

1 **A Process-Based Four-Stage Framework for Seismic**
2 **Resilience Assessment of Urban Water Distribution**
3 **Networks through Multi-Attribute Metrics**

4 **Huiquan Miao^a, Ya'nan Liu^a, Benwei Hou^{a,*}, Jie Wei^b, Chengshun Xu^a**

5 **^a Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing**
6 **University of Technology, Beijing 100124, China;**

7 **^b Key Laboratory of Structures Dynamic Behavior and Control, Ministry of Education, Harbin**
8 **Institute of Technology, Harbin 150090, China**

9 **Correspondence:** Benwei Hou (benweihou@bjut.edu.cn)

10 **Abstract:** Urban water distribution networks are critical lifelines whose seismic resilience is essential for
11 maintaining daily functions and post-disaster service continuity. However, most existing studies focus on
12 seismic-induced functional failures and short-term recovery, while neglecting pre-disaster preparedness and
13 long-term adaptation—two stages that fundamentally shape the overall resilience trajectory. Conventional
14 assessments typically rely on single-dimensional hydraulic or network indicators, which tend to be one-sided
15 and error-prone. These limitations hinder a comprehensive understanding of WDN behavior across different
16 seismic disturbance stages, yielding only coarse performance judgments that offer limited guidance for
17 diagnosing vulnerabilities or planning effective resilience enhancement and retrofit strategies. To address
18 these limitations, this study proposes a process-based four-stage seismic resilience framework that explicitly
19 incorporates preparedness, robustness, recoverability, and long-term adaptation, capturing the full evolution
20 of WDN performance during seismic events. A multi-attribute indicator system integrating topological
21 homogeneity, energy redundancy, pipeline fragility, hydraulic service performance, and recovery efficiency
22 is developed to enable refined stage-specific assessment. An adaptation index (ACI) is further introduced to
23 quantify the integrated improvement achieved by different retrofit strategies. Applications to the Jilin and
24 Mianzhu WDNs demonstrate clear stage-dependent resilience disparities and provide actionable guidance
25 for optimizing seismic resilience enhancement. Application to the Jilin and Mianzhu WDNs demonstrates
26 the framework's applicability and reveals clear stage-dependent resilience disparities, which provide
27 scientifically grounded guidance for optimizing seismic resilience enhancement in urban WDNs.

28 **Key Words:** Water distribution network; Monte Carlo simulation; Seismic resilience framework; Four-stage
29 assessment; Resilience enhancement strategies

30 1 Introduction

31 As a critical lifeline engineering system, urban water distribution networks (WDNs) not only ensure
32 daily domestic water supply but also play an irreplaceable role in post-disaster emergency response,
33 firefighting, and public livelihood support. However, earthquakes frequently cause extensive and severe
34 damage to WDNs. Historical seismic disasters have demonstrated that WDN failure can trigger widespread
35 water supply interruptions and secondary hazards, such as urban fires and public health crises (Bouziou et
36 al., 2017; Takada et al., 1992). For example, the 1906 San Francisco earthquake ruptured more than 300
37 pipelines and ignited over 60 secondary fires. Due to the lack of firefighting water, the fires burned for three
38 consecutive days, destroying 492 city blocks and killing more than 3,000 people; the losses from secondary
39 fires were three times greater than those caused directly by the earthquake (Scawthorn et al., 2006). In the
40 1976 Tangshan earthquake, 140 km of pipelines were damaged at 646 locations, leaving residents without
41 water for over a week. The resulting water shortage led to outbreaks of infectious diseases such as dysentery,
42 with household infection rates reaching 89.3% in some areas (Liu et al., 2002). Similarly, the 1995 Kobe
43 earthquake caused nearly 1,000 joint failures and widespread disruption of firefighting water supply, severely
44 impeding fire suppression efforts (Kuraoka et al., 1996). Other serious disasters, such as the Chile, Lushan,
45 and Wenchuan earthquakes (Tang et al., 2013; Eidinger et al., 2014; Tang, 2014), further underscore that
46 enhancing the seismic resilience of WDNs has become a critical priority for urban disaster prevention and
47 mitigation.

48 The growing emphasis on resilience research has highlighted the need for systematic frameworks to
49 evaluate and enhance infrastructure performance under serious disasters. Bruneau et al. (2003) pioneered the
50 community seismic resilience framework, defining it as "the ability of social units to mitigate hazards, contain
51 disaster impacts, and recover in ways that minimize social disruption and reduce future earthquake effects."
52 They conceptualized resilience across four dimensions—technical, organizational, social, and economic—
53 with attributes of robustness, redundancy, resourcefulness, and rapidity. Building on this foundation,
54 researchers have applied multi-stage, dynamic resilience assessments to diverse lifeline systems (Cimellaro
55 et al., 2016; Shin et al., 2018; Ouyang et al., 2012; Nan et al., 2017). The U.S. National Academy of Sciences
56 (American Lifelines Alliance [ALA], 2005) formalized this approach through a "Preparedness–Absorption–
57 Recovery–Adaptation" cycle, in which infrastructure sequentially passes through four stages to complete a
58 resilience loop. Exemplifying this trend, Xu et al. (2022) proposed a four-stage seismic resilience assessment
59 for metro systems; Zhang et al. (2018) developed a three-stage resilience-oriented decision framework for
60 road networks—pre-disaster mitigation, post-disaster emergency response, and long-term recovery—to
61 guide stochastic multi-objective optimization; and Zong et al. (2022) evaluated gas network resilience
62 through pre-disaster network enhancement, post-disaster pressure testing, and restoration. Also, multi-stage
63 resilience assessment has been extended to healthcare facilities (Pei et al., 2025), power systems (Sun et al.,
64 2019; Xie et al., 2025), and interdependent infrastructure networks (Ravadanegh et al., 2022), demonstrating
65 the framework's versatility and growing relevance in infrastructure risk management.

66 In the field of water distribution network (WDN) resilience, extensive research has been devoted to
67 developing assessment frameworks and indicator systems (Diao et al., 2016; Cimellaro et al., 2015). Zhang
68 et al. (2024) divided WDN resilience into three stages—pre-disaster preparedness, post-disaster response,
69 and recovery—and established a staged evaluation framework. Chen et al. (2025) incorporated resistance,
70 absorption, and recovery capacities, employing the Sobol sequence-based Quasi-Monte Carlo (QMC)
71 method to assess the seismic resilience of large-scale WDNs. Zhou et al. (2022) further proposed a three-
72 stage dynamic framework to evaluate the comprehensive resilience of rural water supply systems (RWSS) at
73 different stages. Although these studies acknowledge the staged evolution of resilience, most adopt three-
74 stage or lifecycle-based divisions that inadequately capture the dynamic evolution of the entire earthquake
75 process. Fundamental questions—such as how to delineate the seismic resilience stages of WDNs and
76 identify the dominant resilience characteristics within each stage—remain insufficiently explored. Moreover,
77 existing studies lack quantitative methods to characterize the adaptive attribute of resilience, limiting their
78 ability to represent the system's enhanced capacity to cope with subsequent hazards (Zhang et al., 2024).

79 Four primary methods have been developed for WDN resilience evaluation: indicator-based, energy-
80 based, complex network-based, and recovery simulation methods. (1) The indicator-based method extracts
81 factors reflecting system resilience, scores them, and derives the final assessment. For example, Woolf et al.
82 (2016) used a subjective 1-5 scale to score WDN resilience; Cimellaro et al. (2016) used the proportion of
83 households without tap water; Miao et al. (2021) used indicators like per capita pipeline length and per capita
84 water consumption. While simple to implement, these methods heavily rely on researchers' subjective
85 experience. (2) The energy-based method defines resilience by node redundant water pressure, assuming
86 higher redundant pressure indicates greater resilience. A representative indicator is Todini's (Todini, 2000)
87 residual energy index, which focuses on the system's inherent ability to overcome adverse conditions without
88 considering uncertainties. However, it fails to reflect network topology or post-damage recovery. To address
89 this, scholars improved indicators by incorporating network balance and loop characteristics (Prasad et al.,
90 2004; Farahmandfar et al., 2018; Jayaram et al., 2010); Huang et al. (2025) proposed node secondary
91 neighborhood-based energy indicators (NRI_{2u} , NRI_{2uk}); Caetano et al. (2025) introduced the loop diameter
92 uniformity coefficient (CRI) to the Todini index for more accurate reflection of redundant energy's
93 contribution to resilience. Nevertheless, post-disaster recovery remains unaddressed. (3) The complex
94 network method, based on graph theory, simplifies WDNs into nodes and edges, measuring topological
95 robustness via average path length, connectivity, and independent loops (Yazdani et al., 2011; Assad et al.,
96 2019; Selicato et al., 2024; Meng et al., 2018). It identifies structural vulnerabilities but is limited to static
97 topology, ignoring functional attributes and dynamic post-disaster recovery. Yu et al. (2024) summarized
98 graph theory applications in WDNs, suggesting combining graph theory and hydraulic indicators to improve
99 assessment. (4) The recovery simulation method calculates WDN damage and recovery performance
100 functions via full-process hydraulic analysis, defining resilience by integrating the system performance
recovery curve within a control period based on the "resilience triangle" concept (Cimellaro et al., 2015; Liu

102 et al., 2020; Song et al., 2022; Sun et al., 2015; Bata et al., 2022). It well reflects dynamic post-disaster
 103 recovery but requires extensive, time-consuming hydraulic calculations and only provides overall results
 104 without local optimization guidance. In summary, selecting appropriate methods and indicators is a key
 105 challenge for quantitative WDN seismic resilience evaluation (Sakai, 2024). Table 1 lists representative
 106 quantitative indicators, advantages, and disadvantages of these four methods.

107 Table 1 A summary of indicators for assessing the seismic resilience of WDNs

Evaluation Indicator	Quantitative Indicators	Representative Scholars	Advantages and Disadvantages
Indicator-based method	$F_i(t) = 1 - \frac{\sum_i n_{ip,e}}{n_{tot}} ; R = \int_0^{T_{LC}} \frac{\bar{F}_i(t)}{T_{LC}} dt$	(Cimellaro et al., 2016)	Adv.: Simple and easy to implement. Disad.: Relies on subjective experience.
Energy-based method	$I_r = \frac{\sum_{i=1}^n q_i^* (h_i - h_i^*)}{\sum_{k=1}^n Q_k H_k + \sum_{j=1}^n \frac{P_j}{\gamma} - \sum_{i=1}^n q_i^* h_i^*}$ $C_j = \frac{\sum_{i=1}^n D_i}{n p_j \cdot \max(D_i)}$	(Todini, 2000) (Prasad et al., 2004)	Adv.: Only requires focusing on the system's intrinsic ability to overcome adverse conditions, without considering various uncertainties. Disad.: Difficult to reflect the network's topological properties and does not account for post-damage recovery characteristics.
Complex network method	$MI_r = \frac{\sum_{i=1}^n q_i^* (h_i - h_i^*)}{\sum_{i=1}^n q_i^* h_i^*}$ $C_u = \frac{n_p \cdot \text{withloop}}{n_p} \cdot \frac{\sum_{i=1}^n C_i}{n_t}$	(Jayaram et al., 2010) (Creaco et al., 2014)	
Recovery simulation method	$q = \frac{2m}{n(n-1)}$ $k = \frac{2m}{n}$ $l_r = \frac{1}{n(n-1)} \cdot \sum_{i,j} d(v_i, v_j)$ $C_i = \frac{2E_i}{k_i(k_i - 1)}$ $BC(u) = \sum_{x \neq u \neq i} \frac{\sigma_{xi}(\mu)}{\sigma_{xi}}$ $R_i = \int_0^{T_{LC}} \frac{F_i(t)}{T_{LC}} dt \quad (i=1,2,3) ;$ $R = R_1 \cdot R_2 \cdot R_3$ $NSD_i(t) = \begin{cases} 1 & h_i(t) \geq h_{i0}(t) \\ \frac{h_i(t)}{h_{i0}(t)} & h_i(t) < h_{i0}(t) \end{cases} ;$ $SDI(t) = \sum_{i=1}^n w_i(t) NSD_i(t) ;$	(Yazdani et al., 2011; Torres et al., 2017) (Yazdani et al., 2011; Fang et al., 2017; Hwang et al., 2017) (Prose et al., 2016; Yazdani et al., 2012) (Prose et al., 2016) (Gathoklis et al., 2017) (Cimellaro et al., 2016) (Liu et al., 2020)	Adv.: Can reveal potential weak points in the network's structural level. Disad.: Remains at the static topological level, does not consider the system's functional attributes, and is difficult to capture the post-disaster dynamic recovery process. Adv.: Focuses on the system's dynamic recovery process after an earthquake. Disad.: Requires extensive hydraulic calculations, which are time-consuming, and only provides an overall assessment

$$RI = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} SDI(t) dt$$

without guidance for local optimization.

$$R = \frac{\sum_{i=1}^{N_s} \left(\frac{1}{2} \cdot \sum_{j=1}^{N_i} (1 - P_{ij}) \cdot Q_i \right)}{4 \cdot \sum_{i=1}^{N_s} Q_i} \quad (\text{Farahmandfer et al., 2016})$$

$$WSA_i = \sum_{n \in N} V_{nt} / \sum_{n \in N} V_{nt} ; \quad (\text{Long et al., 2025})$$

$$PI_t = \sum_{n \in N} POP_n \delta_{nt}; \quad \delta_{nt} = \begin{cases} 1 & \text{if } V_{nt}/V_{nt} < \tau \\ 0 & \text{otherwise} \end{cases}$$

108 In summary, while significant progress has been made in WDN resilience theory and methods, two
109 limitations remain: (1) Temporally, stage divisions inconsistent with actual earthquake processes fail to
110 accurately reflect the dynamic evolution of the entire seismic resilience process, especially lacking
111 quantitative analysis of adaptation during the long-term post-disaster enhancement stage; (2) Functionally,
112 mainstream indicator systems tend to be simplistic (Leštáková et al., 2023; Shuang et al., 2019), and no
113 quantitative indicator system for multi-stage resilience assessment has been established, preventing
114 comprehensive quantitative analysis of WDN seismic resilience and failing to meet the needs of disaster
115 prevention, mitigation, and system optimization.

116 To address these limitations, this study establishes a four-stage framework that encompasses the entire
117 seismic process of water distribution networks (WDNs), explicitly defining the onset, termination, and key
118 characteristics of each stage. On this basis, a multi-dimensional indicator system is developed to quantify the
119 seismic resilience of WDNs from multiple perspectives, including topological configuration, energy
120 redundancy, pipeline resistance, hydraulic service performance, and recovery duration. This framework
121 enables a systematic and refined assessment of resilience characteristics across all stages. Furthermore, this
122 study reveals the variations in resilience across different stages and applies the proposed framework to
123 support intervention decisions, thereby providing a scientific basis for optimizing network configuration and
124 enhancing urban disaster prevention and mitigation capacity.

125 **2 Four stages and resilience characteristics of WDNs in response to**

126 **earthquakes**

127 An examination of the entire damage and recovery process of water distribution networks (WDNs)
128 during past earthquakes reveals that network disruption and restoration are not “one-time events” but evolve
129 through multiple stages. For instance, after the 1995 Hanshin Earthquake, full water supply recovery in Kobe
130 City required approximately 90 days (Kuraoka et al., 1996). Following the 2008 Wenchuan Earthquake,
131 emergency water supply vehicles and temporary pipelines were deployed in the short term, while long-term
132 recovery involved network renovation, seismic standard upgrades, and personnel training. These
133 observations demonstrate that the manifestation of WDN seismic resilience is inherently dynamic, with

134 distinct characteristics, objectives, and dominant mechanisms at different stages of seismic disturbance.
135 Based on an in-depth analysis of WDN damage and recovery processes in twelve earthquake-affected cities—
136 including Mianzhu and Chengdu—this study categorizes the evolution of WDN functionality before and after
137 an earthquake into four sequential stages (Liu & Zhang, 2013), and define the resilience characteristics
138 corresponding to each stage.

139 **2.1 Pre-disaster preparedness stage: Preparedness**

140 The pre-disaster preparedness stage refers to the period prior to an earthquake, typically within one
141 year, during which measures such as developing seismic codes, reinforcing vulnerable pipelines, replacing
142 aging materials, stockpiling emergency supplies, and training repair personnel are implemented. During this
143 stage, WDN resilience is primarily reflected in preparedness, defined by Keim (2008) as “activities and
144 measures taken in advance to effectively respond to future disaster impacts.” Its essence lies in structural
145 rationality and resource availability. The system needs to identify critical vulnerable nodes and pipelines
146 through vulnerability assessment, and evaluate topological redundancy and energy reserve capacity.
147 Accordingly, this study defines preparedness as the system’s capacity to maintain functionality despite
148 failures of vulnerable components or insufficient energy, achieved through rational network topology and
149 sufficient energy reserves.

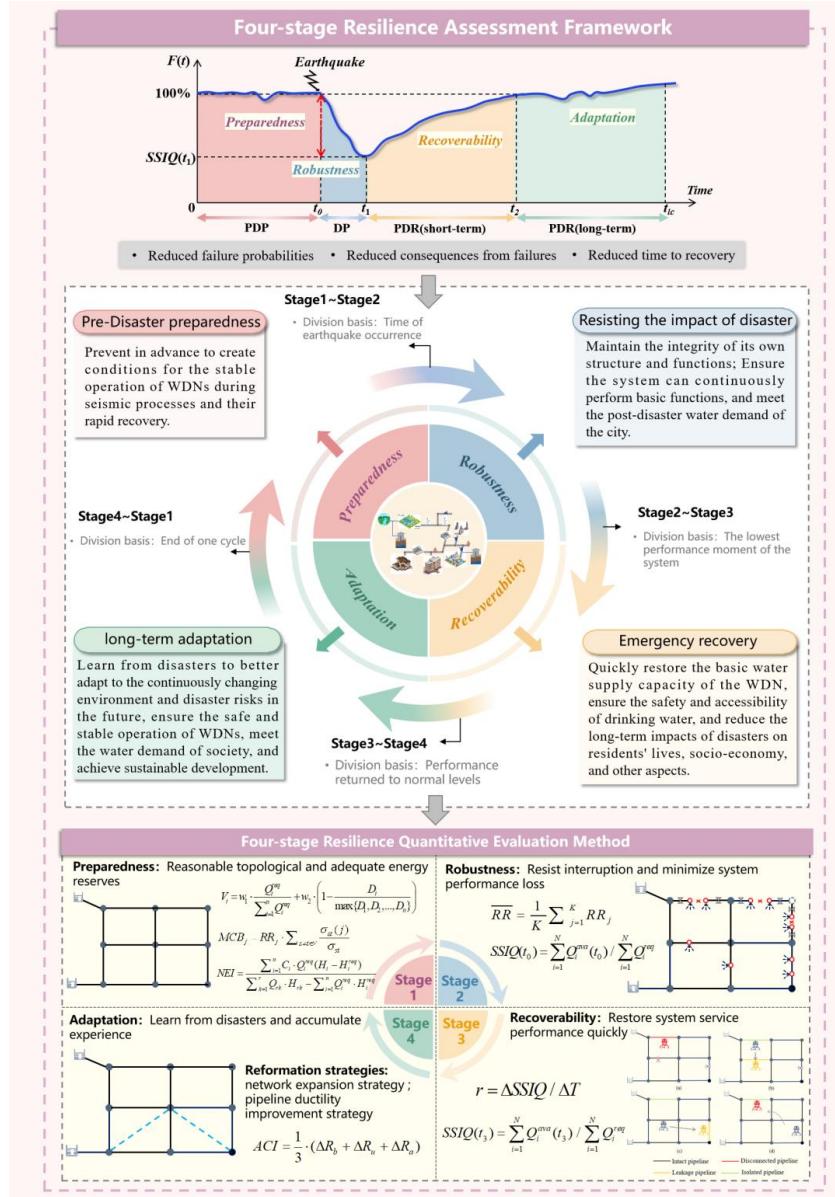
150 At the node level, a node importance index is proposed, accounting for local connectivity and water
151 demand proportion; nodes with high demand and low connectivity are identified as critical vulnerabilities.
152 At the system level, the Gini coefficient quantifies disparities in node vulnerability, with smaller values
153 indicating a more balanced and rational network structure. Resource redundancy is characterized by the
154 network’s remaining energy; higher energy availability reflects greater system resilience.

155 **2.2 In-disaster resistance stage: Robustness**

156 The in-disaster resistance stage occurs during the main earthquake and aftershocks, usually lasting from
157 several seconds to hours, during which WDNs performance undergoes drastic changes under seismic action,
158 typically showing varying degrees of decline. Pipelines, valves, instrumentation, and water treatment plant
159 structures experience seismic-induced displacements and deformations. Excessive deformation often causes
160 pipeline ruptures, joint leakage, and structural tilting or collapse. During this stage, WDN resilience is
161 primarily reflected in robustness, which highlights the system’s capacity to resist and absorb seismic impacts.
162 Its main objective is to minimize structural damage while maintaining service levels. Robustness is defined
163 as the WDN’s ability to withstand disruptions and minimize service performance loss under seismic loading.

164 Robustness relies not only on the seismic strength of individual components but also on the system’s
165 capacity to sustain operations under partial damage. To address this, spatial variability of ground motion and
166 intensity uncertainty are considered in WDN damage simulations. Evaluation indicators include average
167 pipeline seismic damage rate and post-disaster water supply satisfaction; superior performance in these
168 metrics reflects greater system robustness.

169 **2.3 Post-disaster recovery stage: Recoverability**


170 The post-disaster recovery stage starts from the end of the earthquake, this stage lasts approximately 3
171 days to 3 months (3d~12 weeks), with the goal of quickly restoring basic WDNs water supply capacity and
172 ensuring drinking water safety and accessibility. Typical measures include deploying emergency water
173 vehicles, installing temporary pipelines, and swiftly detecting and repairing leaks in critical pipelines. During
174 the post-disaster short-term recovery stage, WDN resilience is primarily reflected in recoverability,
175 highlighting the system's ability to rapidly restore service functions via component repair, resource allocation,
176 and operational adjustments. Recoverability is defined as the system's capacity to quickly return to pre-
177 disaster functional levels.

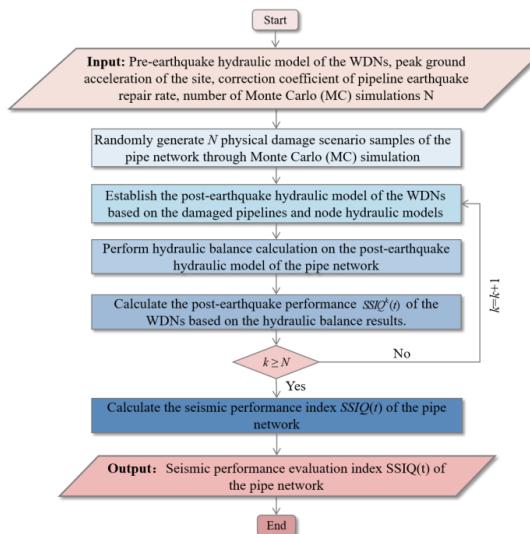
178 It focuses on meeting basic post-disaster urban water demand (to measure short-term recovery capacity),
179 rather than in-depth functional recovery or structural optimization. Recoverability is defined as the system's
180 capacity to quickly return to pre-disaster functional levels. Therefore, this study confines the short-term
181 recovery stage to restoration of pre-disaster service levels. Evaluation indicators include WDNs recovery rate
182 and service performance restoration, with faster recovery and higher restored performance indicating greater
183 system recoverability.

184 **2.4 Long-term enhancement stage: Adaptation**

185 Long-term enhancement stage begins after short-term recovery, this stage lasts several months to years
186 (typically 3 months to 3 years or longer). Objectives include full facility repair, replacement of damaged
187 pipelines, enhancement of seismic standards, increased network redundancy, improved system monitoring,
188 and personnel training. The long-term enhancement stage is characterized by adaptation. Adaptation
189 emphasizes the system's ability to learn from disasters and, aligned with urban reconstruction and
190 development planning, improve future seismic response through structural modifications and resource
191 upgrades. It is defined here as the ability of WDNs to strengthen future earthquake response by modifying
192 topology or augmenting energy reserves.

193 Adaptation primarily involves WDNs structural optimization and key component enhancement,
194 focusing on future risk mitigation and integration with urban development. Ductility enhancement and
195 network expansion strategies (Zhao et al., 2015) are employed to assess post-renovation changes in
196 preparedness, robustness, and recoverability, thereby quantifying WDN adaptation under various
197 interventions.

200 3 Quantitative method for four-stage resilience of WDNs


201 Based on the Chapter 2, a four-stage seismic resilience assessment framework for WDNs is proposed
 202 (Fig. 1). Across the four stages of earthquake response, WDNs exhibit resilience characteristics of
 203 preparedness, robustness, recoverability, and adaptation. Resilience quantification at each stage is conducted
 204 using indicators derived from WDN attributes, including topology, energy redundancy, pipeline unit strength,

205 hydraulic performance, and recovery time. The main components of the methodology are summarized as
 206 follows. The process of four-stage quantitative assessment can be specifically illustrated in Fig. 4.

207 3.1 Construction of earthquake damage scenarios

208 First, the post-disaster damage state of WDNs is determined using the WDN seismic fragility model and
 209 ground motion attenuation model. Monte Carlo Simulation (MCS) is employed to incorporate uncertainties
 210 in seismic damage. Finally, post-disaster WDN performance is assessed via hydraulic simulation results. The
 211 workflow is illustrated in Fig. 2.

212
 213 Fig. 2 Construction of earthquake damage scenarios

214 3.1.1 Seismic hazard analysis

215 Seismic hazard analysis involves scientifically assessing the potential seismic impact an engineering
 216 site may experience over future time horizons. Commonly applied approaches include deterministic and
 217 probabilistic methods. Probabilistic Seismic Hazard Analysis (PSHA) (Jayaram et al., 2010; McGuire, 2008)
 218 assumes that temporal, spatial, and intensity characteristics of future seismic events, as well as regional
 219 intensity levels, are inherently stochastic. Results are typically expressed as exceedance probabilities of site-
 220 specific intensity measures or ground motion parameters. This study employs the ground motion attenuation
 221 model by Toro et al. (1997) to compute the Peak Ground Acceleration (*PGA*) at each pipeline, as given by
 222 the following formula:

$$\ln PGA = 2.20 + 0.81 \cdot (M_w - 6) - 1.27 \ln \sqrt{R_{jb}^2 + 9.3^2} + 0.11 \cdot \max \left[\ln \left(\frac{\sqrt{R_{jb}^2 + 9.3^2}}{100}, 0 \right) \right] - 0.0021 \cdot \sqrt{R_{jb}^2 + 9.3^2} \quad (1)$$

223
 224 In the formula, *PGA* represents Peak Ground Acceleration (g); *M_w* is the moment magnitude; and *R_{jb}* denotes
 225 the shortest horizontal distance from the earthquake rupture.

226 **3.1.2 Seismic fragility model of pipelines**

227 A water distribution networks (WDNs) primarily comprises four components: water source,
228 transmission, distribution, and consumption. It includes water intake pumping stations, water transmission
229 pipelines, water treatment plants, water distribution pipelines, various valves and instruments, and other types
230 of structures. Among these components, the water distribution pipeline network accounts for the largest
231 proportion of the total assets of the entire WDN, usually approximately 60% to 80%. They are also the most
232 vulnerable components during seismic events. Accordingly, this study focuses only on pipeline damage,
233 neglecting impacts on secondary components such as pumping stations and valves.

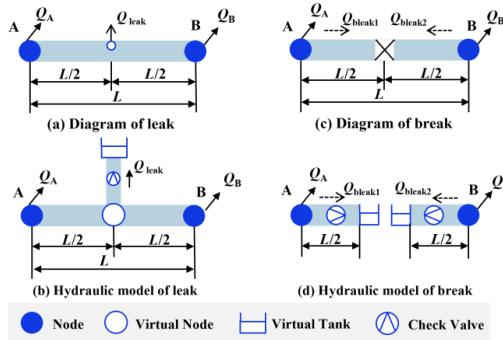
234 The fragility model of water distribution pipelines is usually obtained by fitting historical seismic
235 damage data. Damage is commonly quantified by the pipeline repair rate, defined as the number of damages
236 per kilometer under a given seismic intensity. This study adopts the calculation formula proposed by Isoyama
237 et al. (2000):

$$238 \quad RR_0 = 2.88 \times 10^{-6} \times (980 \times PGA - 100)^{1.97} \quad (2)$$

$$239 \quad RR = C_p \times C_m \times C_t \times C_l \times RR_0 \quad (3)$$

240 In the formula, RR represents the pipeline repair rate (locations per kilometer); C_p , C_m , C_t , and C_l represent
241 the correction coefficients related to pipeline diameter, pipeline material, terrain, and site liquefaction degree,
242 respectively, and their values please refer to literature (Isoyama et al., 2000).

243 Assuming that the number of damages occurring in each pipeline after an earthquake follows a Poisson
244 distribution along the pipeline length L , the probability of n damages occurring in a pipeline is given by:


$$245 \quad P(N_d = n) = \frac{(RR \times L)^n}{n!} \times e^{-RR \times L} \quad (4)$$

246 In the formula, N_d represents the number of damages occurring in the pipeline; L is the length of the pipeline
247 (km). Based on this formula, the probability of post-disaster pipeline damage can be derived as follows:

$$248 \quad P_d = 1 - P(N_d = 0) = 1 - e^{-RR \times L} \quad (5)$$

249 **3.1.3 Leakage model of water distribution networks**

250 This study assumes that pipeline damage types include two categories: leakage and breakage, accounting
251 for 80% and 20% of total damage, respectively. The leakage model for WDNs is illustrated in Figure 3. For
252 pipelines with leakage (Figure 3(a)), a virtual pipeline with a check valve is introduced at the damage site,
253 connecting a virtual node to a virtual reservoir (Figure 3(b)). For pipelines with breakage (Figure 3(c)), two
254 virtual reservoirs are installed at the break point, linked to Nodes A and B via pipelines with check valves.
255 Each connecting pipeline has a length of $L/2$, with diameter and material identical to the original pipeline AB
256 (Figure 3(d)). The elevation of the virtual reservoirs is the same as that of the pipeline break location.
257 Additional parameters are detailed in Reference (Han et al., 2020).

258

259 Fig. 3 Diagram and hydraulic model of pipeline damage

260 **3.2 Preparedness quantification**

261 First, key nodes and pipelines are identified using the node importance index (V_i) and betweenness
 262 centrality index (MCB_j). The Gini coefficient-based node homogeneity index (G_w) is employed to assess
 263 topological rationality and the disparity in node vulnerability. Second, available energy reserves are
 264 calculated to evaluate system redundancy. Finally, G_w and the energy index (NEI) serve as quantitative
 265 indicators of WDN preparedness.

266 Specifically, node importance is quantified from functional and structural perspectives, accounting for
 267 the node's water demand proportion and local connectivity. The node importance index (V_i) is calculated as
 268 follows:

$$269 \quad V_i = w_1 \cdot \frac{Q_i^{req}}{\sum_{i=1}^n Q_i^{req}} + w_2 \cdot \left(1 - \frac{D_i}{\max\{D_1, D_2, \dots, D_n\}} \right) \quad (6)$$

270 In the formula, V_i represents the importance index of Node i ; Q_i^{req} represents the basic water demand of
 271 node i ; n is the number of user nodes; D_i is the degree of node i , i.e., the number of pipelines connected to
 272 this node; w_1 and w_2 are weight coefficients with $w_1 + w_2 = 1$, which can be determined according to actual
 273 conditions and managers' requirements.

274 For the identification of key vulnerable pipelines, the assessment is conducted from two aspects:
 275 topology and pipeline resistance. The pipeline betweenness centrality index MCB_j , incorporating seismic
 276 hazard, is employed. Pipelines exhibiting high betweenness and high seismic damage probability are
 277 regarded as key vulnerable pipelines. The calculation formula is as follows:

$$278 \quad MCB_j = RR_j \cdot \sum_{s \neq t \in V} \frac{\sigma_{st}(j)}{\sigma_{st}} \quad (7)$$

279 In the formula, MCB_j represents the importance index of Pipeline j ; RR_j represents the seismic damage rate
 280 of Pipeline j under the current design-basis earthquake intensity; V is the set of all nodes in the topological
 281 structure of the water distribution network; σ_{st} is the number of shortest paths from Node s to Node t ; and
 282 $\sigma_{st}(j)$ is the number of shortest paths from Node s to Node t that pass-through Pipeline j .

283 At the network level, the Gini coefficient (G_w), derived from node importance, is employed to evaluate

284 network structural rationality. G_w ranges from 0 to 1; the closer G_w is to 0, values closer to 0 indicate more
 285 uniform node vulnerability and a more rational network structure. The G_w calculation is given by the
 286 following formula:

$$287 \quad G_w = \frac{1}{2N^2 \bar{V}} \sum_{i=1}^N \sum_{j=1}^N |V_i - V_j| \quad (8)$$

288 In the formula, N represents the total number of user nodes; V_i is the node importance of node i ; and \bar{V} is
 289 the average value of node importance across all user nodes.

290 System energy reserve is quantified using the Todini index, which accounts for pipeline diameter
 291 uniformity (Huang et al., 2025). Higher index values correspond to greater WDN energy reserves. The index
 292 is calculated as follows:

$$293 \quad NEI = \frac{\sum_{i=1}^n C_i \cdot Q_i^{req} (H_i - H_i^{req})}{\sum_{k=1}^r Q_{rk} \cdot H_{rk} - \sum_{i=1}^n Q_i^{req} \cdot H_i^{req}} \quad (9)$$

$$294 \quad C_i = \frac{\sum_{j \in P_i} d_j}{n_{pi} \cdot \max\{d_1, d_2, \dots, d_j\}} \quad (10)$$

295 In the formula, NEI represents the energy index considering pipeline diameter uniformity; H_i represents the
 296 actual water pressure at node i ; H_i^{req} represents the required water pressure at node i ; r is the number of water
 297 sources; Q_{rk} denotes the output water quantity of water source k ; H_{rk} is the total head of water source k ; C_i
 298 represents the uniformity coefficient; P_i represents the set of pipelines connected to node i ; d_j is the diameter
 299 of pipeline j (mm); and n_{pi} denotes the number of pipelines connected to Node i .

300 3.3 Robustness quantification

301 First, probabilistic seismic hazard analysis (PSHA) is applied to estimate the peak ground acceleration
 302 (PGA) at each pipeline location in the WDNs. Monte Carlo simulation (MCS) is then employed to account
 303 for seismic damage uncertainty, establishing a physical damage model for the WDN. The robustness of the
 304 WDNs is assessed from two perspectives: individual pipeline resistance and overall hydraulic service
 305 performance. Finally, two quantitative indicators are adopted: the average post-disaster pipeline seismic
 306 damage rate \overline{RR} and the system service water adequacy quotient at the initial post-disaster state, $SSIQ(t_1)$.

307 Specifically, for individual pipeline resistance, the seismic damage rate of each pipeline is first obtained
 308 using Eq. (3). Subsequently, the average seismic damage rate of all pipelines in the WDNs is then calculated
 309 as follows:

$$310 \quad \overline{RR} = \frac{\sum_{j=1}^K RR_j}{K} \quad (11)$$

311 In this formula, \overline{RR} represents the average seismic damage rate of the pipelines; K represents the total
 312 number of pipelines in the network; RR_j is the seismic damage rate of pipeline j , which is derived from Eq.
 313 (4).

314 To evaluate the post-disaster service performance of the WDNs, this study adopts the demand-based
315 performance indicator proposed by Liu et al. (2020). The water supply satisfaction indicator $SSIQ$ is defined
316 as the ratio between the total actual water delivered to all user nodes after a disturbance and the total baseline
317 demand under normal operating conditions. The indicator is defined as follows:

$$318 \quad SSIQ(t) = \frac{\sum_{i=1}^N Q_i^{ava}(t)}{\sum_{i=1}^N Q_i^{req}} \quad (12)$$

319 In this equation, $SSIQ$ represents the performance indicator of the WDNs at time t ; i represents the water-
320 demanding node i ; N is the total number of water-demanding nodes in the WDNs; Q_i^{ava} stands for the actual
321 water distribution volume at water-demanding node i at time t (L/s); Q_i^{req} represents the basic water demand
322 volume of water-demanding node i (L/s). This study assumes that the baseline water demand at each
323 consumption node remains constant and is unaffected by disturbances such as earthquakes. Under normal
324 pre-disaster conditions, the actual supply at each node equals its baseline demand, resulting in an initial water
325 supply satisfaction ($SSIQ_0$) of 1. Here, t_1 refers to the time when the WDNs performance drops to its lowest
326 point after the earthquake.

327 **3.4 Recoverability quantification**

328 In the short-term recovery stage, this study models only pipeline restoration, assuming that restoration
329 activities fall into three categories: isolation, replacement, and repair. First, the restoration sequence of
330 damaged pipelines is determined, followed by hydraulic simulations of the recovery process for the damaged
331 WDNs. Second, based on the simulated recovery process, the WDN's recovery extent and rate are evaluated.
332 Finally, two quantitative indicators are adopted to assess recoverability: (1) the water supply satisfaction
333 index, $SSIQ(t_3)$, representing WDN performance after three days of restoration, and (2) the network recovery
334 rate, r .

335 Specifically, for the restoration of broken pipelines, the damaged section is first isolated and then
336 replaced. In contrast, for leaking pipelines, only repair operations are needed to restore them to normal service
337 conditions. The restoration time of a pipeline is determined by both the type of damage and the pipeline
338 diameter, and it is calculated as follows:

$$339 \quad T = \begin{cases} 0.25 \cdot n_{value}, & \text{isolation} \\ 0.156 \cdot D^{0.719}, & \text{replacement} \\ 0.223 \cdot D^{0.577}, & \text{reparation} \end{cases} \quad (13)$$

340 In this equation, n_{value} denotes the number of isolation valves required for isolating broken pipelines.

341 Second, the restoration sequence of damaged pipelines has a direct impact on the recovery rate and
342 overall resilience of the system. In real post-disaster recovery processes of water distribution networks
343 (WDNs), various factors—such as the availability of maintenance resources and administrative directives—
344 introduce considerable uncertainty. Hence, this study adopts a simplified approach to simulate the recovery
345 process of WDNs, focusing on the recovery strategy determined by the static importance of each pipeline.

346 The static importance of a pipeline ($I_{s,j}$) is calculated as follows:

347

$$I_{s,j} = \frac{1}{T_j} (SSIQ_j - SSIQ_0) \quad (14)$$

348 In the formula, $I_{s,j}$ denotes the static importance index of pipeline j ; T_j represents the repair time of pipeline
349 j ; and $SSIQ_j$ is the water distribution network service performance index after the repair of pipeline j . It can
350 be inferred from the formula that $(SSIQ_j - SSIQ_0)$ stands for the improvement of the network service
351 performance brought by the repair of pipeline j , and this improvement is a key parameter reflecting the
352 importance of pipeline j . For two pipelines with the same improvement in network service performance, the
353 one with shorter repair time not only facilitates the promotion of subsequent pipeline repair work, but also
354 accelerates the improvement of the overall service performance of the system.

355 Finally, to quantify the recovery efficiency of the WDNs, the recovery rate is defined in this study as
356 the ratio of the service performance improvement value of the damaged network to the total recovery time
357 during the recovery process. The calculation formula for the WDN recovery rate r is as follows:

358

$$r = \frac{\Delta SSIQ}{\Delta T} \quad (15)$$

359 In the formula, $\Delta SSIQ$ denotes the service performance improvement value of the damaged water
360 distribution network during the post-disaster recovery stage; ΔT represents the total recovery time.

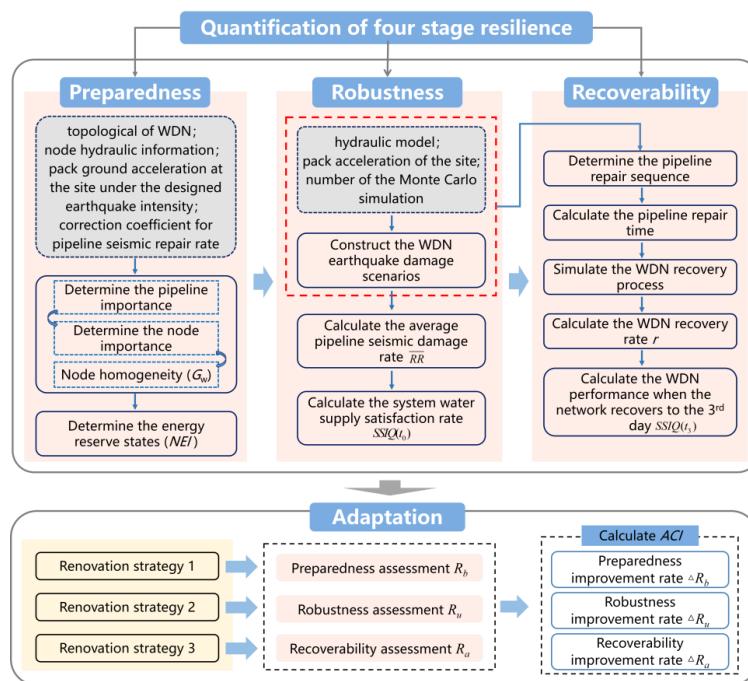
361 3.5 Adaptation evaluation

362 In this stage, based on the multi-dimensional evaluation indicators established in the previous three
363 stages, this study enhances the resilience of the WDNs from two perspectives: the network's topological
364 structure and the seismic resistance of its pipeline components. Specifically, two enhancement strategies are
365 implemented: a network expansion strategy and a pipeline ductility improvement strategy (Zhao et al., 2015).
366 Subsequently, seismic damage simulations are performed again on the WDN after the implementation of
367 these renovation measures to evaluate the network's resilience preparedness, robustness, and recoverability.
368 The total improvement in resilience indices across all stages serves as the criterion for assessing the
369 effectiveness of each renovation strategy. Finally, the average comprehensive improvement rate (ACI) of the
370 indicators is introduced as a measure of the overall adaptation of the WDNs.

371 Specifically, based on the network expansion and pipeline ductility improvement strategies, this study
372 implements three seismic retrofitting measures for the water distribution network: critical pipeline ductility
373 enhancement (S1), network expansion (S2), and combined retrofitting (S3). For each retrofitting measure,
374 the average comprehensive improvement rate (ACI) of each network indicator is calculated as follows:

375

376


$$\Delta R_k = \sum_{m=1}^M \theta_{k,m} \cdot C_m \cdot (1 - R_k^0) \quad k \in \{b, u, a\} \quad (16)$$

377

$$ACI = \frac{1}{3} \cdot (\Delta R_b + \Delta R_u + \Delta R_a) \quad (17)$$

378 In the formula, k represents the stage index(b is preparedness, u is robustness, a is recoverability); C_m
 379 represents the implementation intensity of retrofit measure m (S1,S2,S3) ; $\theta_{k,m}$ is the corresponding
 380 enhancement coefficient for stage k ; R_k^0 is the baseline resilience level, and $(1 - R_k^0)$ accounts for the remaining
 381 improvement potential; ACI represent the adaptation index, defined as the weighted sum of the improvement
 382 rates across all stages.

383

384 Fig. 4 Four-stage quantitative assessment flowchart

385 4 Case study

386 4.1 Overview of case networks

387 This study evaluates the proposed method through two case studies: a small-scale water distribution
 388 network (Jilin WDN) and a larger, more complex network (Mianzhu WDN) (Fig. 5). (1) Jilin WDN: It
 389 comprises 27 nodes, 34 distribution pipelines (average diameter: 266 mm), and a water treatment plant as the
 390 source. (2) Mianzhu WDN: It serves an area of approximately 25 km² and a population of about 80,000. After
 391 simplification, the WDN includes 107 pipelines, 78 nodes, and two water treatment plants. Water plant R1
 392 supplies an average of 16,000 tons of water daily, while water plant R2 supplies about 24,000 tons daily.
 393 Both WDNs use only two types materials: cast iron and plastic pipelines.

394

395

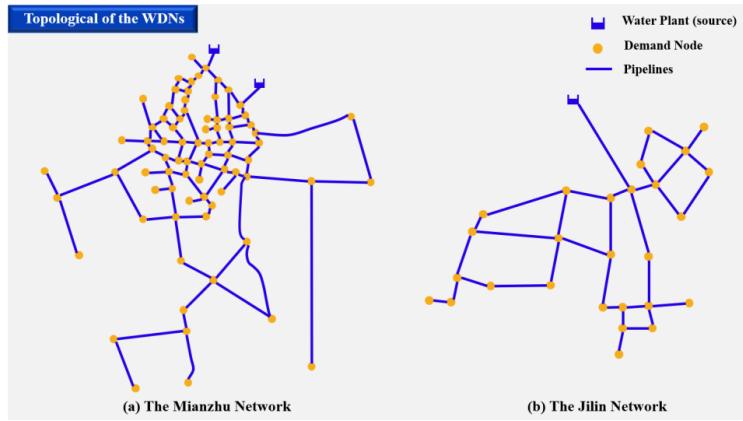


Fig. 5 Topology schematic of the case networks

396

397

4.2 Four-Stage seismic resilience assessment

4.2.1 Preparedness assessment

398

399

During the pre-disaster preparation stage, the importance index (V_i) of each node in both case WDNs was assessed using Eq. (6) under the assumption that $w_i=w_s$. The Gini coefficient (G_w) was employed to evaluate the homogeneity between the structural and functional importance of nodes within the entire network. The energy redundancy of the two WDNs was then verified, with results presented in Fig. 6. The key findings are as follows: (1) The Network Energy Index (NEI) for both Jilin and Mianzhu WDNs are similar, indicating comparable energy reserves. (2) At the system level, the Gini coefficient of Mianzhu WDN is significantly higher than that of Jilin WDN, indicating notable differences in node importance distribution. This suggests that Mianzhu WDN has many vulnerable nodes with high water demand but poor local connectivity, increasing its susceptibility to service disruptions during disasters. (3) The difference between the two indicator evaluation results indicates that solely considering system energy redundancy cannot significantly improve preparedness. Although the Mianzhu WDN shows a slight advantage in energy reserves, its network imbalance may still lead to local instability or water supply interruptions after an earthquake.

400

401

402

403

404

405

406

407

408

409

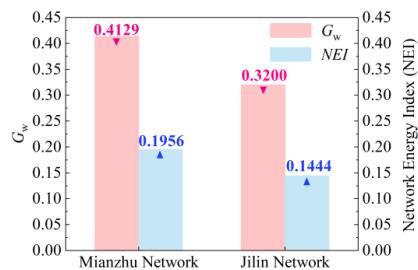


Fig. 6 Nodes homogeneity and energy redundancy of WDNs

410

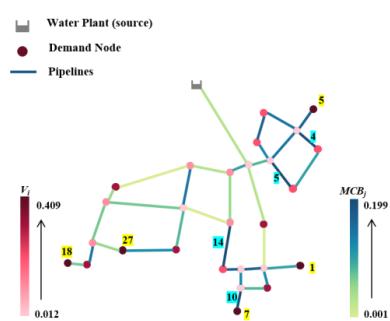
411

412

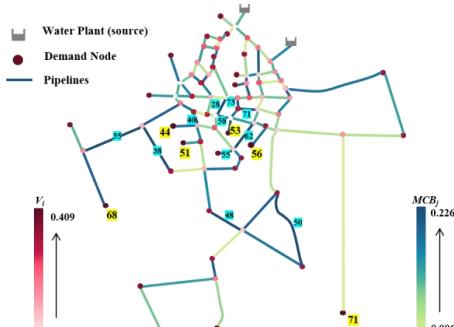
413

414

415

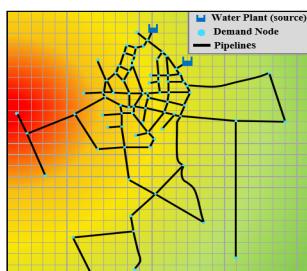

416

To further clarify the spatial distribution of critical components within the WDN and guide subsequent

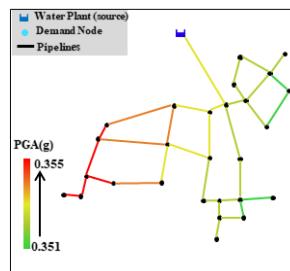

optimization decisions, Fig. 7 shows the spatial distribution of component importance in the two WDNs,

414 highlighting the key nodes and pipelines ranked within the top 10% of importance. In both WDNs, the key
 415 nodes are primarily located along the network periphery. Compared with other nodes, these peripheral ones
 416 have fewer pipeline connections and are more susceptible to service interruptions caused by seismic-induced
 417 pipeline damage. In the Mianzhu WDN, for instance, the water demands of Nodes 76 and 78 are 9.6 times
 418 higher than the network average (5.15 L/s), making them critical targets for optimization and maintenance.
 419 Identifying and reinforcing these vulnerable key components are essential for enhancing the overall seismic
 420 resilience of WDNs.

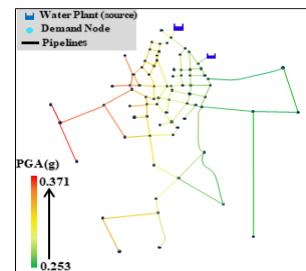
(a) The Jilin WDN



(a) The Mianzhu WDN


Fig. 7 Spatial distribution of WDNs component importance (The darker the color, the higher the importance of the component. For the identification of key pipelines, it is assumed that the current seismic fortification intensity is X)

421 4.2.2 Robustness assessment


422 In this study, seismic hazard analysis was conducted, incorporating the effect of spatial incoherence of
 423 the ground motion field, to determine the distribution of peak ground acceleration (PGA) along each pipeline.
 424 Figure 8(a) depicts the spatial distribution of the ground motion field at the Mianzhu WDN site, whereas
 425 Figures 8(b) and 8(c) show the corresponding PGA distributions for the Jilin and Mianzhu WDNs under a
 426 scenario earthquake of $M_w = 7.0$.

(a) spatially non-uniform ground motion field

(b) PGA Spatial Distribution of the Jilin WDN

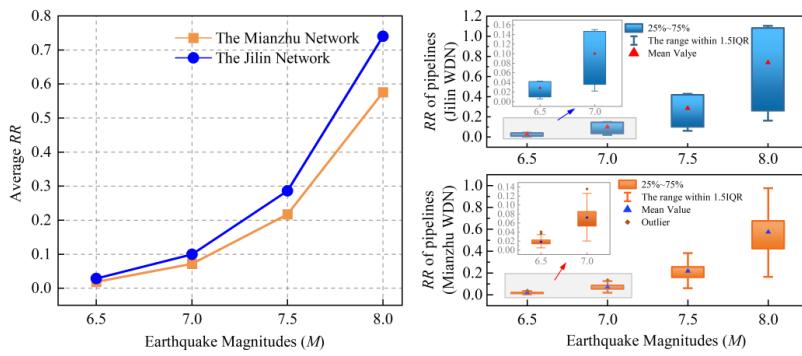

(c) PGA Spatial Distribution of the Mianzhu WDN

Fig. 8 Seismic Hazard Analysis of WDNs (The seismic source is located 20 km west of the network,

with a depth of 10 km)

427 Based on Eq. (10), the variation curves of the average seismic damage rate for the two case WDNs were
 428 obtained, as illustrated in Figure 9. It can be observed that the Jilin WDN exhibits a higher average seismic
 429 damage rate than the Mianzhu WDN, and the difference gradually increases with earthquake intensity. Under
 430 an Mw 8.0 earthquake, in particular, the average seismic damage rate of the Jilin WDN reaches 0.740, which
 431 is markedly higher than 0.576 for the Mianzhu WDN. This can be mainly attributed to the relatively smaller
 432 pipeline diameters in the Jilin WDN, which result in a higher overall seismic damage rate.

433
 434 Fig.9 Average seismic damage rate of pipelines under different magnitudes (The boxplot on the right
 435 shows the distribution of the seismic damage rate RR for each pipeline under different magnitudes)
 436 Furthermore, the Monte Carlo simulation method was employed to perform 200 earthquake damage
 437 scenarios for the two case WDNs. The water supply satisfaction index of the overall WDN in the initial post-
 438 disaster state ($SSIQ(t_0)$), together with that of each demand node (SIQ_i), was statistically analyzed. Fig. 10
 439 presents the post-disaster water supply satisfaction for the two WDNs. In terms of water supply performance,
 440 the satisfaction index of the Jilin WDN remains higher than that of the Mianzhu WDN across all earthquake
 441 magnitudes. According to the Guidelines for Seismic Resilience Assessment of Urban Engineering Systems
 442 (RISN-TG041-2022, 2022), a performance threshold of 0.45 was adopted for the WDNs in this study. It can
 443 be observed that when the earthquake magnitude exceeds 7.5, both the Jilin and Mianzhu WDNs lose their
 444 fundamental service functionality. At the nodal level, under small to moderate earthquakes, the water supply
 445 satisfaction indices in both WDNs are relatively concentrated. Under major earthquakes, however, the
 446 distribution becomes more dispersed, indicating larger performance disparities among nodes. Under an M_w
 447 8.0 earthquake, the mean nodal satisfaction falls below the median, indicating a pronounced degradation in
 448 overall service performance and a substantial proportion of low-performing nodes within the WDN.

449 The robustness assessment reveals a nonlinear relationship between pipeline resistance and system
 450 hydraulic performance. Although the Mianzhu WDN exhibits a lower average pipeline damage rate than the
 451 Jilin WDN, its post-earthquake hydraulic service performance ($SSIQ(t_0)$) is comparatively poorer. This
 452 indicates that system robustness depends not only on the seismic strength of individual pipelines but also on
 453 the system's overall ability to maintain flow distribution and pressure balance under damaged conditions.

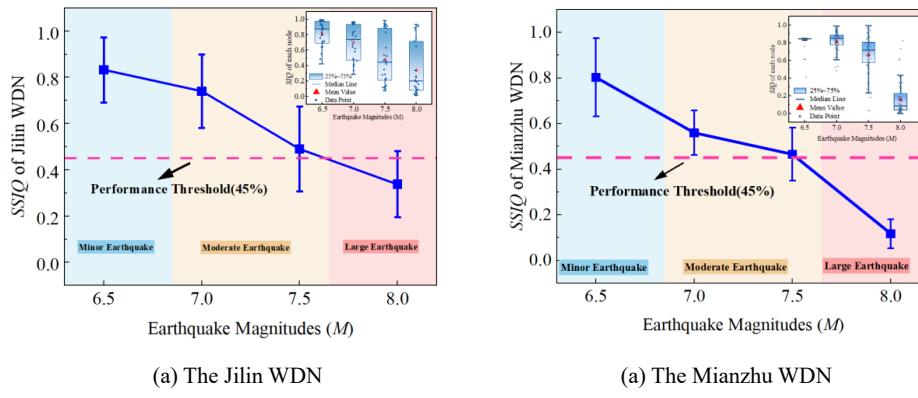


Fig. 10 Water supply satisfaction rate under different magnitudes

454 4.2.3 Recoverability assessment

455 To evaluate the recoverability of the WDNs, a function-based static importance restoration strategy was
 456 adopted to simulate the post-disaster recovery process of the damaged networks. The recovery rate (r),
 457 recovery time (RT), and water supply satisfaction index on the third day of recovery ($SSIQ(t_3)$) were
 458 statistically analyzed for both WDNs. The results are summarized as follows: (1) In terms of recovery rate
 459 (Figure 11), the Jilin WDN exhibits a markedly higher recovery rate than the Mianzhu WDN, and this rate
 460 decreases with increasing earthquake magnitude. Under an M_w 6.5 earthquake, the recovery rates of the two
 461 WDNs reach 1.5352 and 1.0067, respectively, both notably higher than those under the other three
 462 magnitudes. (2) Figure 12 illustrates the mean performance recovery curves and their one-standard-deviation
 463 confidence intervals for the Mianzhu and Jilin WDNs under seismic events of different magnitudes. Under
 464 an M_w 7.0 earthquake, both networks show a rapid rise in $SSIQ$ within 72 hours, reaching mean values above
 465 0.90, indicating that most service functionality can be restored within three days. Under an M_w 7.5 earthquake,
 466 the mean $SSIQ$ at 72 h decreases to about 0.6442 in Mianzhu and 0.9595 in Jilin, revealing a significant
 467 decline in short-term recovery efficiency due to more severe pipeline damage and prolonged restoration time.
 468 (3) The Mianzhu WDN presents wider uncertainty bands, particularly under the M_w 7.5 earthquake,
 469 suggesting greater variability and vulnerability in post-seismic recovery, which attributed to its complex
 470 topology and uneven redundancy. In contrast, the Jilin WDN exhibits narrower uncertainty ranges and higher
 471 $SSIQ(t_3)$, indicating more robust and predictable recovery performance.

472 The recovery-stage results indicate that the pre-disaster topological and energy conditions exert a
 473 significant feed-forward effect on post-disaster recovery capacity. Owing to its higher topological rationality
 474 and energy redundancy during the preparedness stage, the Jilin WDN achieves a markedly faster recovery
 475 rate (r) and higher water supply satisfaction ($SSIQ(t_3)$) than the Mianzhu WDN. This suggests that
 476 recoverability is not an independent stage-specific attribute but is jointly influenced by the system's pre-
 477 disaster preparedness and overall hydraulic performance.

478

479

480

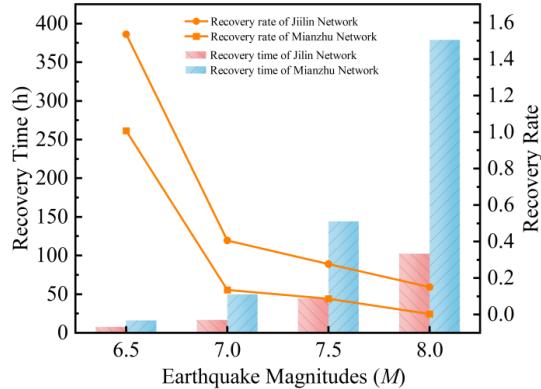


Fig. 11 The WDNs' recovery time and recovery rate under different magnitudes

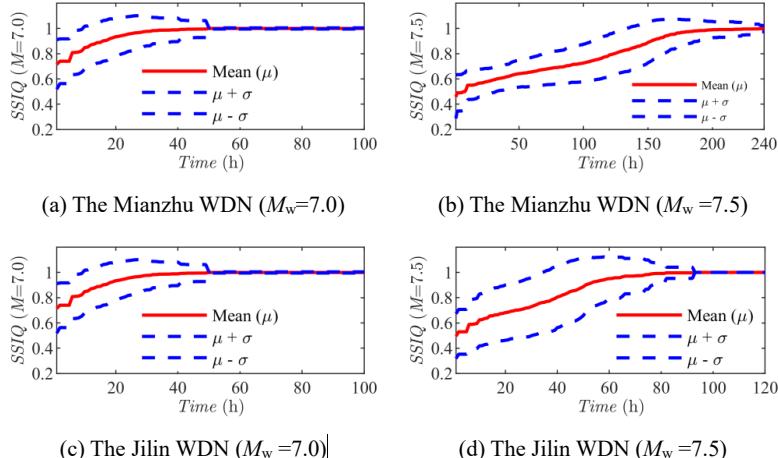
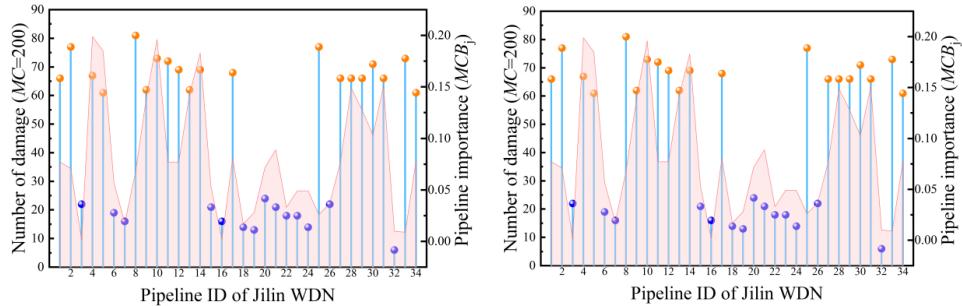


Fig. 12 Mean performance recovery curves and one standard deviation error bars of WDNs under different magnitudes

481 **4.2.4 Adaptation assessment**

482 In this study, two resilience enhancement strategies were implemented for the Jilin and Mianzhu WDNs:
483 a network expansion strategy and a pipeline ductility enhancement strategy. Specifically, three renovation
484 measures were applied to the case networks, as summarized in Table 2. Seismic damage simulations were
485 then re-conducted on the renovated WDNs, and the improvement of each resilience index under different
486 earthquake intensities was calculated to evaluate the adaptation of the enhancement strategies. Based on the
487 key components identified in the preparedness stage and the results of the robustness analysis, the damage
488 frequency of each pipeline in 200 Monte Carlo (MC) simulations was statistically analyzed, as illustrated in
489 Fig. 13. Subsequently, the ductility enhancement strategy was applied to key pipelines and those exhibiting
490 high failure probabilities (i.e., more than 50 failures in 200 simulations), while the network expansion

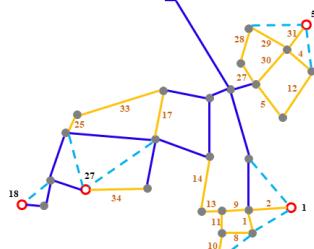
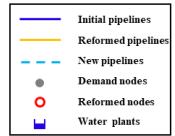


491 strategy was implemented for key nodes. The specific nodes and pipelines involved in the renovation are
 492 shown in Fig. 14.

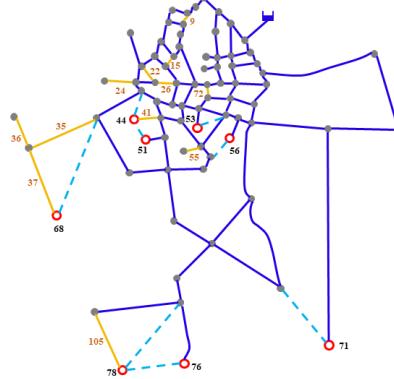
493 Table 2 Seismic retrofit strategies for WDNs

No.	Retrofit Measures	Remarks
S1	Pipeline Ductility Enhancement Strategy	The original pipeline diameters were increased by 50 mm, and the cast iron pipelines (CIP) were replaced with ductile iron pipelines (DIP)
S2	Network Expansion Strategy	Additional pipeline connections were established at key nodes, and all newly added pipelines were ductile iron pipelines (DIP)
S3	Combined Retrofit Strategy	The pipelines of key pipelines were replaced and enlarged by 50 mm in diameter, while additional connections were introduced at key nodes

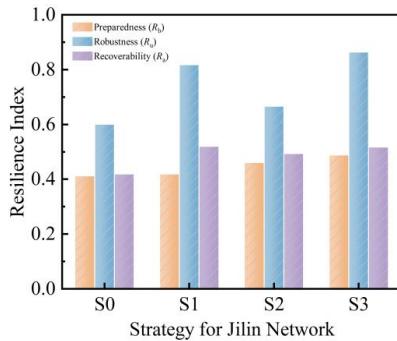
494

495 Fig. 13 Statistics on pipeline failure frequency
 496 (Orange indicates the pipelines that are involved in the renovation)


497 The resilience of the WDNs at each stage under different renovation measures is shown in Fig. 15. The
 498 main findings are summarized as follows: (1) Under the ductility enhancement strategy, the adaptation index
 499 (ACI) of the Jilin WDN is 0.2013, whereas that of the Mianzhu WDN is only 0.0042, indicating that this
 500 strategy exerts a significant positive effect on the Jilin WDN. (2) Under the network expansion strategy, the
 501 adaptation index of the Jilin WDN is 0.0622, while that of the Mianzhu WDN reaches 0.0976. Either the
 502 ductility enhancement or network expansion strategy alone produces limited improvements in both WDNs;
 503 however, the Mianzhu WDN exhibits a more pronounced enhancement under the network expansion strategy.
 504 (3) When the two strategies are implemented simultaneously, the adaptation index of the Jilin WDN reaches
 505 0.2785, while that of the Mianzhu WDN reaches 0.1396. It is evident that the combined retrofit strategy (S3)
 506 yields the greatest improvement in seismic resilience for the Jilin WDN, whereas its effect on the Mianzhu
 507 WDN remains relatively limited. (4) For the Mianzhu WDN, all three retrofit strategies exhibit limited effects
 508 on improving overall resilience. Nevertheless, implementing two strategies simultaneously provides better
 509 resilience enhancement than adopting a single strategy. This finding suggests that more tailored retrofit
 510 strategies should be developed to optimize seismic resilience based on the specific characteristics of different

511 WDNs.


(a) The Jilin Network

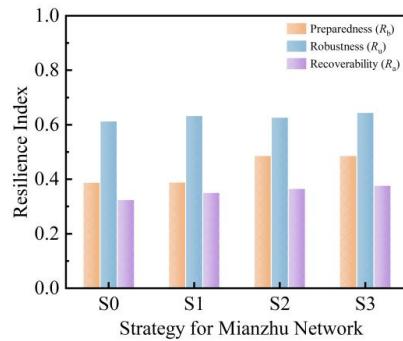

(b) The Mianzhu Network

Fig. 14 Schematic Diagram of Retrofit Nodes and Pipelines

512
513

(a) The Jilin WDN

(b) The Mianzhu WDN

Fig. 15 Resilience indices of WDN at various stages under different retrofit measures (S0 represents the resilience level of the initial WDNs)

514 5 Discussion

515 The proposed four-stage seismic resilience assessment framework for WDNs comprehensively captures
516 the dynamic evolution of seismic resilience. Within the proposed framework, the quantitative assessment of
517 preparedness, robustness, recoverability, and adaptation has been systematically achieved. The case studies
518 revealed distinct differences in the four resilience dimensions among different WDNs, as well as the
519 heterogeneous impacts of various retrofit strategies on enhancing seismic resilience. This framework offers
520 a novel perspective and a practical methodology for the seismic design and optimization of WDNs.

521 5.1 Rationality verification of the four-stage assessment framework

522 To further validate the rationality of the proposed assessment framework, the stage-wise resilience levels
523 of the two case WDNs were computed using a weighted summation of the stage-specific evaluation indices,

524 assuming equal weights for all indicators. These calculations were based on the results presented in Section
 525 4. In addition, the evaluation results were compared with those derived from the conventional single-index
 526 method based on the system functionality recovery curve. The formula for evaluating the seismic resilience
 527 of WDNs using the conventional method is expressed as follows:

$$528 \quad RI = \frac{1}{t_c - t_1} \int_{t_0}^{t_c} SSIQ(t)dt \quad (18)$$

529 In the formula, $SSIQ(t)$ represents the system performance function, with its specific calculation referring to
 530 Eq. (12); t_c represents the time at which the system performance recovers to the normal level; and t_1 is the
 531 time at which the restoration activities start.

532 When $M_w = 7.5$, the resilience levels of each stage are presented in Table 3. It can be observed that, under
 533 the four-stage assessment framework, the robustness of the Mianzhu WDN is slightly superior to that of the
 534 Jilin WDN. This result is consistent with that obtained using the traditional Resilience Index (RI) method,
 535 with calculation errors of 0.084 and 0.082, respectively. Although the two WDNs exhibit comparable overall
 536 seismic resilience levels based on the traditional RI metric, their stage-specific performances differ markedly
 537 under the proposed four-stage framework. The Jilin WDN demonstrates outstanding recoverability, and when
 538 both the ductility enhancement and network expansion strategies are implemented simultaneously, its
 539 adaptation index reaches a maximum value of 0.2785. In contrast, the Mianzhu WDN shows a marginal
 540 advantage in robustness but relatively weaker preparedness and adaptation, with corresponding gaps of
 541 0.0229 and 0.1389 compared to the Jilin WDN. Therefore, the proposed assessment framework can more
 542 comprehensively reveal the resilience disparities among different WDNs across the four seismic stages from
 543 a multi-attribute perspective. Compared with previous approaches that rely solely on a single hydraulic
 544 service performance indicator, this framework can explicitly characterize the resilience level of each seismic
 545 stage and provide a decision-making basis for subsequent stage-specific seismic retrofitting and optimization
 546 of WDNs.

547 Table 3 Four-Stage seismic resilience indices of WDNs ($M_w = 7.5$)

	Preparedness (R_b)	Robustness (R_u)	Recoverability (R_a)	Adaptation			RI	
				(R_n)				
				S1	S2	S3		
Jilin WDN	0.4122	0.6009	0.6181	0.2013	0.0622	0.2785	0.6567	
Mianzhu WDN	0.3893	0.6141	0.3688	0.0042	0.0976	0.1396	0.6688	

548 **5.2 Decision-Oriented paths for enhancing WDNs resilience**

549 Under the proposed four-stage assessment framework, this study further conducted an in-depth analysis
 550 of how the three renovation measures influence the preparedness, robustness, and recoverability of WDNs.
 551 Fig. 16 illustrates the resilience levels of the two case WDNs at each stage under different renovation
 552 measures when $M_w = 7.5$. The main findings are summarized as follows:

553 (1) The resilience enhancement effects of different renovation measures vary considerably among
 554 different WDNs. Overall, Renovation Measure S3 exhibits the best performance in enhancing the
 555 preparedness, robustness, and recoverability of both WDNs, with total improvement rates of 0.677 and 0.459,
 556 respectively. Specifically, for the Jilin WDN, the single pipeline ductility enhancement strategy (S1) yields
 557 greater improvements in the preparedness and robustness stages than the network expansion strategy (S2);
 558 whereas for the Mianzhu WDN, the network expansion strategy (S2) produces a more pronounced
 559 improvement in the preparedness stage (0.251). Therefore, the Jilin WDN is more suitable for adopting the
 560 pipeline ductility enhancement strategy (S1), whereas the Mianzhu WDN achieves more pronounced seismic
 561 resilience improvements under the network expansion strategy (S2).

562 (2) Different renovation measures exert varying influences on resilience enhancement across the four
 563 stages. For the Jilin WDN (Fig. 16(a)), under the S3 strategy, the improvements in preparedness and
 564 robustness reach 0.185 and 0.438, respectively, whereas the enhancement in recoverability is only 0.054. For
 565 the Mianzhu WDN (Fig. 16(b)), under the S2 strategy, the preparedness improvement reaches 0.251, which
 566 is markedly higher than the 0.002 obtained under the S1 strategy; and at the robustness and recoverability
 567 stages, the corresponding improvement values under the S3 strategy are 0.050 and 0.159, respectively.

568 Therefore, adopting differentiated renovation strategies tailored to the specific characteristics of each
 569 WDN is essential for optimizing seismic resilience. For the Jilin WDN, simultaneous implementation of the
 570 network expansion and ductility enhancement strategies (S3) can substantially enhance its robustness,
 571 whereas for the Mianzhu WDN, prioritizing the network expansion strategy (S2) can maximize the
 572 improvement in preparedness. These findings provide a scientific foundation and practical decision support
 573 for the seismic optimization and design of WDNs.

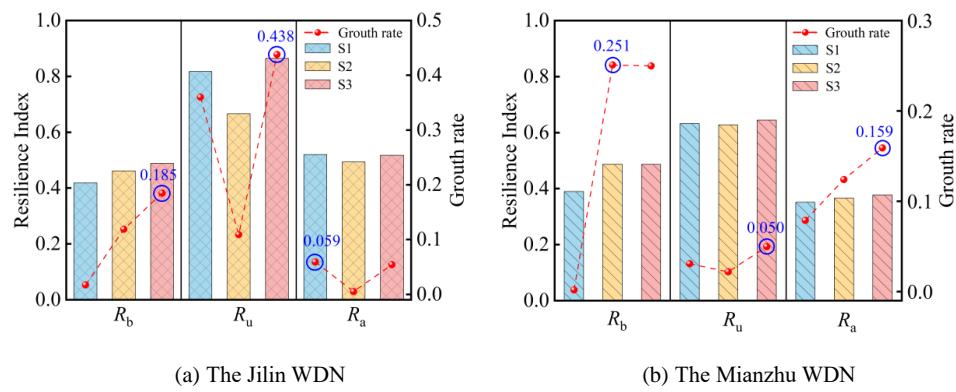


Fig. 16 The effect of four-stage resilience retrofit of Water Distribution Networks

574 **6 Conclusion**

575 In this study, a four-stage seismic resilience assessment framework for water distribution networks
 576 (WDNs) is developed from a temporal perspective. The framework enables quantitative analysis of both the

577 inherent disaster-response capacity of WDNs and their post-disaster learning and adaptation, while revealing
578 variations in the four resilience characteristics across different systems. Based on this framework, evaluation
579 indices for each stage were established by considering key attributes of WDNs, including topological
580 structure, energy reserves, pipeline resistance, hydraulic service performance, and recovery duration. The
581 proposed framework was then applied to two case studies—the Jilin and Mianzhu WDNs—to evaluate their
582 seismic resilience across the four stages. From this perspective, the study examined whether these systems
583 possess sufficient resilience and explored the effects of various seismic retrofitting measures on WDN
584 resilience at each stage, thereby providing socio-technical insights for the seismic optimization and design
585 of WDNs. Four-stage resilience assessment indicates that the seismic resilience of WDNs originates from the
586 synergistic evolution of multiple indicators and the dynamic coupling among different stages. The key
587 controlling factors at each stage are both independent and interrelated, suggesting that overall resilience
588 essentially emerges as a dynamic equilibrium among multiple interacting indicators. The main research
589 results are as follows:

590 (1) Under the four-stage seismic resilience assessment framework proposed in this study, the full process
591 of “pre-disaster preparedness – in-disaster robustness – post-disaster recoverability – long-term adaptation”
592 is integrated into a unified quantitative system for the first time. This framework effectively differentiates
593 resilience variations among WDNs that cannot be captured by traditional assessment methods, rendering the
594 evaluation more comprehensive and precise. It facilitates quantitative analysis of the four-stage resilience
595 characteristics of WDNs, enabling systematic evaluation of the networks’ preparedness, robustness,
596 recoverability, and adaptation. In particular, the adaptation assessment establishes a foundation for enhancing
597 the resilience of WDNs.

598 (2) Case studies indicate that different WDNs display distinct behaviors across the four resilience
599 characteristics; an advantage in one characteristic does not necessarily imply superiority in others. The
600 Mianzhu WDN exhibits an advantage in robustness, whereas the Jilin WDN markedly outperforms in
601 preparedness, recoverability, and adaptation. The stage-specific limitations identified by the framework
602 provide explicit targets for differentiated retrofitting interventions.

603 (3) Different seismic retrofitting measures exert distinct effects on enhancing resilience at each stage.
604 The pipeline ductility enhancement strategy (S1) produces the most pronounced improvement in the
605 robustness of the Jilin WDN; the network expansion strategy (S2) is the most effective in enhancing the
606 preparedness of the Mianzhu WDN; and the combined retrofitting measure (S3) achieves the maximum
607 overall benefit across all stages.

608 **CRediT authorship contribution statement**

609 Huiquan Miao: Writing – review & editing, Validation, Supervision, Resources, Methodology, Funding
610 acquisition, Conceptualization.
611 Ya’nan Liu: Writing – review & editing, Writing – original draft, Validation, Methodology,

612 Investigation, Formal analysis.
613 Benwei Hou: Validation, Supervision, Resources, Methodology, Conceptualization.
614 Jie Wei: Validation, Resources, Methodology.
615 Chengshun Xu: Writing – review & editing, Validation, Supervision, Resources, Project administration,
616 Methodology, Investigation, Funding acquisition, Conceptualization.
617
618

619 **Declaration of Competing Interest**

620 The authors declare that they have no known competing financial interests or personal relationships that
621 could have appeared to influence the work reported in this paper.
622

623 **Acknowledgment**

624 This work is supported by the National Natural Science Foundation of China (Grant No. 52478481,
625 52494962, 52494963) and the State Key Laboratory of Disaster Reduction in Civil Engineering (Grant No.
626 SLDRCE25-F-29).

627 **References**

628 American Lifelines Alliance (ALA). Seismic guidelines for water pipelines. FEMA, Washington DC, 2005.
629 Agathokleous, A., Christodoulou, C., Christodoulou, S.E. Topological robustness and vulnerability
630 assessment of water distribution networks. *Water Resour. Manage.*, 31, 4007–4021,
631 <https://doi.org/10.1007/s11269-017-1721-7>, 2017.
632 Assad, A., Moselhi, O., Zayed, T. A new metric for assessing resilience of water distribution networks. *Water*,
633 11, 1701, <https://doi.org/10.3390/w11081701>, 2019.
634 Bata, M.H., Carriveau, R., Ting, D.S.K. Urban water supply systems' resilience under earthquake scenario.
635 *Sci. Rep.*, 12, 20555, <https://doi.org/10.1038/s41598-022-23126-8>, 2022.
636 Bouziou, D., O'Rourke, T.D. Response of the Christchurch water distribution system to the 22 February 2011
637 earthquake. *Soil Dyn. Earthq. Eng.*, 97, 14–24, <https://doi.org/10.1016/j.soildyn.2017.01.035>, 2017.
638 Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., Shinozuka, M., Tierney,
639 K., Wallace, W.A., Winterfeldt, D.V. A framework to quantitatively assess and enhance the seismic
640 resilience of communities. *Earthq. Spectra*, 19, 733 – 752, <https://doi.org/10.1193/1.1623497>, 2003.
641 Caetano, J., Ferreira, B., Carrico, N., Covas, D. Redundancy-driven resilience in optimal design of water
642 distribution networks. *J. Water Resour. Plann. Manag.*, 151, 04025037,
643 <https://doi.org/10.1061/JWRMD5.WRENG-6613>, 2025.
644 Chen, B., Li, H., Sun, G. Seismic resilience assessment method and multi-objective optimal recovery strategy
645 for large-scale urban water distribution networks. *Int. J. Disaster Risk Reduct.*, 127, 105689,
646 <https://doi.org/10.1016/j.ijdrr.2025.105689>, 2025.
647 Cimellaro, G.P., Tinebra, A., Renschler, C., Fragiadakis, M. New resilience index for urban water distribution

648 networks. *J. Struct. Eng.*, 142, C4015014, [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001403](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001403),
649 2016.

650 Cimellaro, G.P., Villa, O., Bruneau, M. Resilience-based design of natural gas distribution networks. *J.*
651 *Infrastruct. Syst.*, 21, 05014005, [https://doi.org/10.1061/\(ASCE\)IS.1943-555X.0000204](https://doi.org/10.1061/(ASCE)IS.1943-555X.0000204), 2015.

652 Creaco, E., Franchini, M., Todini, E. The combined use of resilience and loop diameter uniformity as a good
653 indirect measure of network reliability. *Urban Water J.*, 13, 167–181,
654 <https://doi.org/10.1080/1573062X.2014.949799>, 2014.

655 Diao, K., Sweetapple, C., Farmani, R., Fu, G., Ward, S., Butler, D. Global resilience analysis of water
656 distribution systems. *Water Res.*, 106, 383–393, <https://doi.org/10.1016/j.watres.2016.10.011>, 2016.

657 Eidinger, J.M., Tang, A.K., Davis, C.A. Lushan, Sichuan Province, China, earthquake of 2013: lifeline
658 performance. ASCE, Reston, VA, <https://doi.org/10.1061/9780784413661>, 2014a.

659 Fang, Z., Li, X., Li, K. Modeling complexity in engineered infrastructure system: water distribution network
660 as an example. *Chaos*, 27, 023105, <https://doi.org/10.1063/1.4975762>, 2017.

661 Farahmandfar, Z., Piratla, K.R., Andrus, R.D. Resilience evaluation of water supply networks against seismic
662 hazards. *J. Pipeline Syst. Eng. Pract.*, 8, 04016014, [https://doi.org/10.1061/\(ASCE\)PS.1949-1204.0000251](https://doi.org/10.1061/(ASCE)PS.1949-1204.0000251), 2016.

664 Farahmandfar, Z., Piratla, K.R. Comparative evaluation of topological and flow-based seismic resilience
665 metrics for rehabilitation of water pipeline systems. *J. Pipeline Syst. Eng. Pract.*, 9, 04018001,
666 [https://doi.org/10.1061/\(ASCE\)PS.1949-1204.0000293](https://doi.org/10.1061/(ASCE)PS.1949-1204.0000293), 2018.

667 Han, Z., Ma, D., Hou, B., Wang, W. Seismic resilience enhancement of urban water distribution system using
668 restoration priority of pipeline damages. *Sustainability*, 12, 914, <https://doi.org/10.3390/su12030914>,
669 2020.

670 Hwang, H., Lansey, K. Water distribution system classification using system characteristics and graph-theory
671 metrics. *J. Water Resour. Plann. Manag.*, 143, 4017071, [https://doi.org/10.1061/\(ASCE\)WR.1943-5452.0000850](https://doi.org/10.1061/(ASCE)WR.1943-5452.0000850), 2017.

673 Huang, Y., Luo, B., Zhou, Q., Wang, Q., Zhao, Z. Novel surrogate measures for improving water distribution
674 systems' resilience via pipeline diameter uniformity enhancement. *Water Resour. Res.*, 61,
675 <https://doi.org/10.1029/2024WR038237>, 2025.

676 Isoyama, R., Ishida, E., Shirozu, T. Seismic damage estimation procedure for water supply pipelines. *Water
677 Supply*, 18, 63–68, 2000.

678 Jayaram, N., Baker, J.W. Efficient sampling and data reduction techniques for probabilistic seismic lifeline
679 risk assessment. *Earthq. Eng. Struct. Dyn.*, 39, 1109–1131, <https://doi.org/10.1002/eqe.988>, 2010.

680 Keim, M.E. Building human resilience: the role of public health preparedness and response as an adaptation
681 to climate change. *Am. J. Prev. Med.*, 35, 508–516, <https://doi.org/10.1016/j.amepre.2008.08.022>, 2008.

682 Kuraoka, S., Rainer, J.H. Damage to water distribution system caused by the 1995 Hyogo-ken Nanbu
683 earthquake. *Can. J. Civ. Eng.*, 23, 665–677, <https://doi.org/10.1139/196-872>, 1996.

684 Leštáková, M., Logan, K.T., Rehm, I.S., Pelz, P.F., Friesen, J. Do resilience metrics of water distribution
685 systems really assess resilience? A critical review. *Water Res.*, 248, 120820,
686 <https://doi.org/10.1016/j.watres.2023.120820>, 2024.

687 Liu, H., Housner, G.W., Xie, L., He, D. The great Tangshan earthquake of 1976. California Institute of
688 Technology, Earthquake Engineering Research Laboratory, <https://doi.org/10.7907/AFEE-X539>, 2002.

689 Liu, H., Shuang, Q., Porse, E. Review of the quantitative resilience methods in water distribution networks.
690 *Water*, 11, 1189, <https://doi.org/10.3390/w11061189>, 2019.

691 Liu, S., Zheng, X. Investigation Report on Seismic Damage and Emergency Response of Urban Water Supply
692 Systems in the Wenchuan Earthquake (in Chinese). Tongji University Press, Shanghai, 2013.

693 Liu, S., Lee, S., Judi, D.R., Parvania, M., Goharian, E., McPherson, T., Burian, S.J. A systematic review of
694 quantitative resilience measures for water infrastructure systems. *Water*, 10, 164,
695 https://doi.org/10.3390/w10020164, 2018.

696 Liu, W., Song, Z., Ouyang, M., Li, J. Recovery-based seismic resilience enhancement strategies of water
697 distribution networks. *Reliab. Eng. Syst. Saf.*, 203, 107101, https://doi.org/10.1016/j.ress.2020.107088,
698 2020.

699 Long, L., Pan, Z., Yang, H., Yang, Y., Liu, F. A multi-objective method for enhancing the seismic resilience
700 of urban water distribution networks. *Symmetry*, 17, 1105, https://doi.org/10.3390/sym17071105, 2025.

701 McGuire, R.K. Probabilistic seismic hazard analysis: early history. *Earthq. Eng. Struct. Dyn.*, 37, 329–338,
702 https://doi.org/10.1002/eqe.765, 2008.

703 Meng, F., Fu, G., Farmani, R., Sweetapple, C., Butler, D. Topological attributes of network resilience: a study
704 in water distribution systems. *Water Res.*, 143, 306–316, https://doi.org/10.1016/j.watres.2018.06.048,
705 2018.

706 Miao, H., Wang, N., Wang, Y., Lin, P. An urban resilience measurement system based on decomposing post-
707 disaster recovery process (in Chinese). *J. Nat. Hazards*, 30, 10–27,
708 https://doi.org/10.13577/j.jnd.2021.0102, 2021.

709 Nan, C., Sansavini, G. A quantitative method for assessing resilience of interdependent infrastructures. *Reliab.*
710 *Eng. Syst. Saf.*, 157, 35–53, https://doi.org/10.1016/j.ress.2016.08.013, 2017.

711 Ouyang, M., Dueñas-Osorio, L., Min, X. A three-stage resilience analysis framework for urban infrastructure
712 systems. *Struct. Saf.*, 36–37, 23–31, https://doi.org/10.1016/j.strusafe.2011.12.004, 2012.

713 Pei, S., Zhai, C., Hu, J., Song, Z. Two-stage resilience evaluation for healthcare networks from the adaptation
714 and recoverability perspective. *Nat. Hazards Rev.*, 26, 02025002,
715 https://doi.org/10.1016/j.ijdrr.2023.104019, 2025.

716 Porse, E., Lund, J. Network analysis and visualizations of water resources infrastructure in California: linking
717 connectivity and resilience. *J. Water Resour. Plann. Manag.*, 142, 4015041,
718 https://doi.org/10.1061/(ASCE)WR.1943-5452.0000556, 2016.

719 Prasad, T.D., Park, N.S. Multiobjective genetic algorithms for design of water distribution networks. *J. Water*
720 *Resour. Plan. Manag.*, 130, 73–82, https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(73), 2004.

721 Ravanagh, S.N., Jamali, S., Vaniar, A.M. Multi-infrastructure energy systems resiliency assessment in the
722 presence of multi-hazard disasters. *Sustain. Cities Soc.*, 79, 103687,
723 https://doi.org/10.1016/j.scs.2022.103687, 2022.

724 RISN-TG041-2022. Guidelines for seismic resilience assessment of urban engineering systems (in Chinese).
725 China Architecture & Building Press, Beijing, 2022.

726 Sakai, H. Review of research on performance indicators for water utilities. *Aqua—Water Infrastruct. Ecosyst.*
727 *Soc.*, 73, 167–182, https://doi.org/10.2166/aqua.2024.224, 2024.

728 Scawthorn, C., O'Rourke, T.D., Blackburn, F.T. The 1906 San Francisco earthquake and fire—enduring
729 lessons for fire protection and water supply. *Earthq. Spectra*, 22, 135–158,
730 https://doi.org/10.1193/1.2194520, 2006.

731 Selicato, L., Pagano, A., Esposito, F., Icardi, M. Topological data analysis for resilience assessment of water
732 distribution networks. *Math. Comput. Simul.*, 231, 62–70,
733 https://doi.org/10.1016/j.matcom.2024.12.001, 2025.

734 Shin, S., Lee, S., Judi, D.R., Parvania, M., Goharian, E., McPherson, T., Burian, S.J. A systematic review of
735 quantitative resilience measures for water infrastructure systems. *Water*, 10, 164,
736 https://doi.org/10.3390/w10020164, 2018.

737 Song, Z., Liu, W., Shu, S. Resilience-based post-disaster recovery optimization of water distribution networks.

738 Int. J. Disaster Risk Reduct., 74, 102934, <https://doi.org/10.1016/j.ijdrr.2022.102934>, 2022.

739 Sun, L., Didier, M., Dele, E., Stojadinovic, B. Probabilistic demand and supply resilience model for electric
740 power supply system under seismic hazard. University of British Columbia, Vancouver,
741 <https://dx.doi.org/10.14288/1.0076148>, 2015.

742 Sun, L., Stojadinovic, B., Sansavini, G. Agent-based recovery model for seismic resilience evaluation of
743 electrified communities. Risk Anal., 39, 2540–2559, <https://doi.org/10.1111/risa.13277>, 2019.

744 Shuang, Q., Liu, H., Porse, E. Review of the quantitative resilience methods in water distribution networks.
745 Water, 11, 1189, <https://doi.org/10.3390/w11061189>, 2019.

746 Takada, S., Hassani, N. Lifeline earthquake engineering. University of Tokyo Press, Tokyo, 1992.

747 Tang, A.K., Eidinger, J.M. Chile earthquake of 2010: lifeline performance. ASCE, Reston, VA,
748 <https://doi.org/10.1061/9780784412824>, 2013.

749 Tang, A.K. Wenchuan, Sichuan Province, China, earthquake of 2008: lifeline performance. ASCE, Reston,
750 VA, <https://doi.org/10.1061/9780784413333>, 2014b.

751 Todini, E. Looped water distribution networks design using a resilience index based heuristic approach.
752 Urban Water, 2, 115–122, [https://doi.org/10.1016/S1462-0758\(00\)00049-2](https://doi.org/10.1016/S1462-0758(00)00049-2), 2000.

753 Torres, J.M., Dueñas-Osorio, L., Li, Q., Yazdani, A. Exploring topological effects on water distribution
754 system performance using graph theory and statistical models. J. Water Resour. Plann. Manag., 143,
755 04016068, [https://doi.org/10.1061/\(ASCE\)WR.1943-5452.0000709](https://doi.org/10.1061/(ASCE)WR.1943-5452.0000709), 2017.

756 Toro, G.R., Abrahamson, N.A., Schneider, J.F. Model of strong ground motions from earthquakes in central
757 and eastern North America: best estimates and uncertainties. Seismol. Res. Lett., 68, 41–57,
758 <https://doi.org/10.1785/gssrl.68.1.41>, 1997.

759 Woolf, S., Twigg, J., Parvania, M., Goharian, E., McPherson, T., Burian, S.J. Towards measurable resilience:
760 A novel framework tool for the assessment of resilience levels in slums. Int. J. Disaster Risk Reduct.,
761 19, 280–302, <https://doi.org/10.1016/j.ijdrr.2016.08.003>, 2016.

762 Xu, Z., Chopra, S.S. Network-based assessment of metro infrastructure with a spatial–temporal resilience
763 cycle framework. Reliab. Eng. Syst. Saf., 223, 108434, <https://doi.org/10.1016/j.ress.2022.108434>,
764 2022.

765 Yazdani, A., Jeffrey, P. Water distribution system vulnerability analysis using weighted and directed network
766 models. Water Resour. Res., 48, W06517, <https://doi.org/10.1029/2012WR011897>, 2012.

767 Yazdani, A., Otoo, R.A., Jeffrey, P. Resilience enhancing expansion strategies for water distribution systems:
768 a network theory approach. Environ. Model. Softw., 26, 1574–1582,
769 <https://doi.org/10.1016/j.envsoft.2011.07.016>, 2011.

770 Yu, X., Wu, Y., Meng, F., Zhou, X., Liu, S., Huang, Y., Wu, X. A review of graph and complex network theory
771 in water distribution networks: mathematical foundation, application and prospects. Water Res., 253,
772 121238, <https://doi.org/10.1016/j.watres.2024.121238>, 2024.

773 Zhang, J., Li, Y., Yuan, H., Du, G., Zhang, M. A demand-based three-stage seismic resilience assessment and
774 multi-objective optimization method of community water distribution networks. Reliab. Eng. Syst. Saf.,
775 250, 110279, <https://doi.org/10.1016/j.ress.2024.110279>, 2024.

776 Zhang, W., Wang, N., Nicholson, C., Tehrani, M.H. A stage-wise decision framework for transportation
777 network resilience planning. Reliab. Eng. Syst. Saf., 172, 135–145,
778 <https://doi.org/10.1016/j.ress.2017.11.024>, 2018.

779 Zhao, X., Chen, Z., Gong, H. Effects comparison of different resilience enhancing strategies for municipal
780 water distribution network: a multidimensional approach. Math Probl. Eng., 438063,
781 <https://doi.org/10.1155/2015/438063>, 2015.

782 Zong, C., Ji, K., Wen, R., Bi, X., Ren, Y., Zhang, X. Seismic resilient three-stage enhancement for gas

783 distribution network using computational optimization algorithms. *Soil Dyn. Earthq. Eng.*, 152, 107057,
784 <https://doi.org/10.1016/j.soildyn.2021.107057>, 2022.