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Abstract. Hydrologic models are often calibrated only using streamflow, but increasing availability of in situ and satellite 

based observations provide numerous opportunities to constrain model outputs and improve process representation. 

However, as new observation data emerges, it is often unclear whether calibration with additional data would inform or 

misinform streamflow prediction. Here, we carry out a multi-observational sensitivity and uncertainty analysis using the U.S. 15 

Geological Survey’s National Hydrologic Model (NHM) in four headwater catchments in the Upper Colorado River Basin. 

We use seven different observational data products that pertain to discharge, snow water equivalent, snow-covered area, soil 

moisture, and evapotranspiration. Informative model parameters are identified using the Morris screening method across all 

data sets, followed by parameter estimation and streamflow performance assessment using a Latin Hypercube Sample 

Monte-Carlo filtering approach. Results show that an increased number of informative parameters are determined through 20 

the screening process with the use of observation data representing terms beyond streamflow, and that forcing corrections 

and rain-snow partitioning parameters are particularly impactful to the model fit to observations. Multi-objective Monte 

Carlo filtering reduces the number of behavioral parameter sets, and estimated parameter values can depend strongly on the 

observation data criteria. Evapotranspiration is informative for streamflow prediction across all catchments included in this 

study, but snow and soil moisture datasets are only informative in some. These results provide new insight into the variable 25 

value of alternative observation data for streamflow prediction and highlight challenges related to model/observation scale 

mismatches, compensating errors, and misinformative data. 

1 Introduction 

Improved scientific understanding of hydrologic processes, the growth of observational data, and advancements in 

computational power have led to the development of complex, spatially distributed hydrologic models (Beven, 1996; Gupta 30 
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et al., 1998). These models help provide essential services to the public, such as water supply forecasting (Gorski et al., 

2025), flood forecasting (Emerton et al., 2016; Hogue et al., 2000), drought monitoring (Hao et al., 2017; Pendergrass et al., 

2020), and analysis of the impact of climate variability (Christensen et al., 2004). In the western United States, the Colorado 

River Basin is of particular interest because it provides an invaluable resource for 40 million inhabitants across several 

metropolitan and agricultural areas, and it is particularly vulnerable to climate variability and drought (Nash & Gleick, 1991; 35 

Wheeler et al., 2022). Mountainous headwater catchments provide up to 92% of the total annual runoff for the entire Upper 

Colorado River Basin (UCRB) (Lukas & Payton, 2020); therefore, long term forecasting and climate related modeling in this 

domain is of particular interest to government agencies, water managers, and water rights holders. The value of hydrologic 

forecasts depends largely on how well the model performs with respect to observations; generally, model evaluation is 

carried out retrospectively to assess this. Long term discharge records (Q) are often the primary, if not only, observation 40 

against which hydrologic models are calibrated (Gupta et al., 1998; Mei et al., 2023). In recent decades, several different data 

products have emerged from satellite based or airborne missions, measuring or estimating variables such as soil moisture 

(SM), actual evapotranspiration (AET), snow-covered area (SCA), and snow water equivalent (SWE). These alternative 

observations have the potential to improve modeled streamflow performance when used to enhance model calibration; 

however, their inclusion has uncertain outcomes (Herrera et al., 2022).  45 

 

Process based hydrologic models simulate several hydrologic processes and output time series of the state variables, which 

provides an avenue to compare with alternative observations. It has been widely reported that the use of gridded AET 

products improves streamflow performance when used in calibration (Dembélé et al., 2020; Huang et al., 2020; X. Liu et al., 

2022; Livneh & Lettenmaier, 2012; Mei et al., 2023). Soil moisture (Mei et al., 2023; Oubeidillah et al., 2019) and terrestrial 50 

water storage (Hasan et al., 2025; Rakovec et al., 2016) have also been found to be informative. However, some studies have 

shown that in other cases, SM and AET can be misinformative or require bias correction depending on the product used 

(Kunnath-Poovakka et al., 2016; Széles et al., 2020). While in situ SWE observations have been shown to be informative for 

streamflow modeling in snow-dominated catchments (Livneh & Badger, 2020), there are several challenges associated with 

snowpack modeling, especially when semi-lumped model outputs are compared to point-scale measurements (Cho et al., 55 

2022; Gelfan et al., 2004; Lundquist et al., 2013; Mazzotti et al., 2023). Remotely sensed SWE from the Airborne Snow 

Observatory (ASO) program has emerged within the last decade (Painter et al., 2016), with spatial patterning results that 

suggest in situ SWE observations are often not representative of the surrounding landscape (Herbert et al., 2024). 

 

Multi-observational calibration studies have shown that streamflow prediction performance varies between datasets or 60 

combinations of multiple datasets (McCabe et al., 2005; Mei et al., 2023), and the results can depend on the catchment scale 

(Livneh & Lettenmaier, 2012). Uncertainties associated with calibration data can result in vastly different parameter 

estimates (Bárdossy & Singh, 2008), resulting in deleterious effects in flood hazard forecasting (Balbi & Lallemant, 2023), 

peak flow estimates (Bárdossy & Anwar, 2023), and climate change studies (Marshall et al., 2021). It has long been noted 

https://doi.org/10.5194/egusphere-2025-5815
Preprint. Discussion started: 4 January 2026
c© Author(s) 2026. CC BY 4.0 License.



3 

 

that observation quality is an important source of uncertainty in multi-objective calibration (Gupta et al., 1998). These 65 

challenges underscore the importance of developing multi-objective calibration, uncertainty quantification, and diagnostic 

procedures for models (Gupta et al., 2008).  

 

Calibration and uncertainty analysis requires sampling parameters at a high density; however, this can become 

computationally expensive for models with many parameters and long run times (Razavi et al., 2021). Thus, a type of 70 

sensitivity analysis, parameter screening, often precedes further analysis to identify informative/highly sensitive parameters 

(Pianosi et al., 2016; Saltelli et al., 2019). Screening out non-informative parameters reduces the dimensions of the parameter 

space, which reduces sample sizes and computational demand. Keeping in mind the goal of calibration or uncertainty 

quantification, objective functions can be used in a sensitivity analysis, referred to as “identifiability analysis” when 

sensitivity is assessed relative to an objective function, following the terminology of Gupta & Razavi (2018). The value of 75 

alternative observations in an identifiability analysis context is relatively unexplored, and multi-objective methods are only 

briefly discussed in the most recent reviews (Pianosi et al., 2016; Song et al., 2015).  

 

Model structures and spatiotemporal simplifications rely on parameters to account for unresolved or unobserved physics 

when calibrated to observations (Pathiraja et al., 2016). This introduces uncertainty since many parameter sets may return 80 

simulations with acceptable performance, known as equifinality, or getting the “right answer for the wrong reason” (Beven 

& Freer, 2001; Kirchner, 2006). The advent of remotely sensed observation products allows the conditioning of multiple 

model state variables rather than just streamflow, and various multi-objective approaches have demonstrated improvements 

in streamflow performance and reduced model uncertainty (Choi & Beven, 2007; Dembélé et al., 2020; Y. Liu et al., 2012; 

Shafii et al., 2015; Vrugt et al., 2005). Computational resources in recent decades have permitted the development of large 85 

domain, physically based modeling infrastructure such as the North American Land Data Assimilation System (Mitchell et 

al., 2004), National Oceanic and Atmospheric Administration  national water model (J. M. Johnson et al., 2023) and the U.S. 

Geological Survey (USGS) national hydrologic model (NHM) (Regan et al., 2019). These models are built to support 

nationwide water prediction initiatives and have been subject to extensive calibration (Hay et al., 2023; Nassar et al., 2025). 

However, there is a remaining need to assess whether alternative observations are informative to streamflow prediction, 90 

especially as more data products become available. For example, gridded soil moisture observations from the Soil Moisture 

Active Passive (SMAP) satellite mission, lidar based snow depth observations, and new evapotranspiration products could 

be used to assess the USGS NHM (Hay et al., 2023), but have not previously been applied in this context.  

 

In this study, we present a multi-observational  sensitivity and uncertainty analysis  that leverages seven publicly available 95 

observation datasets. We employ a newly developed python package by the USGS, pywatershed, to run a process based, 

semi-distributed hydrologic model in four headwater catchments in the UCRB. Our approach begins with a screening 

method to identify informative parameters for each dataset. The informative parameters are carried into a Latin Hypercube 
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Sampling (LHS) design to assess parameter estimation and streamflow performance using a Monte-Carlo filtering approach. 

The remotely sensed products used for model evaluation are SM from the soil moisture active passive (SMAP) mission, 100 

airborne lidar SWE from ASO, snow-covered area from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

satellite based product, and evapotranspiration from the OpenET project. We also include in situ measurements of SM, 

SWE, and Q to examine the outcomes of in situ versus remotely sensed observations. The SMAP, ASO, and OpenET 

products are relatively new, and studies incorporating both multi-variable and multi-dataset objectives remain rare. Three 

research questions guide this work: 105 

1. How does the use of alternative observations in sensitivity analysis impact the outcomes of parameter 

screening? 

2. How does the use of alternative observations in model calibration affect parameter estimation and 

streamflow prediction? 

3. Are the findings consistent among different UCRB headwater catchments? 110 

2 Methods 

2.1 Selected hydrologic model 

The distributed parameter hydrologic model used in this study is the US Geologic Survey’s pywatershed. It is the successor 

of the Precipitation Runoff Modeling System (PRMS) (Leavesley et al., 1983; Markstrom et al., 2015). Pywatershed is a 

python package with the goal of modernizing legacy software and increasing flexibility. As is the case for PRMS, 115 

pywatershed is a deterministic, distributed parameter, physical process based hydrologic model. The modeling domain is 

discretized into hydrologic response units (HRUs) that are delineated through a variety of topographic, geologic, and 

climatologic factors. Each HRU is modeled as a homogenous unit, where energy and mass balances are computed at 12 hr 

and 24 hr timesteps, respectively. The simulated hydrologic response is conceptualized through a series of storage reservoirs 

(such as snowpack or the soil zone), stream segments, lakes, and fluxes between them.  120 

 

PRMS is the primary component of the USGS National Hydrologic Model, a modeling system over the conterminous United 

States (CONUS) that includes a database of parameters and climate inputs (Regan et al., 2018, 2019). Extracts of the NHM 

are used to provide baseline parameter and climate input files specific to our watersheds of interest. Pywatershed requires 

three daily climatologic inputs for each HRU: minimum temperature, maximum temperature, and precipitation (Markstrom 125 

et al., 2015). The climate-by-HRU files sourced from the NHM are developed using the 1 km Daymet product (Thornton et 

al., 2016).   

 

Pywatershed contains 145 parameters pertaining to hydrologic processes and HRU attributes. Parameters that represent 

geographic information, boundary conditions, or model configurations are considered “non-calibration” parameters and are 130 
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not modified from their initial values (Viger, 2014). Based on four recent PRMS sensitivity and calibration studies, we 

selected 51 calibration parameters (Douglas-Mankin & Moeser, 2019; Hay et al., 2023; Markstrom et al., 2016; Mei et al., 

2023). Of these 51 parameters, four snow albedo parameters are included only in the present study and are marked in table 

S1. These parameters are included because radiative forcing is an important process in snowpack modeling, especially for 

wildfire related studies (Gleason et al., 2019; Maxwell & St Clair, 2019; Skiles et al., 2018). In this study, pywatershed was 135 

run from water years 1982 through 2022 (41 years) for the sensitivity analysis, and from 2013 through 2022 (10 years) for 

the Monte Carlo filtering. 
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2.2 Study catchments in the UCRB 

The Blue, Dolores, East, and Taylor River catchments each contain 1 or 2 USGS stream gages and between 1 and 5 in situ 140 

SWE and SM measurement sites (Figure 1). At least two lidar based SWE acquisitions from the ASO program are available 

in each catchment during our study period (up to WY 2022). The East and Taylor River share a catchment boundary. The 

four altogether represent a range of climatologic and geographic attributes in the Upper Colorado headwaters (Table S2, 

Figure 1). 

 145 

Figure 1. Digital elevation models of the four headwater catchments included in this study. White lines indicate HRU 

boundaries. Black dots represent USGS stream gages and black triangles represent NRCS SNOTEL stations. 
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2.3 Observation data for model evaluation 150 

We use seven observation data products for model sensitivity and calibration analysis in this study, consisting of both in-situ 

and remotely sensed measurements (Table 1). Daily mean discharge observations were obtained through the USGS National 

Water Information System dataRetrieval package in R (DeCicco et al., 2024). The locations of USGS stream gauges 

correspond to downstream points of stream segments in the model. Daily mean in situ SWE and SM was obtained from the 

NRCS SNOTEL (Snow Telemetry) online report generator. It is common for these observation stations to fall near HRU 155 

boundaries (Figure 1), which likely reduces their representativeness of a homogenous HRU.   

 

High spatial resolution (50m) SWE rasters from ASO are derived from airborne LiDAR measurements where the aircraft 

flies over the catchment of interest (Painter et al., 2016). These acquisitions pertain to specific catchments and are 

requisitioned by water managers one to several times throughout a water year. The low temporal resolution is unique to this 160 

dataset; however, the spatial completeness allows for a more robust estimate of HRU mean SWE compared to SNOTEL 

point observations. The MODIS snow covered area product used in this study (MOD10A1.061) was used to provide an 

estimate of fractional snow-covered area (fSCA) and required additional screening and transformations before it could be 

directly compared to the model output (Supplementary Text S1).  

  165 
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Table 1. Observations used in the parameter sensitivity and estimation workflow. Start years are approximate for in situ  

observations as each station began recording in different years. All outputs from the model area in daily timesteps.  

  Simulated Observed 

Variable Output Spatial Source Temp. Start Spatial 

Discharge Q seg_outflow Seg. USGS Daily >1980 Point 

Snow Water 

Equivalent 

SWE pkwater_equiv HRU SNOTEL Daily >1980 Point 

 ASO Intermittent >2021 50 m 

Soil moisture SM soil_rechr HRU SNOTEL Daily >2000 Point 

 SMAP Daily >2015 9 km 

Snow Covered 

Area 

SCA snowcov_area HRU MODIS Daily >2000 500 m 

Actual evapo-

transpiration 

AET hru_actet HRU OpenET 

Ensemble 

Monthly >2013 30 m 

 

The soil moisture observations also required pre-screening and transformations to be suitable for model evaluation 

(Supplementary Text S2). The soil moisture sensors at NRCS SNOTEL stations are at 2 cm, 8 cm, and 20 cm depths. Of the 

three in situ depths, the 2 cm depth observation had the best fit to the model and was used in our analysis. The level 4 SMAP 170 

product obtained from GEE (SPL4MGP.007) provides measures of saturation at the surface, rootzone, and soil profile at a 9 

km spatial resolution, every 3 hours from March 31st, 2015 to present. Between the SMAP surface and rootzone wetness 

measurements, the surface zone had the best fit to the model and was used in the final analysis. It is aggregated by HRU and 

as a daily mean. The model simulates soil moisture storage in a conceptual reservoir, which does not have a physical depth 

in the soil column. This poses a challenge since it is not directly comparable to observations. Since the simulated and 175 

observed values do not match in magnitude, all are normalized between 0 and 1 to compare temporal variability (Hay et al., 

2023). We note that there is considerable misalignment between the simulated and observed soil moisture (Figure S1), which 

limits the realization of behavioral models in this respect.  

 

The OpenET product provides AET at a 30 meter resolution using an ensemble mean of multiple satellite based observations 180 

and models (Melton et al., 2022). Monthly AET was area-averaged to the HRU scale for comparison with the modeled AET 

output. The satellite remotely sensed observations (SCA, SMAP, AET) were obtained using Google Earth Engine (GEE) and 

HRU geometry files from the NHM. 
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2.4 Selected performance metric 185 

Summarizing a time series of the model’s error or behavior into a statistic is a necessary step in model diagnostics and has 

strong implications for the results of sensitivity analysis and Monte Carlo filtering. Here, we use the normalized root mean 

squared error (NRMSE). It is calculated by normalizing the root mean squared error by the standard deviation of the 

observations  𝜎𝑂 , as shown in equation 1: 

 190 

𝑁𝑅𝑀𝑆𝐸  =  
𝑅𝑀𝑆𝐸

𝜎𝑂
  =  

√
1
𝑇
∑ (𝑆𝑡−𝑂𝑡)

2𝑇
𝑡=1

√1

𝑇
∑ (𝑂𝑡−𝑂)

2𝑇
𝑡 =1

      (1) 

 

where T is the total number of t timesteps in the evaluation, 𝑆𝑡 and 𝑂𝑡 are simulated and observed values at each timestep, 

and 𝑂 is the mean of the observations. This metric allows for comparisons between different catchments and observations 

because it is not in absolute units, and it accounts for the inherent variability of the location and data. Its value can be 195 

interpreted as a proportion: for example, a NRMSE of 0.5 means that the error is half of the variability in the observations. 

Squared error based metrics suffer limitations such as sensitivity to outliers and errors during high flows (Gupta et al., 2009); 

however, its interpretability is favorable for comparisons between observations and the rejection of non-behavioral models. 

NRMSE was used in a recent multi-observational, CONUS-wide NHM calibration study led by the USGS (Hay et al., 2023), 

and using the same metric makes this work relevant to current agency procedures. For remotely sensed observations, 200 

NRMSE is reported as a catchment-wide HRU area-weighted mean, computed over the entire available time series. In the 

case of ASO, which does not have a time series, NRMSE is reported on a by-acquisition basis. 

 

2.5 Identifying sensitive model parameters using the Morris Method 

To identify parameters to be used in the model calibration, we first conduct a type of parameter sensitivity analysis known as 205 

screening (Pianosi et al., 2016). This is typically done for models with a large number of calibration parameters (51 in this 

study) - an important outcome being a reduction in the number of parameters for further analysis. Here, we use the Morris 

Elementary Effects method, which coarsely samples the parameter space using a one-at-a-time (OAT) approach and is a 

relatively computationally efficient screening method (Herman et al., 2013b; Morris, 1991; Pianosi et al., 2016). We discuss 

two sensitivity measures: 𝜇∗ to describe the magnitude of parameter sensitivity (Campolongo et al., 2007), and a normalized 210 

metric 𝜂∗ for the screening process (Cuntz et al., 2015). We use 51 trajectories in our sampling design (Cuntz et al., 2015; 

Gan et al., 2014), and use 1000 bootstrap replicates to identify type I (false positive) and type II (false negative) statical 

errors in our screening approach (Supplementary Text S3) (Campolongo & Saltelli, 1997; Saltelli et al., 2007). The Morris 

sampling algorithm and analysis for calculating sensitivity indices was carried out using the sensitivity package in R (Iooss 

et al., 2024).  215 
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The spatial and temporal variability of the sensitivity measures are also presented in this study. When observations are 

available, we calculate the sensitivity measures in 3 ways: (1) the full period in which forcings and observations are 

available, (2) at annual intervals between, and (3) for 10 year moving windows stepped in one year increments. Since 

discharge observations return a high number of sensitive parameters and have the longest period of record, we limit our 220 

scope to these observations for temporal analysis. In terms of spatial analysis, we leverage the spatially distributed remotely 

sensed observations to assess the influence of HRU attributes on parameter sensitivity based on Spearman Rank correlations. 

 

2.6 Monte Carlo filtering to assess parameter equifinality 

Following the identification of informative parameters, we employ a simple uncertainty analysis technique known as Monte-225 

Carlo filtering to evaluate performance and parameter estimation. The method involves choosing an objective function 

(NRMSE in this case) and setting a threshold for behavioral (“good”) or non-behavioral (“poor”) performance. The 

parameter space is stochastically sampled with a high number of replicates, and the model is run with each parameter set. 

Depending on the performance criteria and observation data, usually several parameter sets will return as behavioral. The 

non-behavioral models are filtered out, and the behavioral simulations are used to assess model parameter value uncertainty 230 

(equifinality) and performance relationships (Shafii et al., 2015). In this work we select our behavioral threshold as NRMSE 

< 1.0, where the model error is less than the inherent variability in the observations. This threshold is a common benchmark 

and is analogous to a Nash-Sutcliffe Efficiency of 0.0, as these two metrics are related (Althoff & Rodrigues, 2021; 

Manikanta & Vema, 2022; Ritter & Muñoz-Carpena, 2013). To assess how the inclusion of alternative observations affects 

streamflow calibration, we define multi-objective criteria as joint constraints where the model performance is behavioral 235 

with respect to discharge and alternative observations. This criterion leads to relatively few behavioral models for the 

intersection of discharge and SCA, SMS2, and SMAP - leading us to relax the threshold to an NRMSE of 1.5 for these three 

alternative datasets only.  

 

Latin Hypercube Sampling (LHS) is a sampling approach commonly applied in sensitivity and uncertainty analysis of 240 

complex models with a high number of parameters (Helton & Davis, 2003; Sheikholeslami & Razavi, 2017; Shields & 

Zhang, 2016). It is a suggested approach for generating parameter sets in Monte Carlo filtering based frameworks so the 

parameter space is uniformly sampled and equifinality can be assessed (Beven & Freer, 2001). In this study, we use 

maximinLHS function from the R lhs package (Carnell, 2024), which iteratively solves statistical criteria to maximize the 

minimum distance between sampling points (M. E. Johnson et al., 1990). This method is recognized for producing well-245 

distributed, space-filled samples (Chen et al., 2017; Santner et al., 2018). Following recommendations in existing literature, 

we use 1000 trajectories per parameter in the LHS design (Pianosi et al., 2016). Due to the higher number of trajectories and 

computational limitations, the simulation period is reduced to one decade (2013-2022) in this experiment. Since pywatershed 
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contains several non-scalar parameters that are spatially distributed by HRUs, temporally distributed by month, or both, we 

preserved a priori spatiotemporal distributions from the NHM during the Morris and LHS experiments. We apply the “use 250 

the mean” procedure from previous PRMS analysis to address the complexity associated with non-scalar parameters (Hay et 

al., 2006; Hay & Makiko, 2007). 
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3 Results 

3.1 Sensitivity analysis 255 

3.1.1 Identifying sensitive parameters for calibration 

Using the Morris method with seven different observation datasets, we find that both the number and type of parameters 

identified as informative are considerably influenced by the target observation (Figure 2). The 51 parameters are binned into 

their process representation or “module” in pywatershed (right-hand labels). Several parameters emerge as informative 

across all observations, particularly in the climate module. These include tmax_allsnow (rain-snow partitioning), 260 

tmax_cbh_adj, and tmin_cbh_adj (forcing corrections), which highlight the strong effect of meteorological forcings on 

multiple model processes. The Jenz-Haize potential evapotranspiration coefficient (jh_coef), which acts as an empirical 

multiplier for potential evapotranspiration, is highly sensitive for all non-snow related outputs. Two parameters governing 

groundwater flow, gwflow_coef and soil2gw_max, are only identified by discharge data, and the latter is the only standalone 

type II error across all observations.  265 

 

The model fit to snow data is sensitive to parameters in the snow module, and as expected in snow-dominated headwaters. 

Of the four albedo parameters added to our study, none were identified as informative. Simply based on count, discharge 

observations consistently elicit the largest number of sensitive parameters, with between 10-14 parameters identified among 

the four catchments (Table S3). The SNOTEL, ASO, and SMS2 observations identify comparable numbers of parameters 270 

(10 to 16), but the precise number of identified parameters varies among catchments. Across all observation datasets, 18-22 

informative parameters are identified (22-25 including type II errors). Many of the SNOTEL and ASO parameter 

identifications have a high number of type I and type II errors, shown by black squares and triangles in Figure 2. The 

frequency of these errors suggests that parameter sensitivity with respect to SWE has high variability. This is supported by 

visualizations of the fitted logistic function, where the error bars for the informative parameters are considerably larger 275 

(Figure S2-S5). While uncertain, the SWE related observations contribute one to six parameters in addition to what is 

identified by discharge, and the other observations generally contribute relatively fewer unique identifications. While SCA 

also assesses model performance with respect to snowpack simulation, it returns a consistent, yet, smaller number of 

identifications and does not exhibit the same extent of statistical errors as the SNOTEL and ASO data. 
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 280 

Figure 2. Normalized sensitivity metric 𝜂∗ for all catchments and target calibration observations available from WY 1982 

through 2022. The black squares denote type I errors and the triangles denote type II errors identified via bootstrapping, 

using an uncertainty bound of ±1.0 × 𝑆𝐷(𝜇𝑖
∗). In the x axis text, the numbers following the catchment name correspond to 

the last four digits of the USGS gage ID for Q, the NRCS site ID for SNOTEL and SMS2, or the ASO acquisition date in 

yymmdd format. 285 
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3.1.2 Parameter sensitivity to annual forcing anomalies 

There is considerable interannual variability in the magnitude of parameter sensitivity with some influence of annual 

temperature and precipitation anomalies. For example, jh_coef was relatively sensitive in warm, dry conditions (Figure 3). 

We also see differences in the magnitude of sensitivity between catchments, such as rad_trncf being less sensitive in the 

Dolores compared to the others. Across the four most sensitive parameters, we find relative increased sensitivity in dry 290 

conditions (with respect to discharge observations). For this analysis, we use 𝜇∗  rather than 𝜂∗  to assess the overall 

magnitude of sensitivity. 

 

Figure 3. Annual sensitivity measures 𝜇∗  for select parameters with respect to discharge observations at the most 

downstream stream gage point. The sensitivity indices were logged for visual interpretation. 295 

Time series analysis of parameter sensitivity illustrates these modest climate sensitivities across all parameters (Figures S6-

S9). On an annual scale, the number of identified parameters ranges from 12 to 17, with the largest variability in snow and 

interception parameters (Figure S6). In terms of sensitivity magnitude, the climate, PET, and snow parameter groups show 

the most variability (S7). When the sensitivity measures are computed over a 10 year moving window, the screening results 

are far more stable (Figure S8). Parameters that are near the screening threshold fluctuate between being identified as 300 
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sensitive versus not, such as radmax. This is likely due to changes in the most sensitive climate parameters (S9), since their 

sensitivity indices are used to produce the normalized metric for screening. 

 

3.1.3 Relationship of geographic attributes and parameter sensitivity 

Among the highly sensitive parameters, relationships between HRU attributes and parameter sensitivity range from weak to 305 

moderate (Figure 4). Correlations among HRU average annual precipitation and 𝜇∗ were generally statistically significant 

but with limited explanatory power. The strongest correlation is a negative correlation between rad_trncf (solar radiation 

transmission through the canopy) and winter maximum temperature (Tmax); rad_trncf is also more sensitive at high 

elevations and relatively high precipitations. Similarly,  jh_coef, tmax_allsnow, and tmax_cbh_adj are each generally more 

sensitive at higher elevations and cooler temperatures. While jh_coef is less sensitive to snow-related observational data, it 310 

shows a similar relationship with the climatic attributes across each observation type. Overall, the magnitude of sensitivity 

for these select parameters is positively correlated with precipitation and elevation and negatively correlated with 

temperature. We expect these relationships due to the strong covariance between climate forcings and elevation (Figure 

S10), but the differences in explanatory power suggest there are other confounding factors. These results demonstrate that 

while HRU attributes have relatively low predictability of precise sensitivity measures, the most sensitive parameters are 315 

moderately associated with temperature and elevation in particular.   
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Figure 4. Morris bootstrapped sensitivity metric 𝜇∗ for selected parameters versus geographic attributes (annual average 

precipitation, elevation, and maximum temperature in DJF). Spearman rank correlation values are denoted by R with an 

associated p-value. Each point represents a by-HRU sensitivity measure for a specific observation dataset, catchment, and 320 

HRU attribute. The y-axis is logged for improved interpretation of the absolute sensitivity measures. 
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3.2 Monte Carlo filtering calibrations 

3.2.1 Constraining equifinality with multiple observations 

With NRMSE of daily discharge as the governing objective, we demonstrate how the inclusion of alternative observations 325 

can constrain equifinality. Some catchments yield a much higher number of behavioral simulations than others with respect 

to discharge NRMSE alone (Table 2). For example, out of 22,000 simulations for the Dolores, over 20% are returned as 

behavioral, while less than 3% of 24,000 simulations are returned from the Blue. The Dolores and the East are the larger of 

the four catchments and return greater proportions of behavioral streamflow simulations, suggesting that model may be more 

representative over larger scales compared to headwater catchments. 330 
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Table 2. Number of behavioral models for where the filtering threshold is set to NRMSE < 1.0. The percentage of total 

simulations is shown in parentheses. Where there are multiple rows, each row denotes a specific in situ observation station 

or ASO acquisition. The numbers in bold font indicate the greatest overall improvement in NRMSE(Q) of that criterion. 

Criteria Number of behavioral parameter sets 

 Blue Dolores East Taylor 

Q   Upstream 846 (3.53%) 5116 (23.3%) 4159 (16.6%) 1543 (7.01%) 

   Downstream 2887 (12.0%) 6098 (27.7%) 3642 (14.6%) - 

   Both 654 (2.73%) 4621 (21.0%) 3577 (14.3%) - 

Q  SNOTEL 561 (2.34%) 4047 (18.4%) 2525 (10.1%) 1265 (5.75%) 

- 4267 (19.4%) 3260 (13.0%) - 

- 1894 (8.61%) - - 

- 3814 (17.3%) - - 

- 1314 (5.97%) - - 

Q  ASO Apr. 21 13 (0.05%) 3858 (17.5%) - - 

May 21 186 (0.78%) 3828 (17.4%) - - 

Apr. 22 57 (0.24%) 3783 (17.2%) 2282 (9.13%) 610 (2.77%) 

May 22 95 (0.40%) 2548 (11.5%) 889(3.56%) 158 (0.72%) 

Q  SCA* 17 (0.07%) 569 (2.59%) 357 (1.43%) 58 (0.26%) 

Q  SMS2* 413 (1.72%) 3084 (14.0%)  2226 (8.90%) 451 (2.05%) 

- 6 (0.03%) 1691 (6.76%) - 

- 0 - - 

Q  SMAP* 4 (0.02%) 0 133 (0.53%) 45 (0.20%) 

Q  AET 187 (0.78%) 4056 (18.4%) 1540 (6.16%) 735 (3.34%) 

* Denotes where the NRMSE threshold for the alternative observations is 1.5 

 

Multiple ASO acquisitions show that behavioral SWE simulation is highly dependent on the catchment and date of 335 

acquisition. The larger catchments have overall a greater number of behavioral ASO simulations. Results in the Blue suggest 

that the modeled SWE is less erroneous in May than April. However, the other catchments do not provide a clear indication 

whether the model better represents April versus May SWE.  

 

While hundreds to thousands of simulations are behavioral for the intersection of Q and SWE, the same filtering threshold 340 

(NRMSE < 1.0) resulted in zero to a few dozen parameter sets for SCA, SMS2, and SMAP. Instead of discarding the 
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information, we relaxed the threshold to 1.5 for these calibrations to permit further interpretation. Even then, very few 

behavioral parameter sets are yielded for the soil moisture observations in the Dolores catchment (Table 2). We note that this 

performance level is within the range of output from the National Hydrologic Model (Table S4). This finding suggests 

potential issues with model-to-observation alignment. The AET performance was calculated using a monthly mean, which 345 

yields behavioral models under the stricter threshold (NRMSE < 1.0). This is expected due to the model-to-observation 

congruency and the suppression of daily variability. 

3.2.2 The effect of multiple criteria on streamflow performance 

Of the alternative observations used in this study, AET is the only one to consistently improve discharge performance 

(Figure 5). The empirical cumulative distribution functions of NRMSE(Q) in Figure 5 show that the intersection with AET 350 

yields a distribution that is better than Q alone (green line is left of the black line in Figure 5). The observations that induce a 

worse distribution in discharge performance can be considered misinformative. However, whether these observations 

improve or reduce discharge performance is dependent on the catchment. For example, ASO shows slight reductions in 

performance for the Dolores and East (right of the black line in Figure 5), but some of the best performance in the Blue and 

Taylor. The latter have fewer behavioral discharge simulations to a begin with - thus, the inherently reduced parameter space 355 

may affect how new observations inform the model. The effect of ASO observations on streamflow performance also varies 

among individual acquisition dates and sites (Figures S11-S14). Similarly, some SNOTEL locations induce performance 

improvements while others induce reductions. These results suggest that introducing alternative observations does not 

always lead to positive streamflow performance outcomes. However, in the case of pywatershed, monthly mean AET 

observations may be useful in this respect.   360 
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Figure 5. The cumulative distribution of streamflow performance, NRMSE(Q), is influenced by intersections with 

alternative observations. The black line represents the distribution when filtering with Q only. A distribution that is closer to 

zero (left) is considered informative in the case of NRMSE. 

 365 
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3.2.3 Parameter estimation 

The effect of Monte Carlo filtering with alternative observations on behavioral parameter estimation ranges from marginal to 

pronounced. In most observation and catchment combinations, the parameter values span the entire possible range (Figure 

6). This result alludes to issues with equifinality and the use of prescribed parameter ranges from the PRMS documentation. 

In only a few cases (such as the use of SMAP for jh_coef estimation in the East River), the introduction of additional 370 

observational data reduces the extent of behavioral parameter ranges. Parameter estimates from the three snow-related 

observations (SNOTEL, ASO, and SCA) show variable agreement. Overall, ASO is relatively consistent among acquisitions 

(Figure S15). The highly sensitive potential evapotranspiration parameter jh_coef is generally shifted to a lesser value when 

intersecting with AET observations 

 375 

Figure 6. The inter-quartile ranges of behavioral parameter values fluctuate across observation intersection criteria. For 

catchments that have more than one stream gauge, the behavioral intersection of both stream gauges is used. For SNOTEL , 

SMS2, and ASO, the best performing site/acquisition is shown. Datasets that returned an insufficient number of behavioral 

parameter sets are excluded.  

 380 
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4 Discussion 

4.1 Model to observation alignment 

A core challenge of using additional observational constraints in process based hydrologic modeling is that the simulated 

variables may not be physically well aligned with what is observed (McCabe et al., 2017). This becomes particularly evident 

in lumped or semi-lumped models (such as pywatershed) as well as coarsely gridded models (Ehlers et al., 2019; Motovilov 385 

et al., 1999), where in-situ point observations are compared to a much larger simulated area. This is the case for SNOTEL 

SWE and SMS2. In our case study watersheds, these observation points are near topographic high points and therefore are 

often near catchment or HRU boundaries (Figure 1). Observation points in these locations are likely not well-aligned with 

the simulated areal average snowpack or soil moisture over an HRU. We see from the Monte Carlo filtering that streamflow 

performance can be both hindered and improved by these point based SWE and SM measurements, but it is largely 390 

dependent on the station (Figures S10 – S13). Where the in-situ observations degraded streamflow performance, we attribute 

this to poor spatial representation of the HRU. 

 

Aside from the spatial misalignment, the conceptual or physical representations may not fit observed quantities either. In the 

case of pywatershed, this issue was apparent when comparing simulated and observed soil moisture. The model uses a 395 

conceptual framework in terms of storage and fluxes, representing SM storage as a series of conceptual reservoirs. However, 

in situ measurements of SM are at discrete depths in the soil column, and similarly, satellite remotely sensed soil moisture 

from SMAP retrieves soil moisture at discrete depth ranges. To address these discrepancies, the model output and 

observations were normalized between 0 and 1 before comparison, as done in previous work (Hay et al., 2023). Yet, the 

conceptual misalignment seemed to persist during the Monte Carlo simulation, since the model failed to yield behavioral 400 

parameter sets when soil moisture was included in the performance criteria (depending on the catchment, Table 2). Similarly, 

the baseline parameter sets from the extensively calibrated NHM also perform poorly for soil moisture (Table S4, Figure 

A1). This suggests that alternative approaches for addressing the model-to-observation alignment may be needed. In Mei et 

al. (2023) where PRMS was calibrated with SM observations, both the simulated and observed datasets were treated as 

anomalies, which assesses timing rather than magnitude or variability. Brocca et al. (2014) showed that temporal SM 405 

anomalies show lesser spatial variability than absolute magnitude, and other SM calibration studies employ adjustments to 

in-situ and remotely sensed SM data to remove biases (Draper et al., 2009; Rajib et al., 2016). In another hydrologic 

calibration with SMAP, temporal correlations were used to assess performance (Koster et al., 2018). In light of the 

normalization technique used in this study, additional bias corrections or temporal relationships should be explored in future 

work. 410 

 

While remotely sensed observation products largely address the point-to-HRU challenges of in situ observations, they are 

still subject to model-to-observation challenges or uncertainty in the observations themselves. Area averaged ASO SWE, 
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MODIS SCA, and OpenET AET are theoretically well-aligned with the HRU based output of pywatershed. However, 

uncertainty in remotely sensed data is complex, stemming from the sensors, cloud conditions, surface conditions, spatial 415 

sampling, and post-processing (Povey & Grainger, 2015). For example, the ASO SWE product is based on airborne lidar 

retrievals of snow depth and the snow density is modeled post-hoc, which inherently introduces uncertainty (Painter et al., 

2016). The OpenET product is based on satellite optical data, weather data, and an ensemble of models, but yields a single 

estimate of AET (Melton et al., 2022). The MODIS SCA product and SMAP SM product also yield a singular estimate, 

which has well documented uncertainties (P.-W. Liu et al., 2021; Stillinger et al., 2023). Despite the well-known challenges 420 

of remotely sensed observations, in this paper they are not explicitly addressed, and we instead opt for “out of the box” 

implementations. 

4.2 On identifying sensitive parameters in headwater catchments 

Other PRMS sensitivity analysis studies agree with our overall findings. The most recent and comprehensive sensitivity 

analysis by (Markstrom et al., 2016) encounters similar results: the sensitivity in mountainous headwater catchments is 425 

largely driven by a select few parameters. They show that parameters such as jh_coef and tmax_allsnow explain the majority 

of parameter sensitivity. Other studies with different models also show that rain-snow partitioning and forcing corrections 

are highly sensitive components in modeled streamflow in mountainous headwaters (Mai et al., 2022; Singh et al., 2024). To 

the extent that the most sensitive parameters represent corrections of errors in forcing inputs, these results corroborate 

arguments that forcing input uncertainty is generally greater than model errors (Lundquist et al., 2019). Across two large 430 

scale studies, evapotranspiration emerges as the primary component of model sensitivity, or “dominant process” in the 

UCRB region (Mai et al., 2022; Markstrom et al., 2016).  

 

In the present study, few to no runoff parameters were identified as informative. We posit two reasons for this: (1) that 

snowmelt has a much greater implication to runoff timing and volume, and (2) that pywatershed has a large emphasis on 435 

forcing data adjustments. In support of the first line of reasoning, the runoff parameter snowinfil_max is identified as a type 

II error in the East River (Figure 2), which suggests the importance of snowmelt. Snowpacks are the primary contributor to 

runoff volume in high elevation, snow-dominated catchments and rainfall has marginal contributions to runoff volumes (with 

the exception of rain on snow events) (Hammond & Kampf, 2020; Li et al., 2017). Since squared error based objective 

functions (NRMSE in this case) strongly penalize errors at high flows (Gupta et al., 2009), where the model inaccurately 440 

simulates the timing or magnitude of the spring snowmelt driven streamflow pulse, the parameters driving that inaccuracy 

would be deemed sensitive. Snowmelt also contributes to seasonal soil moisture regimes in mountainous catchments 

(Harpold et al., 2015), which could explain why we may not see sensitive runoff parameters for the fit to soil moisture 

observations either. 

 445 
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Secondly, the forcing adjustment parameters and their ranges from the PRMS documentation influence parameter 

identification. Complex models with a large number of parameters often exhibit nonlinear sensitivities and strong parameter 

interactions (Saltelli et al., 2019), and previous work has shown that the selection of parameter ranges impacts the outcomes 

of sensitivity analysis (Shin et al., 2013). For example, tmax_allsnow has a wide range (Figure 6) and represents the monthly 

maximum temperature where precipitation is assumed to be snow (Table S1). Rain to snow partitioning parameters often are 450 

constrained within a few degrees of freezing on shorter timescales (Jennings et al., 2018), but this representation in the 

model makes it more of a tuning parameter with a less clear physical basis. The 𝜎 indices yielded from the Morris 

experiment indicate that this parameter has relatively high nonlinear effects (Figure S16) - if the range were narrowed, the 

sensitivity index 𝜇∗ would likely change. Since the sensitivity index for screening (𝜂∗) is normalized by the maximum 𝜇∗, 

this has implications for which parameters are identified as informative. Additionally, the Morris method may not provide as 455 

reliable indices for highly sensitive parameters when compared to quantitative methods, such as Sobol (Herman et al., 

2013b; Sobol′, 2001). However, in the context of model calibration and parameter estimation, it is important to prescribe 

parameter ranges that cover the optimal space while remaining efficient (Bárdossy & Singh, 2008; Mai, 2023). The effects of 

a priori parameter ranges are not addressed in this study, which provides an opportunity for improved pywatershed analysis 

in future work. 460 

 

We clarify that the objective of this work is to assess the impact of observational data selection on parameter identifiability, 

rather than conventional sensitivity analysis. This distinction is made by Gupta & Razavi (2018), where an identifiability 

analysis focuses on model sensitivity with respect to observations (by using an objective function) versus sensitivity to the 

output itself. These methods are fundamentally distinct from each other. Choosing an objective function to summarize the 465 

model responses limits the interpretation of process importance because the “sensitivity” is influenced by how well the 

model tracks observations. Given that the choice of objective function has a pronounced impact on how model residuals are 

penalized, it therefore influences what parameters are considered informative. Our approach therefore cannot support the 

identification of dominant processes; however, it holds particular utility in parameter screening with the aim of calibrating a 

model to a suite of observations (Pianosi et al., 2016). 470 

 

4.3 Model selection impacts on sensitivity and uncertainty analysis 

We sought to explore some of the numerous choices that a modeler faces during a calibration experiment. The primary focus 

of this study was on the choice of calibration target data, as well as simulation period and catchment. Other important 

choices include the model itself, the calibration algorithm, forcing inputs, and the objective function. These choices were 475 

controlled for in our study by using a single model, a uniform sampling LHS design, one forcing dataset, and a grounded 

objective function threshold. A vast body of work discusses the nuances in inter-model comparison (Mendoza et al., 2015), 

advancement of calibration techniques (Mai, 2023), the uncertainty in forcing inputs (Tang et al., 2023), and the implications 
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of objective function choice (Lamontagne et al., 2020). While there are limitations to using a single objective function for 

model evaluation (Clark et al., 2021; Legates & McCabe Jr., 1999), for simplicity and scope we find NRMSE to be 480 

appropriate for a multi-observation framework (Gupta et al., 2008, 2009). There is also subjectivity in the design of the 

Morris and LHS experiments (Gan et al., 2014); we made these choices by following recommended values for discretization 

levels, trajectories, and rejection criteria (Cuntz et al., 2015; Pianosi et al., 2016).  

 

Previous works have found that multi-observational calibration leads to better representation of hydrologic process and 485 

improved streamflow simulations (Finger et al., 2015; Smyth et al., 2020; Wongchuig et al., 2024; Zhou et al., 2020). Other 

multi-observational PRMS based studies have found that AET and soil moisture can improve streamflow performance (Mei 

et al., 2023). Our results only partially support this notion. While these findings are promising, a recent review poses the 

question “Increasing amount of collected data: to use or not to use?” (Herrera et al., 2022). We provide a conflicting answer 

to this question, as some observations constrained behavioral simulations into worse performing areas. One prior study found 490 

that the inclusion of ASO has positive implications for streamflow prediction in one California catchment with a large 

number of acquisitions (Lahmers et al., 2022). Our results agree with this finding in the Blue and Taylor but disagree in the 

Dolores and East.  

 

We suggest a few possible reasons for the instances of poorer distributions of model performance: first, simulations that fail 495 

to adequately simulate intermediate state variables (such as SWE, SM, or AET) may have had structural compensating errors 

that ultimately yield good streamflow performance, even if for the wrong reasons. For example, high precipitation biases 

could be compensated for by high soil moisture storage when soil moisture is not used as a calibration target, but these 

simulations would be removed when soil moisture observations are included. Second, the approach to the multi-objective 

problem influences the way equifinality is assessed. Our use of joint constraints is clear cut, demanding that performance 500 

criteria is met for more than one set of observations. However, there are numerous alternative approaches, such as adaptive 

data assimilation techniques (Y. Liu et al., 2012), pareto optimization (Madsen, 2003), or informal Bayesian methods (Choi 

& Beven, 2007). Each approach is unique in its integration of alternative observations and assessment of parameter 

uncertainty/equifinality. Our logical framework inherently reduces the equifinal space as more observational constraints are 

introduced, but pareto optimization or fuzzy logical constraints may expand it. Lastly, the model-to-observation alignment as 505 

discussed in section 4.1 plays a significant role in constraining parameter values. 

 

Additionally, the modeler must make decisions on the spatial and temporal resolution for model evaluation. While 

streamflow observations are commonly used in daily timesteps, the modeler may consider using monthly or annual averages 

to assess performance (Hay et al., 2023). Notably, the OpenET dataset from Google Earth Engine is only available as 510 

monthly averages and was identified as the most informative alternative observation dataset in this study. Future work 

should include the use of different temporal resolutions in model evaluation. Errors at daily timesteps may result in harsh 
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penalization, while longer term trends could be adequately represented. In a similar vein, results from sensitivity analysis 

depend in part on the calibration period and window size (Herman et al., 2013a; Massmann et al., 2014; van Werkhoven et 

al., 2008). Previous literature notes that sensitivity measures become stable for five year windows or greater, muting the 515 

effects of interannual variability (Shin et al., 2013). Our assessment of streamflow over multiple 10 year rolling windows 

(Figures S8, S9) corroborates this finding. However, the user must be cautious of type II errors, as they arise for parameters 

that straddle the identifiability threshold in the Morris experiment (Figures S2-S5). We continue the recommendation of 

bootstrapping the elementary effects to identify these errors (Campolongo & Saltelli, 1997). 

 520 
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4.4 Implications for water resource operations and forecasting 

The parameter identification and estimation results presented in this study help inform operational modeling practices and 

could be extended to forecasting frameworks. Multi-observational modelling techniques have been a subject of increasing 

attention in the last decade (Y. Liu et al., 2012) and are a promising tool for the improvement of ensemble forecasting (Troin 

et al., 2021). However, our results suggest that the integration of alternative observations have spatially heterogenous 525 

implications to streamflow performance, despite the four case study catchments being within a similar geographic region. In 

the catchments that border each other (the East and Taylor River), we see that the augmentation of streamflow performance 

for each dataset is different (Figure 5, S12, S13). This may result from uncertainty in the model, since the smaller headwater 

catchments yielded fewer behavioral parameter sets in the Monte Carlo Filtering step (Table 2). These differences between 

catchments could also be explained by differences in hydroclimatic variables, such as runoff ratio or aridity (Elkouk et al.,  530 

2024; van Werkhoven et al., 2008). At broader scales, the simulation of streamflow would likely be improved by different 

datasets, as the dominant hydrologic processes vary by ecologic and physiographic characteristics (Mai et al., 2022; 

Markstrom et al., 2016). The methods used in this study, Morris screening and LHS Monte-Carlo filtering, are relatively 

straightforward  analytical techniques that were completed on a laptop computer. Future work to accomplish this assessment 

at broader scales in a computationally parsimonious way would be valuable.   535 

5 Conclusions 

A multi-observation  sensitivity and uncertainty analysis  of the pywatershed hydrologic model is presented in this study. In 

four headwater catchments in the UCRB, we obtained seven observation datasets pertaining to discharge, snow water 

equivalent, snow-covered area, soil moisture, and evapotranspiration to use as objective targets in a Morris parameter 

screening and Monte-Carlo filtering analysis. Results show that the use of alternative observations allows for the 540 

identification of more informative parameters in the screening analysis. The outcomes of streamflow performance and 

parameter estimation vary considerably across catchments and observation data criterion. 

 

Starting with 51 model parameters, the Morris screening method identifies nearly twice as many informative parameters 

when including alternative observations versus discharge alone. Bootstrapping of the sensitivity metrics allows for the 545 

identification of type I and type II statistical errors, which avoids the exclusion of parameters that have sensitivities near the 

identification threshold. Across the four catchments, forcing corrections and rain-snow partitioning parameters have a high 

impact on the model fit to observations. The identification of informative parameters is highly variable over annual 

timescales, but over decadal timescales it is relatively stable due to the suppression of interannual variability. Spearman rank 

correlations between parameter sensitivity and catchment attributes such as precipitation, temperature, and elevation are 550 

weak to moderate. 
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With the informative parameters carried into the maximin LHS Monte-Carlo filtering analysis, we find that multi-

observation criteria considerably reduce equifinality. However, by reducing the number of acceptable parameter sets, 

streamflow performance may be either positively or negatively constrained. Our results suggest that AET is consistently 555 

useful for the improvement of streamflow simulations in UCRB catchments, but the value of other alternative datasets needs 

to be assessed on a case-by-case basis. Snow and soil moisture datasets yield both increased and decreased performance 

depending on the catchments. Additionally, the observation criterion has strong impacts on the range of estimated parameter 

values 

 560 

The use of alternative observations is found to be informative in parameter screening but has uncertain and spatially 

heterogenous outcomes in terms of streamflow performance and parameter estimation. We note that observation quality and 

model-to-observation alignment are important aspects of the analytical framework used in this study. Given the nuance of 

observations such as SMAP, ASO, and OpenET, these findings may be considered in future work where multi-objective 

calibration is of interest. 565 
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Code Availability 

The pywatershed model used for hydrologic modeling in this paper is publicly available on Github under a Creative 

Commons Zero v1.0 license (https://github.com/EC-USGS/pywatershed). The model input files, geometry files, and 570 

software developed for the analysis presented in this paper are publicly available (https://doi.org/10.5281/zenodo.17180693). 

Data Availability 

The United States Geological Survey streamflow datasets are retrieved through the dataRetrieval package in the R 

programming language (DeCicco et al., 2024). The in situ snow water equivalent and soil moisture datasets from the 

SNOTEL observation network are available through the U.S. Department of Agriculture, National Water and Climate Center 575 

online report generator https://wcc.sc.egov.usda.gov/reportGenerator/. The ASO remotely sensed snow water equivalent 

datasets are available online https://www.airbornesnowobservatories.com/. The MODIS snow covered area dataset 

(MOD10A1.061) is retrieved from Google Earth Engine at https://developers.google.com/earth-

engine/datasets/catalog/MODIS_061_MOD10A1 .The SMAP Level 4 surface wetness dataset (SPL4SMGP.007) is retrieved 

from Google Earth Engine at https://developers.google.com/earth-580 

engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007?hl=en. The OpenET, Inc. actual evapotranspiration ensemble 

dataset is retrieved from Google Earth Engine at 

https://developers.google.com/earthengine/datasets/catalog/OpenET_ENSEMBLE_CONUS_GRIDMET_MONTHLY_v2_0 
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