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Abstract. Top-down approaches using inverse modelling provide valuable complementary information to national methane

emission inventories, which are primarily based on bottom-up methods. Here we focus on Italy, where methane is currently

monitored at five stations that belong to the Integrated Carbon Observation System (ICOS). Compared to other countries,

Italy remains poorly covered by ICOS atmosphere sites, resulting in weak observational constraints on methane fluxes. In this

study, we assess the potential expansion of Italy’s ICOS network using Observation System Simulation Experiments (OSSEs)5

and inverse modelling. Eight candidate sites were identified, selected either from existing non-ICOS monitoring stations or

from proposed future locations. To conduct the OSSEs, we use the ICON-ART model coupled with the Community Inversion

Framework (CIF). We design a set of network expansion scenarios to evaluate the potential of each candidate station to improve

emission constraints and include four additional scenarios to quantify the contribution of existing and idealized networks. To

reduce the influence of randomness, multiple “emission truth” scenarios are constructed. Among all candidates, Chieti (CHI;10

42.2◦N, 14.7◦E) and Mount Venda (VND; 45.3◦N, 11.7◦E) emerge as the most effective additions, with Chieti showing a

slight overall advantage. Chieti enhances constraints mainly in Central and Southern Italy, while Mount Venda is particularly

effective in Northern Italy, where most anthropogenic methane emissions originate. The framework developed here can be

readily applied to other countries aiming to optimize their atmospheric measurement networks and to improve constraints on

greenhouse gas emissions.15

1 Introduction

The Paris Agreement (PA) under the United Nations Framework Convention on Climate Change (UNFCCC) commits nations

to limit global temperature rise to below 2 ◦C compared to pre-industrial levels (UNFCCC, 2015). Countries that are parties

to the UNFCCC must report their greenhouse gas (GHG) emissions, fostering transparency, tracking progress, and promoting

international cooperation on climate change. Currently, countries report their emissions using bottom-up inventories, which20

are based on 1) socioeconomic and environmental data and 2) source-specific emission factors. However, compiling these
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inventories is resource-intensive, time-consuming, and typically completed with a two-year delay. The quality of reporting also

varies significantly between nations due to differences in resources and technical capabilities. To support the PA’s mitigation

goals, top-down monitoring systems can complement bottom-up inventories, as recognized by the 2019 Refinement to the 2006

IPCC Guidelines for National Greenhouse Gas Inventories (Calvo Buendia et al., 2019).25

Top-down methods, also known as inverse modeling, rely on atmospheric transport models and data assimilation techniques.

By assimilating observed atmospheric GHG concentrations through statistical approaches (e.g., Bayesian frameworks), these

methods can help reconcile bottom-up inventories (prior estimates) with atmospheric observations, resulting in refined pos-

terior estimates of emissions. Top-down methods provide independent, consistent, and timely information at global, regional,

national, and sub-national scales (Janssens-Maenhout et al., 2020; Bergamaschi et al., 2018). However, the quality of these30

top-down estimates heavily relies on the coverage and the precision of atmospheric measurements. Observational in-situ net-

works should therefore be carefully designed to minimize uncertainties and improve our ability to track the temporal evolution

of GHG fluxes at regional and national scales.

To address the needs for better measuring the atmospheric GHG concentrations as well as the fluxes between the atmosphere,

the land surface and the oceans, the European Union has created the Integrated Carbon Observation System (ICOS; Heiskanen35

et al., 2022). It is a world-class observational network that provides high-quality, standardized and open data from about 180

measurement stations of three different types, atmosphere, ecosystem, and ocean, across 16 European countries. Since its estab-

lishment in the early 2010’s, ICOS has been continuously expanding its observation network. Today, the atmosphere network

consists of 47 stations (39 labeled and 8 candidate stations) measuring GHG atmospheric concentrations across Europe.

Among the well-mixed GHGs, anthropogenic methane (CH4) has the second largest influence on global warming. This40

gas has a global warming potential approximately 80 times higher than carbon dioxide (CO2) over a 20-year period (Forster

et al., 2021) and also plays a crucial role in atmospheric chemistry, influencing ozone formation and hydroxyl radical (OH)

concentrations. Hence, reducing CH4 emissions can yield rapid climate and air pollution benefits, which emphasizes the need

for accurate quantification of its sources and sinks (Saunois et al., 2025), and making it a key target for the climate mitigation

efforts requested by the PA. Bottom-up estimates show that Italy is a significant CH4 emitter in Europe, with major contribu-45

tions from agriculture (enteric fermentation and manure management), waste management and energy (Romano et al., 2024).

Complementing these estimates with inverse modelling requires the observational network in Italy to provide a good coverage

of the country. At present, five ICOS sites are monitoring continuously CH4 in Italy: Plateau Rosa (PRS; 45.9◦ N, 7.7◦ E),

Ispra (IPR; 45.8◦ N, 8.6◦ E), Potenza (POT; 40.6◦ N, 15.7◦ E), Monte Cimone (CMN; 44.2◦ N, 10.7◦ E) and Lampedusa

(LMP; 35.5◦ N, 12.6◦ E). PRS, CMN, IPR have been measuring atmospheric CH4 in Northern Italy since 2005, 2008, and50

2017, respectively, while POT, which recently began monitoring CH4 (Lapenna et al., 2025), is expected to provide valuable

coverage in Southern Italy in the future. LMP is a marine remote site located on Lampedusa island, deep in the Mediterranean

sea and distant from continental Italy, monitoring since 2008. More stations, introduced in Sect. 2.4, are also monitoring CH4

in Italy, although they are not part of the ICOS network.

Here, we conduct Observation System Simulation Experiments (OSSEs) with the Eulerian model ICON-ART to assess55

the effectiveness of the current monitoring network in Italy and evaluate potential expansions. This work complements a re-
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cent study that investigated the same expansion in Italy for CO2 monitoring using Lagrangian modelling (Villalobos et al.,

2025). Both studies are conducted within the framework of the EU-HORIZON AVENGERS project. In the context of inverse

modelling, OSSEs involve generating synthetic “true” emissions based on prior knowledge of their magnitude and associ-

ated uncertainties. These true emissions are then used to produce corresponding synthetic atmospheric observations using a60

transport model. We perform inversions by assimilating these synthetic observations representing the true atmospheric state to

optimize the prior emission estimates. With each assimilated observation, the optimized emissions are expected to converge

toward the true emissions. The degree of agreement between optimized and true emissions depends on the quality, spatial and

temporal coverage, and quantity of observations in the network. OSSEs therefore provide a valuable framework to evaluate the

impact of adding measurement sites, helping to identify optimal locations and compare different network expansion scenarios.65

OSSEs have previously been used in inverse modelling to assess the potential impact of existing or new surface stations (e.g.,

Takele Kenea et al., 2024; Park and Kim, 2020; Wang et al., 2018; Kaminski and Rayner, 2017; Wu et al., 2016; Hungershoefer

et al., 2010; Baker et al., 2010) or satellites (e.g., Santaren et al., 2021; Yu et al., 2021; Basu et al., 2016; Bloom et al., 2016;

Nickless et al., 2015; Ziehn et al., 2014; Shiga et al., 2014; Miyazaki et al., 2011; Villani et al., 2010; Edwards et al., 2009;

Meirink et al., 2006; Rayner et al., 1996). In this work, alongside exploring the expansion of the Italian observational network,70

we build upon previous work and introduce a methodology that is both easily reproducible and adaptable to any country with

Eulerian modelling. Furthermore, we employ the Community Inversion Framework (CIF; Berchet et al., 2021) to perform our

inversions. Most of the Eulerian models used in the inversion community have now been coupled to CIF and our methodology

can therefore be easily applied with these models. This methodology also addresses an important caveat commonly found

in the studies mentioned above: the impact of randomness and truth selection. Because the chosen truth is just one of many75

potential realities, the results can be artificially influenced toward a specific station when the prior and truth are already in good

agreement around the station before the inversion. To mitigate such an effect, we adopt an ensemble of truth scenarios.

Section 2 introduces the transport model, inversion system, input data, and network scenarios considered in this study. It also

outlines the generation of synthetic data and the choice of true emission data. Section 3 presents the results, while Section 4

addresses the caveats and limitations of the applied methodology.80

2 Methods

Here, we describe the transport model, inversion framework, and input data used to generate the prior estimates, along with the

network scenarios considered in this study.

2.1 ICON-ART model

The Icosahedral Nonhydrostatic (ICON) weather and climate model (Zängl et al., 2015) is a collaborative effort between85

the Deutscher Wetterdienst (DWD), the Max Planck Institute for Meteorology (MPI-M), the Deutsches Klimarechenzentrum

(DKRZ), the Karlsruhe Institute of Technology (KIT), and the Center for Climate Systems Modeling (C2SM) in Switzerland.

Its goal is to develop a unified, next-generation global system for numerical weather prediction (NWP) and climate modeling.
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ICON became operational within DWD’s and MeteoSwiss’ forecasting systems in 2015 and 2024, respectively. Notably, ICON

was made available as open-source software to expand its user and developer community in February 2024. To incorporate90

atmospheric chemistry and aerosol processes, ICON is extended by the Aerosols and Reactive Trace gases (ART) module,

developed and maintained by KIT (Hoshyaripour et al., 2025; Schröter et al., 2018; Rieger et al., 2015). This combination

forms the ICON-ART model, a non-hydrostatic Eulerian chemical transport model that includes emissions, transport, gas-

phase chemistry, and aerosol dynamics in both the troposphere and stratosphere. ICON-ART uses an icosahedral grid that can

cover the entire globe or be restricted to limited areas, ranging in horizontal resolution from several degrees down to a few95

kilometers.

For the present study, the model is configured with a horizontal resolution of 26 km (approximately 0.3◦) over Italy and its

surroundings (2◦N – 24◦N, 32◦E – 54◦E), consisting of 5048 grid cells (see Fig. 1). Vertically, the model extends from the

surface up to 23 km with 60 levels, using a height-based, terrain-following coordinate system.

Meteorological variables are computed online by the ICON model. In this setup, key prognostic variables (including wind100

speed, specific humidity, density, virtual potential temperature, and Exner pressure), are weakly nudged toward ERA5 reanal-

ysis data (Hersbach et al., 2023, 2017) from the ECMWF, available at a 3-hourly temporal resolution. This nudging helps

maintain the model’s realism and prevents significant drift from observed atmospheric conditions. ERA5 data also provide the

model’s initial state. We simulate the year 2018 to be consistent with Villalobos et al. (2025).

Emission fields for transported species are processed via the Online Emissions Module (OEM; Jähn et al., 2020), integrated105

within ART. Output files of instantaneous concentrations are saved hourly and later interpolated in time, height, and space to

derive model equivalents of observational data.

2.2 Community Inversion Framework

The Community Inversion Framework (CIF; Berchet et al., 2021) is an inversion system that has been designed to bring together

the different inversion methods (analytical, variational and ensemble) and transport models used in the inversion community.110

It is built as an open-source, well documented, highly modular multi-model inversion framework written in Python that facil-

itates the comparison of (1) inversion methods and (2) transport models. CIF has proved to be accurate and computationally

performant over the past years (Wittig et al., 2023; Savas et al., 2023; Remaud et al., 2022; Thanwerdas et al., 2024, 2022b, a)

We employ the ensemble square root filter (EnSRF) algorithm implemented in CIF to perform the inversions presented in

this study. This algorithm has recently been improved and is thoroughly described in Thanwerdas et al. (2025). Briefly, an115

ensemble of vectors is used to represent the probability distribution of the control vector, which contains all the variables that

we wish to optimize (e.g., fluxes, background concentrations, etc). Each member of the ensemble is attached to a different

tracer transported by the model. After running simulations with this ensemble of tracers, the resulting ensemble of output

concentrations is used to optimize the control vector to minimize the mismatch with the assimilated observations of atmospheric

concentrations. In this study, the variables being optimized are scaling factors applied to the fluxes at the model’s horizontal120

resolution.
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The full assimilation time period is partitioned into several windows of finite length. For each window, a single scaling

factor is associated with each optimized variable (e.g., flux emitted in a cell of the horizontal domain). Scaling factors within

the window are optimized using both the observations from the current window and the observations from a fixed number (lag)

of subsequent windows. Covariance localization is also applied to mitigate spurious long-range correlations that tend to appear125

in the ensemble. More details about the exact setup employed for this study is provided in Sect 2.8.

2.3 Input data

The prior information is based on several high-quality datasets, which are merged into two categories of emissions: anthro-

pogenic and natural. Total, anthropogenic and natural emissions are shown in Fig. 1.

2.3.1 Anthropogenic and natural fluxes130

Except for fire emissions, all anthropogenic CH4 fluxes are based on the TNO-AVENGERS inventory (Dröge et al., 2024).

The TNO-AVENGERS inventory consist of national gridded inventories of Germany, Italy, the Netherlands, Sweden and

Switzerland nested within the TNO-GHGco_v7 inventory for the other European countries. The approach to prepare the TNO-

GHGco_v7 inventory is similar to CAMS-REG_v4 (Kuenen et al., 2022), but now also includes N2O emissions of all sectors

and CO2, CH4 and N2O emissions from the LULUCF sector. The yearly spatial distribution of emissions is provided at a135

horizontal resolution of 0.05◦× 0.1◦ over Europe. Additionally, hour-of-day, day-of-week and month-of-year temporal scaling

factors are also included in the dataset and can be applied on the spatial distribution to create an hourly emission dataset. Fire

emissions are based on the Global Fire Emissions Database version 4s (GFED4s; van der Werf et al., 2017) and are provided

at a monthly resolution and a horizontal resolution of 0.25◦× 0.25◦. According to this dataset, about 78% of the anthropogenic

CH4 was emitted by the agriculture (mainly in Northern Italy) and waste sectors (mainly in Southern Italy) in 2018. The140

remaining emissions were mostly released by fugitive sources (mainly in Northern Italy) and biofuel burning (spread over the

country).

We use a dataset produced with the model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator, version 4.1,

revision 12177, Smith et al., 2001) to represent the soil uptake emissions from peatlands and inundated wetlands. LPJ-GUESS

is a process-based dynamic vegetation-terrestrial ecosystem community model designed for regional or global studies of land145

surface processes. It has been developed by Lund University in a collaboration involving the Potsdam Institute for Climate

Impact Research and the Max-Planck Institute for Biogeochemistry, Jena. This dataset is provided at daily temporal resolution

and spatial resolution of 0.5◦.

For other natural sources, we rely on bottom-up estimates compiled for the inversions conducted as part of the Global

Methane Budget (Saunois et al., 2020). These include the datasets for oceanic sources (including geological offshore and150

hydrate emissions), onshore geological sources and termites described in Saunois et al. (2020). These datasets are available at

monthly temporal resolution and 0.1◦× 0.1◦spatial resolution.
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Figure 1. Spatial distribution of total, natural and anthropogenic fluxes in Italy (upper panels) and contributions of natural and anthropogenic

emissions to total emissions in Northern, Central, Southern, and all of Italy (lower panel). Numbers displayed at the center of bars represent

the contribution of each category to the total emissions in a specific region.

2.3.2 Background concentrations

Initial conditions and lateral boundary conditions for CH4 mole fractions are derived from the CAMS global inversion-

optimized CH4 concentration product v21r1 (Segers, 2022). The data are based on surface observations only and are provided155

at a horizontal resolution of 3.0◦× 2.0◦ and at a 6-hourly temporal resolution.

2.4 Candidate stations

For selecting candidate stations for the extended ICOS network, we consider 8 locations from Italy’s existing or planned

monitoring infrastructure:
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– Mount Venda (VND, 45.3◦ N, 11.7◦E). It is a proposed new site intended to improve constraints on emissions in the160

high-emission Po Valley region. A preliminary study investigated the possibility of installing a GHG sampling inlet at

a transmission tower on the summit of Mount Venda (570 m), in the eastern Po Valley. However, this remains at the

planning stage due to funding limitations.

– Chieti (CHI; 42.2◦ N, 14.7◦E). This site has been recently established. It is operated by the University of Chieti and

located on the Adriatic coast, and is expected to begin measuring GHGs in 2025–2026.165

– Lecce (ECO; 40.3◦ N, 18.1◦E). This site is located near the urban area of Lecce (population 94,377), about 10 km

from the South Adriatic Sea. CH4 measurements were continuously performed from 2015 to 2017 (Dinoi, 2025) by the

National Research Council of Italy (CNR) – Institute for Atmospheric Science and Climate (ISAC).

– Lamezia Terme (LMT; 38.9◦ N, 16.2◦E). This site is located along the Tyrrhenian Sea coastline, and CH4 measurements

have been conducted since 2015 by CNR-ISAC (Malacaria et al., 2025).170

– Capo Granitola (CGR; 37.6◦ N, 12.7◦E). This site is located on the southern coast of Sicily facing the Strait of Sicily,

and is jointly operated by CNR-ISAC and CNR-IAS (the Institute for the Study of Anthropic Impact and Sustainability

in the Marine Environment). In situ CH4 atmospheric observations were carried out here over the period 2015–2019 and

2022–2023 (Cristofanelli et al., 2025), and are expected to resume in 2026.

– Madonie – Piano Battaglia (MDN; 37.9◦ N, 14.0◦E). This site is located in a mountainous area in northern Sicily. Since175

2005, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) has been

performing weekly flask sampling (Sferlazzo et al., 2025).

– Monte Curcio (CUR; 39.3◦ N, 16.4◦E). It is a mountain station located in the heart of the Calabria region, managed

by the CNR-IIA (Institute of Atmospheric Pollution Research). Hourly CH4 data are available only from 2015 to 2017

(Bencardino, 2025), but the station remains active.180

– Col Margherita (MRG; 46.8◦ N, 11.8◦E). This observatory is located on the southern slope of the Eastern Alps, within

the Dolomites. It is representative of the synoptic conditions of the south-facing Eastern Alps, where there is no similar

station. The observatory is equipped with a complete meteorological station, an ozone analyser and a total gaseous

mercury analyser, but the station does not monitor CH4 concentrations.

ECO, LMT, CGR, CUR, MDN, and MRG are not part of ICOS but actively contribute to the regional Global Atmospheric185

Watch (GAW) programme of the World Meteorological Organization (WMO). Further information about these stations is

provided in Table A1. Locations are displayed on a spatial map in Fig2 (Scenario 11).

2.5 Network scenarios

This study evaluates twelve atmospheric measurement network scenarios encompassing Italy and its neighboring countries.

The primary goal is to determine which candidate stations, introduced in Sect. 2.4, would provide the greatest benefit for190
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constraining emissions in Italy. It results in eight different scenarios, each featuring one of the candidate stations. In addition,

several supplementary network scenarios are considered to assess the contribution of existing networks and to estimate the

optimal achievable constraints on Italian emissions. The twelve scenarios, displayed in Fig. 2, are outlined as follows:

– Scenario 1 includes only ICOS sites located in countries bordering Italy. This configuration serves to assess the ability

of external networks to constrain emissions originating within Italy.195

– Scenario 2, referred to as the base network, expands on Scenario 1 by incorporating ICOS sites located within Italy.

– Scenarios 3 through 10 each evaluate the impact of adding a single additional station to the base network among the

candidate stations. Specifically, the added stations are:

– Scenario 3: VND

– Scenario 4: CHI200

– Scenario 5: ECO

– Scenario 6: LMT

– Scenario 7: CGR

– Scenario 8: MDN

– Scenario 9: CUR205

– Scenario 10: MRG

– Scenario 11 combines the base network with all eight stations evaluated individually in Scenarios 3–10.

– Scenario 12 builds on Scenario 11 by further including all 16 Italian ICOS ecosystem stations, which are described in

Table A3, to explore the full potential of an optimized measurement network in Italy.

These scenarios enable a systematic evaluation of how different network configurations influence the capacity to monitor210

and constrain GHG emissions across the region.

2.6 Characteristics of synthetic observations

Synthetic observations generated with the transport model ICON-ART are assimilated by the inversion system to refine prior

estimates and to assess the potential of each candidate station for constraining emissions. Conducting robust OSSEs to identify

the most suitable stations for network expansion requires producing synthetic observations with times and locations that closely215

replicate those of real-world measurements.

For existing stations, we use synthetic observations matching the locations and times of the real observations compiled in

version 9.2 of the ICOS ObsPack CH4 data product (ICOS RI et al., 2024). This dataset includes continuous measurements

from 66 stations across Europe collected between 1984 and 2024, encompassing both ICOS and non-ICOS facilities. Within
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Figure 2. Description of the sites featured in the twelve atmospheric measurement network scenarios. The blue circles show the neighboring

stations, i.e. outside Italy. The yellow circles show the ICOS atmosphere sites in Italy. The red circles show the candidate stations studied in

the scenarios 3 through 10. The green circles show the ecosystem ICOS stations. To improve readability, ICOS ecosystem station names are

not displayed in scenario 12.
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the temporal and spatial bounds of our experiments, data from 19 stations are available (blue circles in Fig. 2), with detailed220

station information provided in Table A2.

For candidate and ecosystem stations, we assume hourly measurements taken at a sampling height of 2 m for mountain sites

and 100 m (i.e., from tall towers) for lowland sites. VND represents a special case, as measurements there would be collected

at 50 m, from the top of an existing radio-television tower. These specifications are applied in the generation of our synthetic

observations.225

2.7 Generation of true emissions and synthetic observations

To generate synthetic observations with the ICON-ART transport model, we first sample a set of “true” scaling factors (repre-

senting the ratio of true to prior emissions) for each grid cell in the ICON-ART domain (c = 5048 cells), following the approach

described by Thanwerdas et al. (2025). We briefly present it here.

The true scaling factors are sampled from a normal distribution with a prior-error covariance matrix B. We account for both230

spatial and temporal correlations. For spatial correlations, we first construct a correlation matrix based on an exponential decay

function, e−
di,j

L , where di,j denotes the great-circle distance between cells i and j, and L is the spatial correlation length.

We then scale this matrix by the chosen variance to obtain the spatial covariance matrix. A similar procedure is applied to

introduce temporal correlations, replacing spatial distances with the time interval between similar optimized variables (i.e.,

corresponding to the same cell), normalized by the temporal correlation length. The full covariance matrix, accounting for both235

spatial and temporal correlations, is built using Kronecker products. Using the singular value decomposition (SVD) of the full

matrix B, we generate an ensemble of spatially and temporally correlated scaling factors.

In line with the recommendations of Szénási et al. (2021) and anthropogenic correlation lengths estimated by TNO for Italy

(Super et al., 2020), we adopt a spatial correlation length of 200 km for natural fluxes and 100 km for anthropogenic fluxes,

considering no correlation for fossil fuel emissions and a correlation length of 150 km for agriculture and waste emissions.240

To determine the appropriate variance for each scaling factor, we compute the country-scale uncertainty for both flux types

using the specified correlation lengths and a range of relative variances (50%, 100%, 150%, 200%). Our analysis suggests

that relative variances of approximately 150% are required for both natural and anthropogenic fluxes to match the country-

scale uncertainties reported by TNO (for anthropogenic fluxes) and by Szénási et al. (2021) (for both flux types in Italy).

However, applying relative variances above 100% within a Gaussian framework increases the risk of generating negative flux245

values during the inversion. To balance realistic uncertainty representation with these technical constraints, we adopt a relative

variance of 100% for both flux categories. Although it results in a prior uncertainty that is slightly underestimated compared to

existing estimates, it should not affect the conclusions of this study as we use an inversion set-up where true uncertainties are

considered to be perfectly known. Note that, due to the shorter correlation length applied to anthropogenic fluxes, it results in

a lower country-scale uncertainty for anthropogenic emissions compared to natural ones.250

To account for a potential temporal variability of the mismatch between prior and true estimates, we generate a new set of

true scaling factors for each 10-day period throughout the year 2018. To maintain seasonal coherence, we impose a tempo-

ral correlation using an exponential decay with a temporal correlation length of three months. The resulting scaling factors,
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averaged over 2018, are shown in Fig. 3. The perturbed fluxes used as the synthetic “truth” are obtained by applying these

scaling factors to the corresponding prior fluxes. The selected values for prior relative variances and for spatial and temporal255

correlations lengths are summarized in Table 1.

Table 1. Selected values for prior relative variances and for spatial and temporal correlation lengths to build the prior-error covariance matrix

B.

Prior relative variance Spatial correlation length Temporal correlation length

Anthropogenic 100% 100 km 3 months

Natural 100% 200 km 3 months

Finally, we run a 1-year forward simulation over 2018 with the perturbed fluxes. After this forward simulation, the simulated

values matching the time and locations of the observations (for existing stations) or pseudo-observations (for candidate and

ecosystem stations) introduced in Sect. 2.6 are stored. These simulated values are then treated as the new observations to be

assimilated in the experiments presented in the next section. Additionally, to mimic realistic model-data mismatch uncertainties260

arising from both modelling and measurement errors, we perturb them with random values drawn from a Gaussian distribution

with a mean of 0 and a standard deviation of 20 ppbv. This corresponds to the typical model-data mismatch calculated in

Steiner et al. (2024b) with ICON-ART runs at a resolution of 26 km.

Model–data mismatch plays a critical role in atmospheric inversions, as it directly affects the assimilation weights assigned

to each observation and, consequently, the inversion outcomes. Assigning a uniform model–data mismatch across all stations265

implies equal trust in all observations, regardless of site-specific conditions. While this assumption is a simplification, it serves

a useful purpose in the initial phase of our study: it allows us to isolate and evaluate the influence of station location on the

inversion results. However, in real-data applications, model–data mismatch is inherently site-dependent. It reflects the degree

of confidence in the model’s ability to accurately simulate concentrations at a given location, which can vary due the model’s

ability to capture local atmospheric dynamics and local sources, given the complexity of the surrounding environment. In270

Sect. 3.5, we present a refined, station-specific estimation of model–data mismatch and analyze its impact on the inversion

results.

To cover a wider range of emission uncertainties, we replicate this methodology five times to generate five different sets of

synthetic observations based on five different sets of true fluxes (hereinafter called truth scenario). The importance of using

different truths for an OSSE is illustrated and discussed in Sect. 3.2.275

2.8 Inversion setups

For each designed network and each set of true fluxes and perturbed observations, we run a 1-year inversion (i.e. 12 net-

work scenarios x 5 truth scenarios = 60 inversions) spanning 2018 with the EnSRF mode of CIF-ICON-ART. Following the

conclusions of Thanwerdas et al. (2025), we use the following CIF settings to run all the inversions:

– Window length = 10 days280
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– Number of lags = 2

– Localization function is an exponential function

– Localization length = 600 km

To build the prior error-covariance matrix B, relative variances and spatial and temporal correlations are prescribed to match

the values used in generating the true scaling factors (see Table 1).285

2.9 Evaluation metrics

We use two different metrics to quantitatively compare network designs: error reduction and uncertainty reduction. Here, we

define them.

2.9.1 Error reduction (ER)

The error reduction (ER) quantifies the agreement between the optimized fluxes and the true fluxes. It is defined by:290

ER(k,t) = 1− ea(k,t)
eb(k,t)

= 1− |xa(k,t) ·F (k,t)−xt(k,t) ·F (k,t)|
|xb(k,t) ·F (k,t)−xt(k,t) ·F (k,t)| (1)

Here, xb(.), xa(.) and xt(.) are the vectors representing the prior, posterior, and true scaling factors. In this work, F (.)

is either the anthropogenic flux, the natural flux or the sum of them; eb(.) and ea(.) are the prior and posterior absolute flux

errors, respectively. k and t represent the cells of the model’s horizontal grid and the time dimension, respectively. This formula

gives a quantity that is time dependent and spatially distributed. A positive ER indicates that the optimized fluxes agree better295

with the truth than the prior data, whereas a negative ER shows the opposite. We further define the mean error reduction (MER)

using time and area-weighted spatial averages of the flux errors,

MER(S,T ) = 1− ea(k,t)
S,T

eb(k,t)
S,T = 1−

∑
k∈S, t∈T a(k) · ea(k,t)∑
k∈S, t∈T a(k) · eb(k,t)

(2)

Here, S and T denote the spatial and temporal domains, respectively. S may represent the spatial extent (the entire domain

or a region in it), while T refers to the temporal extent (the full year or a specific season). a(·) denotes the area of a given grid300

cell. In this study, we consider the entire country and three aggregated regions.

The aggregation is based on the five Eurostat NUTS (Nomenclature of Territorial Units for Statistics) regions of Italy:

Northern-West, Northern-East, Central, Southern, and Insular Italy. For our analysis, we combine the two northern regions into

a single Northern Italy and merge Insular Italy with Southern Italy, resulting in three regions of comparable area. This division

of the entire domain facilitates the quantification of spatial heterogeneity of our results.305

It is important to note that the MER does not reflect improvements in domain-total fluxes, as it is based on the sum of absolute

errors rather than net differences. Reductions in domain-total flux error can be misleading, as they may result from compensat-

ing errors across spatial or temporal domains. In contrast, a high MER reflects a consistent and widespread agreement between

posterior and true fluxes, offering a more robust measure of overall inversion performance. MER can be calculated for different

regions, seasons, and flux categories. Illustrative examples of ER and MER are provided in Figures 2c and 2d, respectively.310

12

https://doi.org/10.5194/egusphere-2025-5804
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure 3. Illustration of the computation of the metrics presented in Sect. 2.9 for scenario 2, and for total CH4 emissions. We first generate

a set of true scaling factors (panel a, averaged here over the full year). Among the five generated truths, we show only the fifth truth here

(purple circle in Fig. 5). We start from prior scaling factors all equal to one. After the inversion, we obtain posterior scaling factors (panel b).

Based on true, prior and posterior scaling factors, we compute ER (panel c, averaged here over the full year) and annual MER for all Italian

regions (panel d). We also compute UR (panel e, averaged here over the full year) and annual TUR for the different Italian regions (panel f).
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2.9.2 Uncertainty reduction (UR)

For each cell of the horizontal domain, we define the uncertainty reduction (UR) as the reduction in the ratio of posterior to

prior uncertainties,

UR(k,t) = 1− σa(k,t)
σb(k,t)

(3)

where σb(.) and σa(.) denote the vectors representing the prior and posterior standard deviations of scaling factors, respec-315

tively. We further define the total flux uncertainty reduction (TUR) as the uncertainty reduction of the domain-total flux (e.g.,

all of Italy or a specific region in Italy).

TUR(S,T ) = 1−
√

fa
S,TA(fa

S,T )T

fb
S,TB(fb

S,T )T
·
∑

k∈S, t∈T fb(k,t)∑
k∈S, t∈T fa(k,t)

(4)

Here, S and T also denote the spatial and temporal domains, respectively. B and A denote the prior-error and posterior-

error flux covariance matrices. fb
S,T and fa

S,T are the vectors containing the prior and posterior fluxes multiplied by the area,320

respectively, where the entries outside the domains S and T have been set to zero. Note that we divide the standard deviations,

calculated from B and A, by the corresponding domain-total flux in order to compare relative rather than absolute uncertainties.

Using absolute uncertainties can yield negative uncertainty reductions when the posterior flux estimate is substantially larger

than the prior estimate.

TUR can be calculated for different regions, seasons, and flux categories. Although the two metrics MER and TUR are325

related since both depend on the amount of emission signal detected by the station, a high TUR does not necessarily imply a

high MER. If the signal originates from many directions and spans a broad region, the TUR will likely be high because the

corresponding footprint is wide. However, when the footprint becomes too broad, the system may struggle to pinpoint the exact

source of the detected signal and refine properly the source region responsible for the signal, which results in a low MER. This

is further discussed in Sect 4.330

Illustrations of UR and TUR are provided in Fig. 3e and Fig. 3f, respectively.

3 Results

3.1 Constraining total CH4 emissions

Figure 4 shows the MER for total CH4 emissions across four regions (all of Italy, Northern Italy, Central Italy, and Southern

Italy) for each network scenario, and averaged over all truth scenarios. In Scenario 1, which includes only neighboring stations,335

Northern Italy exhibits a moderate constraint with MER, reaching 18%. In contrast, Central Italy shows weaker skill (MER <

15%), while Southern Italy remains essentially unconstrained, with MER as low as 4%.

Including the existing ICOS stations within Italy (Scenario 2) markedly improves the agreement between posterior and true

fluxes, raising MER by about 5–10% across all regions.
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Figure 4. Spatial distribution of MER across Italy, shown separately for the whole country, Northern Italy, Central Italy, and Southern Italy.

For each region, the corresponding MER value is annotated in a box placed near its location, while the national value is displayed in the

lower-left corner of each panel, in bold. Stations from Scenario 1 are marked with yellow circles, and additional stations introduced in

subsequent scenarios are shown as orange circles.

Analysis of individual candidate stations indicates that VND and CHI perform best, each achieving 2% higher MER than340

other sites. VND is particularly effective in Northern Italy, whereas CHI provides stronger constraints in Central and Southern

Italy, outperforming all the other candidate stations in those regions. Other stations, such as ECO and CGR, also improve

network performance reasonably. While ECO captures information about emissions both in Central and Southern Italy, CGR

improves the coverage in Southern Italy.

Idealized expansion (i.e., adding all candidate stations in Scenario 11 and the full set of ICOS ecosystem stations in Scenario345

12) provides substantial gains, with MER for all of Italy reaching 28% and 39%, respectively. While Northern and Central Italy

shows similar results under the ideal scenarios, Southern Italy remains less constrained. This comparatively weak constraint

can be attributed to three factors:
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– Small flux signals: Enhancements observed at Southern stations are only marginally larger than the model–data mis-

match, limiting the inversion’s ability to attribute them to specific sources. By contrast, larger enhancements at VND and350

CHI allow for clearer source identification.

– Geographical placement: Most Southern sites are not centrally located, reducing overlap between their footprints and the

Italian landmass. POT is an exception, providing stronger coverage thanks to its central position.

– Meteorological conditions: Prevailing winds in the region do not consistently transport emissions from inland areas

toward the stations, restricting their effectiveness in detecting key sources.355

The TUR results (see Fig. C1) are consistent with these findings. CHI and VND yield identical, and the largest, uncertainty

reductions, exceeding those of other sites by approximately 4%. VND has the strongest influence in Northern Italy, whereas

CHI provides greater benefits in the rest of the country. Overall, TUR reaches 53% when all candidate stations are included

(Scenario 11), and about 60% for the idealized network (Scenario 12).

These results underscore the importance of the CHI and VND sites for constraining CH4 emissions in Italy, identifying them360

as the strongest candidates for extending the ICOS network in the country. Behind CHI and VND, ECO and CGR are also

good candidates.

3.2 Sensitivity to truth

Figure 5 shows MER for all truths, emphasizing the large variability of results one can infer using different truth scenarios.

Over the whole country, the MER is found to vary by up to 5% around the mean, which is large compared to the differences365

between scenario results. The truth has such an importance because the posterior scaling factors typically remain unchanged

compared to the prior (i.e., close to 1) over areas where there are no monitoring stations, because of a lack of information. If

the true scaling factors are also close to 1 over these areas, the agreement will appear to be large not because of constraints

provided by the network, but because of randomness. For example, MER in the fourth truth scenario is notably low in Central

Italy compared to the other scenarios. This arises because the fourth scenario includes a patch of high (randomly generated)370

scaling factors over this region. Due to the lack of observational constraints, the system cannot capture these values, and the

posterior scaling factors remain close to 1, leading to a small MER. By contrast, in the other truth scenarios, some grid cells

have true scaling factors already close to 1 in Central Italy. In these cases, even if the posterior values also stay near 1, the

artificial agreement between the truth and posterior estimates leads to a larger MER. These results highlight that a robust

assessment can only be achieved by using an ensemble of truth scenarios that captures the spread of emission uncertainties.375

On the contrary, results for TUR are not dependent on truth scenarios. This is because the posterior error covariance matrix

in Eq. 4 is a function only of the error covariance matrices (i.e., the prescribed prior relative uncertainties, correlation lengths,

and model-data mismatch) and the transport model (see Thanwerdas et al. (2025) and references therein).

Because different truth realizations can yield different MER outcomes, it is important to assess how often one station provides

stronger constraints than another, i.e., the probability that adding one station improves MER more than adding a different380

station. Figure 6 presents these pairwise comparisons. At the national scale, adding CHI outperforms VND in terms of MER
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Figure 5. MER for each network scenario across Italy, as well as for Northern, Central, and Southern Italy. Black lines indicate MER for

total emissions (averaged over all truth scenarios). Colored circles represent MER for total emissions under individual truth scenarios. Green

and blue lines correspond to MER for natural and anthropogenic emissions, respectively.

for 80% of the truth realizations. This highlights the importance of using different truth scenarios. Using only one scenario

could have resulted in preferring VND over CHI. In Northern Italy, VND consistently provides stronger constraints than CHI

(100% of the realizations) as well as any other station. In Central Italy, CHI almost always outperforms VND, while VND tends

to be better than the remaining stations. In Southern Italy, CHI is consistently superior to both VND and the other stations.385

However, while averages over the truth scenarios suggest that ECO, LMT, and CGR generally outperform VND in the South,

a notable fraction of the realizations (20–40%) indicate better performance for VND. This highlights that, in some cases, VND

can also provide stronger constraints than the Southern stations.

These results confirm that CHI and VND would be the best choices to extend the ICOS network in Italy. In addition, it shows

slightly stronger results in favor of CHI, although the difference is small.390

3.3 Anthropogenic and natural emissions

Distinguishing between the natural and anthropogenic components of the signal detected by a site is inherently challenging. In

the absence of additional constraints, such as isotopes, only spatial and temporal differences between the two emission cate-
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Figure 6. Pairwise comparison between network scenarios. In each comparison, the horizontal bar is divided into two sub-bars (green and

blue). The green sub-bar (and its associated percentage) represents the fraction of truth scenarios in which adding the first station (green)

yields a greater improvement in MER than adding the second station (blue). Conversely, the blue sub-bar (and its percentage) indicates

the fraction of truth scenarios where adding the second station (blue) leads to a larger MER improvement than the first. For example, CHI

outperforms VND in terms of MER for all of Italy in 80% of the truth scenarios.

gories can be exploited. When natural and anthropogenic emissions are co-located and occur simultaneously, the optimization

process cannot effectively separate them, resulting in poor agreement between the posterior and true fluxes.395

Figure 5 and Fig. C2 show MER and TUR results for total, anthropogenic and natural emissions, across all network scenarios.

At the national scale, MER and TUR for anthropogenic emissions reach approximately 10% and 15-20%, respectively, across

all candidate stations. These emissions are best constrained in Northern Italy, where they are most prevalent: adding VND

(network scenario 3) yields a MER of 15% and a TUR close to 20%, the strongest performance in this region. In contrast,

anthropogenic emissions remain poorly constrained in Central and Southern Italy, with both MER and TUR below 10%.400

Outcomes for natural emissions closely mirror those for total emissions, with MER values roughly 4% higher in all regions

except the South, where they are nearly identical. Importantly, MER and TUR for total emissions are not simple weighted

averages of their anthropogenic and natural counterparts. Because these metrics involve ratios, squared sums, and absolute

sums, non-linear effects arise that prevent straightforward aggregation.

Natural emissions are more accurately captured than anthropogenic emissions, for the mean over truth scenarios (see Fig. 5405

for MER and Fig 7 for TUR) and across all truth scenarios (not shown here). This is primarily due to differences in the

prescribed correlation lengths used to define error statistics and construct the prior error-covariance matrix. A longer correlation
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length reduces the degrees of freedom in the inverse problem and simplifies it. In other words, the true scaling factors for natural

emissions vary less spatially than those for anthropogenic emissions. As a result, representing the higher spatial variability of

anthropogenic scaling factors with the same number of observations is more challenging, leading to poorer performance. Unlike410

anthropogenic emissions, natural emissions are also more spatially diffuse in all regions. For this reason and because of the

longer correlation lengths, optimizing natural emissions does not rely as heavily on ideal wind conditions (i.e., winds blowing

predominantly from the region of interest toward the station).

Across all regions, the conclusions for anthropogenic and natural emissions mirror those for total emissions: CHI and VND

outperform the other sites, with VND showing better performance in Northern Italy and CHI in the other regions.415

3.4 Seasonality

Figure 7. MER for each scenario over all of Italy, Northern Italy, Central Italy, and Southern Italy. Blue, green, yellow and orange lines

represent MER for total emissions (mean over truth scenarios) in DJF (December-January-February), MAM (March-April-May), JJA (June-

July-August) and SON (September-October-November), respectively.

Different scaling factors were generated for each season to account for temporal variability in the uncertainties. As a result,

randomness could, in principle, overly influence the outcomes (only for MER as explained in Sect. 3.2) and limit the robustness

of direct comparisons. However, in our case, the results remain consistent whether averaging over three, four or five truth

scenarios. This suggests that randomness does not substantially affect the comparison, and that the conclusions drawn below420

are robust and informative.
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Seasonality can have a substantial influence on MER mainly through two drivers:

– Larger flux signals: As mentioned in Sect 3.1, if enhancements become significantly larger than the model-data mis-

match, the inversion system can better identify and locate the sources responsible for these enhancements. While natural

emissions, particularly wetlands, are larger in summer because of rising temperature and daylight, anthropogenic emis-425

sions are larger in winter because of a higher demand for residential and industrial heating.

– Meteorological conditions: Seasonal shifts in prevailing winds and turbulent mixing can influence how emissions are

transported from source regions to stations, and therefore affect the results.

For most of network scenarios, the best MER results for total emissions are obtained in JJA across all of Italy, including

Central and Southern regions. Results for natural emissions closely mirror this pattern, indicating that the stronger signals from430

natural emissions in JJA are a key driver of the higher MER. However, this cannot be the sole explanation: although natural

emissions are larger in MAM than in SON or DJF, the MER reaches its lowest values in MAM for Central Italy and remains

very low in Southern Italy, while it peaks in JJA. This discrepancy is explained by wind patterns. In MAM 2018, winds in

Central and Southern Italy were strong and predominantly from the West, limiting the transport of inland emissions toward

the observation sites. By contrast, in JJA the winds were mostly from the North-West, allowing stations to sample more inland435

emissions and thereby improving the MER. Northern Italy shows a different situation: winds blow both from the East and the

West throughout the year, with a higher frequency of easterly winds. The direction does not have a strong seasonal dependence

but the speed is smaller in JJA, resulting in a complex interaction between emission intensity and wind speed to determine in

which season MER is larger in Northern Italy. Unlike total and natural emissions, results for anthropogenic emissions (Fig. C4)

are not substantially influenced by seasonality (± 2%). There is only a slight advantage for SON and DJF, consistent with the440

anthropogenic emissions being larger in these seasons.

TUR does not depend on truth scenarios, so randomness does not influence the results. The outcomes generally mirror those

of MER, with one notable exception: results in SON are substantially better compared to the other seasons. This improvement is

likely due to winds in Southern and Central Italy during 2018 blowing from multiple directions, which broadened the footprints.

Although such mixing does not improve MER since the signal becomes less distinguishable, it can reduce uncertainty across a445

wider area, thereby enhancing TUR. For anthropogenic emissions (Fig. C5), best results are obtained in DJF and in Northern

Italy, because both the winds and the emissions are higher during this season.

Although seasonality affects both MER and TUR for individual network scenarios, the differences between scenarios show

little seasonal variation; in other words, the seasonal influence is largely similar across all stations. Only VND and CHI show a

marked performance increase in DJF, particularly in Northern and Central Italy. This improvement arises from their ability to450

better constrain anthropogenic emissions, which peak during this season.
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3.5 Sensitivity to model-data mismatch

We evaluate the impact of incorporating a non-uniform model–data mismatch in our analysis. For real stations, this mismatch

is estimated using observations from the AVENGERS obspack data product. For candidate stations, where observations are

unavailable, we rely solely on simulated values.455

For the real stations, we first perform a forward simulation for the year 2018. Simulated values are then sampled and

compared to observations to compute an initial model–data mismatch using the root mean square error (RMSE). This initial

estimate is used to perform an inversion for 2018. Following the inversion, we recalculate the RMSE, which serves as a refined

estimate of the model–data mismatch for these stations.

For the candidate stations, a forward simulation for 2018 is also conducted. In this case, we use the standard deviation of460

the simulated values at each station as a proxy for model–data mismatch. This approach was validated against real stations,

showing a strong correlation with the RMSE-based estimates (r = 0.96). We also tested alternative methods based on a moving

average (7-day and monthly) of the simulated values, following Villalobos et al. (2025), but found that it yielded weaker

correlations. Such differences might be related to the fact that CO2 concentrations often show strong hourly fluctuations driven

by the diurnal cycle of photosynthesis and respiration, unlike CH4. Therefore, a 7-day moving average may be suitable for465

CO2 but less representative for CH4.

Results obtained using the non-uniform model–data mismatch are provided in the Supplementary Information. Most inferred

mismatches exceed 20 ppb (Table S1), with a mean value of 31 ppb, indicating lower confidence in the measurements than

initially expected. As a result, both MER (Table S2 and Figure S2) and TUR (Table S3 and Figure S3) decrease by 2–6%

compared to the experiments assuming a uniform model–data mismatch. JFJ exhibits the smallest mismatch (14 ppb), whereas470

IPR and IT-BFt show the largest values (75 ppb). Large model–data mismatches suggest difficulties in capturing the observed

variability at these stations. In particular, observations at IPR are known to be challenging for transport models due to the

complex surrounding terrain. The CHI model–data mismatch (46 ppb) is estimated to be larger than that of VND (35 ppb),

giving a slight advantage to VND compared to the experiments with a uniform mismatch. Nevertheless, the conclusions drawn

in the previous sections remain unchanged: CHI and VND continue to be the optimal choices, with CHI retaining only a475

marginal advantage.

4 Discussion

In this study, we conducted an extensive analysis of network scenarios in Italy using OSSEs and inverse modelling. One

of the main added values of this work is the creation of multiple truth scenarios, which limits the influence of randomness.

Nonetheless, our methodology also entails several caveats and limitations. Most of these could be addressed with additional480

simulations, but this would significantly increase the computational cost of the analysis.

A first limitation lies in the assumption of perfect knowledge of prior relative uncertainties and correlation lengths in the

inversion setup. In reality, these parameters can only be approximated. Introducing a mismatch between the assumed values

and those used to generate the true scaling factors would have affected the optimal solution and reduced performance (Steiner
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et al., 2024a). However, we expect this reduction would have occurred uniformly across network scenarios, leaving the main485

conclusions regarding VND and CHI unchanged.

Similarly, the model–data mismatch applied to perturb the synthetic observations was prescribed to follow a normal distri-

bution, which may not hold for real data. Deviations from this assumption could further degrade inversion performance. It is

therefore important to understand that these results are produced with perfect knowledge.

We performed the OSSEs for the year 2018 to ensure consistency with Villalobos et al. (2025). Although dominant winds490

generally remain stable from year to year at the national scale, local variations can occur that may alter the emission signals

captured by the stations and, consequently, the results. A more comprehensive picture would require reproducing this study

over multiple years. However, the computational demands of such an analysis remain a major limitation and make it difficult

to implement in practice.

We assumed an inlet height of 100 m for most lowland candidate stations, implying the construction of tall towers at these495

sites on top of existing infrastructure. This sampling height was chosen to maximize station performance and to ensure com-

parability across network scenarios involving lowland sites. Our results should therefore be interpreted with this assumption

in mind. Although they suggest that extending the network by adding CHI is the best option, sampling concentrations at CHI

with the current inlet height (15 m) rather than 100 m may not be appropriate and could lead to poorer performance compared

with extending the network with VND, which would not require additional infrastructure.500

Although in principle this Eulerian-model-based methodology could be extended to determine the optimal location of a

measurement station over the whole domain, such an application would require as many inversions as grid cells in the model

domain, and considerably more if multiple sampling heights and truth scenarios were also tested. At present, this is compu-

tationally infeasible, and analyses must remain restricted to a manageable set of candidate stations. Notably, the inclusion of

multiple truth scenarios already demanded significantly greater computational resources than are typically required for OSSEs.505

In this case study, which involves only surface stations, using an Eulerian model offers no clear advantages compared to

using a Lagrangian model. It is computationally more demanding, as the model must be rerun for each inversion. In contrast,

a Lagrangian model requires the computation of footprints only once, which can then be reused to perform multiple inversions

efficiently. Furthermore, the same evaluation metrics can be derived just as easily within a Lagrangian framework. However,

the computational cost of Lagrangian modeling scales with the number of observations. When assimilating satellite data, this510

number can become extremely large, making Lagrangian approaches computationally prohibitive. Conversely, the Eulerian-

based methodology introduced here can be directly applied to a massive set of observations produced by satellites without

additional computational burden.

We employed two complementary evaluation metrics: the TUR and the MER. While these two metrics are highly correlated

(experiments with a high TUR often exhibit a high MER and vice versa), the correlation is not perfect, as shown in Figure S4 in515

the Supplementary Information. For instance, SON and MAM yield similar TUR values for total emissions in Northern Italy,

yet their MER can differ by as much as 10% (see Table B1 and Table B2), which is substantial. In our experiments, such decor-

relation between the two metrics occurs mainly when seasonal dependence is introduced. When it is removed, the correlation

between TUR and MER becomes much stronger. As discussed earlier, variable wind conditions can improve spatial coverage
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around the station, leading to a high TUR. However, this same variability can make it harder to localize the signal accurately,520

resulting in a low MER. Thus, a trade-off exists between TUR and MER, underscoring the importance of considering both

metrics when evaluating network performance. In practical, real-data applications, MER cannot be computed because the true

emission values are unknown. Although TUR generally provides a reasonable proxy for assessing the agreement between pos-

terior and true emissions, low posterior uncertainties do not necessarily imply that the mean posterior estimates are accurate.

This emphasizes the importance of reporting the full range of plausible estimates rather than central estimates only.525

Villalobos et al. (2025) conducted a similar study focusing on CO2 rather than CH4, using a Lagrangian-based framework.

The candidate stations were identical, with the same inlet heights. Although they did not use the same evaluation metrics,

they both quantified the uncertainty reduction and the agreement between posterior and true CO2 fluxes, using a single truth

scenario. Despite using inversion setups different from ours, they also found that CHI provides the strongest constraint among

the candidate stations, with VND being the second-best site in terms of uncertainty reduction. When two stations were added530

to the network, the CHI–ECO combination yielded the best performance. This result is somewhat counterintuitive, as adding

ECO alone provided weaker constraints, both in terms of agreement with true fluxes and uncertainty reduction, than CUR or

MRG, consistent with our findings. This suggests that station synergies cannot be simply inferred from the sum of individual

station impacts. Although we could not test multi-station combinations due to computational limitations, the strong agreement

between our single-station results and those of Villalobos et al. (2025) indicates that the overall outcome would likely be similar.535

These findings reinforce that CHI is the most promising candidate for expanding the Italian observation network. CHI appears

to be strategically located to capture key transport patterns and flux signals influencing both gases, highlighting its importance

as a potential addition to the ICOS network. From a policy perspective, establishing CHI as a multi-species observation site

could provide more robust data to support national greenhouse gas reporting and independent verification under international

climate frameworks.540

Finally, it is important to note that, except for scenarios 11 and 12, which feature multiple stations, differences in results

between network scenarios are small, indicating that no single station can significantly improve coverage in Italy. Although

CHI and VND perform slightly better individually, it is only when multiple stations are strategically placed that the network

can effectively constrain fluxes.

5 Conclusions545

In this study, we conducted Observing System Simulation Experiments (OSSEs) to assess the potential expansion of the ICOS

monitoring network in Italy for CH4. This work complements the recent study by Villalobos et al. (2025), which focused on

CO2. Our results show that CHI and VND are the most promising candidate stations for improving emission constraints in

Italy, with CHI having a slight advantage when sampling at 100 m. While CHI provides stronger constraints in Central and

Southern Italy, VND is particularly effective in Northern Italy.550
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To evaluate the impact of adding these stations, we introduced two complementary metrics: the mean error reduction (MER)

and the total flux uncertainty reduction (TUR). These metrics were applied to estimate the effect of new stations on total,

anthropogenic, and natural emissions, both annually and seasonally, for three Italian regions as well as the entire country.

We also tested multiple truth scenarios to account for randomness in generating both true emissions and synthetic observa-

tions. The analysis shows that randomness strongly influences the results, highlighting the limitations of relying on a single555

truth scenario. In addition, we quantified the effect of assuming a non-uniform model–data mismatch and found that, in this

case study, it did not significantly alter the results.

The methodology we present can be readily applied to other Eulerian models and adapted to different countries or regions.

While computationally demanding, this type of OSSE study offers valuable guidance for decision-makers and atmospheric

scientists when selecting candidate sites and optimizing observational coverage.560

Code and data availability. The ICON and ART codes are open source and publicly available for download at https://doi.org/10.35089/
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Appendix A: Surface stations

Table A1. List of candidate stations. The inlet height provided here represents a preliminary estimate for a potential ICOS station that could

operate at this location.

ID Name Country Latitude Longitude Altitude (m.a.s.l.) Inlet height (m.a.g.l.)

CGR Capo Granitola IT 37.57 12.66 10 2

CHI Chieti IT 42.18 14.69 3 50

CUR Monte Curcio IT 39.32 16.42 1796 2

ECO Lecce IT 40.34 18.12 36 100

LMT Lamezia Terme IT 38.88 16.23 6 100

MDN Madonia - Piano Battaglia IT 37.88 14.03 1650 2

MRG Col Margherita IT 46.37 11.80 2543 2

VND Mount Venda IT 45.31 11.68 600 100
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Table A2. List of existing ICOS atmosphere surface stations in Italy and in the surrounding countries.

ID Name Country Latitude Longitude Altitude (m.a.s.l.) Inlet height (m.a.g.l.)

BRM Beromünster CH 47.19 8.18 797 212

CMN Monte Cimone IT 44.19 10.70 2165 8

ERS Ersa FR 42.97 9.38 533 40

HEI Heidelberg DE 49.42 8.68 113 30

HPB Hohenpeissenberg DE 47.80 11.02 934 131

HUN Hegyhátsál HU 46.96 16.65 248 115

IPR Ispra IT 45.81 8.64 210 100

JFJ Jungfraujoch CH 46.55 7.99 3572 14

KAS Kasprowy Wierch PL 49.23 19.98 1987 7

KIT Karlsruhe DE 49.09 8.42 110 200

KRE Křešín u Pacova CZ 49.57 15.08 534 250

LHW Laegern-Hochwacht CH 47.48 8.40 840 32

LMP Lampedusa IT 35.52 12.63 45 8

OHP Observatoire de Haute Provence FR 43.93 5.71 650 100

OPE Observatoire pérenne de l’environnement FR 48.56 5.50 390 120

PRS Plateau Rosa IT 45.94 7.71 3480 10

POT Potenza IT 40.60 15.72 760 100

SSL Schauinsland DE 47.90 7.92 1205 6

ZSF Zugspitze DE 47.42 10.98 2666 3
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Table A3. List of ICOS ecosystem surface stations. The inlet height provided here represents a preliminary estimate for a potential ICOS

station that could operate at this location.

ID Name Country Latitude Longitude Altitude (m.a.s.l.) Fake inlet height (m.a.g.l.)

IT-BCi Borgo Cioffi IT 40.52 14.96 15 100

IT-BFt Bosco Fontana IT 45.20 10.74 37 100

IT-Col Collelongo IT 41.82 13.59 1560 2

IT-Cp2 Castelporziano2 IT 41.70 12.36 13 100

IT-Lpd Lampedusa Ecosystem Observatory IT 35.53 12.54 45 100

IT-Lsn Lison IT 45.74 12.75 1 100

IT-MBo Monte Bondone IT 46.01 11.05 1550 2

IT-Niv Nivolet IT 45.49 7.14 2708 2

IT-Noe Arca di Noe - Le Prigionette IT 40.61 8.15 25 100

IT-Oxm Osservatorio Ximeniano Firenze IT 43.77 11.26 50 100

IT-PCm Parco Urbano di Capodimonte IT 40.87 14.25 148 100

IT-Ren Renon IT 46.59 11.43 1735 2

IT-Sas Sassari IT 40.84 8.40 25 100

IT-SR2 San Rossore 2 IT 43.73 10.29 4 100

IT-Tor Torgnon IT 45.84 7.58 2168 2

IT-TrF Torgnon-LD IT 45.82 7.56 2091 2
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Appendix B: MER and TUR values

Table B1. MER values for all network scenarios, regions, emission categories and seasons.

SCENARIO 1 2 3 4 5 6 7 8 9 10 11 12
REGION CATEGORY SEASON

ALL OF ITALY

TOTAL

FULL YEAR 13 21 23 24 22 21 22 21 21 21 28 38
DJF 14 19 22 23 20 19 19 19 19 20 26 39
MAM 15 21 24 22 22 22 22 22 21 21 27 39
JJA 11 23 25 25 25 24 25 24 24 24 30 38
SON 10 18 19 22 19 18 18 19 18 18 25 37

NATURAL

FULL YEAR 16 24 26 27 25 24 25 24 24 24 31 39
DJF 17 21 25 24 22 22 21 21 21 22 27 37
MAM 17 23 26 24 24 23 24 23 23 23 30 40
JJA 14 27 28 30 29 29 29 28 29 28 35 41
SON 14 18 20 24 19 19 19 19 18 19 26 36

ANTHROPOGENIC

FULL YEAR 5 9 10 11 10 10 10 10 10 10 12 22
DJF 5 9 10 11 10 9 10 9 9 9 13 24
MAM 5 9 11 10 10 10 10 10 10 10 12 21
JJA 4 8 9 9 9 8 9 9 9 9 11 20
SON 5 10 10 12 11 10 11 11 10 10 14 24

NORTHERN ITALY

TOTAL

FULL YEAR 18 27 30 29 28 27 28 27 28 28 31 44
DJF 19 25 31 27 26 25 26 25 25 27 31 46
MAM 22 31 36 32 31 31 31 31 31 32 36 47
JJA 16 29 30 29 29 29 29 29 29 30 31 41
SON 12 21 21 22 21 21 20 20 21 21 23 38

NATURAL

FULL YEAR 23 31 33 32 31 31 31 31 31 32 34 45
DJF 23 28 34 30 29 27 28 27 27 29 34 48
MAM 25 34 40 36 34 34 35 34 34 35 41 50
JJA 18 31 29 32 31 31 31 31 31 33 32 40
SON 19 22 21 23 22 22 21 22 22 22 23 35

ANTHROPOGENIC

FULL YEAR 7 14 15 15 14 14 14 14 14 14 16 26
DJF 7 14 15 15 14 14 14 14 14 14 16 28
MAM 8 14 16 14 14 14 14 14 14 15 16 27
JJA 5 13 13 13 13 13 13 13 13 13 14 23
SON 6 15 15 17 15 15 15 15 15 15 17 27

CENTRAL ITALY

TOTAL

FULL YEAR 14 18 21 23 20 18 19 18 18 19 25 40
DJF 14 17 18 23 18 17 17 17 17 18 24 39
MAM 11 13 13 14 15 12 12 12 12 13 15 35
JJA 15 21 25 27 23 21 22 21 22 22 30 42
SON 13 20 25 24 21 20 20 21 20 21 27 40

NATURAL

FULL YEAR 18 23 26 28 25 23 23 23 23 24 30 42
DJF 18 20 21 24 22 20 21 20 20 21 24 36
MAM 14 16 15 17 19 16 15 16 16 16 17 36
JJA 18 26 31 33 29 26 27 26 27 26 37 44
SON 16 24 30 30 25 24 24 25 23 25 33 42

ANTHROPOGENIC

FULL YEAR 4 5 6 6 6 5 5 5 5 5 8 22
DJF 5 6 7 9 6 6 6 6 6 6 10 25
MAM 4 5 6 6 6 5 6 5 5 5 7 18
JJA 3 4 4 4 4 4 4 4 4 4 6 21
SON 4 6 7 6 6 6 6 6 6 6 8 22

SOUTHERN ITALY

TOTAL

FULL YEAR 4 11 12 16 13 13 14 13 12 11 23 29
DJF 3 8 9 15 9 9 9 8 8 8 18 25
MAM 4 7 7 10 8 9 11 9 8 7 17 25
JJA 2 16 16 18 18 17 19 18 18 16 28 31
SON 6 11 12 19 14 12 13 14 12 11 25 32

NATURAL

FULL YEAR 4 13 13 17 14 15 16 14 14 13 24 29
DJF 3 9 10 13 9 12 9 9 8 9 16 19
MAM 5 8 9 10 9 11 14 10 10 8 21 26
JJA 2 20 21 22 22 23 24 22 22 20 33 36
SON 8 8 9 19 9 10 10 9 8 8 24 31

ANTHROPOGENIC

FULL YEAR 2 4 4 6 5 4 5 5 4 4 9 15
DJF 2 4 5 6 5 4 5 4 4 4 9 16
MAM 2 3 4 4 3 4 4 3 3 3 5 13
JJA 2 3 4 5 5 3 4 4 4 3 8 13
SON 3 5 5 7 7 5 6 6 5 5 12 18
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Table B2. TUR values for all network scenarios, regions, emission categories and seasons.

SCENARIO 1 2 3 4 5 6 7 8 9 10 11 12
REGION CATEGORY SEASON

ALL OF ITALY

TOTAL

FULL YEAR 29 42 47 47 43 43 43 43 43 43 53 61
DJF 24 35 44 39 36 36 35 35 35 35 49 58
MAM 25 44 47 49 45 45 45 45 45 45 54 61
JJA 33 44 49 48 44 45 45 44 45 45 55 62
SON 32 45 47 49 46 46 46 45 45 45 53 63

NATURAL

FULL YEAR 33 47 53 53 48 48 49 48 48 48 59 67
DJF 31 41 51 46 42 42 42 42 42 41 56 65
MAM 28 47 51 54 48 47 49 48 47 47 59 65
JJA 37 49 54 54 49 50 50 50 50 50 60 68
SON 35 50 54 55 51 52 52 51 51 51 60 69

ANTHROPOGENIC

FULL YEAR 7 16 19 16 17 16 16 16 16 17 21 31
DJF 8 23 26 23 24 23 23 23 23 23 28 38
MAM 3 10 14 11 11 10 11 10 10 11 16 26
JJA 6 15 18 15 15 15 15 15 15 15 21 29
SON 10 16 18 16 17 16 16 16 16 17 19 32

NORTHERN ITALY

TOTAL

FULL YEAR 31 43 49 43 42 43 43 43 43 43 49 58
DJF 27 37 48 38 37 37 37 37 37 37 49 58
MAM 28 46 50 47 46 46 46 46 46 47 50 57
JJA 33 42 49 43 42 42 42 42 42 43 50 58
SON 34 43 45 43 43 43 43 43 43 44 46 58

NATURAL

FULL YEAR 38 49 56 50 49 49 49 49 49 49 56 65
DJF 36 44 56 45 44 44 44 44 44 44 57 65
MAM 34 52 56 53 52 52 52 52 52 52 56 57
JJA 41 50 56 50 49 50 50 50 50 50 55 61
SON 41 49 52 49 48 49 49 49 49 50 53 64

ANTHROPOGENIC

FULL YEAR 10 23 28 24 23 23 23 23 23 24 29 40
DJF 12 31 37 32 32 32 32 32 31 32 38 48
MAM 5 17 22 17 17 17 17 17 17 18 23 33
JJA 10 21 27 22 21 21 21 21 21 22 29 38
SON 12 23 27 23 23 23 23 23 23 24 27 38

CENTRAL ITALY

TOTAL

FULL YEAR 25 30 34 38 31 31 30 30 30 31 40 55
DJF 20 22 27 28 23 23 22 22 22 22 32 49
MAM 20 31 35 41 32 32 31 32 31 31 44 56
JJA 30 33 36 39 33 33 33 33 33 34 42 56
SON 29 33 35 39 34 34 33 33 33 33 41 57

NATURAL

FULL YEAR 29 35 40 44 36 36 36 36 36 36 47 61
DJF 27 30 35 37 30 30 30 30 30 30 41 58
MAM 24 32 38 47 35 33 33 33 33 33 50 59
JJA 32 37 39 43 37 37 37 37 37 37 46 61
SON 33 39 43 45 40 40 39 39 39 40 48 63

ANTHROPOGENIC

FULL YEAR 4 6 7 8 7 7 7 6 7 7 9 29
DJF 5 7 8 8 7 7 7 7 7 7 9 26
MAM 4 7 7 9 7 7 7 7 7 7 10 30
JJA 3 4 4 5 5 4 4 4 4 4 6 24
SON 5 8 8 9 9 9 8 8 8 9 10 34

SOUTHERN ITALY

TOTAL

FULL YEAR 5 30 31 38 33 34 34 33 32 30 47 50
DJF 2 28 30 36 31 31 31 29 28 28 42 46
MAM 3 26 27 32 28 29 31 30 29 26 43 47
JJA 7 34 34 42 36 37 37 36 35 34 49 51
SON 6 31 32 38 34 35 36 35 33 31 49 53

NATURAL

FULL YEAR 6 35 36 44 37 39 40 38 37 35 54 57
DJF 4 35 37 44 37 38 38 36 35 35 51 54
MAM 4 23 24 29 26 27 30 27 26 23 46 49
JJA 7 38 39 48 40 42 42 40 40 39 56 59
SON 8 39 40 45 41 43 44 42 40 39 58 62

ANTHROPOGENIC

FULL YEAR 2 4 4 4 6 4 5 5 4 4 9 14
DJF 2 5 5 4 9 6 5 5 5 5 10 15
MAM 1 3 3 4 4 3 5 5 3 3 9 16
JJA 2 4 5 5 7 5 5 5 4 4 9 11
SON 2 3 3 4 6 3 4 4 3 3 8 16
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Appendix C: Additional figures

Figure C1. Spatial distribution of TUR across Italy, shown separately for the whole country, Northern Italy, Central Italy, and Southern

Italy. For each region, the corresponding TUR value is annotated in a box placed near its location, while the national value is displayed in

the lower-left corner of each panel, in bold. Stations from Scenario 1 are marked with yellow circles, and additional stations introduced in

subsequent scenarios are shown as orange circles.

30

https://doi.org/10.5194/egusphere-2025-5804
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Figure C2. TUR for each network scenario across Italy, as well as for Northern, Central, and Southern Italy. Black lines indicate TUR for

total emissions. Green and blue lines correspond to TUR for natural and anthropogenic emissions, respectively.
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Figure C3. TUR for each scenario over all of Italy, Northern Italy, Central Italy, and Southern Italy. Blue, green, yellow and orange lines

represent TUR for total emissions in DJF, MAM, JJA and SON, respectively.
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Figure C4. Same as Fig. 7, but for anthropogenic emissions.
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Figure C5. Same as Fig. C3, but for anthropogenic emissions.
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