surfaces in general, the runoff depth observed in this study did not exceed the height of 

the vegetation.  

We observed notable differences in near-surface saturated hydraulic conductivity across various vegetation covers. The 

differences observed in model outcomes between various runs in one site highlight the need for improved models that 

accurately account for infiltration for varying antecedent conditions. Surface runoff models use vegetation solely as a 485 

parameter of surface roughness and rainfall runoff models as a transpiration parameter. For the effect of storm events in 

developed landscapes, vegetation is an important regulator of infiltration, yet this effect is not well represented in current 

models. Future studies should investigate which rainfall events yield better results when included in the calibration process. 

Selecting the most representative rainfall event should consider both dry and saturated soil moisture conditions, enhancing the 

accuracy of hydrological modeling. It is important to acknowledge the inherent limitations of hydrological models, which may 490 

influence our results. For instance, this model does not explicitly consider the effects of increased water pressure at higher 

water levels, which could also impact infiltration dynamics. 
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