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Abstract. Ozone (O3) over South Korea has risen in recent years, underscoring the need to accurately quantify emissions of 

nitrogen oxides (NOx) and volatile organic compounds (VOC). We develop a hybrid inverse modeling framework that couples 

the Finite Difference Mass Balance (FDMB) method with four-dimensional variational (4D-Var) assimilation using the 

Community Multiscale Air Quality (CMAQ) model to jointly constrain spatiotemporal NOx and VOC emissions. The inversion 

is constrained by Tropospheric Monitoring Instrument (TROPOMI) NO2 and HCHO columns and by surface NO2 and O3 from 25 

the Air Quality Monitoring Station (AQMS) network. The analysis covers 1–14 May 2022, a period of climatologically high 

O3. Optimized NOx emissions exhibit strong diurnal adjustments relative to the prior (nighttime reductions up to 51 % and 

daytime increases up to 14 %). The joint inversion of NOx and VOC delivers the largest improvement in O3 simulations, 

achieving the best agreement with observations (IOA > 0.8). Constrained emissions shift O3 sensitivity from VOC-sensitive 

to NOx-sensitive across much of the domain, improving spatial consistency with TROPOMI-derived formaldehyde-to-NO2 30 

ratio (FNR) diagnostics. Adjoint-based hourly ΔO3 responses reveal regime- and hour-dependent behavior: VOC controls are 

most effective under VOC-sensitive conditions, whereas NOx controls are more direct under NOx-sensitive conditions. 

Importantly, because O3 titration is immediate while photochemical production requires finite reaction time, emissions released 

approximately 1–2 hours earlier have the greatest influence on current O3, motivating hour-specific, regime-specific controls. 
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Overall, the hybrid framework improves O3 simulations and sensitivity-regime diagnosis, enabling spatiotemporally resolved 35 

precursor emission reduction guidance for effective O3 mitigation. 

1 Introduction 

Surface ozone (O3) is a highly reactive secondary air pollutant primarily formed through complex photochemical reactions 

involving nitrogen oxides (NOx ≡ NO + NO2) and volatile organic compounds (VOC). Elevated O3 concentrations have been 

associated with adverse respiratory health outcomes, including asthma and pneumonia, as well as broader impacts on air quality 40 

and ecosystem health (Gryparis et al., 2004; Turner et al., 2016; Raza et al., 2018). In recent years, a persistent increase in O3 

levels has been observed across East Asia, leading to a growing demand for scientific investigation into its underlying causes. 

Previous studies have attributed this increase to multiple factors, including changes in atmospheric circulation patterns due to 

climate change, enhanced stratosphere–troposphere exchange, and shifts in the O3 sensitivity regime (Lee et al., 2021; Itahashi 

et al., 2022; Hou et al., 2023). 45 

Among these factors, shifts in the O3 sensitivity regime play a key role in understanding the causes of rising recent O3 levels. 

The O3 sensitivity regime refers to the relative responsiveness of O3 formation to changes in its precursor emissions, primarily 

NOx and VOC. In a VOC-sensitive regime, O3 production increases when VOC emissions rise, but shows little change or even 

decreases when NOx emissions are reduced. Conversely, in a NOx-sensitive regime, O3 formation responds strongly to 

reductions in NOx emissions. Several recent studies have reported that many regions in East Asia are currently undergoing a 50 

transition from a VOC-sensitive regime toward a NOx-sensitive or transitional regime, wherein reductions in NOx emissions 

paradoxically result in increased O3 concentrations (Lee et al., 2021; Itahashi et al., 2022; Wang et al., 2025). Accordingly, the 

formulation of effective O3 mitigation strategies necessitates accurate characterization of region-specific sensitivity regimes, 

which in turn requires an accurate spatiotemporal estimation of NOx and VOC emissions. 

Emission estimates are typically derived using either bottom-up or top-down approaches. The bottom-up method relies on 55 

activity data and emission factors to statistically estimate emissions. While widely used, this approach is subject to high 

uncertainty due to variability in emission factors, spatial heterogeneity in activity data, and the extensive time and cost required 

to survey all emission sources (Zhao et al., 2011; Hristov et al., 2017; Solazzo et al., 2021). To overcome these limitations, 

top-down approaches based on inverse modeling have become increasingly prevalent. These methods assimilate satellite and 

ground-based observational data with chemical transport models to infer emissions that are consistent with observed 60 

atmospheric concentrations (Miller et al., 2014; Cheng et al., 2021). Various inverse modeling techniques have been proposed, 

including mass balance (Cooper et al., 2017; Li et al., 2019; Qu et al., 2019; Momeni et al., 2024), four-dimensional variational 

assimilation (4D-Var) (Hu et al., 2022; Voshtani et al., 2023; Nüß et al., 2025), and ensemble Kalman filter (EnKF) methods 

(Peng et al., 2017; Jia et al., 2022; Wu et al., 2023). The mass balance approaches are computationally efficient and suitable 

for rapid emission updates, but are known to be susceptible to smearing effects due to pollutant transport (Cooper et al., 2017). 65 

Among the mass balance-based methods, the Finite Difference Mass Balance (FDMB) method has been shown to improve 
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emission estimates by exploiting sensitivities between emissions and column concentrations (Cooper et al., 2017; Mun et al., 

2023). In contrast, the 4D-Var approach uses adjoint sensitivity to trace the influence of emission sources backward in time, 

thereby reducing transport-induced smearing errors (Li et al., 2019). However, it is computationally intensive and requires the 

development of an adjoint model, which can be a substantial limitation. To leverage the strengths of both approaches, a hybrid 70 

inverse modeling framework combining the mass balance and the 4D-Var have been recently proposed (Chen et al., 2021; 

Choi et al., 2022; Moon et al., 2024). 

Nevertheless, most inverse modeling studies have focused primarily on correcting the spatial distribution of emissions, with 

limited consideration of their temporal variability. This remains a critical limitation, particularly for O3, which is both short-

lived and chemically reactive. Diurnal variations in precursor emissions can strongly influence O3 formation due to nonlinear 75 

photochemical processes (Wang et al., 2018). Moreover, because O3 production is jointly controlled by NOx and VOC, 

accurately reproducing O3 concentrations requires not only capturing the temporal evolution of emissions but also constraining 

the contributions of both precursor species. Therefore, accurate analysis of O3 distributions requires a comprehensive inverse 

modeling framework capable of simultaneously optimizing the spatiotemporal distribution of both NOx and VOC emissions. 

In this study, we develop a hybrid inverse modeling framework that combines the FDMB and 4D-Var methods with the 80 

Community Multiscale Air Quality (CMAQ) model to simultaneously constrain the spatiotemporal distributions of NOx and 

VOC emissions over South Korea, to improve O3 simulations and sensitivity regime diagnostics, and to quantify hourly ΔO3 

responses to NOx and VOC emissions using adjoint sensitivities. Here, ΔO3 represents the change in O3 concentration 

attributable to a unit perturbation in precursor emissions, as diagnosed by the adjoint model. The inverse modeling system is 

constrained using satellite-based measurements from the TROPOspheric Monitoring Instrument (TROPOMI) and in situ 85 

observations from the Air Quality Monitoring Station (AQMS) network. We further analyze the changes in O3 concentrations 

and O3 sensitivity regimes before and after inverse modeling to propose a robust top-down emission adjustment approach that 

can inform the development of future O3 mitigation policies. The results are presented in four sections: (1) spatiotemporal 

changes in emissions (Section 3.1), (2) spatiotemporal changes in NO2, HCHO, and O3 concentrations (Section 3.2), (3) 

improvement of O3 sensitivity regimes through hybrid inversion (Section 3.3), and (4) regime-dependent hourly ΔO3 responses 90 

to NOx and VOC emissions (Section 3.4). 

2 Methods 

2.1 WRF/CMAQ modeling system 

In this study, we employed version 5.0 of the Community Multiscale Air Quality (CMAQ) model, developed by the U.S. 

Environmental Protection Agency (EPA), which includes an adjoint model, to conduct 4D-Var inverse modeling (Zhao et al., 95 

2020). Meteorological input fields required for the CMAQ simulation were generated using the Weather Research and 

Forecasting (WRF) model version 3.8.1 (Skamarock et al., 2008). The modeling domains consisted of two nested grids: a 
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coarse-resolution outer domain (D1) covering East Asia and a finer-resolution inner domain (D2) focusing on South Korea 

(Fig. 1).  

 100 

 

Figure 1: WRF/CMAQ modeling domains and spatial distribution of observational sites (ASOS: blue triangles; AQMS: red circles; 

Pandora: green stars). 

 

This study targeted South Korea, and the inverse modeling was conducted exclusively over D2. The initial and boundary 105 

conditions for the WRF simulation were obtained from the ERA5 reanalysis dataset with a spatial resolution of 0.25° × 0.25°, 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2023a, b). To improve 

the accuracy of meteorological fields, grid nudging was applied during WRF simulations (Jeon et al., 2015). 

We utilized the Emissions Database for Global Atmospheric Research-Hemispheric Transport of Air Pollution version 3 

(EDGAR-HTAPv3) as the source of anthropogenic emissions. This inventory incorporates national emission estimates from 110 

South Korea’s Clean Air Policy Support System (CAPSS) and provides monthly averaged emissions at a spatial resolution of 

0.1° × 0.1° for nine key air pollutants: BC, CO, NOx, SO2, NH3, OC, NMVOC (non-methane volatile organic compounds) or, 

PM10, and PM2.5 (Crippa et al., 2023). To generate the hourly gridded emissions required for CMAQ modeling, the monthly 

data were temporally downscaled using sector-specific temporal allocation profiles (Crippa et al., 2020). In addition, biogenic 

volatile organic compound (BVOC) emissions, which serve as key precursors of O3, were estimated using the Model of 115 

Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012). 
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The modeling period was set to May 1–14, 2022 (two weeks), selected for computational efficiency during the month that 

recorded the highest monthly average surface O3 concentrations over South Korea in the past decade (Fig. S1). Detailed model 

configurations for both WRF and CMAQ are provided in Tables S1 and S2. 

2.2 Observation data 120 

2.2.1 Ground-based observations 

For the evaluation of meteorological and air quality model performance and the implementation of inverse modeling over 

South Korea, we utilized ground-based observational data from Automated Surface Observing System (ASOS), Air Quality 

Monitoring Stations (AQMS), and Pandora spectrometers (Fig. 1). Hourly measurements of temperature, wind speed, and 

relative humidity from 95 ASOS sites were used to assess the accuracy of meteorological simulations. For air quality model 125 

evaluation and inverse modeling, we obtained hourly NO2 and O3 concentrations from 619 AQMS sites. 

In addition, tropospheric HCHO Vertical Column Densities (VCDs) were obtained from Pandora spectrometers at five sites 

operated by the Pandonia Global Network (PGN) to evaluate the model’s performance in simulating VOC. To ensure data 

reliability, only Pandora HCHO retrievals with Level 2 (L2) data quality flags classified as “high” (0, 10) or “medium” (1, 11) 

were used in this study (Bae et al., 2025; Fu et al., 2025). The Pandora observations were hourly averaged for comparison with 130 

model results. 

2.2.2 TROPOMI NO2 and HCHO observations 

TROPOMI is the single payload aboard the European Space Agency (ESA)’s Sentinel-5 Precursor (S5P) satellite, launched 

on October 13, 2017 (Veefkind et al. 2012). Operating in a sun-synchronous polar orbit at an altitude of approximately 800 

km, it provides daily global coverage with a high spatial resolution footprint of 5.5 km × 3.5 km at nadir and an equator 135 

crossing time near 13:30 local solar time. 

Tropospheric VCDs of NO2 and HCHO used in this study are obtained from the TROPOMI Level 2 operational products 

(De Smedt et al., 2021; van Geffen et al., 2022). Both products are retrieved using a three-step Differential Optical Absorption 

Spectroscopy (DOAS) technique: (1) fitting of the Slant Column Density (SCD), (2) separation of the tropospheric components 

from the total SCD, and (3) conversion from slant to vertical column using an air mass factor (AMF). The retrieval accuracy 140 

of VCD is highly sensitive to the a priori vertical profile used in the AMF calculation. In the operational products, these profiles 

are derived from global simulations of the TM5-MP chemistry model at a coarse resolution of 1° × 1°, which is much coarser 

than the native resolution of the TROPOMI SCDs. This spatial mismatch has been linked to underestimation of VCDs, 

particularly over regions with strong or localized emissions (Judd et al., 2020; Douros et al., 2023; Goldberg et al., 2024). 

To mitigate this limitation, we recalculate the satellite VCDs using Eq. (1) (Souri et al., 2016), which adjusts the satellite-145 

derived VCDs (𝑉𝐶𝐷𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒) by accounting for differences between the a priori profiles used in the satellite retrieval and those 

from a regional chemical transport model. 
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𝑉𝐶𝐷𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒
′ =

𝑉𝐶𝐷𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒×𝐴𝑀𝐹𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒

𝐴𝑀𝐹𝑚𝑜𝑑𝑒𝑙
          (1) 

𝐴𝑀𝐹𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒  is the AMF provided in the TROPOMI Level 2 product, and 𝐴𝑀𝐹𝑚𝑜𝑑𝑒𝑙  is a model-derived AMF calculated 

using the vertical profile from the CMAQ model and the TROPOMI Averaging Kernel (𝐴𝐾) (Eq. (2)). 150 

𝐴𝑀𝐹𝑚𝑜𝑑𝑒𝑙 = 𝐴𝑀𝐹𝑎𝑝𝑟𝑖𝑜𝑟𝑖
∑ 𝐴𝐾×𝑉𝐶𝐷𝑚𝑜𝑑𝑒𝑙

∑ 𝑉𝐶𝐷𝑚𝑜𝑑𝑒𝑙
         (2) 

To ensure data quality, we applied a quality assurance threshold of qa_value > 0.75 for NO2 (high quality), which is relaxed 

to > 0.5 for HCHO (moderate quality) to retain sufficient sampling. 

2.3 Inverse modeling 

2.3.1 Finite Difference Mass Balance inversion using 3D-Var 155 

The mass balance approach estimates emissions by assuming a linear relationship between observed column concentrations 

and surface emissions (Cooper et al., 2017). Among the mass balance-based methods, the Finite Difference Mass Balance 

(FDMB) method, proposed by Lamsal et al., (2011), introduces a scaling factor (β) to account for nonlinear relationships 

between changes in column concentrations (∆Ω) and emissions (∆E) (Eqs. (3) and (4)). 

𝐸𝐹𝐷𝑀𝐵 = 𝐸𝑚 (1 +
Ω𝑜−Ω𝑚

𝛽Ω𝑚
)           (3) 160 

β =
ΔΩ𝑚 Ω𝑚⁄

Δ𝐸𝑚 E𝑚⁄
             (4) 

Here, 𝐸𝐹𝐷𝑀𝐵  represents the FDMB emissions, 𝐸𝑚 is the a priori model emissions, Ω𝑜 is the observed column density, and 

Ω𝑚 is the simulated column density. The sensitivity factor β is calculated from simulations using the prior emissions (𝐸𝑚) and 

emissions perturbed by 10 %. β value is constrained between 0.1 and 10 to prevent unrealistic corrections (Cooper et al., 2017; 

Li et al., 2019; Mun et al., 2023). 165 

In this study, we applied the FDMB inversion to jointly constrain NOx and VOC emissions. We first optimized NOx 

emissions by deriving an emission factor based on the sensitivity of NO2 columns to NOx emissions (Eq. (5)). For VOC, total 

emissions were separated into anthropogenic VOC (AVOC) and BVOC, as the two categories have distinct VOC species 

compositions that lead to different HCHO responses (Millet et al., 2006; Choi et al., 2022; Oomen et al., 2024). We then 

independently quantified the HCHO column sensitivities to AVOC and BVOC emissions (Eqs. (6) and (7)). Based on these 170 

sensitivities, we derived emission factors for both AVOC and BVOC components. 

β𝑁𝑂𝑥
=

ΔΩ𝑁𝑂2 Ω𝑁𝑂2⁄

Δ𝐸𝑁𝑂𝑥 E𝑁𝑂𝑥⁄
            (5) 

β𝐴𝑉𝑂𝐶 =
ΔΩ𝐻𝐶𝐻𝑂 Ω𝐻𝐶𝐻𝑂⁄

Δ𝐸𝐴𝑉𝑂𝐶 E𝐴𝑉𝑂𝐶⁄
            (6) 

β𝐵𝑉𝑂𝐶 =
ΔΩ𝐻𝐶𝐻𝑂 Ω𝐻𝐶𝐻𝑂⁄

Δ𝐸𝐵𝑉𝑂𝐶 E𝐵𝑉𝑂𝐶⁄
            (7) 

However, traditional mass balance approaches may incorporate biases inherent in satellite observations into the inferred 175 

emission estimates. To address this limitation, East et al. (2022) applied the FDMB inversion using an analysis field generated 
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via three-dimensional variational (3D-Var) assimilation as the observational constraint. In this study, we generated a 3D-Var-

based analysis field to minimize observational uncertainties and employed it as the constraint in the FDMB inversion process 

(Fig. 2). 

 180 

 

Figure 2: Flowchart of the FDMB inversion framework with 3D-Var assimilation. Red boxes denote the FDMB inversion process, 

green boxes represent the 3D-Var assimilation (𝛀𝒎: CMAQ VCD, 𝛀𝒐: observed VCD, 𝛀𝒂: analysis VCD), and blue boxes indicate 

the FDMB process that updates emissions using finite-difference sensitivities. 

 185 

Furthermore, to minimize errors associated with the smearing effect caused by atmospheric transport, the FDMB inversion 

was performed using a two-week-averaged column density over the study period. Consequently, this study focused on 

constraining the spatial distribution of emissions based on temporally averaged observations, without accounting for temporal 

variability in emissions. 

2.3.2 4D-Var inversion 190 

While the FDMB inverse modeling enables spatial correction of emissions effectively, it cannot account for their temporal 

variability. To overcome this limitation, we implemented a four-dimensional variational (4D-Var) inversion approach to 

constrain the spatial and temporal distribution of emissions. The cost function employed in this study is defined in Eq. (8). 

𝐽(𝛼) =
1

2
𝛾 ∑ (𝛼𝑖 − 1)𝑇𝐵𝑒𝑖

−1(𝛼𝑖 − 1)𝑛
𝑖=0 +

1

2
∑ ∑ (𝑦𝑖

𝑜 − 𝐻𝑖−1(𝑒𝑖−1))𝑇𝑅𝑖
−1(𝑦𝑖

𝑜 − 𝐻𝑖−1(𝑒𝑖−1))𝑛+1
𝑖=𝑡

𝑛+1
𝑡=1     (8) 

Here, the control variable is the emission (𝑒) over a defined time window (𝑛), and the emission scaling factor (𝛼 = 𝑒/𝑒𝑏) 195 

represents the ratio between the updated and prior emissions. 𝐻 denotes the observation operator, 𝑦 is the observation vector, 

and 𝐵 and 𝑅 are the error covariance matrices for emissions and observations, respectively. Assuming spatial independence, 

https://doi.org/10.5194/egusphere-2025-5837
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



8 

 

both 𝐵 and 𝑅 were configured as diagonal matrices. The emission uncertainties were set to 100 % of the prior emissions. For 

ground-based AQMS observations, the total observational error was estimated as the sum of measurement errors with 

representativeness errors (Elbern et al., 2007; Feng et al., 2018). 200 

In this study, the assimilation time window was set to 24 hours to better represent diurnal variations in atmospheric processes. 

To prevent overfitting or underfitting in the inversion process, a regularization parameter 𝛾 was introduced (Henze et al., 2009; 

Chen et al., 2021; Yu et al., 2021), and its optimal value was determined using the L-curve test (Hansen, 1999). The optimized 

𝛾 was then used to constrain the spatiotemporal distribution of emissions, ensuring physically realistic corrections. 

2.3.3 Hybrid inverse modeling framework 205 

In this study, we applied the hybrid inverse modeling framework proposed by Moon et al. (2024) to constrain the 

spatiotemporal distribution of NOx and VOC, which are key precursors influencing O3 formation and destruction. The hybrid 

inverse modeling approach consists of a two-step process: an initial adjustment of the spatial distribution of emissions using 

the FDMB method, followed by a refinement of the spatiotemporal distribution through 4D-Var inverse modeling. While 

previous studies have primarily focused on single-species corrections such as CO or NO2, we extended the approach to jointly 210 

optimize both NOx and VOC emissions to better represent the nonlinear photochemical processes governing O3 formation. A 

schematic of the hybrid inverse modeling framework is shown in Fig. 3. 

First, we performed FDMB inversions for NOx and VOC emissions in two sequential steps. In the first step, TROPOMI 

NO2 VCDs were used to update the spatial distribution of NOx emissions. In the second step, TROPOMI HCHO VCDs were 

utilized to correct VOC emissions. Given the different source characteristics of VOC, we estimated separate scaling factors 215 

for AVOC and BVOC. 

Next, the FDMB NOx and VOC emissions were used as the prior estimate for a 4D-Var inversion. In this step, we assimilated 

hourly NO2 and O3 measurements from the AQMS network, which are highly sensitive to changes in NOx and VOC emissions. 

The control variables in the 4D-Var system included both NOx and 15 VOC species (Table S3), enabling the joint optimization 

of key precursors that drive O3 formation and variability. 220 

To evaluate the effectiveness of the hybrid inverse modeling approach, we designed three experiments: (1) Prior, which 

used the prior emissions; (2) Hybrid_NOx, which corrected only NOx emissions; and (3) Hybrid_NOx+VOC, which jointly 

constrained NOx and VOC emissions. By comparing the model outputs from both experiments with observations, we quantified 

the relative contributions of each precursor to changes in the spatiotemporal distribution of O3 and its sensitivity regime. Model 

performance was assessed using multiple statistical metrics (Table S4). 225 
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Figure 3: Schematic of the hybrid inverse modeling framework combining FDMB and 4D-Var inversions. In the first step, the FDMB 

inversion (blue box) corrects the spatial distribution of NOx and VOC emissions using TROPOMI NO2 and HCHO VCDs. In the 

second step, the 4D-Var inversion (Yellow box) constrains the spatiotemporal distribution of NOx and VOC emissions by assimilating 230 
hourly ground-based NO2 and O3 observations. 

 

2.4. O3 sensitivity regime classification 

The O3 sensitivity regime can be classified based on the VOC/NOx ratio, for which several photochemical indicators—such as 

HCHO/NO2, H2O2/HNO3, and H2O2/NOy—have been widely applied (Sillman, 1995; Liu and Shi, 2021). Among these, the 235 

HCHO-to-NO2 ratio (FNR) has been widely used because it is applicable to satellite observations and can effectively capture 
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regional-scale photochemical conditions (Duncan et al., 2010; Liu et al., 2021; Jang et al., 2023; Rahman et al., 2025). In this 

study, we assess the model’s capability to diagnose O3 sensitivity regimes by comparing FNR values derived from TROPOMI 

satellite measurements with those simulated by the model. Conventionally, we classified FNR values ≤ 2.0 as VOC-sensitive, 

≥ 2.8 as NOx-sensitive, and between 2.0 and 2.8 as neutral, following the thresholds proposed by Jang et al. (2023) for South 240 

Korea. 

2.5. Adjoint-based analysis of ΔO3 responses to precursor emissions 

We quantified the hourly influence of NOx and VOC emissions on O3 as a function of the sensitivity regime using the CMAQ 

adjoint model driven by posterior emissions (Fig. 4). For each local hour ℎ, the regime-specific cost function 𝐽𝑟(ℎ) was defined 

as the two-week mean of the spatially averaged surface O3 over grids classified as regime 𝑟 at that hour. 245 

𝐽𝑟(ℎ) =
1

|𝐷|
∑

1

|𝐺𝑟|
∑ 𝐶𝑂3

(𝑔, ℎ, 𝑑)𝑔∈𝐺𝑟𝑑∈𝐷 , ℎ ∈  {0, 1, … , 23}, 𝑟 ∈  {𝑉𝑂𝐶– 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒, 𝑁𝑂𝑥– 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒}   (9) 

Here, 𝐷 is the set of analysis days (two weeks), 𝐺𝑟  is the set of grids classified as regime 𝑟, and 𝐶𝑂3
(𝑔, ℎ, 𝑑) is the surface 

O3 concentration at grid 𝑔. 

A single adjoint integration provides, for a receptor hour 𝑡2, the sensitivities of 𝐽𝑟(𝑡2) to emissions at all emission hours 𝑡1: 

𝑆𝑖(𝑡1 → 𝑡2) =
𝜕𝐽𝑟(𝑡2)

𝜕𝐸𝑖(𝑡1)
            (10) 250 

where 𝑖 ∈ {𝑁𝑂𝑥 , 𝑉𝑂𝐶} and 𝐸𝑖(𝑡1) is the hourly emission rate. Multiplying these sensitivities by the corresponding emissions 

yields the emission-time–specific O3 response: 

∆𝑂3
𝑟,𝑖(𝑡1, 𝑡2) = 𝑆𝑖(𝑡1 → 𝑡2) × 𝐸𝑖(𝑡1) [𝑝𝑝𝑏]          (11) 

and summing over all emission hours yields the emission-time–integrated response at 𝑡2: 

∆𝑂3,𝑎𝑙𝑙
𝑟,𝑖 (𝑡2) = ∑ 𝑆𝑖(𝑡1 → 𝑡2) × 𝐸𝑖(𝑡1)23

𝑡1=0  [𝑝𝑝𝑏]        (12) 255 

In our configuration, 𝑆𝑖 has units of ppb per (moles s−1). Responses are evaluated over the grids classified as regime 𝑟 at the 

receptor hour 𝑡2, enabling regime-by-regime comparison of NOx and VOC influences. The adjoint simulations covered the 

full two-week analysis period. Because each receptor hour requires a distinct adjoint run, we performed 24 adjoint simulations 

per regime (VOC-sensitive and NOx-sensitive), for a total of 48 runs. Using the posterior emissions, we then computed and 

compared regime-, precursor-, and hour-resolved O3 responses. 260 
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Figure 4: Schematic of the adjoint-based O3 response calculation. A single adjoint run provides, for a receptor hour 𝒕𝟐, the 

sensitivities of the regime-mean surface O3 cost function 𝑱𝒓(𝒕𝟐) to precursor emissions at each emission hour 𝒕𝟏. Multiplying these 

sensitivities by the corresponding hourly emissions 𝑬𝒊(𝒕𝟏)  ( 𝒊 ∈ {𝑵𝑶𝒙, 𝑽𝑶𝑪} ) yields the emission-time–specific O3 response △265 

𝑶𝟑
𝒓,𝒊(𝒕𝟏, 𝒕𝟐). Summing over all emission hours 𝒕𝟏 = 𝟎– 𝟐𝟑 gives the emission-time–integrated response △ 𝑶𝟑,𝒂𝒍𝒍

𝒓,𝒊 (𝒕𝟐). Responses are 

evaluated over grids classified as regime 𝒓 at hour 𝒕𝟐, enabling regime-by-regime comparison of NOx and VOC influences. 

 

3 Results 

3.1 Spatiotemporal changes in NOx and VOC emissions 270 

To investigate the spatiotemporal changes in emissions constrained by the hybrid inverse modeling, we compared the results 

from the Hybrid_NOx experiment, which constrained only NOx emissions, and the Hybrid_NOx+VOC experiment, which 

simultaneously constrained both NOx and VOC emissions, with those based on the Prior emissions. Prior to the hybrid 

inversion, an L-curve test was conducted to determine an appropriate 𝛾 for the 4D-Var inverse modeling and a value of 𝛾 = 10 

was selected (Fig. S2). 275 

Figure 5 shows the spatial distributions of NOx, AVOC, and BVOC emissions averaged over the study period. In the 

Hybrid_NOx experiment, NOx emissions were substantially reduced relative to the Prior experiment, particularly over major 
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urban regions such as the Seoul Metropolitan Area (SMA), Busan, Ulsan, and Daegu. On average, NOx emissions across the 

entire modeling domain decreased by 18.23 %. The Hybrid_NOx+VOC experiment also showed a reduction in NOx emissions, 

but to a lesser extent, with an average decrease of 15.50 %. In contrast, VOC emissions remained unchanged in the 280 

Hybrid_NOx experiment. However, in the Hybrid_NOx+VOC experiment, emissions of both AVOC and BVOC were 

substantially increased by approximately 70.54 % and 161.64 %, respectively, relative to the Prior. The increase in AVOC was 

largely concentrated over urban regions, similar to the NOx distribution, while BVOC showed a more spatially homogeneous 

enhancement, especially over vegetated and mountainous areas across South Korea.  

The different adjustment magnitudes for AVOC and BVOC emissions in the Hybrid_NOx+VOC experiment arise from the 285 

distinct VOC species compositions of the two source categories and the associated differences in their chemical reactivity. 

Because the HCHO-based optimization updates emissions according to precursor-specific sensitivities, AVOC and BVOC 

emissions can be adjusted by different amounts. A similar tendency was reported in Choi et al. (2022), where BVOC emissions 

showed larger adjustments than AVOC when constrained with HCHO column observations. These results indicate that the 

VOC adjustments in our inversion reflect the species-dependent sensitivities inherent in HCHO-based optimization. 290 
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Figure 5: Spatial distributions of (a–c) NOx, (d–f) AVOC, and (g–i) BVOC emissions, averaged over the study period, for each 

experiment (Prior, Hybrid_NOx, and Hybrid_NOx+VOC). 

 295 

Figure 6 presents the diurnal variations in NOx, AVOC, and BVOC emissions for each experiment. The Prior NOx emissions 

show two peaks corresponding to morning and evening rush hours. In contrast, the Hybrid_NOx and Hybrid_NOx+VOC 

experiments exhibit a shift in temporal emission patterns, with increased emissions in the morning and substantial reductions 

in the evening and at night. This shift implies a redistribution of hourly emission characteristics driven by the inversion process. 

For VOC, the Hybrid_NOx+VOC experiment resulted in a substantial increase in AVOC emissions during the daytime and a 300 

slight increase at night. BVOC emissions, which are primarily driven by photosynthetic and metabolic processes in vegetation, 

also showed a distinct increase during the daytime, reflecting a temporal pattern similar to that of the Prior emissions. 
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Figure 6: Diurnal variations of NOx (top), AVOC (middle), and BVOC (bottom) emissions for each experiment (Prior: gray, 305 
Hybrid_NOx: blue, Hybrid_NOx+VOC: red), averaged over South Korea during the study period. 

 

In summary, the Hybrid_NOx+VOC experiment led to an overall reduction in NOx emissions and an increase in VOC 

emissions relative to the Prior inventory. Although NOx emissions decreased on average, they increased during the morning 

rush hour and decreased markedly during the evening and nighttime, indicating a shift in their temporal distribution. These 310 

results demonstrate that the proposed hybrid inverse modeling framework effectively adjusts both the spatial distribution and 

temporal allocation of emissions. 
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3.2 Spatiotemporal changes in NO2, HCHO, and O3 concentrations 

In this section, CMAQ simulations based on the Prior, Hybrid_NOx, and Hybrid_NOx+VOC experiments were performed to 

assess the effectiveness of the hybrid inverse modeling approach. Before evaluating the inverse modeling performance, the 315 

meteorological fields were first validated, with the results summarized in Table S5. The model showed good agreement with 

observations for temperature, wind speed, and relative humidity. Subsequently, the simulated NO2, O3, and HCHO 

concentrations for each experiment were evaluated against observational data, as summarized in Table 1. 

 

Table 1: Statistical evaluation of NO2, HCHO, and O3 concentrations for each experiment (Prior, Hybrid_NOx, and 320 
Hybrid_NOx+VOC). Observations of NO2 and O3 were obtained from the AQMS network, while HCHO observations were based 

on Pandora measurements. 

Species Experiment Obs. CMAQ MBE RMSE IOA r 

NO2 

[ppb] 

Prior 

12.22 

15.56 3.34 15.49 0.59 0.46 

Hybrid_NOx 9.00 -3.22 8.33 0.74 0.60 

Hybrid_NOx+VOC 9.41 -2.81 8.26 0.76 0.61 

HCHO VCD 

[1015 molec cm-2] 

Prior 

7.06 

4.59 -2.47 4.40 0.54 0.52 

Hybrid_NOx 4.61 -2.45 4.36 0.55 0.53 

Hybrid_NOx+VOC 5.85 -1.22 3.94 0.67 0.52 

O3 

[ppb] 

Prior 

44.48 

38.20 -6.29 18.30 0.71 0.55 

Hybrid_NOx 43.74 -0.74 12.84 0.80 0.70 

Hybrid_NOx+VOC 44.72 0.24 12.34 0.83 0.73 

 

For NO2, the Prior experiment exhibited a positive bias, with a mean bias error (MBE) of 3.34 ppb. This overestimation was 

notably reduced in the Hybrid_NOx and Hybrid_NOx+VOC experiments, with MBEs of -3.22 ppb and -2.81 ppb, respectively. 325 

The temporal pattern of bias also changed: while the Prior experiment overestimated NO2 concentrations during nighttime, 

both hybrid simulations substantially reduced this overprediction, resulting in concentrations closer to observations (Fig. 7). 

These improvements, primarily attributable to decreased nighttime NOx emissions, led to enhanced agreement during nighttime. 

Consequently, the correlation coefficient (r) increased from 0.46 in the Prior experiment to above 0.6 in both hybrid 

experiments. 330 
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Figure 7: Diurnal variations of NO2 (top) and O3 (bottom) concentrations for each experiment (Prior: gray, Hybrid_NOx: blue, 

Hybrid_NOx+VOC: red), averaged over South Korea during the study period. 

 335 

For VOC, model results were compared with Pandora HCHO VCDs (Table 1). The Prior experiment showed a significant 

underestimation (MBE = -2.48×1015 molec cm-2). The Hybrid_NOx experiment showed little improvement (MBE = -2.45×1015 

molec cm-2), whereas the Hybrid_NOx+VOC experiment more effectively reduced the bias (MBE = -1.22×1015 molec cm-2) 
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and achieved the highest index of agreement (IOA = 0.67). During daytime, HCHO VCDs in both the Prior and Hybrid_NOx 

experiments were underestimated relative to Pandora observations, whereas the Hybrid_NOx+VOC experiment yielded higher 340 

HCHO VCDs that were closer to the Pandora measurements (Fig. 7). These results demonstrate that the underestimation of 

VOC emissions in the Prior experiment was effectively corrected in the Hybrid_NOx+VOC experiment, leading to improved 

agreement with observations across South Korea. 

Regarding O3, the Prior experiment underestimated surface concentrations, with an MBE of -6.28 ppb. The bias was 

substantially reduced in the Hybrid_NOx (MBE = -0.74 ppb) and Hybrid_NOx+VOC (MBE = 0.24 ppb) experiments. The 345 

IOA improved from 0.71 (Prior) to 0.80 (Hybrid_NOx) and 0.83 (Hybrid_NOx+VOC), indicating enhanced model 

performance in reproducing observed O3 concentrations. In terms of diurnal variation, the Prior experiment generally 

underestimated O3 with particularly large negative biases at night. In the Hybrid_NOx experiment, nighttime O3 concentrations 

increased markedly, although daytime changes were limited. By contrast, the Hybrid_NOx+VOC experiment increased O3 

concentrations during both daytime and nighttime, yielding the closest agreement with observations. Spatially, the Prior 350 

experiment substantially underestimated O3 concentrations in urban areas with high NOx emissions, whereas the 

Hybrid_NOx+VOC experiment produced higher O3 levels in these regions, resulting in improved agreement with the 

observations (Fig. 8). 

 

 355 

Figure 8: Spatial distributions of mean surface O3 concentrations from the Prior (left) and Hybrid_NOx+VOC (middle) experiments, 

and the differences (Hybrid_NOx+VOC - Prior; right), averaged over the study period. Circles indicate O3 observations from the 

AQMS network. 

 

Consequently, the titration of O3 by NO during nighttime was reduced, leading to increased O3 concentrations that were 360 

more consistent with observations. However, daytime O3 levels remained similar to those in the Prior experiment. In contrast, 

the Hybrid_NOx+VOC experiment significantly improved O3 simulations during both daytime and nighttime. These findings 
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demonstrate that jointly constraining NOx and VOC emissions is more effective than constraining NOx alone in accurately 

reproducing O3 concentrations over South Korea. 

 365 

3.3 Improvement of O3 sensitivity regimes through hybrid inversion 

In this section, we examine how the O3 sensitivity regime changes before and after the application of the hybrid inverse 

modeling. The O3 sensitivity is diagnosed using the FNR. Figure 9 compares the FNR distributions derived from TROPOMI 

with those simulated in the Hybrid_NOx+VOC experiment. The TROPOMI-based FNR indicates VOC-sensitive regimes over 

major urban regions such as the SMA, Busan, Ulsan, and Daegu, whereas NOx-sensitive regimes dominate over mountainous 370 

and heavily vegetated areas where BVOC emissions are substantial. 

 

 

Figure 9: Spatial distributions of O3 sensitivity regimes derived from TROPOMI-based FNR (left), and Hybrid_NOx+VOC 

experiments (right), averaged over the study period. Red, yellow, and blue denote VOC-sensitive, neutral, and NOx-sensitive regimes, 375 
respectively, while gray areas indicate missing data. 

 

The Hybrid_NOx+VOC experiment successfully reproduces the spatial pattern of the TROPOMI-based FNR, in sharp 

contrast to the Prior and Hybrid_NOx experiments, which classify most of South Korea as VOC-sensitive (Fig. S3). The Prior 

emissions are based on the 2018 EDGAR HTAPv3 inventory, whose earlier base year may not fully reflect emission conditions 380 

in 2022, potentially biasing the Prior experiment toward VOC-sensitive regimes. Furthermore, adjusting NOx emissions alone 
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in the Hybrid_NOx experiment was insufficient to capture the observed O3 sensitivity regime, indicating that simultaneous 

optimization of both NOx and VOC emissions is essential for accurately diagnosing O3 chemical regimes. 

The improved agreement in the Hybrid_NOx+VOC experiment highlights the importance of integrating recent satellite 

observations into emission updates, enabling the model to better reflect the current photochemical environment. These findings 385 

are consistent with recent studies reporting regional transitions in East Asia from VOC-sensitive toward NOx-sensitive or 

transitional regimes (Lee et al., 2021; Itahashi et al., 2022; Wang et al., 2025).  

Given that the hybrid inversion yields O3 sensitivity regimes that closely resemble those derived from TROPOMI, the 

optimized posterior state provides a robust foundation for further analysis. Accordingly, in Section 3.4, we assess the regime-

dependent hourly ΔO3 responses to NOx and VOC emissions using adjoint sensitivities derived from the posterior simulation. 390 

3.4 Regime-dependent hourly ΔO3 responses to NOx and VOC emissions 

We quantify hourly ΔO3 responses using adjoint sensitivities to determine, within VOC-sensitive and NOx-sensitive regimes, 

which precursor (NOx or VOC) exerts a stronger influence on O3 production or loss. Figure 10 shows regime-stratified hourly 

ΔO3 responses to NOx and VOC emissions for 1–14 May 2022. Panels (a) and (c) show, for each local hour, the ΔO3 at that 

hour resulting from emissions integrated over all emission times (Eq. (12)). This reflects not only the response to emissions 395 

released at the same hour but also the influence of the full diurnal emission profile of each precursor on hourly O3. Thus, the 

panels illustrate how the complete daily emission cycle of each precursor contributes to hourly O3 within each regime.  

In the VOC-sensitive regime (NOx-rich), the NOx response is negative at all hours, indicating net O3 decreases consistent 

with rapid O3 titration, whereas the VOC response is positive and strengthens during daytime, reflecting enhanced 

photochemical production. In the NOx-sensitive regime (VOC-rich), VOC provides a persistent positive daytime response, 400 

while the NOx response changes sign with time of day: negative at night (titration) and positive from late morning into the 

afternoon as radical chemistry intensifies.  
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Figure 10: Two-week mean ΔO3 response (ppb) to NOx (blue) and VOC (red) emissions, by local hour, for 1–14 May 2022. For each 405 
local hour, responses are summed over all grids classified in each regime at that hour; regimes are diagnosed with the FNR indicator 

from the Hybrid_NOx+VOC experiment. Panels (a) and (c) show, for VOC-sensitive and NOx-sensitive regimes respectively, the 

ΔO3 response at each local hour to emissions released over all hours (i.e., emission-time–integrated response). Panels (b) and (d) 

show the ΔO3 response at 15 KST as a function of emission time (“emission-time response”). 

 410 

Panels (b) and (d) isolate the hour of maximum O3 (15 KST) and display the ΔO3 response at 15 KST as a function of the 

emission time (Eq. (11)). In VOC-sensitive regimes, NOx emitted at 15 KST yields the largest negative ΔO3 response, 

consistent with the instantaneous O3 titration. By contrast, VOC emissions at 13 KST exert the strongest positive influence on 

15 KST O3, indicating an effective lag of about 2 hours associated with multistep photochemical production. In NOx-sensitive 

regimes, NOx generally promotes O3 formation; however, NOx emitted at 15 KST still produces O3 losses through immediate 415 

titration. The largest positive effects on 15 KST O3 arise from NOx at 13 KST and VOC at 14 KST, indicating a similar 

response time of approximately 1–2 hours.  

Taken together, the results show that precursor impacts on O3 vary with both regime and hour. Under VOC-sensitive 

conditions, VOC reductions are more effective than NOx reductions for lowering daytime O3, whereas under NOx-sensitive 

conditions, NOx controls deliver the more direct decreases. Because titration is immediate but photochemical production 420 

requires chemical processing time, effective mitigation of high-O3 periods requires hour-specific emission controls aligned 

with the prevailing O3 sensitivity regime. 

A clear understanding of how precursor influences on O3 differ across sensitivity regimes and vary throughout the day is 

essential for designing realistic and region-specific O3 control strategies. In this context, the hybrid inversion framework 

presented in this study provides a practical basis for policy development, as it enables accurate identification of the dominant 425 
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O3 sensitivity regime and quantification of the major precursor contributions. By capturing both the chemical regime and the 

temporal characteristics of precursor impacts, the proposed methodology can provide valuable guidance for developing region-

specific and effective emission reduction strategies. 

This analysis is limited to a two-week period and may not capture the seasonal or longer-term variability of O3 sensitivity 

regimes across South Korea. Nevertheless, the hybrid inverse modeling framework efficiently constrains precursor emissions 430 

on short time scales and enables assessments tailored to individual regions that explicitly account for the prevailing O3 

sensitivity regime, thereby supporting the implementation of emission reduction policies. Compared with conventional bottom-

up inventories, the top-down approach reduces data and computational demands, enables rapid observation-driven estimates 

of O3 precursor emissions, and provides timely guidance for O3 management policies. 

4. Summary and Conclusions 435 

This study aimed to enhance the accuracy of simulated O3 concentrations and improve the diagnosis of O3 sensitivity regimes 

over South Korea by applying a top-down hybrid inverse modeling approach to constrain the spatiotemporal distributions of 

NOx and VOC emissions, and to quantify hourly ΔO3 responses to these precursors using adjoint sensitivities. The inverse 

modeling system used TROPOMI NO2 and HCHO column densities along with surface NO2 and O3 measurements from the 

AQMS network. The modeling was conducted using CMAQ and its adjoint model. The hybrid inverse modeling approach 440 

combining the FDMB and 4D-Var methods was employed to constrain emissions. To assess the impact of major O3 precursors 

on the spatiotemporal distribution and sensitivity regime of O3, three experiments were conducted: Prior, which used the 

EDGAR_HTAPv3 emission inventory; Hybrid_NOx, in which only NOx emissions were optimized; and Hybrid_NOx+VOC, 

in which both NOx and VOC emissions were jointly constrained. 

In the Hybrid_NOx experiment, where only NOx emissions were adjusted, emissions decreased by up to 51 % at night and 445 

increased by up to 14 % during the day relative to the Prior inventory, resulting in an overall average reduction of 18 %. These 

time-dependent adjustments enabled the correction of diurnal variability in the emission profile. Consequently, nighttime O3 

concentrations increased, reducing the mean bias error by 90 % relative to the Prior experiment and thereby improving 

agreement with observations. In contrast, during the daytime, constraining NOx emissions alone yielded only limited 

improvements in O3 concentrations. 450 

However, constraining NOx alone provided only limited improvement for daytime O3, indicating the need to additionally 

optimize VOC emissions. To address this limitation, the Hybrid_NOx+VOC experiment was conducted, in which both NOx 

and VOC emissions were simultaneously constrained. Compared to the Prior emissions, NOx decreased by an average of 16 %, 

while anthropogenic AVOC and BVOC increased by 71 % and 162 %, respectively. The joint adjustment of NOx and VOC 

emissions yielded the greatest improvement in O3 simulations during both daytime and nighttime, resulting in an IOA 455 

exceeding 0.8 when compared with AQMS O3 observations. These results demonstrate that accurate O3 simulation requires 

the simultaneous constraint of NOx and VOC emissions due to nonlinear chemical processes. Furthermore, given the 
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substantial differences in photochemical mechanisms between day and night, accurately representing not only the spatial 

distribution but also the diurnal variability of emissions is critical for improving O3 model performance. 

The hybrid inverse modeling also improved the simulation of O3 sensitivity regimes. In the Hybrid_NOx+VOC experiment, 460 

the spatial distribution of the simulated FNR closely matched the TROPOMI-derived regimes, reproducing VOC-sensitive 

conditions over major urban regions and NOx-sensitive conditions over mountainous and vegetated areas. This agreement 

highlights the ability of the hybrid inversion to incorporate observational constraints and accurately represent the relative 

contributions of NOx and VOC to O3 formation. The improved regime classification further provides a reliable foundation for 

analyzing regime-dependent O3 production and understanding how changes in precursor abundances drive transitions between 465 

VOC-sensitive and NOx-sensitive conditions. 

Building on the improved regime representation obtained from the Hybrid_NOx+VOC experiment, we further analyzed 

how each precursor influences O3 in a regime- and time-dependent manner. Under VOC-sensitive conditions, VOC emissions 

sustain daytime O3 production, whereas NOx emissions lead to net O3 losses through rapid titration. In contrast, under NOx-

sensitive conditions, NOx contributes positively to O3 formation from late morning into the afternoon, while titration processes 470 

dominate during nighttime hours. These results clarify precursor-specific emission control priorities with explicit diurnal 

dependence: in VOC-sensitive regimes, reducing VOC emissions is most effective for mitigating daytime O3, whereas in NOx-

sensitive regimes, NOx emission reductions provide more immediate and direct benefits. Because titration occurs almost 

instantaneously while photochemical production unfolds over finite chemical timescales, effective mitigation of high-O3 

periods requires hour-specific emission controls that are aligned with the prevailing O3 sensitivity regime. 475 

This analysis spans two weeks and therefore may not capture seasonal or long-term variability. In addition, because 

EDGAR_HTAPv3 was spatiotemporally downscaled for CMAQ, inventory-related uncertainties could not be fully assessed. 

Despite these limitations, the findings suggest that extending the hybrid inverse modeling over longer periods and 

incorporating diverse observations would further improve the resolution and reliability of emission estimates. Overall, the 

proposed hybrid inverse modeling shows strong potential to enhance O3 simulations and to support region-specific regime 480 

assessments and precursor emission control strategies. 

Code and data availability. The WRF 3.8.1 model is distributed by NCAR (https://www.mmm.ucar.edu/models/wrf, last 

access: 21 November 2025; Skamarock et al., 2008). The CMAQ 5.0 adjoint model is available from Zenodo 

(https://zenodo.org/records/3780216, last access: 21 November 2025; Zhao et al., 2020). The MEGAN 2.1 model is available 

from the University of California, Irvine – Biogenic Aerosols and Interactions Research Group (BAI) 485 

(https://bai.ess.uci.edu/megan/data-and-code/megan21, last access: 21 November 2025; Guenther et al., 2012). ERA5 

reanalysis data are distributed by the Climate Data Store of ECMWF (https://cds.climate.copernicus.eu/datasets, last access: 

21 November 2025; Hersbach et al., 2023a, b). The EDGAR HTAPv3 emission inventory is provided by the European 

Commission Joint Research Centre (https://edgar.jrc.ec.europa.eu/dataset_htap_v3, last access: 21 November 2025; Crippa et 
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al., 2023). TROPOMI NO2 and HCHO column data are available from the Copernicus Data Space 490 

(https://dataspace.copernicus.eu, last access: 21 November 2025). Pandora HCHO column data are accessible from the 

Pandonia Global Network (https://www.pandonia-global-network.org, last access: 21 November 2025). AQMS NO2 and O3 

observations are available from AirKorea (https://www.airkorea.or.kr/web, last access: 21 November 2025). 
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