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Equation S1. Average of pumping flow-rate-weighted mean concentration equation 

𝐶sample =  
∑ 𝐶𝑖𝐾𝑖

∑ 𝐾𝑖
 , 

where: 

𝐶sample = concentration at the virtual observation well; 

𝐶i = species concentration; and 

 𝐾𝑖  = hydraulic conductivity of each grid cell i. 

Text S1. LSTM Architecture and Hyperparameters 

The LSTM model was constructed with two layers of 256 units each to capture complex temporal 

dependencies. A dropout rate of 0.1 was applied between layers, regularized by L2 regularization 

(λ=0.001), to mitigate overfitting. The learned sequences were passed to a dense feedforward layer 

with 32 units for final output processing. The model was compiled with the Adam optimizer using 

a learning rate of 0.001. 

Text S2. Hyperparameter Search Space of Classical Regression Models 

The search spaces for the classical regression models were defined as follows: for support vector 

regression (SVR), we tuned the kernel function (i.e., radial basis function, polynomial and, 

sigmoid), the regularization parameter C from e¹ to e⁵, epsilon ε from e⁻¹⁰ to e¹⁰, and kernel 

coefficient γ from e⁻¹ to e¹⁰; for random forest (RF), we optimized the number of trees from 2 to 

500, the maximum depth from 1 to 100, min_samples_split from 0.001 to 0.2, min_samples_leaf 

from 0.001 to 0.1, and the feature selection strategy (i.e., sqrt, log2, or none); for XGBoost, we 

tuned the number of estimators from 2 to 500, max depth from 1 to 100, the learning rate log-

uniformly from e⁻⁵ to e⁻⁰·⁷, the subsampling ratio from 0.5 to 1.0, the column sampling from 0.5 

to 1.0, and gamma from 0 to 7. 

Text S3. Hybrid Kalman Filter Architecture 

The hybrid predictive framework integrates Kalman filtering with machine learning to estimate 

BEX concentrations using both direct BEX and iWQPs values from the RTM (Figure S2). The 

system architecture consists of four key components: data preparation, effective attenuation rate 

estimation, ensemble observation modeling, and Kalman filtering with rolling window validation. 

Daily time-series from the RTM were compiled for BEX concentrations and four iWQPs at each 

observation well. 

To model the attenuation of BEX following source removal, we assumed a first-order kinetic 

model governed by the differential equation, 

𝑑𝐶𝑏𝑒𝑥/𝑑𝑡 = −λ𝐶𝑏𝑒𝑥, 
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where 𝐶𝑏𝑒𝑥 is the BEX concentration and λ is the effective attenuation rate constant. Because of 

time scale decomposition, the effective attenuation rate was estimated per 5-year training window 

using constrained nonlinear least-squares fitting of the exponential model: 

𝐶𝑏𝑒𝑥,𝑡 = (𝐶𝑏𝑒𝑥,𝑡−1) ∙  𝑒−𝜆𝑡−1Δ𝑡, 

implemented via SciPy’s curve fit function with bounds to prevent non-physical negative values. 

We assumed that λ approximates the combined effects of advective transport and biodegradation. 

Residuals from the fitting process were used to derive the process noise covariance matrix Q, 

which incorporated both concentration variance and λ uncertainty. An off-diagonal term was 

included to reflect the expected negative correlation between these variables. 

For observation modeling, we employed an ensemble approach combining two SVR models with 

an RF regressor. One of the SVR had a radial basis function kernel (kernel='rbf', C=100, 

epsilon=0.01) while the other has a second-degree polynomial kernel (kernel='poly', degree=2, 

C=100). The RF regressor has n_estimators=100. These models were trained to estimate BEX 

concentrations from iWQPs when direct BEX measurements were unavailable. Prior to training, 

all input features were standardized using StandardScaler() from Scikit-learn. The prediction 

uncertainty of the ensemble, quantified as the standard deviation of the training residuals, was used 

to dynamically define the uncertainty for the BEX estimate in the observation covariance matrix R. 

For the physically measured iWQPs, the diagonal elements of R were set to the reported accuracies 

of commercial in-situ water quality sensors (Table S2). 

The KF tracked both BEX concentration and effective attenuation rate in a two-dimensional state 

vector [𝐶𝑏𝑒𝑥, λ]. The state transition matrix encoded the first-order kinetic model using the 

analytical solution of the governing equation, while allowing sensitivity to variations in λ. Unlike 

classical KFs that rely on a fixed observation model 𝐻, our implementation uses an ensemble of 

ML models to estimate BEX from iWQPs when direct measurements are missing. In this hybrid 

configuration, the ensemble ML model predictions are treated as surrogate observations with 

dynamically computed uncertainty, which is incorporated into the measurement noise covariance 

matrix R. A sparse observation matrix 𝐻𝑘 is defined to link the predicted BEX to the state vector, 

enabling computation of the Kalman gain even in the absence of direct physical mapping. This 

approach allows the filter to adaptively balance model predictions and ensemble ML model 

estimates based on their respective uncertainties. Additional enhancements included adaptive 

scaling of process noise based on the time elapsed since the last measurement, Mahalanobis 

distance-based outlier detection (Chang, 2014), and numerical stabilization of the covariance 

matrix through eigen decomposition and regularization. 
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Figure S1. Framework of the LSTM model showing the fully connected layers with activation 

functions, gated mechanisms, and the computation of the hidden state. Modified from Zhang et 

al., 2023.  

Figure S2. Schematic diagram of the hybrid Kalman filter framework. Monthly BEX levels were 

considered as input for the filter. 
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Figure S3. LSTM model predictions for observation wells X1Z1, X1Z2, and X1Z3 across time 

windows and sequence lengths of 30, 90, 180, and 360 days. Predictions with R²  0.80 are shown 

as green circles, those with 0.60 ≤ R² < 0.80 as golden circles, and those with 0 ≤ R² < 0.60 as red 

crosses. Negative R2 values were set to 0 and are shown as grey squares. Figures S4 and S5 reuse 

the legend from this figure for consistency across panels. 

 

Figure S4. LSTM model predictions for observation wells X2Z1, X2Z2, and X2Z3 across time 

windows and sequence lengths of 30, 90, 180, and 360 days.  
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Figure S5. LSTM model predictions with hydraulic head as additional input parameter for 

observation wells X0Z0, X1Z2, X2Z2, and X3Z3 across time windows and sequence lengths of 

30, 90, 180, and 360 days.  

 
Figure S6. BEX concentrations with hydraulic head, pH, and EC at well X0Z0 during simulation 

years 82–88. 
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Figure S7. BEX concentration across eight observation wells with a year of increased hydraulic 

gradient starting from simulation year 40 (shaded region). 
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Figure S8. LSTM-predicted BEX concentrations under increased hydraulic gradient, showing one 

year of training data prior to the gradient increase and the subsequent one-year test period across 

eight observation wells. 
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Figure S9. LSTM-predicted BEX concentrations after LNAPL source removal, showing one year 

of training data prior to the source removal and the subsequent one-year test period across eight 

observation wells. 
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Figure S10. Sample Kalman filter results at observation wells X0Z0 (a) and X1Z3 (b) after 

LNAPL source removal. 
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Figure S11. Number of available field data from an oil company containing both BTEX and in-

situ water quality measurements at multiple monitoring wells from 2002 to 2020. 

Table S1. Locations of eight observation wells in the reactive transport model, showing distance 

from the source zone center and depth below ground surface. 

Well Distance from Source Zone Center Depth from Ground Surface 

X0Z0 5 m 2 m – 3 m 

X1Z1 55 m 0.6 m – 1.6 m 

X1Z2 55 m 2.2 m – 3.2 m 

X1Z3 55 m 3.8 m – 4.8 

X2Z1 85 m 1 m – 2 m 

X2Z2 85 m 2.6 m – 3.6 m 

X2Z3 85 m 4.2 m – 5.2 m 

X3Z3 145 m 4.6 m – 5.6 m 

Table S2. Accuracy and price of commercial sensors based on manufacturer’s specifications 

(Atlas Scientific LLC 2025a; 2025b; 2025c; 2025d; van Essen Instruments 2025a; 2025b). 

Sensor Accuracy Estimated Price 

pH  0.002 €72 

Dissolved oxygen 0.2 mg/l €170 

Electrical conductivity 2% of reading €94 

Redox potential 1 mV €72 

TD-Diver (water level) ±0.5 cm H2O €558 

Baro-Diver (atmospheric pressure) ±0.5 cm H2O €470 
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