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Abstract. An implementation of Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE), an algorithm for estimating
anthropogenic carbon in the ocean, was produced using the Python coding language. TRACE is a transit time distribution ap-
proach intended to increase the accessibility of reliable and accurate anthropogenic carbon estimates. This algorithm produces
estimates of ocean anthropogenic carbon as a function of user-supplied coordinates, year, depth, seawater salinity, atmospheric
carbon dioxide pathway, and optionally seawater temperature. We demonstrate the identical results of this implementation
relative to its MATLAB predecessor, explore the sensitivity of anthropogenic carbon estimates to a newly-expanded range
of available user input parameters, and suggest further lines of development for this software product as well as transient
tracer-based ocean state estimation in general. Additionally, a new column integration routine was developed and deployed
on anthropogenic carbon estimates generated from TRACE-Python when applied to the GLODAPv2.2016b gridded product
temperature and salinity, yielding updated global and regional anthropogenic carbon inventories for the industrial era through
the year 2500 along a range of atmospheric carbon dioxide trajectories. These inventories demonstrate satisfactory agreement
with previous observation-based anthropogenic carbon inventories within the uncertainty of the estimate, demonstrating the
skill of the TRACE method at the global level. This implementation of TRACE represents a step forward in accessibility to
a wider user base, flexibility in user-specification of a greater number of estimation parameters, and skill as measured against

other anthropogenic carbon estimates.

1 Introduction

Anthropogenic carbon in the ocean (Cay) is defined as the increase in dissolved inorganic carbon (DIC) in seawater attributable
to anthropogenic carbon dioxide (CO;) emissions to the atmosphere over the industrial era. As the ocean is the largest single
historical sink of CO, (Friedlingstein et al., 2023) and is expected to absorb most of the anthropogenic CO, transient on
millennial scales (Archer et al., 1998), understanding the distribution and rates of change of C,,q, in the global ocean is central
to informing climate change (DeVries et al., 2023). On local scales, accumulation of C,ne, gains further relevance as a driver
of ocean acidification and other ecosystem disruptions that affect important natural resources (Doney et al., 2020). These

disruptions underlie the need for accurate and accessible methods for estimating C,y, in the ocean.
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Several methods for inferring C,,q, from observational data have been devised. These may be separated into two classes:
back-calculation and inversion. Back-calculation methods such as the AC* (Gruber et al., 1996) and eMLR(C*) (Clement
and Gruber, 2018) techniques seek to estimate C,,, accumulation as a function of various measurable chemical parameters
by removing changes in inorganic carbon system observations since water mass formation or an earlier set of measurements.
These techniques have informed an improved understanding of the ocean carbon sink based on repeat hydrographic observa-
tions, but suffer from the inability to extrapolate to unobserved periods, and the reliance on assumptions that complicate their
interpretation including transient steady state invasion of anthropogenic signals, fixed nutrient and carbon stoichiometries, and
simplified mixing models (Khatiwala et al., 2013; Miiller et al., 2023).

In contrast, inversion-based methods infer the propagation of a surface response to anthropogenic atmospheric CO, through-
out the ocean by means of circulation constrained by measurements of chlorofluorocarbons (CFCs), sulfur hexafluoride (SFg),
and other transient tracers of ocean circulation (Hall et al., 2002; Haine et al., 2025), taking advantage of similarities between
the atmospheric histories of these anthropogenic gases (Figure 1). Inverted ocean tracer transport may be projected backwards
and forwards in time (if one assumes steady state circulation and knowledge of atmospheric inventories), providing oppor-
tunities to explore changes in the ocean carbon sink (Khatiwala et al., 2009) and oxygen utilization (Sonnerup et al., 2015).
Additionally, some inventory estimates have combined elements of both back-calculation and inversion methods (Sabine et al.,
2004).

One subclass of the inversion-based methods, the Transit Time Distribution (TTD), relies on a Green’s function solution
of the linear advection-diffusion transport equations to provide an age distribution representing water mass ages (Hall et al.,
2002). The functional form of a TTD age distribution may vary, but an inverse-gaussian (IG) function specified using its first
and second moments (I and A; Equation 1) has been shown to describe the tracer transport regimes of many ocean regions

well in comparison with ocean general circulation models when provided with optimal parameters (He et al., 2018).

s —T(t-1)2

G(t) = \/47TA21€36 21a (1

This function describes one-dimensional pipe flow along isopycnal surfaces from a single source region. Other formulations
of the age distribution may represent more complex mixing regimes (Holzer and Primeau, 2010). Despite the demonstrated
utility of TTD methods for unraveling ocean tracer transport as well as recent calls for development of C,,q, estimations based
on transient tracers (Miiller et al., 2023), their complex formulation and implementation has historically restricted their use.
To overcome this barrier to more accessible science, an implementation of a TTD method was given by Carter et al. (2025)
as “Tracer-based Rapid Anthropogenic Carbon Estimation version 1~ (hereafter TRACEv1). Among the limitations of that
implementation was its formulation using MATLAB (which while open-source is not freely available), and its dependence
upon predetermined surface boundary conditions and TTD shape.

To address these limitations, this work describes an update of the Tracer-based Rapid Anthropogenic Carbon Estimation
routine and its implementation in the Python coding language. A brief overview of inherited methods is given followed by a

description of new aspects of this implementation of TRACE, which encompass both practical improvements and fundamental
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Figure 1. Atmospheric history of CO, and transient tracers CFC-11, CFC-12, SF¢ given as mixing ratios over 1780 to present. Transient
tracers are given as global means of northern and southern hemisphere annual mean values from Bullister and Warner (2017). CO; is from
the Mauna Loa time series (Keeling and Keeling, 2017) since 1958 and from the Law Dome reconstruction (Rubino et al., 2019) for earlier

dates. Units are indicated in the legend as parts per million (ppm) or parts per trillion (ppt); note scaling of SFs by 10x to render it visible.

changes to the method. This routine is validated against TRACEv1 to establish exact comparability, then used to produce an
updated global gridded C,,, data product using an updated integration routine. A sensitivity analysis is then carried out to
explore the effect of practical improvements to the TRACE method. Finally, we consider this method’s strengths, limitations,

and future development.

2 Summary of Inherited Methods

This implementation of TRACE in Python is both an exact replication of its TRACEv1 predecessor’s results as well as an
improvement in function. Equivalent results of this work and the original TRACEv1 and the effect of improvements are
described in Section 4. It inherits the IG-TTD method implemented by its MATLAB-based predecessor in form and function,
which is briefly described here, along with the convolution of the resulting water mass ages with an atmospheric boundary
condition and calculation of inferred C,,s. Hereafter, we use “TRACE” to refer to the algorithm, “TRACEvV1” to refer to its
implementation in MATLAB, and “TRACE-Python” to refer to its implementation in Python, for which this study used version
1.0.0. More detailed information about the TRACE method and its oceanographic context can be found in our previous work
(Carter et al., 2025).

TRACE first estimates an age distribution for seawater from user-provided geographic coordinates, depth, salinity, and
(optionally) temperature using a neural network trained on ages inferred by IG-TTD from paired CFC-11, CFC-12 and SFg

observations as well as the mean water mass age estimates from the Ocean Circulation Inverse Model (DeVries, 2014). The
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shape of the IG-TTD (as specified by its first moment I" and second moment A) was not allowed to vary from A/I" =1.3;
however, TRACE-Python makes this available as a user parameter, as described in Section 3.1.

User specification of an atmospheric CO, pathway allows convolution of the age distribution with a surface boundary con-
dition to yield pCO,. This is converted to DIC via inorganic carbon equilibrium calculation with preformed total alkalinity,
preformed phosphate ion, and preformed silicate ion estimated by separate neural networks (Carter et al., 2021b). Subtracting
preindustrial DIC (calculated assuming a preindustrial atmospheric mixing ratio of 280 ppm and the same preformed prop-
erties) leaves Cyyn. Built-in atmospheric CO, pathways include eight shared socioeconomic pathways (SSPs): 1-1.9, 1-2.6,
2-4.5, 3-7.0, 3-7.0-lowNTCEF, 4-3.4, 4-6.0, and 5-3.4 (Meinshausen et al., 2020) and historical data with a linear extrapolation
of the present increase (denoted Historical/Linear), all spanning the years 1-2500 c.e. TRACEv1 estimated the C,y, surface
boundary condition partial pressure of carbon dioxide (pCO5“) at a time ¢ (in years) as a recursive function of the time-varying

atmospheric CO, mixing fraction 2CO5"™(¢):

pCOY(t) = zCOZ"™ (t) — 0.144 x (zCOZ"™ (t) — xCO3"™ (¢t — 65)) )

This was derived as an empirical relationship between atmospheric and surface ocean trends in a model-observation hy-
brid product (Jiang et al., 2023), and it defines a surface boundary responsive to both the atmospheric value and the rate of
atmospheric increase or decrease. This ad-hoc boundary condition formulation is retained by TRACE-Python, and its contri-
bution to TRACE uncertainty is discussed in Section 5. TRACEv1 also assumed a preindustrial zCO5" of 280 ppm, which
TRACE-Python makes more readily modifiable as an optional user input parameter, as described in Section 3.1.

This implementation of TRACE also retains its predecessor’s estimated uncertainty of C,y, point estimates and inventories.
Briefly, the estimated 1o uncertainty of TRACE point estimates is the root sum of squared errors derived from a Monte Carlo
analysis of error propagated from training data and error associated with a model reconstruction analysis (Carter et al., 2025).
As with TRACEV1, the resulting uncertainty in C,n likely underestimates the true reconstruction error in coastal, marginal,

undersampled, and upwelling regions.

3 New Capabilities

In addition to its inherited capabilities, TRACE-Python adds several features which expand its scientific applications and
provide more robust results. We divide these into two categories: practical improvements (Section 3.1) that improve user
experience and applications, and fundamental improvements (Section 3.2) that may alter the results or interpretation of the

method.
3.1 Practical Improvements

The practical function of TRACE is improved by an expanded array of optional user-accessible parameters to tune C,yp

estimation. Now included in the main user-accessible function are options to adjust the shape of the IG-TTD distribution,
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to specify preindustrial xCO,, to change inorganic carbon equilibrium parameters (Humphreys et al., 2021, i.e. PyCO2SYS
inputs), and to provide or reuse preformed properties. These parameters facilitate adaptation of TRACE to changing scientific
knowledge and needs, and create useful opportunities for comparison of the TRACE method with independent C, point
estimates and inventories. Only the shape of the IG-TTD and the value of preindustrial xCO, will be explored in detail here, as
their impacts on Cy,y, estimates are expected to be the greatest. Lastly, TRACE-Python is made more transparent and repeatable
with self-describing output. A call to its main function returns a Climate and Forecast (CF) compliant (Hassell et al., 2017)
dataset detailing all input and output parameters, their units, and details of the computing environment. These data may be
directly saved to the file system to facilitate data archiving and version control. This standardized and self-documenting format
is expected to enhance the interpretation and portability of TRACE-Python.

The shape of the IG distribution is specified by the ratio of its second and first moments: A /T", such that larger values of this
ratio increase the weight of older ages in the age distribution. The default value of the original and present implementations
of TRACE is A/I" = 1.3 which has been found to minimize global mean error in ocean tracer simulations (He et al., 2018).
Previous work has found values of A /T between approximately 0.1-5 in different regions (Sonnerup et al., 2015), with a value
around 1.0 having been frequently used in previous work estimating transport times and C,,q, distributions with the IG-TTD
method (Waugh et al., 2004, 2006). Other studies have found over-constrained satisfactory IG solutions to occupy a more
restricted range of 0.2 < A/I" < 1.8 (Stoven et al., 2015; Raimondi et al., 2024). Spatial variability of A/T" and the evolving
scientific knowledge of ocean circulation may be served by allowing TRACE users to vary A /T, to which end a demonstration
of its effect on estimated mean age and C,, in a simulated transect and on the global C,,y, inventory is given in Section
4.2. Internally, variability of A/T" was enabled by retraining the neural networks estimating age distributions with IG shape
characteristics constrained by discrete values 0.2 < A/T" < 1.8 given in increments of 0.1, such that a user-provided A /T calls
the age models of the nearest increment.

Preindustrial atmospheric xCO; is typically defined between approximately 275 and 290 ppm, depending on the reference
year defined as the beginning of the industrial era (Bronselaer et al., 2017). Differences in global C,,, inventories produced
by TRACE under varying preindustrial xCO, conditions may be useful for reconciling literature estimates of C,,g, inventories
as well as global preindustrial ocean xCO, distributions. This iteration of TRACE makes preindustrial atmospheric xCO,

accessible to the user in the main function, with a demonstration given in Section 4.2.
3.2 Fundamental Improvements

The results and interpretation of the TRACE method are improved by two changes: First, a new method for routine integration
of point estimates into column inventories was introduced. Second, a more rigorous and rapid inorganic equilibrium calculation
was incorporated into the C,nq, estimation. The first change is external to the C,,, estimation, while the second is a core element
of estimation. Together, these improvements allowed for the production of a revised global C,,, inventory and reevaluation of
the TRACE method alongside other C,,, estimation methods.

A new integration routine was implemented to facilitate rapid and repeatable estimation of column C,,q inventories. Some

methods for numerical interpolation and integration of sparse profile data may produce unrealistic column properties and
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inventories from interpolation overshoots and discontinuities (Barker and McDougall, 2020), so the updated routine sought
to avoid these qualities. A piecewise cubic hermite interpolation (Fritsch and Carlson, 1980) was performed between the
most shallow and deepest C,,, estimate at each user-provided coordinate, followed by Romberg integration of the function
produced by interpolation (Romberg, 1955). This routine aims to resolve high gradients of Cyy, profiles among water masses
while remaining relatively insensitive to outliers and interpolation overshoots. The resulting column inventories may be easily
summed across regions of interest to yield regional or global C,,, inventories. This function is provided in the TRACE-Python
Github repository to promote repeatable column inventory estimation.

Inorganic carbon equilibrium calculation software was used for estimation of modern and preindustrial DIC as a function of
preformed properties and propagated CO, boundary conditions just as in TRACEv1, except for this updated TRACE method’s
use of PyCO2SYS (Humphreys et al., 2020), which did not require alteration of the solver function as was necessary for speed
and performance in TRACEv1. Briefly, the iterative solution of the inorganic carbon system equilibria utilized by TRACEv1
via CO2SYS (version 1.1; van Heuven et al., 2011) was altered to increase the tolerance for pH change from 1 x 10~* to
1 x 1073 units, resulting in point estimates within the estimated uncertainties of TRACE. The extent to which TRACE-Python
estimates differ from TRACEv1 due to the former’s use of a more rigorous inorganic carbon equilibrium solver is discussed in
Section 4. TRACE-Python utilized PyCO2SYS version 2.0.0 without alteration, and produced point estimates of Cpyq for all
1.1 x 10° cells in the GLODAPv2.2016b gridded product for a single time step along the Historical/Linear CO, trajectory (see
Section 4) in approximately 50 seconds (as the average of 10 runs) running on an Ubuntu 24.04.02 LTS machine with a 6-core

Intel Core i5-9600K processor, versus approximately 60 seconds for the same estimation by TRACEv1 on the same hardware.

4 Assessment

Assessment of TRACE-Python sought to validate its comparability with TRACEv1, explore its sensitivity to new user param-
eter inputs, and finally to demonstrate its use alongside other ocean C,,y data products. All estimates were produced with
TRACEv1 (Carter, 2025b) and TRACE-Python version 1.0.0, which was developed and hosted in a Github repository (Sand-
born and Carter, 2025) containing its source code, instructions for installation, documentation, demonstration scripts, and status
badges indicating that the code passes internal consistency and validation tests. Comparability with TRACEv1 was established
by calculation of check values as well as global gridded C,,y products using identical inputs. The two implementations were
found to give identical results with precision approaching pmol kg™! levels, which when integrated into regional and global in-
ventories led to no significant difference. Sensitivity analysis of newly-accessible parameters demonstrated increased flexibility
of the TRACE-Python routine and pointed towards new directions for method development and software application.

Check values given for TRACEv1 and TRACE-Python (Table 1) demonstrated results within their respective uncertainties.
Precision between MATLAB and Python implementations was expected to vary depending on the exact data types and oper-
ations performed: both languages include double-precision floating point arithmetic by default, but other contributors to point
estimate imprecision may be expected on the order of 10~ umol kg~! from inorganic carbon equilibrium calculations alone

(Humphreys et al., 2021).
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Table 1. Check values for Canm given by TRACE-Python and TRACEv1 (the original MATLAB implementation) for four combinations of
year, salinity, and/or temperature. All values were generated for the coordinates 0°N 0°E at 0 m depth with salinity set to 35. The first two
values assume SSP 5-3.4, while the second two values assume the Historical/Linear forcing. Missing temperature inputs as in the latter two
check values were estimated from salinity and location using a neural network, which is not recommended for the most accurate behavior.
The precision of both TRACE-Python and TRACEvI estimates was limited to the magnitude of their differences, rather than that of their

uncertainties.

Year Temperature TRACE-Python TRACEvVI Cann (TRACE-Python) — (TRACEv1)

°0) (umol kg~ ") (umol kg™ ") (umol kg™ ")
2000 20 47.7868541 47.7868563 22x107¢
2200 20 79.8749299 79.8749319 20x 107
2000  (none provided) 56.0591320 56.0591388 6.8x 107
2010  (none provided) 66.4566813 66.4566880 6.7x107¢

A global gridded C,,¢, product was created using TRACE-Python, using seawater salinity, seawater temperature, coordinates,
and depth from the GLODAPv2.2016b gridded product (Lauvset et al., 2016), which has a spatial resolution of 1° x 1°
and 33 depth horizons between the sea surface and 5500 m. Each of nine available atmospheric CO, pathways available
in TRACE was employed to yield Cyyy estimates for the years 1750, 1800, 1850, 1900, 1950, 1980, 1994.5, 2000, 2002.5,
2007.5, 2010, 2014.5, 2020, 2030, 2050, 2100, 2200, 2300, 2400, and 2500, chosen to align with previous literature global
Canh inventory estimates. These global Cyyy, gridded estimates may be found in a Zenodo repository (Sandborn et al., 2025).
Comparison of point C,yq, €stimates to the same analysis performed by TRACEv1 demonstrated agreement within uncertainties
and approaching the limits of precision imposed by inorganic carbon equilibrium calculation. Their residuals (calculated as
TRACEV1 estimates subtracted from TRACE-Python), across 9 atmospheric pathways, 20 timesteps, and 1.1 x 10° ocean cells
in the GLODAPv2.2016b gridded product, demonstrated a median error of -1.8 x 10 umol kg~*and median absolute error
of -2.6 x 10% umol kg—'. While the total range of error was -0.02 to 0.0005 pmol kg~!, 95% of absolute error was less than
6.4 x 1073 umol kg~!. TRACE-Python underestimation (relative to TRACEv1) of the global distribution of Cyyg, Was most
apparent for cells with higher C,,y, (Figure 2) which was repeatable for all CO, trajectories at all calculated times (Figures
A1-A6). This apparent bias is consistent with the magnitude of expected precision of (MATLAB) CO2SYS versus PyCO2SYS
as previously noted. Extrapolating the median error given above across the entire ocean yields a value on the order of 10” Pg,
so we conclude that random or systematic biases existing between implementations of TRACE had no significant affect on
inventories calculated using this gridded product, as demonstrated in the calculation of regional and global C,,, inventories

below.
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Figure 2. Histogram plot of 1.1 x 10° residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point
estimates of Cynn performed on the GLODAPv2.2016b gridded product for the year 2020. Shading indicates relative density of residuals
within a histogram cell, with darker colors indicating higher density. The ordinate (vertical) axis was limited to include 99% of point
estimates. The median residual for 2020 was -4.7 x 10”7 ymol kg~ *, the median absolute residual was -8.7 x 10”7 pmol kg ™!, and the total

range was 2.5 x 10 — -5.7 x 10" umol kg ~". Note scaling of the ordinate by 10, highlighting that the majority (>83%) of residuals were

within pmol kg! range.

4.1 Global and regional inventories

Column inventories for the global Cyyy, gridded product were calculated using the integration method described in Section
3.2. Each 1° x 1° cell of the sea surface grid was assigned a surface area as in Fay et al. (2021) and summed to give regional
and global C,,y, inventories using basin definitions after Fay and McKinley (2014) (Table 2). These inventories varied slightly
from those given in (Carter et al., 2025) solely as a result of this work’s improved integration method, and yielded a similar
illustration of uneven storage of C,y, in the global ocean (Figure 3) in qualitative agreement with previous C,,y inventories.
Applying the updated integration to the TRACEv1 gridded product yielded statistically-indistinguishable regional and global
Cant inventories (Table C1) which were smaller than those of Carter et al. (2025) by approximately 7% for the period 1990-
2015. Similarly, this integration was applied to the C,yy, estimates in the GLODAPv2.2016b gridded product (Lauvset et al.,
2024) for ease of comparison, yielding a global Cyy, inventory of 164 + 29 Pg C for the year 2002, which compares favorably
with the inventory of 167 £ 29 Pg C given by Lauvset et al. (2020). In all cases, the improved inventory estimation approach

yielded smaller inventory estimates that are, generally, more closely aligned with previous literature estimates. However, the
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Table 2. Estimate of global and regional ocean C,ns inventories produced via TRACE-Python analysis of the GLODAPv2.2016b gridded
product. Basins are defined after Fay and McKinley (2014). Values are given as Pg C + 1o uncertainty as for TRACEv1.

Year Total Canin Pacific Atlantic Indian Arctic Southern

1750 -7.9 (-1.2) -2.51 (-0.38) -2.54 (-0.38) -0.75 (-0.11) -0.206 (-0.031) -1.88 (-0.28)
1800 -6.43 (-0.97) -2.03 (-0.30) -1.97 (-0.30) -0.551 (-0.083)  -0.125 (-0.019) -1.76 (-0.26)
1850  -0.634 (-0.095) 0.086 (0.013) -0.614 (-0.092) 0.0167 (0.0025) 0.0561 (0.0084) -0.179 (-0.027)

1900 162 (2.4) 5.31 (0.80) 4.16 (0.62) 1.91 (0.29) 0.464 (0.070) 4.30 (0.65)
1950 52.2(7.8) 16.7 (2.5) 14.1 2.1) 5.85 (0.88) 1.33 (0.20) 142 (2.1)
1980 88 (13) 27.5 (4.1) 24.6 (3.7) 9.9 (1.5) 2.08 (0.31) 23.9 (3.6)
1994.5 117 (18) 36.1 (5.4) 33.5(5.0) 13.4 (2.0) 2.74 (0.41) 31.6 (4.7)
2000 130 (19) 39.9 (6.0) 37.3 (5.6) 14.8 (2.2) 3.03 (0.45) 34.9(5.2)
2002.5 136 (20) 41.8(6.3) 39.1 (5.9) 155 (2.3) 3.17 (0.47) 36.5 (5.5)
2007.5 149 (22) 45.8 (6.9) 43.1 (6.5) 17.0 (2.6) 3.46 (0.52) 40.0 (6.0)
2010 156 (23) 47.9(1.2) 45.0 (6.8) 17.8 2.7) 3.62 (0.54) 41.8 (6.3)
2014.5 169 (25) 51.8 (7.8) 48.8 (7.3) 19.2 (2.9) 3.91 (0.59) 45.2 (6.8)
2020 186 (28) 57.0 (8.6) 53.8(8.1) 212 (3.2) 4.30 (0.65) 49.8 (7.5)

decreases in the inventories were small relative to uncertainties and the updated TRACE global C,,y inventory with other
previous data-based estimates (Figure 4) did not substantially or qualitatively alter the conclusions of Carter et al. (2025).

Agreement with DIC-based approaches (Sabine et al., 2004; Miiller et al., 2023; Gruber et al., 2019) was good, while
agreement with TTD- and inversion-based approaches (Davila et al., 2022; Lauvset et al., 2016; DeVries, 2014; Khatiwala
et al., 2009; Waugh et al., 2006) remained more variable. In particular, the IG-TTD inventory estimate of Lauvset et al. (2016)
continued to be the most serious outlier, potentially due their differing treatment of atmospheric CO, disequilibrium, lack of
SF¢ age constraint, and potentially other factors (cf. Section S9 Carter et al., 2025). The rate of C,,y, accumulation over 1990-
present was nearly identical in TRACE-Python global C,,, inventory compared to Davila et al. (2022), yet greater than given
by DeVries (2014) despite the additional constraining role of the latter inversion in TRACE. Differences in the magnitude and
rate of C,y, inventory change between the inversions of DeVries (2014) and Davila et al. (2022) are thought to be the result of
regional differences in circulation field strength constrained by different sets of tracers, and the same is likely true for TRACE;
however, further investigation of representations of C,,, accumulation is beyond the scope of this work.

Projected global ocean C,,y, inventories in Figure 4 (see also Table B1) indicated a range of potential outcomes of selected
SSPs. The continued increase of each pathway’s Cyyy inventory through the year 2500 indicated continuing C,yy, update by
the ocean due to ventilation of presently-deep waters regardless of mitigation trajectory. Similarly, mapped column inventories
for future dates (Figure 3) demonstrated the increasingly unequal spatial distribution of ocean C,,q, in the 21% century. In this
way, TRACE provides a robust and accessible tool for exploring how mitigation efforts may be expressed in the past, present,

and future ocean.
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Figure 3. Column inventory of Cann mapped for indicated years produced via TRACE analysis of the GLODAPv2.2016b gridded product
assuming historical atmospheric CO, trajectory. Major Cann sinks associated with deep water formation in the North Atlantic and Southern
Oceans are visible in the propagation of elevated Cayn waters from these regions. Regions with negative column Cyyn inventories were
observed in the Pacific ocean until approximately 1900 due the imposition of a preindustrial XCO, definition of 280 ppm on old, deep waters

formed under conditions of marginally lower xCO5.

4.2 User input sensitivity

Among the practical improvements accomplished in this work (Section 3.1) was the addition of a wider array of parameters
for C,n estimation made accessible to the user. While this allowed for more flexibility in application, it necessitated improved
understanding of the relationship between these parameters and TRACE C,,, estimates. To this end, we assessed the effects of
altering two user-accessible parameters within reasonable bounds. This process illustrated sensitivity associated with parameter
selection, explored the robustness of the method, and pointed to avenues of investigation which may improve the IG-TTD
method and its comparability with other C,,, estimation methods.

The effect of shifting the preindustrial atmospheric CO, mixing fraction is to change the time at which ocean C,,, began
accruing, and thus to alter C,, inventories at all times before and after that point. To demonstrate this effect, Cyn, global
inventories were generated assuming historical atmospheric forcing as in Section 4.1, varying preindustrial atmospheric xCO,
between 270 and 290 ppm (Figure 5a). The resulting set of inventories demonstrated a linear relationship with preindustrial
atmospheric xCO, for any year, with a slope of approximately -10 Pg C ppm™'. This suggested a straightforward empirical

mechanism for comparing inventories performed on the basis of different preindustrial xCO,; however, adjusting estimates
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Figure 4. Global ocean C,,n inventories assuming indicated atmospheric CO, pathways produced via TRACE analysis of the GLO-
DAPv2.2016b gridded product. Apparent kinks in the time series are due to TRACE estimation at widely-spaced points. Global ocean
Canth inventory estimates from the literature are shown with their uncertainties alongside the TRACE estimate in an inset figure, in which the
uncertainty of the TRACE estimate is shown as a grey band. The estimate of Khatiwala et al. (2009) is shown with an 11 PgC increase to
account for exclusion of the Arctic ocean as suggested in that work. The estimate of Waugh et al. (2006) is decreased by 20% to account for
varying air-sea disequilibrium as suggested in that work. The estimate of Lauvset et al. (2016) published as the GLODAPv2.2016b gridded
product was integrated using the same method as TRACE-Python, as described in Section 4.1.

performed on the basis of a preindustrial cutoff year introduces the additional step of converting the year to an atmospheric CO,
fraction consistent with the atmospheric forcing of the method, which may not always be in evidence. As an example, the global
ocean Cyyy estimate of Khatiwala et al. (2009) was performed on the basis of a preindustrial cutoff year 1765, at which point
the global annual mean atmospheric xCO; in this work was approximately 278 ppm. Adjusting this to a basis of 280 ppm would
involve a simple 20 Pg C decrease (or equivalently a 20 Pg C increase to TRACE), which would worsen agreement but maintain
overlap in their respective uncertainties. This simple corrective mechanism is most suitable for qualitative demonstration, as
it remains unclear how C,,, inventories in other works would shift were they carried out with higher or lower preindustrial
atmospheric xCO, basis. Furthermore, some approaches do not integrate C,,, over regions of the ocean with low signal-to-
uncertainty ratios, and the magnitude of this correction would decrease with the volume of the ocean considered. For these
reasons, previous C,,, inventory estimates in Figure 4 remain unadjusted. Shifting the baseline atmospheric xCO, (or year) of

Cant accumulation also changed the pre-industrial baseline of ocean xCO, which in volume-weighted distributions of TRACE
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Figure 5. TRACE-estimated global ocean C,nn inventories at indicated years assuming: a. varying preindustrial atmospheric CO, concen-
trations or b. varying IG-TTD A/I". A linear relationship was expressed between preindustrial atmospheric CO, and all years’ inventories.
The relationship between A/T" and ocean carbon Cann inventories displayed asymptotic behavior, with sensitivity decreasing at high A/T".

Vertical lines in both figures represent the TRACE defaults.

estimates broadened and increased from a narrow range of 276.95 + 0.03 ppm (mean = s.d.) in 1750 C.E. to 280 + 1 ppm
in 1850 C.E. (Supplementary Section D). These values (and those of intermediate years) represent effective global ocean
circulation-informed preindustrial xCO, distributions for common starting points of ocean state estimates. These sensitivity
analyses demonstrated the utility of TRACE to inform and compare C,,, inventories and pre-industrial inorganic carbon
distributions in future work.

The shape of the IG-TTD age distribution may be modified by changing A/I", which by default is equal to 1.3. Increasing
A /T increases the ratio of isopycnal diffusion to advection in the one-dimensional pipe flow framework of the IG solution
(Waugh et al., 2003). The sensitivity of this parameter in TRACE was tested by varying A/T" in increments of 0.1 between 0.2
and 1.8 in order to reconstruct C,,, global inventories assuming historical atmospheric forcing as in Section 4.1. The resulting
global C,,y inventories increased with A/T" up to 1.0, above which varying A/I" had little effect on inventories (Figure 5b).
This contrasts with the findings of He et al. (2018), which found decreasing C,n inventories throughout 0.2 < A/I' < 1.8.
Regional variability of A /T poses a further problem which can be addressed with TRACE-Python.

12
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In order to illustrate the regional effects of varying A/T", mean age and C,,;, were estimated by TRACE along the WOCE
A16 transect using salinity, temperature, and coordinates from its 2013-2014 occupation by the CLIVAR program (CCHDO
Hydrographic Data Office, 2023). A /T values of 0.4, 0.8, and 1.2 were chosen to span a domain of rapid C,,, change illustrated
by Figure 5a, and the resulting hydrographic profiles (Figure 6) illustrated the expected inverse relationship of C,,y and mean
age. Lower values of A/T" were associated with higher vertical gradients as relatively “young” waters were confined to the
surface. Note that a single average value of A /T" was imposed for all water masses in this example. The previously-noted spatial
variability of A/T" was not implemented, and is left to further research. Detailed hydrographic description and discussion of
water masses and consequences of regional concentration of C,,y, is beyond the scope of this work; instead, this sensitivity
experiment demonstrates the potential for TRACE to test the effect of variable A/T' on ocean mean age and Cypgp. This
demonstration also does not consider suitability of the IG-TTD framework to constrain age distribution for water masses with
complex mixing regimes (cf. Stoven et al., 2015).

We conclude that varying A/T" above approximately 1.0 will not lead to major changes in water mass age or C,ny, as
estimated by TRACE, but smaller values of A /T may lead to notable changes in mean age and C,py, distribution and inventory.
Similarly, increasing preindustrial xCO, decreased C,, inventories, suggesting a method for comparing the results of this
routine with other products. The parameter tuning of the TRACE routine demonstrated here by varying preindustrial xCO, and

A /T emphasized its flexibility, which may recommend it for further investigation of these parameters of the IG-TTD method.

5 Discussion

This work described an implementation of the TRACE method for the estimation of the ocean C,,pin Python, incorporating
several practical and fundamental improvements. The effect of these changes is to increase the accessibility and breadth of ap-
plication of this tool, while providing a firmer scientific footing with clearer understanding of input parameter sensitivity. This
updated version demonstrated equivalent function to the original product when given identical input, ensuring comparability
across research products and users. The development of the TRACE method and its software implementations gains further
currency when considered as part of a broader dialogue between scientific questions and research tools to address them. This
work in particular has benefited from co-development with ESPER (and its predecessors) as a family of seawater property
estimation methods of value to scientific, marine management, and earth observing communities, who may use these estima-
tion routines to compare against observations, fill in unobserved regions, initialize models, and make informed management
decisions.

The practical and fundamental improvements to TRACE described and demonstrated in Section 3 provided an opportunity
to test the sensitivity of TRACE to preindustrial XCO; and the shape of the TTD within the constraints of the IG framework.
Global C,,q inventories were sensitive to both parameters within the range of values given by previous work. The spatial
distribution of mean age and Cpy, were similarly altered by A/T" along a reconstructed meridional transect of the Atlantic
Ocean. Given the variability in inferred A /T associated with different water masses (cf. Sonnerup et al., 2015), future work

using TRACE may investigate the interaction of regionally-varying A /T" on water mass age and C,,. This sensitivity analysis

13



290

295

300

https://doi.org/10.5194/egusphere-2025-5793
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Contnr (umol kg™1)

NV

Latitude Latitude

Figure 6. TRACE-estimated C,n concentration (a, ¢, €) and mean age (b, d, f) along the WOCE A16 transect for the year 2013, calculated
using three values of A/I" spanning the range of greatest change in Cann inventory. Higher values of A/T" are associated with a higher

surface-to-depth mean age gradient and less anthropogenic CO; invasion of the deep ocean at all latitudes.

of ocean C,yy, and mean age to parameters of the TRACE method illustrates the importance of careful investigation of the
assumptions of ocean state estimate routines. While TRACE-Python retains reasonable default values of these and other input
parameters in common with TRACEv1, they are made accessible and tunable with the intention of aiding future investigation
and expanding the applicability of this software tool.

Several other parameters and assumptions central to the TRACE method are not user-tunable, and consideration of these
suggests room for continued method validation and improvement. In particular, its surface CO, disequilibrium does not vary
in space, it prescribes transient tracer atmospheric saturation, C,,g, is assumed to equal the entire change in DIC since the
preindustrial era, it estimates preformed alkalinity and nutrients and assumes their invariance in time, and the IG-TTD implies
steady state one dimensional pipe flow transport of transient signals into the ocean interior along isopycnals. A model-based
review of uncertainties of the IG-TTD method found that transient tracer and C,,, saturations were the greatest contributors to
uncertainty (He et al., 2018), so continued development of TRACE and other TTD-based ocean state estimation routines may
be served by targeted investigation of the transient tracer and C,,y surface boundary conditions and their variability in time
and space. Unfortunately, transient tracer saturations cannot yet be modified in TRACE without retraining its neural networks.

These shortcomings represent a continuing opportunity for comparing TRACE output with models and ocean observations.

14
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We emphasize that TRACE, ESPER, and their seawater property estimation peers cannot replace observation; rather, they
rely on continued monitoring providing the physical and chemical basis for accurate estimation. Ocean hydrography becomes
increasingly-important in the face of climate change as Earth experiences extremes moving it outside its previously-observed
state captured by property estimation routines. In light of the changing and improving picture of the ocean system to be

305 gained from future observations, TRACE will continue iteratively improving its estimation of C,y,. Future GLODAP releases
will better constrain TTDs with the addition of more and better tracer constraints and preformed property estimates, while
the advance of global ocean circulation and biogeochemical models may indicate more accurate parameterized relationships

between the atmospheric anthropogenic CO, increase and its ocean sink.

6 Outlook

310 The development of TRACE has occurred in parallel to and in some cases dependent on related ocean chemistry software.
This includes other property estimation routines (Carter et al., 2021a, b; Dias and Carter, 2025; Carter et al., 2017), inorganic
carbon equilibrium and air-sea flux calculations (Humphreys et al., 2021; Sharp et al., 2020; Orr et al., 2015; Gregor and
Humphreys, 2021; Lewis and Wallace, 1998) and seawater thermodynamic toolboxes (Firing et al., 2021). Further development
of this suite of open-source software tools should seek to incorporate new findings and techniques, maintain dependency and

315 interoperability, and respond to the needs of users in order to pursue high-quality and accessible ocean chemistry data practices.

It is anticipated that TRACE will continue to be developed without fundamentally altering its core approach, while continu-
ing to reliably offer results with well-documented assumptions and consistency across implementations. Potential directions for
further development include integrating future GLODAP releases in its training data, including updated atmospheric CO, tra-
jectories, and refining TTD shape and surface transient tracer and C,y, disequilibrium assumptions. As methods for estimating

320 C,nm continue use and development, a more comprehensive understanding of their differences, assumptions, and uncertainties
should be formed. This need gains currency in light of the present need to understand the effects of climate change mitigation
and marine carbon dioxide removal on the ocean carbon cycle. Future work in pursuit of these needs should seek to advance

the practice of C,yy, estimation from scientific and applied perspectives.

Code and data availability. The Python implementation of TRACE may be obtained at https://doi.org/10.5281/zenodo.15597123 (Sand-

325 born and Carter, 2025). The MATLAB implementation of TRACEv1 may be obtained at https://doi.org/10.5281/zenodo.15692788 (Carter,
2025b). The GLODAPv2.2016b gridded product may be obtained at https://www.nodc.noaa.gov/archive/arc0107/0162565/1.1/data/0-data/mapped
(Lauvset et al., 2016). The global Cayn gridded inventories produced in this work may be found at https://doi.org/10.5281/zenodo.17246805
(Sandborn et al., 2025).
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Appendix A: Gridded Product Comparison

330 The distribution of the differences, or residuals, of the TRACEv1 and TRACE-Python gridded data products indicated close

agreement for results in 2020 (Figure 2). The same analysis produced for other years illustrates that this agreement holds for

other periods as well (Figures A1-A6).
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Figure A1. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point estimates
of Cynn performed on the GLODAPv2.2016b gridded product for the year 1850 given the historical CO; trajectory. The ordinate (vertical)

axis was limited to include 0.99 of point estimates. Note scaling of the ordinate axis by 107.

16



https://doi.org/10.5194/egusphere-2025-5793
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

x107°
Year: 1900 -
25F - r
' 20f -+
< -
2
2 15f -
)
g
£ 10t -
=
Q
<
-1
=
i
Q
=
==t
(=

20 30 40 50 60 70 80 90
TRACE-Python Cqy (pmol kg™?)

Figure A2. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point estimates
of Cynmn performed on the GLODAPv2.2016b gridded product for the year 1900 given the historical CO; trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A3. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point estimates
of Cynmn performed on the GLODAPv2.2016b gridded product for the year 1950 given the historical CO; trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A4. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point estimates
of Cynmn performed on the GLODAPv2.2016b gridded product for the year 1980 given the historical CO; trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure AS. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point estimates
of Cynmn performed on the GLODAPv2.2016b gridded product for the year 2000 given the historical CO; trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Figure A6. Histogram plot of the residuals of TRACEv1 and TRACE-Python point estimates of Cann against TRACE-Python point estimates
of Cynmn performed on the GLODAPv2.2016b gridded product for the year 2010 given the historical CO; trajectory. The ordinate (vertical)

axis was scaled as in Figure 2.
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Appendix B: Projected C,,, Inventories

Among the strengths of TTD-based C,, inventories is the ability to project forward and backward in time under certain

assumptions (Section 1). The inventories illustrated by Figure 4 after the year 2020 are given in Table B1 with uncertainties.

Table B1. Projections of global ocean Cann inventories produced via TRACE analysis of the GLODAPv2.2016b gridded product under

varying atmospheric CO, trajectories. Values are given as Pg C £ 1o uncertainty.

EGUsphere\

2030 2050 2100 2200 2300 2400 2500

Historical/Linear 219 (33) 293 (44) 509 (76) 1010 (150) 1520 (230) 2000 (300) 2430 (370)

SSP1-1.9 218 (33) 273 (41) 365(55) 404 (61)  421(63)  431(65)  436(65)
SSP1-2.6 220 (33) 288 (43) 421(63) 552(83)  623(93)  664(100) 690 (100)
SSP2-4.5 221(33) 303(45) 530(79) 910 (140) 1180 (180) 1330 (200) 1420 (210)
SSP3-7.0 223(33) 317(48) 640 (96) 1470 (220) 2150 (320) 2570 (380) 2810 (420)
SSP3-7.0 lowNTCF 223 (33) 316 (47) 636(95) 1460 (220) 2140 (320) 2560 (380) 2800 (420)
SSP4-3.4 219 (33) 289(43) 442(66)  565(85)  625(94)  662(99) 680 (100)
SSP4-6.0 221 (33) 306(46) 562 (84) 1050 (160) 1410 (210) 1630 (240) 1760 (260)
SSP5-3.4 over 223(33) 322(48) 501(75) 624(94)  680(100)  710(110) 730 (110)
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Table C1. Estimate of global and regional ocean Cay inventories produced via TRACEv1 analysis of the GLODAPv2.2016b gridded product
and integration using the updated method. Basins are defined after Fay and McKinley (2014). Values are given as Pg C & 1o uncertainty.

Year Total Canin Pacific Atlantic Indian Arctic Southern

1750 -7.9 (-1.2) -2.51 (-0.38) -2.54 (-0.38) -0.75 (-0.11) -0.206 (-0.031) -1.88 (-0.28)
1800 -6.43 (-0.97) -2.03 (-0.30) -1.97 (-0.30) -0.551 (-0.083)  -0.125 (-0.019) -1.76 (-0.26)
1850  -0.634 (-0.095) 0.086 (0.013) -0.614 (-0.092) 0.0167 (0.0025) 0.0561 (0.0084) -0.179 (-0.027)

1900 162 (2.4) 5.31 (0.80) 4.16 (0.62) 1.91 (0.29) 0.464 (0.070) 4.30 (0.65)
1950 52.2(7.8) 16.7 (2.5) 14.1 2.1) 5.85 (0.88) 1.33 (0.20) 142 (2.1)
1980 88 (13) 27.5 (4.1) 24.6 (3.7) 9.9 (1.5) 2.08 (0.31) 23.9 (3.6)
1994.5 117 (18) 36.1 (5.4) 33.5(5.0) 13.4 (2.0) 2.74 (0.41) 31.6 (4.7)
2000 130 (19) 39.9 (6.0) 37.3 (5.6) 14.8 (2.2) 3.03 (0.45) 34.9 (5.2)
2002.5 136 (20) 41.8(6.3) 39.1 (5.9) 155 (2.3) 3.17 (0.47) 36.5 (5.5)
2007.5 149 (22) 45.8 (6.9) 43.1 (6.5) 17.0 (2.6) 3.46 (0.52) 40.0 (6.0)
2010 156 (23) 47.9(1.2) 45.0 (6.8) 17.8 2.7) 3.62 (0.54) 41.8 (6.3)
2014.5 169 (25) 51.8 (7.8) 48.8 (7.3) 19.2 (2.9) 3.91 (0.59) 45.2 (6.8)
2020 186 (28) 57.0 (8.6) 53.8(8.1) 212 (3.2) 4.30 (0.65) 49.8 (7.5)
2030 219 (33) 67 (10) 63.2(9.5) 24.8 (3.7) 5.06 (0.76) 58.8 (8.8)
2050 293 (44) 91 (14) 83 (13) 32.7 (4.9) 6.7 (1.0) 79 (12)
2100 509 (76) 159 (24) 141 (21) 55.3(8.3) 11.0 (1.6) 143 (21)
2200 1010 (150) 300 (45) 289 (43) 111(17) 18.7 (2.8) 291 (44)
2300 1520 (230) 419 (63) 477 (72) 175 (26) 24.8 3.7) 427 (64)
2400 2000 (300) 515 (77) 630 (100) 237 (36) 29.7 (4.5) 542 (81)
2500 2430 (370) 594 (89) 870 (130) 294 (44) 33.9(5.1) 640 (96)

Appendix C: Updated TRACEv1 C,,q, Inventories

Application of the updated column and areal integration method described in this work (Section 3.2) to the original TRACEv1
gridded C,nq, product (Carter, 2025a) yielded identical results to that produced in this work (Table 2), demonstrating their

functional equivalence (Table C1).
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Appendix D: Preindustrial Ocean xCO; Distributions

Volume weighted distributions of ocean xCO, were produced from the gridded data product described in this work (Sandborn
et al., 2025) by performing a kernel density estimation analysis weighted by the volume of each cell in the product, along with
summary statistics as reported in the main text (Section 3.2 and in the accompanying plot (Figure D1). Three years spanning the
range of commonly-reported “pre-industrial” dates were considered, along with 2020 C.E. for comparison of the distributions.
The same distributions and statistics may be readily obtained from the published dataset for any year listed in the tables of
this work, or for an intervening year by performing a TRACE analysis of the GLODAPv2.2016b or another suitable gridded
product.

The extremely narrow distribution of ocean xCO, in Figure D1a resulted from the imposition of a CO, boundary condition
given by Equation 2 on the pre-industrial stable atmospheric curve. Broadening and general increase of the distributions visible
in Figure D1b-d represents the propagation of that boundary condition through the global ocean, resulting in the present-day
bimodal xCO, distribution representing highly-ventilated waters with xCO, approaching the atmospheric condition alongside

poorly-ventilated waters maintaining xCO; little-removed from the pre-industrial state.
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Figure D1. Volume-weighted kernel density estimates of ocean xCO, (xCO5*) and summary statistics estimated for the global ocean by

TRACE from the GLODAPv2.2016 gridded product temperature, salinity, and coordinates, colored and stacked by ocean basin defined as in

the main text. a, b, ¢: xXCO, distributions for the years 1750, 1800, 1850 C.E., illustrating the variability of ocean xCO, within the range of

years previously given as “pre-industrial” starting points for ocean observational or modeling state estimation. d: XCO, distribution for the

year 2020 C.E. provided for comparison. Note the horizontal coordinate is identical for a, b, ¢ to aid comparison of distribution shifts, but

extended for d to capture the broadened distribution.
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