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Abstract. An implementation of Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE), an algorithm for estimating

anthropogenic carbon in the ocean, was produced using the Python coding language. TRACE is a transit time distribution ap-

proach intended to increase the accessibility of reliable and accurate anthropogenic carbon estimates. This algorithm produces

estimates of ocean anthropogenic carbon as a function of user-supplied coordinates, year, depth, seawater salinity, atmospheric

carbon dioxide pathway, and optionally seawater temperature. We demonstrate the identical results of this implementation5

relative to its MATLAB predecessor, explore the sensitivity of anthropogenic carbon estimates to a newly-expanded range

of available user input parameters, and suggest further lines of development for this software product as well as transient

tracer-based ocean state estimation in general. Additionally, a new column integration routine was developed and deployed

on anthropogenic carbon estimates generated from TRACE-Python when applied to the GLODAPv2.2016b gridded product

temperature and salinity, yielding updated global and regional anthropogenic carbon inventories for the industrial era through10

the year 2500 along a range of atmospheric carbon dioxide trajectories. These inventories demonstrate satisfactory agreement

with previous observation-based anthropogenic carbon inventories within the uncertainty of the estimate, demonstrating the

skill of the TRACE method at the global level. This implementation of TRACE represents a step forward in accessibility to

a wider user base, flexibility in user-specification of a greater number of estimation parameters, and skill as measured against

other anthropogenic carbon estimates.15

1 Introduction

Anthropogenic carbon in the ocean (Canth) is defined as the increase in dissolved inorganic carbon (DIC) in seawater attributable

to anthropogenic carbon dioxide (CO2) emissions to the atmosphere over the industrial era. As the ocean is the largest single

historical sink of CO2 (Friedlingstein et al., 2023) and is expected to absorb most of the anthropogenic CO2 transient on

millennial scales (Archer et al., 1998), understanding the distribution and rates of change of Canth in the global ocean is central20

to informing climate change (DeVries et al., 2023). On local scales, accumulation of Canth gains further relevance as a driver

of ocean acidification and other ecosystem disruptions that affect important natural resources (Doney et al., 2020). These

disruptions underlie the need for accurate and accessible methods for estimating Canth in the ocean.
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Several methods for inferring Canth from observational data have been devised. These may be separated into two classes:

back-calculation and inversion. Back-calculation methods such as the ΔC* (Gruber et al., 1996) and eMLR(C*) (Clement25

and Gruber, 2018) techniques seek to estimate Canth accumulation as a function of various measurable chemical parameters

by removing changes in inorganic carbon system observations since water mass formation or an earlier set of measurements.

These techniques have informed an improved understanding of the ocean carbon sink based on repeat hydrographic observa-

tions, but suffer from the inability to extrapolate to unobserved periods, and the reliance on assumptions that complicate their

interpretation including transient steady state invasion of anthropogenic signals, fixed nutrient and carbon stoichiometries, and30

simplified mixing models (Khatiwala et al., 2013; Müller et al., 2023).

In contrast, inversion-based methods infer the propagation of a surface response to anthropogenic atmospheric CO2 through-

out the ocean by means of circulation constrained by measurements of chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6),

and other transient tracers of ocean circulation (Hall et al., 2002; Haine et al., 2025), taking advantage of similarities between

the atmospheric histories of these anthropogenic gases (Figure 1). Inverted ocean tracer transport may be projected backwards35

and forwards in time (if one assumes steady state circulation and knowledge of atmospheric inventories), providing oppor-

tunities to explore changes in the ocean carbon sink (Khatiwala et al., 2009) and oxygen utilization (Sonnerup et al., 2015).

Additionally, some inventory estimates have combined elements of both back-calculation and inversion methods (Sabine et al.,

2004).

One subclass of the inversion-based methods, the Transit Time Distribution (TTD), relies on a Green’s function solution40

of the linear advection-diffusion transport equations to provide an age distribution representing water mass ages (Hall et al.,

2002). The functional form of a TTD age distribution may vary, but an inverse-gaussian (IG) function specified using its first

and second moments (Γ and Δ; Equation 1) has been shown to describe the tracer transport regimes of many ocean regions

well in comparison with ocean general circulation models when provided with optimal parameters (He et al., 2018).

G(t) =

√
Γ3

4π∆2t3
e
−Γ(t−Γ)2

2t∆2 (1)45

This function describes one-dimensional pipe flow along isopycnal surfaces from a single source region. Other formulations

of the age distribution may represent more complex mixing regimes (Holzer and Primeau, 2010). Despite the demonstrated

utility of TTD methods for unraveling ocean tracer transport as well as recent calls for development of Canth estimations based

on transient tracers (Müller et al., 2023), their complex formulation and implementation has historically restricted their use.

To overcome this barrier to more accessible science, an implementation of a TTD method was given by Carter et al. (2025)50

as “Tracer-based Rapid Anthropogenic Carbon Estimation version 1” (hereafter TRACEv1). Among the limitations of that

implementation was its formulation using MATLAB (which while open-source is not freely available), and its dependence

upon predetermined surface boundary conditions and TTD shape.

To address these limitations, this work describes an update of the Tracer-based Rapid Anthropogenic Carbon Estimation

routine and its implementation in the Python coding language. A brief overview of inherited methods is given followed by a55

description of new aspects of this implementation of TRACE, which encompass both practical improvements and fundamental
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Figure 1. Atmospheric history of CO2 and transient tracers CFC-11, CFC-12, SF6 given as mixing ratios over 1780 to present. Transient

tracers are given as global means of northern and southern hemisphere annual mean values from Bullister and Warner (2017). CO2 is from

the Mauna Loa time series (Keeling and Keeling, 2017) since 1958 and from the Law Dome reconstruction (Rubino et al., 2019) for earlier

dates. Units are indicated in the legend as parts per million (ppm) or parts per trillion (ppt); note scaling of SF6 by 10x to render it visible.

changes to the method. This routine is validated against TRACEv1 to establish exact comparability, then used to produce an

updated global gridded Canth data product using an updated integration routine. A sensitivity analysis is then carried out to

explore the effect of practical improvements to the TRACE method. Finally, we consider this method’s strengths, limitations,

and future development.60

2 Summary of Inherited Methods

This implementation of TRACE in Python is both an exact replication of its TRACEv1 predecessor’s results as well as an

improvement in function. Equivalent results of this work and the original TRACEv1 and the effect of improvements are

described in Section 4. It inherits the IG-TTD method implemented by its MATLAB-based predecessor in form and function,

which is briefly described here, along with the convolution of the resulting water mass ages with an atmospheric boundary65

condition and calculation of inferred Canth. Hereafter, we use “TRACE” to refer to the algorithm, “TRACEv1” to refer to its

implementation in MATLAB, and “TRACE-Python” to refer to its implementation in Python, for which this study used version

1.0.0. More detailed information about the TRACE method and its oceanographic context can be found in our previous work

(Carter et al., 2025).

TRACE first estimates an age distribution for seawater from user-provided geographic coordinates, depth, salinity, and70

(optionally) temperature using a neural network trained on ages inferred by IG-TTD from paired CFC-11, CFC-12 and SF6

observations as well as the mean water mass age estimates from the Ocean Circulation Inverse Model (DeVries, 2014). The
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shape of the IG-TTD (as specified by its first moment Γ and second moment ∆) was not allowed to vary from ∆/Γ = 1.3;

however, TRACE-Python makes this available as a user parameter, as described in Section 3.1.

User specification of an atmospheric CO2 pathway allows convolution of the age distribution with a surface boundary con-75

dition to yield pCO2. This is converted to DIC via inorganic carbon equilibrium calculation with preformed total alkalinity,

preformed phosphate ion, and preformed silicate ion estimated by separate neural networks (Carter et al., 2021b). Subtracting

preindustrial DIC (calculated assuming a preindustrial atmospheric mixing ratio of 280 ppm and the same preformed prop-

erties) leaves Canth. Built-in atmospheric CO2 pathways include eight shared socioeconomic pathways (SSPs): 1-1.9, 1-2.6,

2-4.5, 3-7.0, 3-7.0-lowNTCF, 4-3.4, 4-6.0, and 5-3.4 (Meinshausen et al., 2020) and historical data with a linear extrapolation80

of the present increase (denoted Historical/Linear), all spanning the years 1-2500 c.e. TRACEv1 estimated the Canth surface

boundary condition partial pressure of carbon dioxide (pCOoce
2 ) at a time t (in years) as a recursive function of the time-varying

atmospheric CO2 mixing fraction xCOatm
2 (t):

pCOoce
2 (t) = xCOatm

2 (t)− 0.144×
(
xCOatm

2 (t)−xCOatm
2 (t− 65)

)
(2)

This was derived as an empirical relationship between atmospheric and surface ocean trends in a model-observation hy-85

brid product (Jiang et al., 2023), and it defines a surface boundary responsive to both the atmospheric value and the rate of

atmospheric increase or decrease. This ad-hoc boundary condition formulation is retained by TRACE-Python, and its contri-

bution to TRACE uncertainty is discussed in Section 5. TRACEv1 also assumed a preindustrial xCOatm
2 of 280 ppm, which

TRACE-Python makes more readily modifiable as an optional user input parameter, as described in Section 3.1.

This implementation of TRACE also retains its predecessor’s estimated uncertainty of Canth point estimates and inventories.90

Briefly, the estimated 1σ uncertainty of TRACE point estimates is the root sum of squared errors derived from a Monte Carlo

analysis of error propagated from training data and error associated with a model reconstruction analysis (Carter et al., 2025).

As with TRACEv1, the resulting uncertainty in Canth likely underestimates the true reconstruction error in coastal, marginal,

undersampled, and upwelling regions.

3 New Capabilities95

In addition to its inherited capabilities, TRACE-Python adds several features which expand its scientific applications and

provide more robust results. We divide these into two categories: practical improvements (Section 3.1) that improve user

experience and applications, and fundamental improvements (Section 3.2) that may alter the results or interpretation of the

method.

3.1 Practical Improvements100

The practical function of TRACE is improved by an expanded array of optional user-accessible parameters to tune Canth

estimation. Now included in the main user-accessible function are options to adjust the shape of the IG-TTD distribution,
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to specify preindustrial xCO2, to change inorganic carbon equilibrium parameters (Humphreys et al., 2021, i.e. PyCO2SYS

inputs), and to provide or reuse preformed properties. These parameters facilitate adaptation of TRACE to changing scientific

knowledge and needs, and create useful opportunities for comparison of the TRACE method with independent Canth point105

estimates and inventories. Only the shape of the IG-TTD and the value of preindustrial xCO2 will be explored in detail here, as

their impacts on Canth estimates are expected to be the greatest. Lastly, TRACE-Python is made more transparent and repeatable

with self-describing output. A call to its main function returns a Climate and Forecast (CF) compliant (Hassell et al., 2017)

dataset detailing all input and output parameters, their units, and details of the computing environment. These data may be

directly saved to the file system to facilitate data archiving and version control. This standardized and self-documenting format110

is expected to enhance the interpretation and portability of TRACE-Python.

The shape of the IG distribution is specified by the ratio of its second and first moments: ∆/Γ, such that larger values of this

ratio increase the weight of older ages in the age distribution. The default value of the original and present implementations

of TRACE is ∆/Γ = 1.3 which has been found to minimize global mean error in ocean tracer simulations (He et al., 2018).

Previous work has found values of ∆/Γ between approximately 0.1-5 in different regions (Sonnerup et al., 2015), with a value115

around 1.0 having been frequently used in previous work estimating transport times and Canth distributions with the IG-TTD

method (Waugh et al., 2004, 2006). Other studies have found over-constrained satisfactory IG solutions to occupy a more

restricted range of 0.2≤∆/Γ≤ 1.8 (Stöven et al., 2015; Raimondi et al., 2024). Spatial variability of ∆/Γ and the evolving

scientific knowledge of ocean circulation may be served by allowing TRACE users to vary ∆/Γ, to which end a demonstration

of its effect on estimated mean age and Canth in a simulated transect and on the global Canth inventory is given in Section120

4.2. Internally, variability of ∆/Γ was enabled by retraining the neural networks estimating age distributions with IG shape

characteristics constrained by discrete values 0.2≤∆/Γ≤ 1.8 given in increments of 0.1, such that a user-provided ∆/Γ calls

the age models of the nearest increment.

Preindustrial atmospheric xCO2 is typically defined between approximately 275 and 290 ppm, depending on the reference

year defined as the beginning of the industrial era (Bronselaer et al., 2017). Differences in global Canth inventories produced125

by TRACE under varying preindustrial xCO2 conditions may be useful for reconciling literature estimates of Canth inventories

as well as global preindustrial ocean xCO2 distributions. This iteration of TRACE makes preindustrial atmospheric xCO2

accessible to the user in the main function, with a demonstration given in Section 4.2.

3.2 Fundamental Improvements

The results and interpretation of the TRACE method are improved by two changes: First, a new method for routine integration130

of point estimates into column inventories was introduced. Second, a more rigorous and rapid inorganic equilibrium calculation

was incorporated into the Canth estimation. The first change is external to the Canth estimation, while the second is a core element

of estimation. Together, these improvements allowed for the production of a revised global Canth inventory and reevaluation of

the TRACE method alongside other Canth estimation methods.

A new integration routine was implemented to facilitate rapid and repeatable estimation of column Canth inventories. Some135

methods for numerical interpolation and integration of sparse profile data may produce unrealistic column properties and
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inventories from interpolation overshoots and discontinuities (Barker and McDougall, 2020), so the updated routine sought

to avoid these qualities. A piecewise cubic hermite interpolation (Fritsch and Carlson, 1980) was performed between the

most shallow and deepest Canth estimate at each user-provided coordinate, followed by Romberg integration of the function

produced by interpolation (Romberg, 1955). This routine aims to resolve high gradients of Canth profiles among water masses140

while remaining relatively insensitive to outliers and interpolation overshoots. The resulting column inventories may be easily

summed across regions of interest to yield regional or global Canth inventories. This function is provided in the TRACE-Python

Github repository to promote repeatable column inventory estimation.

Inorganic carbon equilibrium calculation software was used for estimation of modern and preindustrial DIC as a function of

preformed properties and propagated CO2 boundary conditions just as in TRACEv1, except for this updated TRACE method’s145

use of PyCO2SYS (Humphreys et al., 2020), which did not require alteration of the solver function as was necessary for speed

and performance in TRACEv1. Briefly, the iterative solution of the inorganic carbon system equilibria utilized by TRACEv1

via CO2SYS (version 1.1; van Heuven et al., 2011) was altered to increase the tolerance for pH change from 1× 10−4 to

1×10−3 units, resulting in point estimates within the estimated uncertainties of TRACE. The extent to which TRACE-Python

estimates differ from TRACEv1 due to the former’s use of a more rigorous inorganic carbon equilibrium solver is discussed in150

Section 4. TRACE-Python utilized PyCO2SYS version 2.0.0 without alteration, and produced point estimates of Canth for all

1.1 x 106 cells in the GLODAPv2.2016b gridded product for a single time step along the Historical/Linear CO2 trajectory (see

Section 4) in approximately 50 seconds (as the average of 10 runs) running on an Ubuntu 24.04.02 LTS machine with a 6-core

Intel Core i5-9600K processor, versus approximately 60 seconds for the same estimation by TRACEv1 on the same hardware.

4 Assessment155

Assessment of TRACE-Python sought to validate its comparability with TRACEv1, explore its sensitivity to new user param-

eter inputs, and finally to demonstrate its use alongside other ocean Canth data products. All estimates were produced with

TRACEv1 (Carter, 2025b) and TRACE-Python version 1.0.0, which was developed and hosted in a Github repository (Sand-

born and Carter, 2025) containing its source code, instructions for installation, documentation, demonstration scripts, and status

badges indicating that the code passes internal consistency and validation tests. Comparability with TRACEv1 was established160

by calculation of check values as well as global gridded Canth products using identical inputs. The two implementations were

found to give identical results with precision approaching pmol kg-1 levels, which when integrated into regional and global in-

ventories led to no significant difference. Sensitivity analysis of newly-accessible parameters demonstrated increased flexibility

of the TRACE-Python routine and pointed towards new directions for method development and software application.

Check values given for TRACEv1 and TRACE-Python (Table 1) demonstrated results within their respective uncertainties.165

Precision between MATLAB and Python implementations was expected to vary depending on the exact data types and oper-

ations performed: both languages include double-precision floating point arithmetic by default, but other contributors to point

estimate imprecision may be expected on the order of 10-5 µmol kg−1 from inorganic carbon equilibrium calculations alone

(Humphreys et al., 2021).
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Table 1. Check values for Canth given by TRACE-Python and TRACEv1 (the original MATLAB implementation) for four combinations of

year, salinity, and/or temperature. All values were generated for the coordinates 0◦N 0◦E at 0 m depth with salinity set to 35. The first two

values assume SSP 5-3.4, while the second two values assume the Historical/Linear forcing. Missing temperature inputs as in the latter two

check values were estimated from salinity and location using a neural network, which is not recommended for the most accurate behavior.

The precision of both TRACE-Python and TRACEv1 estimates was limited to the magnitude of their differences, rather than that of their

uncertainties.

Year Temperature TRACE-Python TRACEv1 Canth (TRACE-Python) – (TRACEv1)

(◦C) (µmol kg−1) (µmol kg−1) (µmol kg−1)

2000 20 47.7868541 47.7868563 2.2 x 10−6

2200 20 79.8749299 79.8749319 2.0 x 10−6

2000 (none provided) 56.0591320 56.0591388 6.8 x 10−6

2010 (none provided) 66.4566813 66.4566880 6.7 x 10−6

A global gridded Canth product was created using TRACE-Python, using seawater salinity, seawater temperature, coordinates,170

and depth from the GLODAPv2.2016b gridded product (Lauvset et al., 2016), which has a spatial resolution of 1◦ x 1◦

and 33 depth horizons between the sea surface and 5500 m. Each of nine available atmospheric CO2 pathways available

in TRACE was employed to yield Canth estimates for the years 1750, 1800, 1850, 1900, 1950, 1980, 1994.5, 2000, 2002.5,

2007.5, 2010, 2014.5, 2020, 2030, 2050, 2100, 2200, 2300, 2400, and 2500, chosen to align with previous literature global

Canth inventory estimates. These global Canth gridded estimates may be found in a Zenodo repository (Sandborn et al., 2025).175

Comparison of point Canth estimates to the same analysis performed by TRACEv1 demonstrated agreement within uncertainties

and approaching the limits of precision imposed by inorganic carbon equilibrium calculation. Their residuals (calculated as

TRACEv1 estimates subtracted from TRACE-Python), across 9 atmospheric pathways, 20 timesteps, and 1.1×106 ocean cells

in the GLODAPv2.2016b gridded product, demonstrated a median error of -1.8 x 10-6 µmol kg−1and median absolute error

of -2.6 x 10-6 µmol kg−1. While the total range of error was -0.02 to 0.0005 µmol kg−1, 95% of absolute error was less than180

6.4 x 10-3 µmol kg−1. TRACE-Python underestimation (relative to TRACEv1) of the global distribution of Canth was most

apparent for cells with higher Canth (Figure 2) which was repeatable for all CO2 trajectories at all calculated times (Figures

A1–A6). This apparent bias is consistent with the magnitude of expected precision of (MATLAB) CO2SYS versus PyCO2SYS

as previously noted. Extrapolating the median error given above across the entire ocean yields a value on the order of 10-5 Pg,

so we conclude that random or systematic biases existing between implementations of TRACE had no significant affect on185

inventories calculated using this gridded product, as demonstrated in the calculation of regional and global Canth inventories

below.
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Figure 2. Histogram plot of 1.1 x 106 residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point

estimates of Canth performed on the GLODAPv2.2016b gridded product for the year 2020. Shading indicates relative density of residuals

within a histogram cell, with darker colors indicating higher density. The ordinate (vertical) axis was limited to include 99% of point

estimates. The median residual for 2020 was -4.7 x 10-7 µmol kg−1, the median absolute residual was -8.7 x 10-7 µmol kg−1, and the total

range was 2.5 x 10-4 – -5.7 x 10-6 µmol kg−1. Note scaling of the ordinate by 10-5, highlighting that the majority (>83%) of residuals were

within pmol kg-1 range.

4.1 Global and regional inventories

Column inventories for the global Canth gridded product were calculated using the integration method described in Section

3.2. Each 1◦ x 1◦ cell of the sea surface grid was assigned a surface area as in Fay et al. (2021) and summed to give regional190

and global Canth inventories using basin definitions after Fay and McKinley (2014) (Table 2). These inventories varied slightly

from those given in (Carter et al., 2025) solely as a result of this work’s improved integration method, and yielded a similar

illustration of uneven storage of Canth in the global ocean (Figure 3) in qualitative agreement with previous Canth inventories.

Applying the updated integration to the TRACEv1 gridded product yielded statistically-indistinguishable regional and global

Canth inventories (Table C1) which were smaller than those of Carter et al. (2025) by approximately 7% for the period 1990-195

2015. Similarly, this integration was applied to the Canth estimates in the GLODAPv2.2016b gridded product (Lauvset et al.,

2024) for ease of comparison, yielding a global Canth inventory of 164 ± 29 Pg C for the year 2002, which compares favorably

with the inventory of 167 ± 29 Pg C given by Lauvset et al. (2020). In all cases, the improved inventory estimation approach

yielded smaller inventory estimates that are, generally, more closely aligned with previous literature estimates. However, the
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Table 2. Estimate of global and regional ocean Canth inventories produced via TRACE-Python analysis of the GLODAPv2.2016b gridded

product. Basins are defined after Fay and McKinley (2014). Values are given as Pg C ± 1σ uncertainty as for TRACEv1.

Year Total Canth Pacific Atlantic Indian Arctic Southern

1750 -7.9 (-1.2) -2.51 (-0.38) -2.54 (-0.38) -0.75 (-0.11) -0.206 (-0.031) -1.88 (-0.28)

1800 -6.43 (-0.97) -2.03 (-0.30) -1.97 (-0.30) -0.551 (-0.083) -0.125 (-0.019) -1.76 (-0.26)

1850 -0.634 (-0.095) 0.086 (0.013) -0.614 (-0.092) 0.0167 (0.0025) 0.0561 (0.0084) -0.179 (-0.027)

1900 16.2 (2.4) 5.31 (0.80) 4.16 (0.62) 1.91 (0.29) 0.464 (0.070) 4.30 (0.65)

1950 52.2 (7.8) 16.7 (2.5) 14.1 (2.1) 5.85 (0.88) 1.33 (0.20) 14.2 (2.1)

1980 88 (13) 27.5 (4.1) 24.6 (3.7) 9.9 (1.5) 2.08 (0.31) 23.9 (3.6)

1994.5 117 (18) 36.1 (5.4) 33.5 (5.0) 13.4 (2.0) 2.74 (0.41) 31.6 (4.7)

2000 130 (19) 39.9 (6.0) 37.3 (5.6) 14.8 (2.2) 3.03 (0.45) 34.9 (5.2)

2002.5 136 (20) 41.8 (6.3) 39.1 (5.9) 15.5 (2.3) 3.17 (0.47) 36.5 (5.5)

2007.5 149 (22) 45.8 (6.9) 43.1 (6.5) 17.0 (2.6) 3.46 (0.52) 40.0 (6.0)

2010 156 (23) 47.9 (7.2) 45.0 (6.8) 17.8 (2.7) 3.62 (0.54) 41.8 (6.3)

2014.5 169 (25) 51.8 (7.8) 48.8 (7.3) 19.2 (2.9) 3.91 (0.59) 45.2 (6.8)

2020 186 (28) 57.0 (8.6) 53.8 (8.1) 21.2 (3.2) 4.30 (0.65) 49.8 (7.5)

decreases in the inventories were small relative to uncertainties and the updated TRACE global Canth inventory with other200

previous data-based estimates (Figure 4) did not substantially or qualitatively alter the conclusions of Carter et al. (2025).

Agreement with DIC-based approaches (Sabine et al., 2004; Müller et al., 2023; Gruber et al., 2019) was good, while

agreement with TTD- and inversion-based approaches (Davila et al., 2022; Lauvset et al., 2016; DeVries, 2014; Khatiwala

et al., 2009; Waugh et al., 2006) remained more variable. In particular, the IG-TTD inventory estimate of Lauvset et al. (2016)

continued to be the most serious outlier, potentially due their differing treatment of atmospheric CO2 disequilibrium, lack of205

SF6 age constraint, and potentially other factors (cf. Section S9 Carter et al., 2025). The rate of Canth accumulation over 1990-

present was nearly identical in TRACE-Python global Canth inventory compared to Davila et al. (2022), yet greater than given

by DeVries (2014) despite the additional constraining role of the latter inversion in TRACE. Differences in the magnitude and

rate of Canth inventory change between the inversions of DeVries (2014) and Davila et al. (2022) are thought to be the result of

regional differences in circulation field strength constrained by different sets of tracers, and the same is likely true for TRACE;210

however, further investigation of representations of Canth accumulation is beyond the scope of this work.

Projected global ocean Canth inventories in Figure 4 (see also Table B1) indicated a range of potential outcomes of selected

SSPs. The continued increase of each pathway’s Canth inventory through the year 2500 indicated continuing Canth update by

the ocean due to ventilation of presently-deep waters regardless of mitigation trajectory. Similarly, mapped column inventories

for future dates (Figure 3) demonstrated the increasingly unequal spatial distribution of ocean Canth in the 21st century. In this215

way, TRACE provides a robust and accessible tool for exploring how mitigation efforts may be expressed in the past, present,

and future ocean.
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Figure 3. Column inventory of Canth mapped for indicated years produced via TRACE analysis of the GLODAPv2.2016b gridded product

assuming historical atmospheric CO2 trajectory. Major Canth sinks associated with deep water formation in the North Atlantic and Southern

Oceans are visible in the propagation of elevated Canth waters from these regions. Regions with negative column Canth inventories were

observed in the Pacific ocean until approximately 1900 due the imposition of a preindustrial xCO2 definition of 280 ppm on old, deep waters

formed under conditions of marginally lower xCO2.

4.2 User input sensitivity

Among the practical improvements accomplished in this work (Section 3.1) was the addition of a wider array of parameters

for Canth estimation made accessible to the user. While this allowed for more flexibility in application, it necessitated improved220

understanding of the relationship between these parameters and TRACE Canth estimates. To this end, we assessed the effects of

altering two user-accessible parameters within reasonable bounds. This process illustrated sensitivity associated with parameter

selection, explored the robustness of the method, and pointed to avenues of investigation which may improve the IG-TTD

method and its comparability with other Canth estimation methods.

The effect of shifting the preindustrial atmospheric CO2 mixing fraction is to change the time at which ocean Canth began225

accruing, and thus to alter Canth inventories at all times before and after that point. To demonstrate this effect, Canth global

inventories were generated assuming historical atmospheric forcing as in Section 4.1, varying preindustrial atmospheric xCO2

between 270 and 290 ppm (Figure 5a). The resulting set of inventories demonstrated a linear relationship with preindustrial

atmospheric xCO2 for any year, with a slope of approximately -10 Pg C ppm-1. This suggested a straightforward empirical

mechanism for comparing inventories performed on the basis of different preindustrial xCO2; however, adjusting estimates230
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Figure 4. Global ocean Canth inventories assuming indicated atmospheric CO2 pathways produced via TRACE analysis of the GLO-

DAPv2.2016b gridded product. Apparent kinks in the time series are due to TRACE estimation at widely-spaced points. Global ocean

Canth inventory estimates from the literature are shown with their uncertainties alongside the TRACE estimate in an inset figure, in which the

uncertainty of the TRACE estimate is shown as a grey band. The estimate of Khatiwala et al. (2009) is shown with an 11 PgC increase to

account for exclusion of the Arctic ocean as suggested in that work. The estimate of Waugh et al. (2006) is decreased by 20% to account for

varying air-sea disequilibrium as suggested in that work. The estimate of Lauvset et al. (2016) published as the GLODAPv2.2016b gridded

product was integrated using the same method as TRACE-Python, as described in Section 4.1.

performed on the basis of a preindustrial cutoff year introduces the additional step of converting the year to an atmospheric CO2

fraction consistent with the atmospheric forcing of the method, which may not always be in evidence. As an example, the global

ocean Canth estimate of Khatiwala et al. (2009) was performed on the basis of a preindustrial cutoff year 1765, at which point

the global annual mean atmospheric xCO2 in this work was approximately 278 ppm. Adjusting this to a basis of 280 ppm would

involve a simple 20 Pg C decrease (or equivalently a 20 Pg C increase to TRACE), which would worsen agreement but maintain235

overlap in their respective uncertainties. This simple corrective mechanism is most suitable for qualitative demonstration, as

it remains unclear how Canth inventories in other works would shift were they carried out with higher or lower preindustrial

atmospheric xCO2 basis. Furthermore, some approaches do not integrate Canth over regions of the ocean with low signal-to-

uncertainty ratios, and the magnitude of this correction would decrease with the volume of the ocean considered. For these

reasons, previous Canth inventory estimates in Figure 4 remain unadjusted. Shifting the baseline atmospheric xCO2 (or year) of240

Canth accumulation also changed the pre-industrial baseline of ocean xCO2 which in volume-weighted distributions of TRACE
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Figure 5. TRACE-estimated global ocean Canth inventories at indicated years assuming: a. varying preindustrial atmospheric CO2 concen-

trations or b. varying IG-TTD ∆/Γ. A linear relationship was expressed between preindustrial atmospheric CO2 and all years’ inventories.

The relationship between ∆/Γ and ocean carbon Canth inventories displayed asymptotic behavior, with sensitivity decreasing at high ∆/Γ.

Vertical lines in both figures represent the TRACE defaults.

estimates broadened and increased from a narrow range of 276.95 ± 0.03 ppm (mean ± s.d.) in 1750 C.E. to 280 ± 1 ppm

in 1850 C.E. (Supplementary Section D). These values (and those of intermediate years) represent effective global ocean

circulation-informed preindustrial xCO2 distributions for common starting points of ocean state estimates. These sensitivity

analyses demonstrated the utility of TRACE to inform and compare Canth inventories and pre-industrial inorganic carbon245

distributions in future work.

The shape of the IG-TTD age distribution may be modified by changing ∆/Γ, which by default is equal to 1.3. Increasing

∆/Γ increases the ratio of isopycnal diffusion to advection in the one-dimensional pipe flow framework of the IG solution

(Waugh et al., 2003). The sensitivity of this parameter in TRACE was tested by varying ∆/Γ in increments of 0.1 between 0.2

and 1.8 in order to reconstruct Canth global inventories assuming historical atmospheric forcing as in Section 4.1. The resulting250

global Canth inventories increased with ∆/Γ up to 1.0, above which varying ∆/Γ had little effect on inventories (Figure 5b).

This contrasts with the findings of He et al. (2018), which found decreasing Canth inventories throughout 0.2≤∆/Γ≤ 1.8.

Regional variability of ∆/Γ poses a further problem which can be addressed with TRACE-Python.
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In order to illustrate the regional effects of varying ∆/Γ, mean age and Canth were estimated by TRACE along the WOCE

A16 transect using salinity, temperature, and coordinates from its 2013-2014 occupation by the CLIVAR program (CCHDO255

Hydrographic Data Office, 2023). ∆/Γ values of 0.4, 0.8, and 1.2 were chosen to span a domain of rapid Canth change illustrated

by Figure 5a, and the resulting hydrographic profiles (Figure 6) illustrated the expected inverse relationship of Canth and mean

age. Lower values of ∆/Γ were associated with higher vertical gradients as relatively “young” waters were confined to the

surface. Note that a single average value of ∆/Γ was imposed for all water masses in this example. The previously-noted spatial

variability of ∆/Γ was not implemented, and is left to further research. Detailed hydrographic description and discussion of260

water masses and consequences of regional concentration of Canth is beyond the scope of this work; instead, this sensitivity

experiment demonstrates the potential for TRACE to test the effect of variable ∆/Γ on ocean mean age and Canth. This

demonstration also does not consider suitability of the IG-TTD framework to constrain age distribution for water masses with

complex mixing regimes (cf. Stöven et al., 2015).

We conclude that varying ∆/Γ above approximately 1.0 will not lead to major changes in water mass age or Canth as265

estimated by TRACE, but smaller values of ∆/Γ may lead to notable changes in mean age and Canth distribution and inventory.

Similarly, increasing preindustrial xCO2 decreased Canth inventories, suggesting a method for comparing the results of this

routine with other products. The parameter tuning of the TRACE routine demonstrated here by varying preindustrial xCO2 and

∆/Γ emphasized its flexibility, which may recommend it for further investigation of these parameters of the IG-TTD method.

5 Discussion270

This work described an implementation of the TRACE method for the estimation of the ocean Canthin Python, incorporating

several practical and fundamental improvements. The effect of these changes is to increase the accessibility and breadth of ap-

plication of this tool, while providing a firmer scientific footing with clearer understanding of input parameter sensitivity. This

updated version demonstrated equivalent function to the original product when given identical input, ensuring comparability

across research products and users. The development of the TRACE method and its software implementations gains further275

currency when considered as part of a broader dialogue between scientific questions and research tools to address them. This

work in particular has benefited from co-development with ESPER (and its predecessors) as a family of seawater property

estimation methods of value to scientific, marine management, and earth observing communities, who may use these estima-

tion routines to compare against observations, fill in unobserved regions, initialize models, and make informed management

decisions.280

The practical and fundamental improvements to TRACE described and demonstrated in Section 3 provided an opportunity

to test the sensitivity of TRACE to preindustrial xCO2 and the shape of the TTD within the constraints of the IG framework.

Global Canth inventories were sensitive to both parameters within the range of values given by previous work. The spatial

distribution of mean age and Canth were similarly altered by ∆/Γ along a reconstructed meridional transect of the Atlantic

Ocean. Given the variability in inferred ∆/Γ associated with different water masses (cf. Sonnerup et al., 2015), future work285

using TRACE may investigate the interaction of regionally-varying ∆/Γ on water mass age and Canth. This sensitivity analysis
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Figure 6. TRACE-estimated Canth concentration (a, c, e) and mean age (b, d, f) along the WOCE A16 transect for the year 2013, calculated

using three values of ∆/Γ spanning the range of greatest change in Canth inventory. Higher values of ∆/Γ are associated with a higher

surface-to-depth mean age gradient and less anthropogenic CO2 invasion of the deep ocean at all latitudes.

of ocean Canth and mean age to parameters of the TRACE method illustrates the importance of careful investigation of the

assumptions of ocean state estimate routines. While TRACE-Python retains reasonable default values of these and other input

parameters in common with TRACEv1, they are made accessible and tunable with the intention of aiding future investigation

and expanding the applicability of this software tool.290

Several other parameters and assumptions central to the TRACE method are not user-tunable, and consideration of these

suggests room for continued method validation and improvement. In particular, its surface CO2 disequilibrium does not vary

in space, it prescribes transient tracer atmospheric saturation, Canth is assumed to equal the entire change in DIC since the

preindustrial era, it estimates preformed alkalinity and nutrients and assumes their invariance in time, and the IG-TTD implies

steady state one dimensional pipe flow transport of transient signals into the ocean interior along isopycnals. A model-based295

review of uncertainties of the IG-TTD method found that transient tracer and Canth saturations were the greatest contributors to

uncertainty (He et al., 2018), so continued development of TRACE and other TTD-based ocean state estimation routines may

be served by targeted investigation of the transient tracer and Canth surface boundary conditions and their variability in time

and space. Unfortunately, transient tracer saturations cannot yet be modified in TRACE without retraining its neural networks.

These shortcomings represent a continuing opportunity for comparing TRACE output with models and ocean observations.300
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We emphasize that TRACE, ESPER, and their seawater property estimation peers cannot replace observation; rather, they

rely on continued monitoring providing the physical and chemical basis for accurate estimation. Ocean hydrography becomes

increasingly-important in the face of climate change as Earth experiences extremes moving it outside its previously-observed

state captured by property estimation routines. In light of the changing and improving picture of the ocean system to be

gained from future observations, TRACE will continue iteratively improving its estimation of Canth. Future GLODAP releases305

will better constrain TTDs with the addition of more and better tracer constraints and preformed property estimates, while

the advance of global ocean circulation and biogeochemical models may indicate more accurate parameterized relationships

between the atmospheric anthropogenic CO2 increase and its ocean sink.

6 Outlook

The development of TRACE has occurred in parallel to and in some cases dependent on related ocean chemistry software.310

This includes other property estimation routines (Carter et al., 2021a, b; Dias and Carter, 2025; Carter et al., 2017), inorganic

carbon equilibrium and air-sea flux calculations (Humphreys et al., 2021; Sharp et al., 2020; Orr et al., 2015; Gregor and

Humphreys, 2021; Lewis and Wallace, 1998) and seawater thermodynamic toolboxes (Firing et al., 2021). Further development

of this suite of open-source software tools should seek to incorporate new findings and techniques, maintain dependency and

interoperability, and respond to the needs of users in order to pursue high-quality and accessible ocean chemistry data practices.315

It is anticipated that TRACE will continue to be developed without fundamentally altering its core approach, while continu-

ing to reliably offer results with well-documented assumptions and consistency across implementations. Potential directions for

further development include integrating future GLODAP releases in its training data, including updated atmospheric CO2 tra-

jectories, and refining TTD shape and surface transient tracer and Canth disequilibrium assumptions. As methods for estimating

Canth continue use and development, a more comprehensive understanding of their differences, assumptions, and uncertainties320

should be formed. This need gains currency in light of the present need to understand the effects of climate change mitigation

and marine carbon dioxide removal on the ocean carbon cycle. Future work in pursuit of these needs should seek to advance

the practice of Canth estimation from scientific and applied perspectives.

Code and data availability. The Python implementation of TRACE may be obtained at https://doi.org/10.5281/zenodo.15597123 (Sand-

born and Carter, 2025). The MATLAB implementation of TRACEv1 may be obtained at https://doi.org/10.5281/zenodo.15692788 (Carter,325

2025b). The GLODAPv2.2016b gridded product may be obtained at https://www.nodc.noaa.gov/archive/arc0107/0162565/1.1/data/0-data/mapped

(Lauvset et al., 2016). The global Canth gridded inventories produced in this work may be found at https://doi.org/10.5281/zenodo.17246805

(Sandborn et al., 2025).
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Appendix A: Gridded Product Comparison

The distribution of the differences, or residuals, of the TRACEv1 and TRACE-Python gridded data products indicated close330

agreement for results in 2020 (Figure 2). The same analysis produced for other years illustrates that this agreement holds for

other periods as well (Figures A1-A6).

Figure A1. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point estimates

of Canth performed on the GLODAPv2.2016b gridded product for the year 1850 given the historical CO2 trajectory. The ordinate (vertical)

axis was limited to include 0.99 of point estimates. Note scaling of the ordinate axis by 10-5.
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Figure A2. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point estimates

of Canth performed on the GLODAPv2.2016b gridded product for the year 1900 given the historical CO2 trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A3. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point estimates

of Canth performed on the GLODAPv2.2016b gridded product for the year 1950 given the historical CO2 trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A4. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point estimates

of Canth performed on the GLODAPv2.2016b gridded product for the year 1980 given the historical CO2 trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A5. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point estimates

of Canth performed on the GLODAPv2.2016b gridded product for the year 2000 given the historical CO2 trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A6. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Canth against TRACE-Python point estimates

of Canth performed on the GLODAPv2.2016b gridded product for the year 2010 given the historical CO2 trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Appendix B: Projected Canth Inventories

Among the strengths of TTD-based Canth inventories is the ability to project forward and backward in time under certain

assumptions (Section 1). The inventories illustrated by Figure 4 after the year 2020 are given in Table B1 with uncertainties.335

Table B1. Projections of global ocean Canth inventories produced via TRACE analysis of the GLODAPv2.2016b gridded product under

varying atmospheric CO2 trajectories. Values are given as Pg C ± 1σ uncertainty.

2030 2050 2100 2200 2300 2400 2500

Historical/Linear 219 (33) 293 (44) 509 (76) 1010 (150) 1520 (230) 2000 (300) 2430 (370)

SSP1-1.9 218 (33) 273 (41) 365 (55) 404 (61) 421 (63) 431 (65) 436 (65)

SSP1-2.6 220 (33) 288 (43) 421 (63) 552 (83) 623 (93) 664 (100) 690 (100)

SSP2-4.5 221 (33) 303 (45) 530 (79) 910 (140) 1180 (180) 1330 (200) 1420 (210)

SSP3-7.0 223 (33) 317 (48) 640 (96) 1470 (220) 2150 (320) 2570 (380) 2810 (420)

SSP3-7.0 lowNTCF 223 (33) 316 (47) 636 (95) 1460 (220) 2140 (320) 2560 (380) 2800 (420)

SSP4-3.4 219 (33) 289 (43) 442 (66) 565 (85) 625 (94) 662 (99) 680 (100)

SSP4-6.0 221 (33) 306 (46) 562 (84) 1050 (160) 1410 (210) 1630 (240) 1760 (260)

SSP5-3.4 over 223 (33) 322 (48) 501 (75) 624 (94) 680 (100) 710 (110) 730 (110)
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Table C1. Estimate of global and regional ocean Canth inventories produced via TRACEv1 analysis of the GLODAPv2.2016b gridded product

and integration using the updated method. Basins are defined after Fay and McKinley (2014). Values are given as Pg C ± 1σ uncertainty.

Year Total Canth Pacific Atlantic Indian Arctic Southern

1750 -7.9 (-1.2) -2.51 (-0.38) -2.54 (-0.38) -0.75 (-0.11) -0.206 (-0.031) -1.88 (-0.28)

1800 -6.43 (-0.97) -2.03 (-0.30) -1.97 (-0.30) -0.551 (-0.083) -0.125 (-0.019) -1.76 (-0.26)

1850 -0.634 (-0.095) 0.086 (0.013) -0.614 (-0.092) 0.0167 (0.0025) 0.0561 (0.0084) -0.179 (-0.027)

1900 16.2 (2.4) 5.31 (0.80) 4.16 (0.62) 1.91 (0.29) 0.464 (0.070) 4.30 (0.65)

1950 52.2 (7.8) 16.7 (2.5) 14.1 (2.1) 5.85 (0.88) 1.33 (0.20) 14.2 (2.1)

1980 88 (13) 27.5 (4.1) 24.6 (3.7) 9.9 (1.5) 2.08 (0.31) 23.9 (3.6)

1994.5 117 (18) 36.1 (5.4) 33.5 (5.0) 13.4 (2.0) 2.74 (0.41) 31.6 (4.7)

2000 130 (19) 39.9 (6.0) 37.3 (5.6) 14.8 (2.2) 3.03 (0.45) 34.9 (5.2)

2002.5 136 (20) 41.8 (6.3) 39.1 (5.9) 15.5 (2.3) 3.17 (0.47) 36.5 (5.5)

2007.5 149 (22) 45.8 (6.9) 43.1 (6.5) 17.0 (2.6) 3.46 (0.52) 40.0 (6.0)

2010 156 (23) 47.9 (7.2) 45.0 (6.8) 17.8 (2.7) 3.62 (0.54) 41.8 (6.3)

2014.5 169 (25) 51.8 (7.8) 48.8 (7.3) 19.2 (2.9) 3.91 (0.59) 45.2 (6.8)

2020 186 (28) 57.0 (8.6) 53.8 (8.1) 21.2 (3.2) 4.30 (0.65) 49.8 (7.5)

2030 219 (33) 67 (10) 63.2 (9.5) 24.8 (3.7) 5.06 (0.76) 58.8 (8.8)

2050 293 (44) 91 (14) 83 (13) 32.7 (4.9) 6.7 (1.0) 79 (12)

2100 509 (76) 159 (24) 141 (21) 55.3 (8.3) 11.0 (1.6) 143 (21)

2200 1010 (150) 300 (45) 289 (43) 111 (17) 18.7 (2.8) 291 (44)

2300 1520 (230) 419 (63) 477 (72) 175 (26) 24.8 (3.7) 427 (64)

2400 2000 (300) 515 (77) 680 (100) 237 (36) 29.7 (4.5) 542 (81)

2500 2430 (370) 594 (89) 870 (130) 294 (44) 33.9 (5.1) 640 (96)

Appendix C: Updated TRACEv1 Canth Inventories

Application of the updated column and areal integration method described in this work (Section 3.2) to the original TRACEv1

gridded Canth product (Carter, 2025a) yielded identical results to that produced in this work (Table 2), demonstrating their

functional equivalence (Table C1).
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Appendix D: Preindustrial Ocean xCO2 Distributions340

Volume weighted distributions of ocean xCO2 were produced from the gridded data product described in this work (Sandborn

et al., 2025) by performing a kernel density estimation analysis weighted by the volume of each cell in the product, along with

summary statistics as reported in the main text (Section 3.2 and in the accompanying plot (Figure D1). Three years spanning the

range of commonly-reported “pre-industrial” dates were considered, along with 2020 C.E. for comparison of the distributions.

The same distributions and statistics may be readily obtained from the published dataset for any year listed in the tables of345

this work, or for an intervening year by performing a TRACE analysis of the GLODAPv2.2016b or another suitable gridded

product.

The extremely narrow distribution of ocean xCO2 in Figure D1a resulted from the imposition of a CO2 boundary condition

given by Equation 2 on the pre-industrial stable atmospheric curve. Broadening and general increase of the distributions visible

in Figure D1b-d represents the propagation of that boundary condition through the global ocean, resulting in the present-day350

bimodal xCO2 distribution representing highly-ventilated waters with xCO2 approaching the atmospheric condition alongside

poorly-ventilated waters maintaining xCO2 little-removed from the pre-industrial state.
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Figure D1. Volume-weighted kernel density estimates of ocean xCO2 (xCOoce
2 ) and summary statistics estimated for the global ocean by

TRACE from the GLODAPv2.2016 gridded product temperature, salinity, and coordinates, colored and stacked by ocean basin defined as in

the main text. a, b, c: xCO2 distributions for the years 1750, 1800, 1850 C.E., illustrating the variability of ocean xCO2 within the range of

years previously given as “pre-industrial” starting points for ocean observational or modeling state estimation. d: xCO2 distribution for the

year 2020 C.E. provided for comparison. Note the horizontal coordinate is identical for a, b, c to aid comparison of distribution shifts, but

extended for d to capture the broadened distribution.
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