

Supplement of

Spatiotemporal optimization of NO_x and VOC emissions using a hybrid inversion framework and its implication for ozone sensitivity diagnosis

Jeonghyeok Moon¹, Wonbae Jeon^{2,3}, Sujong Jeong^{4,5,6}, Yunsoo Choi⁷, Hyun Cheol Kim^{8,9}, Soon-Young Park¹⁰, Juseon Bak¹¹, Jung-Woo Yoo¹¹, Jaehyeong Park¹², Dongjin Kim^{2,12}, Hyeonsik Choe^{2,12}, Chae-Yeong Yang^{2,12}, Min Heo^{2,12}

¹Environmental Planning Institute, Seoul National University, Seoul 08826, South Korea

²BK21 School of Earth and Environmental System, Pusan National University, Busan 46241, South Korea

³Department of Atmospheric Sciences, Pusan National University, Busan 46241, South Korea

⁴Department of Environmental Management, Graduate School of Environmental Studies, Seoul National University, Seoul, 08826, South Korea

⁵Climate Tech Center, Seoul National University, Seoul, 08826, South Korea

⁶Institute for Sustainable Development, Seoul National University, Seoul, 08826, South Korea

⁷Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

⁸Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, 20740, USA

⁹Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, MD, 20742, USA

¹⁰Department of Science Education, Daegu National University of Education, Daegu, 42411, South Korea

¹¹Institute of Environmental Studies, Pusan National University, Busan 46241, South Korea

¹²Division of Earth Environmental System, Pusan National University, Busan 46241, South Korea

Correspondence to: Wonbae Jeon (wbjeon@pusan.ac.kr)

Table S1: Model configurations of the Weather Research and Forecasting (WRF) simulation.

WRF	Domain 01(D1)	Domain 02(D2)
Horizontal Resolution (Number of grids)	27 km (150×135)	9 km (79×79)
Vertical layers	35 Layers	
Microphysics option	WSM 3-class simple ice scheme	
Radiation option	RRTM scheme(long-wave) Dudhia scheme(short wave)	
Surface layer option	Revised MM5 Monin-Obukhov scheme (Jimenez)	
Land-surface option	Unified Noah land-surface model	
PBL option	YSU scheme	
Cumulus option	Kain-Fritsch (new Eta) scheme	
Initial data	ERA5 ($0.25^\circ \times 0.25^\circ$)	
Simulation period	2022. 04. 26. 00 UTC – 2022. 05. 16. 00 UTC	

Table S2: Model configurations of the Community Multi-scale Air Quality (CMAQ) simulation.

CMAQ	Domain 01(D1)	Domain 02(D2)
Horizontal Resolution (Number of grids)	27 km (137 × 122)	9 km (66 × 66)
Vertical layers	15 Layers	
Anthropogenic emission		EDGAR-HTAPv3
Biogenic emission	MEGANv2.1	
Chemical mechanism	cb05cl_ae5_aq	
Simulation period	2022. 04. 27. 00 UTC – 2022. 05. 15. 00 UTC	

Table S3: List of VOC species included in this study according to the carbon bond mechanism version 2005 (CB05).

Model species	Definition
ALD2	Acetaldehyde
ALDX	Aldehydes with 3 or more carbons
ETH	Ethene
ETHA	Ethane
FORM	Formaldehyde
IOLE	Internal alkene bond
ISOP	Isoprene
MEOH	Methanol
NVOL	Non-volatile compounds
OLE	Terminal alkene bond
PAR	Carbon-carbon single bond
TERP	Monoterpenes
TOL	Toluene and other monoalkyl aromatics
UNR	Unreactive
XYL	Xylene

Table S4. Statistical metrics used for evaluating model performance and inverse modeling results. Here, n is the total number of compared points, O_i is the observed value or ideal emission value, and M_i is the value of the CMAQ model value.

Descriptions	Metrics	Formula
Mean observation	\bar{O}	$\frac{\sum_{i=1}^n O_i}{n}$
Mean model	\bar{M}	$\frac{\sum_{i=1}^n M_i}{n}$
Mean bias error	MBE	$\frac{\sum_{i=1}^n (M_i - O_i)}{n}$
Root mean square error	RMSE	$\sqrt{\frac{\sum_{i=1}^n (M_i - O_i)^2}{n}}$
Index of agreement	IOA	$1 - \frac{\sum_{i=1}^n (M_i - O_i)^2}{\sum_{i=1}^n (M_i - \bar{O} + O_i - \bar{O})^2}$
Correlation coefficient	r	$\sum_{i=1}^n \left(\left(\frac{O_i - \bar{O}}{\sqrt{\sum_{i=1}^n (O_i - \bar{O})^2}} \right) \times \left(\frac{M_i - \bar{M}}{\sqrt{\sum_{i=1}^n (M_i - \bar{M})^2}} \right) \right)$
Normalized mean error	NME	$\frac{\sum_{i=1}^n M_i - O_i }{\sum_{i=1}^n O_i} \times 100 [\%]$

Table S5. Statistical evaluation of 2 m temperature, 2 m relative humidity, and 10 m wind speed from the WRF simulation. Observational data were obtained from ASOS stations.

	OBS	WRF	MBE	RMSE	IOA	r
Temperature [°C]	16.03	14.88	-1.16	2.35	0.94	0.91
Wind speed [m s ⁻¹]	1.93	3.19	1.25	1.90	0.68	0.60
Relative humidity [%]	59.74	62.89	3.16	12.95	0.90	0.82

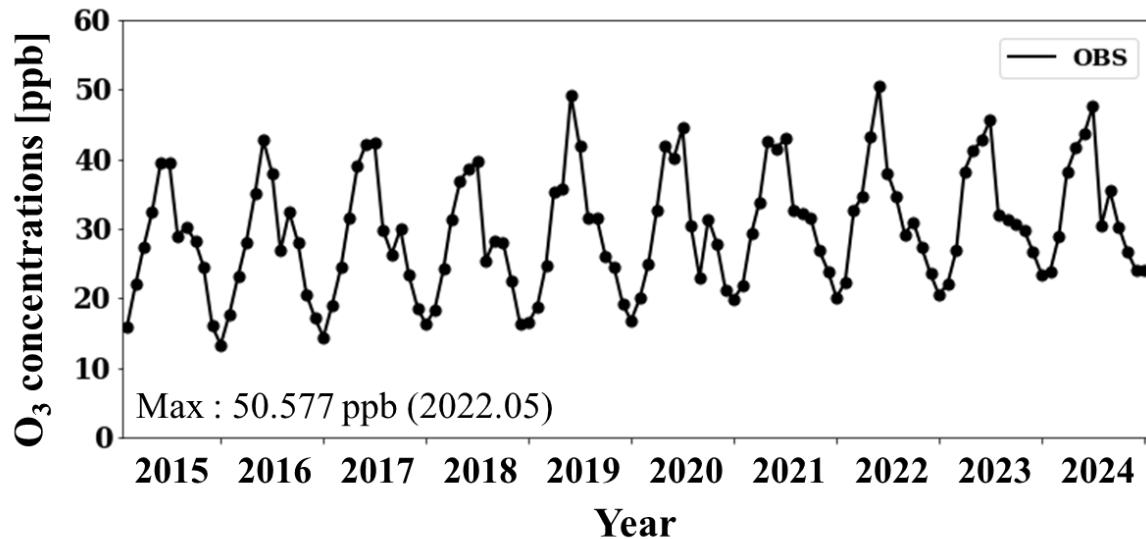


Figure S1: Monthly averaged time series of observed O_3 concentrations over South Korea during the recent decade (2015–2024), based on the AQMS network.

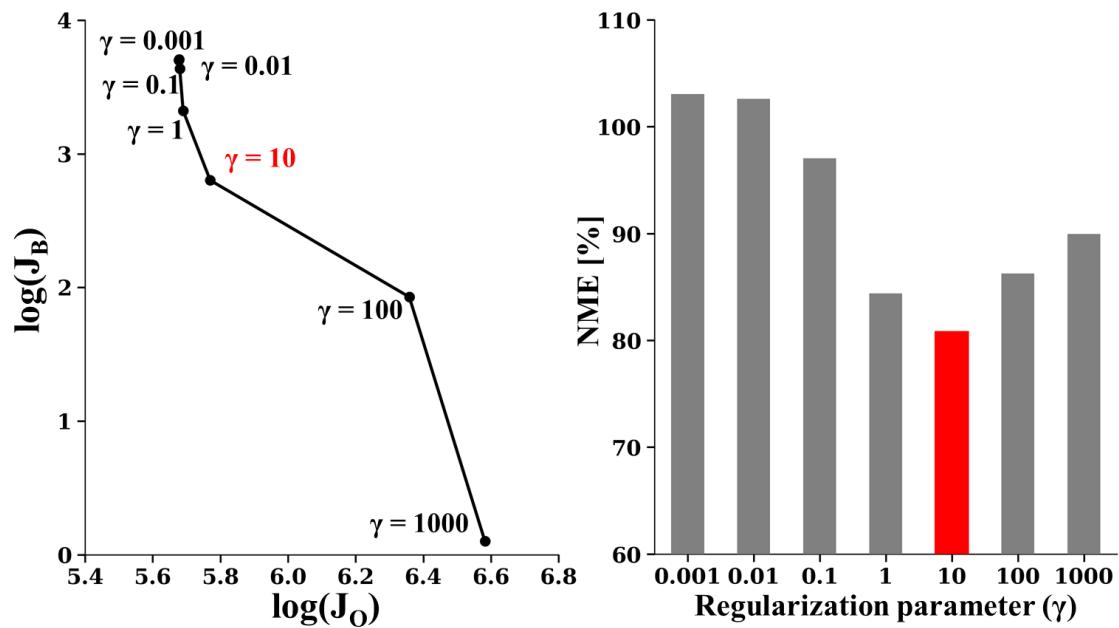
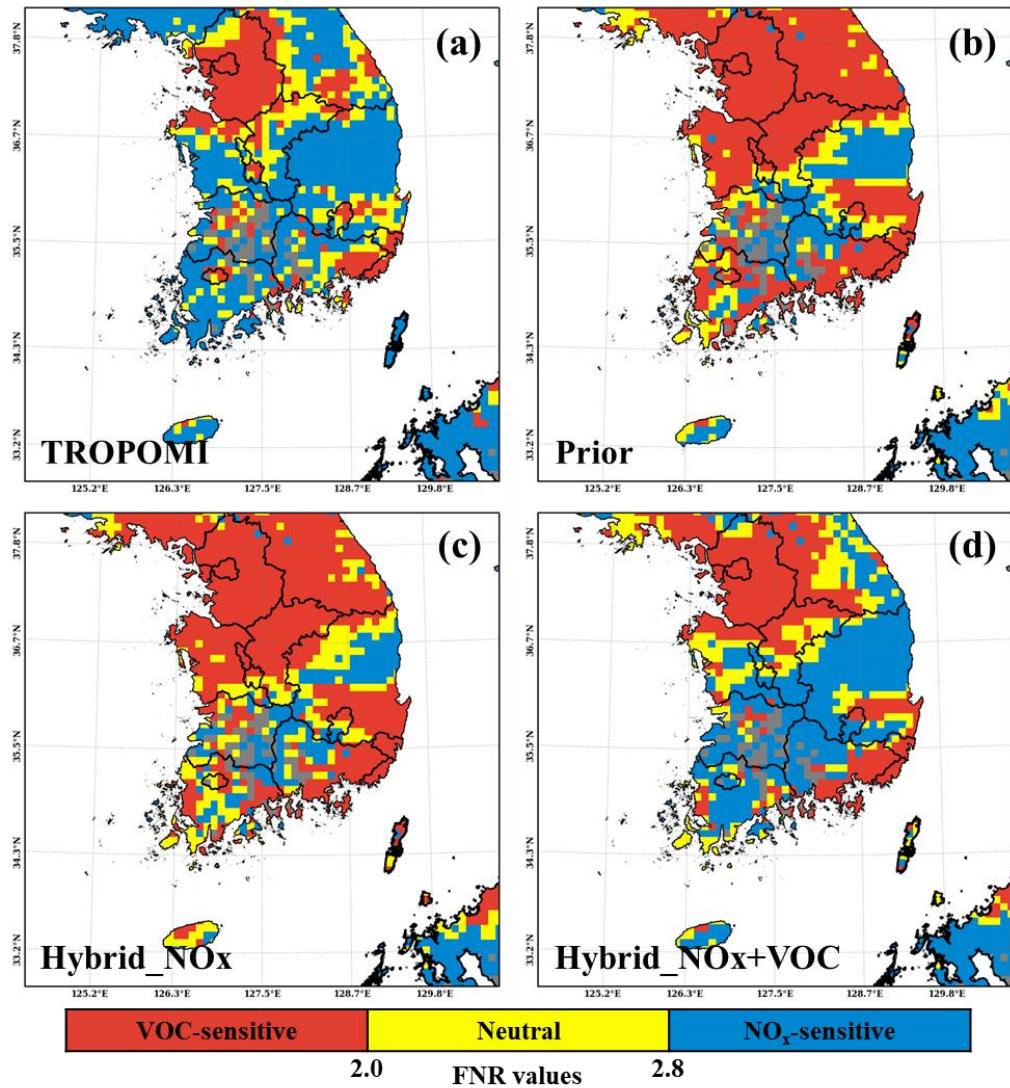



Figure S2: Results of the L-curve test and emission NME [%] used to determine the optimal regularization parameter (γ) for the 4D-Var inverse modeling. The test was performed for γ values of 0.001, 0.01, 0.1, 1, 10, 100, and 1000, based on the simulation for 1 May 2022.

Figure S3: Spatial distributions of O₃ sensitivity regimes for (a) TROPOMI-based FNR, (b) Prior, (c) Hybrid_NOx, and (d) Hybrid_NOx+VOC experiments, averaged over the study period. Red, yellow, and blue indicate VOC-sensitive, neutral, and NO_x-sensitive regimes, respectively. Gray areas denote missing data.